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Abstract

Let BH be a d-dimensional fractional Brownian motion with Hurst index H ∈ (0, 1),
f : [0, 1] −→Rd a Borel function, and E ⊂ [0, 1], F ⊂Rd are given Borel sets. The focus
of this paper is on hitting probabilities of the non-centered Gaussian process BH + f . It
aims to highlight how each component f , E and F is involved in determining the upper and
lower bounds of P{(BH + f )(E) ∩ F �= ∅}. When F is a singleton and f is a general mea-
surable drift, some new estimates are obtained for the last probability by means of suitable
Hausdorff measure and capacity of the graph GrE(f ). As application we deal with the issue
of polarity of points for (BH + f )|E (the restriction of BH + f to the subset E ⊂ (0, ∞)).

Mathematics Subject Classification: 60G22, 60G17 (Primary); 60J45, 28A78 (Secondary)

1. Introduction

Hitting probabilities describes the probability that a given stochastic process will ever
reach some state or set of states F. To find upper and lower bounds for the hitting probabili-
ties in terms of the Hausdorff measure and the capacity of the set F, is a fundamental problem
in probabilistic potential theory. For d-dimensional Brownian motion B, the probability that
a path will ever visit a given set F ⊆Rd, is classically estimated using the Newtonian capac-
ity of F. Kakutani [16] was the first to establish this result linking capacities and hitting
probabilities for Brownian motion. He showed that, for all x ∈Rd and compact set F

Px{B(0, ∞) ∩ F �= ∅} > 0 ⇐⇒ Cap (F) > 0,

where Cap denotes the capacity associated to the Newtonian and logarithmic kernels (|·|2−d,
if d ≥ 3 and |log (1/·)|, if d = 2) respectively. The similar problem has been considered
by Peres and Sousi [24] for d-dimensional Brownian motion B with d ≥ 2 with a drift
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104 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

function f . They showed that for a (1/2)-Hölder continuous function f : R+ −→Rd there
is a positive constant c2 such that for all x ∈Rd and all closed set F ⊆Rd

c−1
1 CapM (F) ≤ Px{(B + f )(0, ∞) ∩ F �= ∅} ≤ c1CapM (F) , (1·1)

where CapM (·) denotes the Martin capacity, see for example [23]. At the heart of their
method is the strong Markov property. It is noteworthy that since Kakutani’s characterisa-
tion, considerable efforts have been carried out to establish a series of extensions to other
processes, on the one hand, and, secondly, for a restricted subset E ⊂ (0, ∞). This has given
rise to a large and rapidly growing body of scientific literature on the subject. To cite a few
examples, we refer to Xiao [28] for developments on hitting probabilities of Gaussian ran-
dom fields and fractional Brownian motion; to Pruitt and Taylor [26] and Khoshnevisan
[17] for hitting probabilities results for general stable processes and Lévy processes; to
Khoshnevisan and Shi [18] for hitting probabilities of the Brownian sheet; to Dalang and
Nualart [6] for hitting probabilities for the solution of a system of nonlinear hyperbolic
stochastic partial differential equations; to Dalang, Khoshnevisan and Nualart [7, 8], for
hitting probabilities for the solution of a non-linear stochastic heat equation with additive
and multiplicative noise respectively; to Xiao [29] Biermé, Lacaux and Xiao [1] for hitting
probabilities of anisotropic Gaussian random fields.

An important remark should be made, Kakutani’s characterisation is not common to all
the processes and this is generally due to process dependency structures. Thus the lower
and upper bounds on hitting probabilities are obtained respectively in terms of capacity and
Hausdorff measure of the product set E × F. In this light, we cite Chen and Xiao result [4]
which is actually an improvement of results established by Xiao [29, theorem 7·6] and by
Biermé, Lacaux and Xiao [1, theorem 2·1] on hitting probabilities of the Rd-valued Gaussian
random field X satisfying conditions (C1) and (C2) (see Xiao [29] for precise definition)
through the following estimates

c−1
2 Cd

ρdX
(E × F) ≤ P{X(E) ∩ F �= ∅} ≤ c2Hd

ρdX
(E × F),

where E ⊆ [a, 1]N , a ∈ (0, 1) and F ⊆Rd are Borel sets and c2 is a constant which
depends on [a, 1]N , F and H only. Cd

ρdX
(·) and Hd

ρdX
(·) denotes the Bessel–Riesz type

capacity and the Hausdorff measure with respect to the metric ρdX , defined on R+ ×Rd

by ρdX ((s, x), (t, y)) := max {dX(s, t), ‖x − y‖} where dX is the canonical metric of the
Gaussian process X. Both of these terms are defined in the sequel. We emphasise that frac-
tional Brownian motion belongs to the class of processes that satisfy the conditions (C1) and
(C2). See Xiao [29] for information on the conditions (C1) and (C2).

The similar issue for a multifractional Brownian motion BH(·) governed by a Hurst func-
tion H(·) and drifted by a function f with the same Hölder exponent function H(·) was
investigated by Chen [5, theorem 2·6]. The hitting probabilities estimates upper and lower
were given in terms of Hd

ρdH
(E × F) and Cd

ρdH
(E × F) respectively. The metrics dH and dH

are defined by |t − s|H and |t − s|H respectively, where H and H are the extreme values of
the Hurst function H(·). Consequently, for the fractional Brownian BH of Hurst parameter H
(H is now time-independent), Chen’s result can be formulated as follows

c−1
3 Cd

ρdH
(E × F) ≤ P{(BH + f )(E) ∩ F �= ∅} ≤ c3Hd

ρdH
(E × F), (1·2)
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Hitting probabilities of fractional Brownian motion with drift 105

for any H-Hölder continuous drift f . What we notice in both above-mentioned results (1·1)
and (1·2) is that the drift f has H as the Hölder exponent which is out of reach for fractional
Brownian paths. This brings us to consider the sensitivity problem of the above estimates
with respect to the Hölder exponent of the drift. More precisely, could we obtain the same
results when the drift f is (H − ε)-Hölder continuous for any ε > 0 small enough?

Our first objective in this work is to give an answer to this issue. First of all, we seek
to provide some general results on Hausdorff measures and capacities that will be relevant
to reaching our main goal. Precisely, we established some upper bounds for the Hausdorff
measure (resp. lower bounds for the Bessel–Riesz capacity) of the product set E × F by
means of a suitable Hausdorff measure (resp. Bessel–Riesz capacity) of one of the compo-
nent sets E and F in a general metric space. If either E or F is “reasonably regular” in the
sense of having equal Hausdorff and Minkowski dimensions, the bounds become as sharp
as possible. This constitutes the content of Section 2.

As a consequence, we obtain practical and appropriate bound estimates of hitting prob-
abilities for fractional Brownian motion with H-Hölder continuous drift BH + f involving
only Hausdorff measure (for upper bound) and Bessel–Riesz capacity (for lower bound) of
E or F, which we believe are of independent interest. All of this and related details make up
the content of Section 3.

Given Sections 2 and 3, in Section 4 we address the sensitivity question posed above and
the answer is negative. The idea is to look for drifts, linked with potential theory, that are
Hölder continuous without reaching the Hölder regularity of order H. To be more specific,
we seek drifts with a modulus of continuity of the form w(x) = xH �(x), where � is a slowly
varying function at zero in the sens of Karamata satisfying lim sup

x→0
�(x) = +∞, and having

close ties to hitting probabilities. The potential candidates that best match the requested
features are the paths of Gaussian processes with covariance function satisfying

E
(

B
δθH
0 (t) − B

δθH
0 (s)

)2 = δ2
θH

(|t − s|) for all t, s ∈ [0, 1],

for some regularly varying function function δθH (r) := rH �θH (r) such that its slowly varying
part �δθH

satisfies lim sup
r→0

�(r) = +∞. Indeed, on the one hand the paths of such Gaussian

processes are continuous with an almost sure uniform modulus of continuity given by
δθH (r) log1/2 (1/r) up to a deterministic constant and, most of all, we are going to take advan-
tage of the hitting estimates already established for such processes on the other. Based on
a result due to Taylor [27] on the relationship between Hausdorff measure and capacity
and using the estimates established in Section 2, we construct two sets E and F and a drift
f , chosen amongst the candidates listed above, for which the inequalities in (1·2) are not
satisfied.

From this follows another question which will be dealt with in Section 5: what about the
hitting probabilities for general measurable drift?

In view of the lack of information about the roughness of the drift f it is difficult to
carry out upper and lower bounds on hitting probabilities even for regular sets E and F.
We were only able to tackle the issue of hitting probabilities when F is a single point, for
a thorough explanation see Remark 5·4. The idea is to use information provided by the
graph GrE(f ) = {(t, f (t)) : t ∈ E} of f over the Borel set E in order to investigate the hitting
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106 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

probabilities. We establish, for a general measurable drift, upper and lower bounds on hitting
probabilities of the type

c−1
4 Cd

ρdH
(GrE(f )) ≤ P

{∃t ∈ E : (BH + f )(t) = x
}≤ c4 Hd

ρdH
(GrE(f )). (1·3)

In connection with our previous work [9] on whether the image (BH + f )(E) has a pos-
itive Lebesgue measure λd(BH + f )(E) we have relaxed, thanks to the estimation above,
the main assumption dimρdH

(GrE(f )) > d in [9, theorem 3·2]. Indeed, we show that the

weaker condition Cd
ρdH

(GrE(f )) > 0 is sufficient to provide λd
(
BH + f

)
(E) > 0 with positive

probability.
The study of the polarity of points for processes with drift f began in the 1980s with

the seminal work of Graversen [12] on planar Brownian motion B. In his paper, Graversen
showed that for any β < 1/2 there exists a β-Hölder continuous function f such that B + f
hits points. This result was later sharpened by Le Gall [19] who proved that points are polar
for B + f when f is 1/2-Hölder continuous. Mountford generalised these results to one-
dimensional stable processes Xα , α ∈ (0, 2). Specifically, for α > 1 he showed that Xα + f
hits points for any Borel function f , and for α < 1 for any continuous function the range of
Xα + f is almost surely of positive Lebesgue measure. Subsequently, Evans [10] strength-
ened Mountford’s second result by proving that for Lévy processes whose paths are almost
surely real-valued jump functions, the negligible set is independent of f .

Section 6 is devoted to stress the link between the Hausdorff dimension dim (E) of E and
the polarity of points for (BH + f )|E (the restriction of BH + f to the subset E ⊂ (0, ∞)).
This will be done through the above estimates (1·2) (with F a single point) and (1·3) as we
explain in more detail below. First when f is H-Hölder continuous the above estimates (1·3)
take the following form

c−1
5 CHd(E) ≤ P

{∃t ∈ E : (BH + f )(t) = x
}≤ c5 HHd(E). (1·4)

Hence the first conclusion that we can draw is: if dim (E) > Hd then (BH + f )|E hits points,
and if dim (E) < Hd then (BH + f )|E doesn’t hit points, i.e. points are polar for (BH + f )|E.
It is thus obvious that dim (E) = Hd is the critical dimension case. We show that this
case is undecidable, in the sense that we construct two Borel sets E1, E2 ⊂ [0, 1] such that
dim (E1) = dim (E2) = Hd for which

(
BH + f

) |E1 hits points but
(
BH + f

) |E2 doesn’t. This
suggest that the roughness provided by the H-Hölder continuity of the drift f is insuffi-
cient to allow (BH + f )|E to hits points for general set E in the critical dimension case and
as foreseeable question: could this be done by adding little more roughness? The idea is
to take advantage of the lower bound of the hitting probabilities in (1·3) by looking for
drifts for which Cd

ρdH
(GrE(f )) > 0 even for the critical case dim (E) = Hd. Again, as before,

we use independent Gaussian process of type BδθH to construct drifts with slightly more
roughness than that provided by H-Hölder continuity and for which the last condition must
be satisfied. With an appropriate choice of ingredients, especially the kernel defining the
capacity with respect to the potential theory associated to BδθH , to satisfy the assump-
tions of Taylor’s result [27] we construct drifts f , that are (H − ε)-Hölder continuous for
all small ε > 0 without reaching order H, and allowing (BH + f )|E to hit points. We can
safely say that the same method can be used in the case dim (E) < Hd. Namely, we can
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Hitting probabilities of fractional Brownian motion with drift 107

construct a drift f : [0, 1] →Rd which is (α − ε)-Hölder continuous for all small ε > 0, with
α := dim (E)/d < H, such that (BH + f )|E hits points.

Now we introduce some useful notations throughout the paper.
|.| denotes the usual metric on R+ and ‖·‖ is the Euclidean norm on Rd. For functions f ,g,

f � g means that there exists a constant c ≥ 1 such that c−1g(·) ≤ f (·) ≤ c g(·).

2. Preliminaries on Hausdorff measures and capacities

In this section, we would like to consider some comparison results that are intended to
provide upper bound for the Hausdorff measure (resp. lower bound of the Bessel–Riesz
capacity) of a product set G1 × G2 in terms of the Hausdorff measures (resp. in terms of
capacity) of each of the component G1 and G2 with appropriate orders. Such results might
be useful in studying the problem of hitting probabilities for BH + f . First of all, we need
to recall definitions of Hausdorff measures as well as Bessel–Riesz capacities in a general
metric space.

Let (X, ρ) be a bounded metric space, β > 0 and G ⊂ X. We define the β-dimensional
Hausdorff measure of G with respect to the metric ρ as

Hβ
ρ (G) = lim

δ→0
inf

{ ∞∑
n=1

(2rn)
β : G ⊆

∞⋃
n=1

Bρ (rn) , rn � δ

}
, (2·1)

where Bρ(r) denotes an open ball of radius r in the metric space (X, ρ). The Hausdorff
dimension of G in the metric space (X, ρ) is defined to be

dimρ (G) = inf{β > 0 : Hβ
ρ (G) = 0} for all G ⊂ X. (2·2)

The usual β-dimensional Hausdorff measure and the Hausdorff dimension in Euclidean
metric are denoted by Hβ and dim (·), respectively. Moreover, Hβ is assumed equal to 1
whenever β ≤ 0.

We introduce now the Minkowski dimension of E ⊂ (X, ρ). Let Nρ(E, r) be covering
number, that is the smallest number of open balls of radius r required to cover E. The lower
and upper Minkowski dimensions of E are respectively defined as

dimρ,M(E) := lim inf
r→0+

log Nρ(E, r)

log (1/r)
,

dimρ,M(E) := lim sup
r→0+

log Nρ(E, r)

log (1/r)
.

Equivalently, the upper Minkowski dimension of E can be characterised by

dimρ,M(E) = inf{γ : ∃ C ∈R+ such that Nρ(E, r) � Cr−γ for all r > 0}. (2·3)

In the Euclidean case, the upper Minkowski dimension will be denoted by dimM .
Let ϕα : (0, ∞) → (0, ∞) be the function given by

ϕα(r) =
⎧⎨⎩

r−α if α > 0,
log

( e
r∧1

)
if α = 0,

1 if α < 0.
(2·4)
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108 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

The Bessel–Riesz type capacity of order α on the metric space (X, ρ) is defined by

Cα
ρ(G) =

[
inf

μ∈P(G)

∫
X

∫
X

ϕα(ρ(u, v))μ(du)μ(dv)

]−1

, (2·5)

where P(G) is the family of probability measures carried by G.
We note that for α < 0 we have Cα

ρ(G) = 1 for any nonempty G. The usual Bessel–Riesz
capacity of order α in the Euclidean metric will be denoted by Cα .

Now let
(
Xi, ρi

)
i = 1, 2 be two metric spaces. Let ρ3 be the metric on X1 × X2 given

by

ρ3 ((u, x), (v, y)) = max{ρ1(u, v), ρ2(x, y)}.
The following proposition if the main result of this section.

PROPOSITION 2·1. Let α > 0 and Gi ⊂ Xi, i = 1, 2.

(i) If G1 supports a probability measure μ that satisfies

μ
(
Bρ1 (a, r)

)≤ c1 rγ for all a ∈ G1, and all 0 < r ≤ diam(G1), (2·6)

for some positive constants c1 and γ , then there exists a constant c2 > 0 such that

Cα−γ
ρ2

(G2) ≤ c2 Cα
ρ3

(G1 × G2). (2·7)

(ii) If there exist constants γ ′ < α and c3 > 0 such that

Nρ1 (G1, r) ≤ c3 r−γ ′
for all 0 < r ≤ diam(G1), (2·8)

then we have

Hα
ρ3

(G1 × G2) ≤ c4Hα−γ ′
ρ2

(G2), (2·9)

for some constant c4 > 0.
Similar estimates hold true if we assume that G2 verifies assumptions (i) and (ii). That is

there exist positive constants c5 and c6 such that

Cα−γ
ρ1

(G1) ≤ c5 Cα
ρ3

(G1 × G2), (2·10)

Hα
ρ3

(G1 × G2) ≤ c6Hα−γ ′
ρ1

(G1). (2·11)

Remark 2·2.

1. By the mass distribution principle, we get from assertion (i). that dimρ1 (G1) ≥ γ .

2. Using the characterisation of the upper Minkowski dimension (2·3) we obtain from

assertion (ii). that dimρ1,M(G1) ≤ γ ′ and Hγ ′
ρ1 (G1) < ∞. Hence by the Frostman’s

energy method [3, theorem 6·4·6 p.173] we immediately have Cγ ′
ρ1 (G1) = 0.

The following lemma will help us to establish (2·7) (resp. (2·10)).
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Hitting probabilities of fractional Brownian motion with drift 109

LEMMA 2·3. Let (X, ρ) be a bounded metric space and μ a probability measure supported
on X satisfying

μ
(
Bρ(u, r)

)≤ C1rκ for all u ∈ X and r > 0, (2·12)

for some positive constants C1 and κ . Then for any θ > 0, there exists C2 > 0 such that

I(r) := sup
v∈X

∫
X

μ(du)

(max{ρ(u, v), r})θ ≤ C2 ϕθ−κ (r), (2·13)

for all r ∈ (0, diam(X)).

Proof of Proposition 2·1. We start by proving (i). Let us suppose that Cα−γ
ρ2 (G2) > 0,

otherwise there is nothing to prove. It follows that for η ∈ (0, Cα−γ
ρ2 (G2)) there is a probability

measure m supported on G2 such that

Eρ2,α−γ (m) :=
∫

G2

∫
G2

ϕα−γ (ρ2(x, y)) m(dx)m(dy) ≤ η−1. (2·14)

Since μ ⊗ m is a probability measure on G1 × G2, then applying Fubini’s theorem and
Lemma 2·3 we obtain

Eρ3,α(μ ⊗ m) =
∫

G1×G2

∫
G1×G2

μ ⊗ m(dudx)μ ⊗ m(dvdy)

(ρ3 ((u, x), (v, y)) )α

≤ C2

∫
G2

∫
G2

ϕα−γ (ρ2(x, y)) m(dx)m(dy) ≤ C2 η−1.
(2·15)

Consequently we have Cα
ρ3

(G1 × G2) ≥ C−1
2 η. Then we let η ↑ Cα−γ

ρ2 (G2) to conclude that
the inequality in (2·7) holds true.

Now let us prove (ii). Let ζ >Hα−γ ′
ρ2 (G2) be arbitrary. Then there is a covering of G2 by

open balls Bρ2 (xn, rn) of radius rn such that

G2 ⊂
∞⋃

n=1

Bρ2 (xn, rn) and
∞∑

n=1

(2rn)α−γ ′ ≤ ζ . (2·16)

For all n ≥ 1, let Bρ1 (un,j, rn), j = 1, ..., Nρ1 (G1, rn) be a family of open balls covering
G1. It follows that the family Bρ1 (un,j, rn) × Bρ2 (xn, rn), j = 1, ..., Nρ1 (G1, rn), n ≥ 1 gives
a covering of G1 × G2 by open balls of radius rn for the metric ρ3.

It follows from (2·8) and (2·16) that

∞∑
n=1

Nρ1 (G1,rn)∑
j=1

(2rn)
α ≤ c3 2γ ′

∞∑
n=1

(2rn)α−γ ′ ≤ c3 2γ ′
ζ . (2·17)

Letting ζ ↓Hα−γ ′
ρ2 (G2), the inequality in (2·9) follows with c4 = c3 2γ ′

.

In the following we give a sufficient condition ensuring hypotheses (i) and (ii) of
Proposition 2·1.

PROPOSITION 2·4. The following condition

0 < γ < dimρ1 (G1) ≤ dimρ1,M(G1) < γ ′ < α,

is sufficient to achieve (2·6) and (2·8).
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110 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

Proof. (i) (resp. (ii)) is a direct consequence of Frostman’s Theorem (resp. the character-
isation (2·3))

It is well known that Hausdorff and Minkowski dimensions agree for many Borel sets E.
Often this is linked on the one hand to the geometric properties of the set, on the other hand
it is a consequence of the existence of a sufficiently regular measure. Among the best known
are Ahlfors–David regular sets defined as follows.

Definition 2·5. Let (X, ρ) be a bounded metric space, γ > 0 and G ⊂ X. We say that G
is γ -Ahlfors–David regular if there exists a finite positive Borel measure μ supported on G
and positive constant cγ such that

c−1
γ rγ ≤ μ

(
Bρ (a, r)

)≤ cγ rγ for all a ∈ G, and all 0 < r ≤ 1. (2·18)

For a Borel set E ⊂Rn satisfying the condition (2·18) with ρ is the euclidean metric of
Rn, it is shown in [21, theorem 5·7, p.80] that

γ = dim (E) = dimM(E) = dimM(E).

This statement still true in a general metric space (X, ρ), it suffices to go through the same
lines of the proof of the euclidean case. Here we provide some examples of such sets.

Examples 2·1

(i) If E is the whole interval I then the condition (2·18) is satisfied with γ = 1. This
leads to the conclusion that the measure μ can be chosen as the normalized Lebesgue
measure on I.

(ii) The Cantor set C(λ), 0 < λ < 1/2, subset of I with μ is the γ -dimensional Hausdorff
measure restricted to C(λ), where γ = dim C(λ) = log (2)/ log (1/λ). For more details
see [21, theorem 4·14 p.67]. In general, self similar subsets of R satisfying the open
set condition are standard examples of Ahlfors–David regular sets, see [14].

The following proposition states that when G1 (resp. G2) is γ1-Ahlfors–David regular set
(resp. γ2-Ahlfors–David regular set), then inequalities (2·7) and (2·9) of Proposition 2·1 are
checked for γ = γ ′ = γ1 (resp. for γ = γ ′ = γ2).

PROPOSITION 2·6. Let α > 0, and assume that G1 is γ1-Ahlfors–David regular set.

(i) If γ1 ≤ α then

Cα−γ1
ρ2

(G2) ≤ c7 Cα
ρ3

(G1 × G2). (2·19)

(ii) If γ1 < α then

Hα
ρ3

(G1 × G2) ≤ c8Hα−γ1
ρ2

(G2). (2·20)

Similar estimates hold true under the assumption G2 is γ2-Ahlfors–David regular set.
Precisely we have

Cα−γ2
ρ1

(G1) ≤ c9 Cα
ρ3

(G1 × G2), (2·21)
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Hα
ρ3

(G1 × G2) ≤ c10Hα−γ2
ρ1

(G1). (2·22)

Proof. In order to prove (2·19) and (2·20) it is sufficient to check that conditions (2·6)
and (2·8) are satisfied with γ = γ ′ = γ1. Firstly, (2·6) is no other than the right inequality
in (2·18). On the other hand, let 0 < r ≤ 1 and Pρ1 (G1, r) be the packing number, that is the
greatest number of disjoint balls Bρ1 (xj, r) with xj ∈ G1. The left inequality of (2·18) ensures
that

c−1
γ1

Pρ1 (G1, r) rγ1 ≤
Pρ1 (G1,r)∑

j=1

μ
(
Bρ1 (xj, r)

)= μ(G1) ≤ 1.

Using the well-known fact that Nρ1 (G1, 2 r) ≤ Pρ1 (G1, r), we obtain the desired estimation
(2·8).

Remark 2·7. Notice that when both Gi, i = 1, 2 are γi-Ahlfors David regular sets for some
constant γi > 0, then there exist two positive constants c11 and c12 such that

Cγ1+γ2
ρ3

(G1 × G2) ≥ c11 Cγ2
ρ2

(G2) ∨ Cγ1
ρ1

(G1)

and Hγ1+γ2
ρ3

(G1 × G2) ≤ c12 Hγ2
ρ2

(G2) ∧Hγ1
ρ1

(G1). (2·23)

3. Hitting probabilities for fractional Brownian motion with deterministic regular drift

Let H ∈ (0, 1) and BH
0 = {

BH
0 (t), t ≥ 0

}
be a real-valued fractional Brownian motion of

Hurst index H defined on a complete probability space (�, F, P), i.e. a real valued Gaussian
process with stationary increments and covariance function given by

E(BH
0 (s)BH

0 (t)) = 1

2
(|t|2H + |s|2H − |t − s|2H).

Let BH
1 , ..., BH

d be d independent copies of BH
0 . The stochastic process BH = {

BH(t), t ≥ 0
}

given by

BH(t) = (BH
1 (t), ...., BH

d (t)),

is called a d-dimensional fractional Brownian motion of Hurst index H ∈ (0, 1).
For d a metric on R+, we define on R+ ×Rd the metric ρd as follows

ρd((s, x), (t, y)) = max{d (t, s) , ‖x − y‖} ∀(s, x), (t, y) ∈R+ ×Rd. (3·1)

We denote by dH the canonical metric of BH given by

dH(s, t) := |t − s|H for all s, t ∈R+. (3·2)

The associated metric ρdH on R+ ×Rd is called the parabolic metric.
Let I = [a, b], where a < b ∈ (0, 1] are fixed constants. For α ∈ (0, 1), Cα(I) is the space

of α-Hölder continuous function f : [a, b] −→Rd equipped with the norm

‖f ‖α := sup
s∈I

‖f (s)‖ + sup
s,t∈I
s �=t

‖f (t) − f (s)‖
|t − s|α < +∞. (3·3)

First we state the following result, which is easily deduced from [5, theorem 2·6].
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112 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

THEOREM 3·1. Let {BH(t), t ∈ [0, 1]} be a d-dimensional fractional Brownian motion and
f ∈ CH (I). Let F ⊆Rd and E ⊂ I are two compact subsets. Then there exist a constant c ≥ 1
depending on I, F, H and f only, such that

c−1Cd
ρdH

(E × F) ≤ P{(BH + f )(E) ∩ F �= ∅} ≤ c Hd
ρdH

(E × F). (3·4)

The aim of this section is to provide the hitting probabilities estimates for some particular
sets E and F. Such estimates would be helpful in the next section to establish a kind of of
sharpness of the H-Hölder regularity of the drift f in Theorem 3·1.

3.1. Hitting probabilities estimates when E is β-Ahlfors–David regular set

First let us recall that, when E is an interval, [4, corollary 2·2] ensures that there exists a
constant c ≥ 1 depending only on E, F and H such that

c−1 Cd−1/H(F) ≤ P
{
BH(E) ∩ F �= ∅}≤ cHd−1/H(F),

for any Borel set F ⊆Rd. Our next goal is to establish similar estimates for (BH + f ) when
E be a β-Ahlfors–David regular set.

PROPOSITION 3·2. Let BH, f, E and F as in Theorem 3·1 with E ⊂ (I, |.|) is a β-Ahlfors–
David regular for some β ∈ (0, 1]. Then there is a positive constant c2 which depends on E,
F, H, Kf and β, such that

c−1
2 Cd−β/H(F) ≤ P{(BH + f )(E) ∩ F �= ∅} ≤ c2 Hd−β/H(F). (3·5)

Proof. Three cases are to be discussed here: (j) β < Hd, (jj) β = Hd and (jjj) β > Hd.
Let us point out first that for the lower bound, the interesting cases are (j) and (jj) while for
the upper bound it is the case (j) which requires proof. Using Proposition 2·6 with X1 = E,
ρ1(s, t) = |t − s|H , X2 =Rd, ρ2(x, y) = ‖x − y‖, and α = d, we get the first case (j). For the
case (jj) we only use Proposition 2·6 (i).

Following the same pattern as above we get the following corollary.

COROLLARY 3·3. Let BH, E and F as in Proposition 3·2. Then there is a positive constant
c3 which depends on E, F, H and β, such that

c−1
3 Cd−β/H(F) ≤ P{BH(E) ∩ F �= ∅} ≤ c3 Hd−β/H(F). (3·6)

Remark 3·4.

(i) We note that [4, corollary 2·2] corresponds to the particular case E = I for which
β = 1.

(ii) For less regular set E, with 0 < β < dim (E) ≤ dimM(E) < β ′ < Hd, we can derive, as
a consequence of (2·7) and (2·9) of Proposition 2·1, Proposition 2·4 and Theorem 3·1,
the following weaker estimates

c−1
1 Cd−β/H(F) ≤ P{(BH + f )(E) ∩ F �= ∅} ≤ c1 Hd−β ′/H(F), (3·7)

where c1 is a positive constant depends only on E, F, H, Kf , β and β ′.
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3.2. Hitting probabilities estimates when F is γ -Ahlfors–David regular

Now we get parallel results to those given in Proposition 3·2, emphasizing regularity
properties of F instead of E. If F ⊂ (

Rd, ‖·‖) is a γ -Ahlfors–David regular, we have the
following result, which could be proven similarly to Proposition 3·2 by making use of (2·21)
and (2·22).

PROPOSITION 3·5. Let BH, f, E and F as in Theorem 3·1, such that F is a γ -Ahlfors–David
regular compact subset of [ − M, M]d for some γ ∈ (0, d]. Then there is a positive constant
c5 which depends on E, F, H, Kf and γ only, such that

c−1
5 CH(d−γ )(E) ≤ P{(BH + f )(E) ∩ F �= ∅} ≤ c5 HH(d−γ )(E). (3·8)

COROLLARY 3·6 Let BH, E and F as in Proposition 3·5. Then there is a positive and
constant c6 which depends on E, F, H and γ , such that

c−1
6 CH(d−γ )(E) ≤ P{BH(E) ∩ F �= ∅} ≤ c6 HH(d−γ )(E). (3·9)

Remark 3·7. Similarly to Remark 3·4-(ii), for less regular set F, with 0 < γ < dim (F) ≤
dimM(F) < γ ′ < d, we have

c−1
4 CH(d−γ )(E) ≤ P{(BH + f )(E) ∩ F �= ∅} ≤ c4 HH(d−γ ′)(E), (3·10)

where c4 is a positive constant which depends on E, F, H, Kf , γ and γ ′.

4. Sharpness of the Hölder regularity of the drift:

This subsection brings to light the essential role of the H-Hölder regularity assumed on the
drift f in the following sense: the result of Theorem 3·1 fails to hold when the deterministic
drift f has a modulus of continuity w(·) satisfying

rH = o (w(r)) and w(r) = o
(
rH−ι

)
when r → 0 for all ι ∈ (0, H).

In this respect, we have to introduce some tools allowing us to reach our target.
Let L be the class of all continuous functions w : [0, 1] → (0, ∞), w(0) = 0, which

are increasing on some interval (0, r0] with r0 = r0(w) ∈ (0, 1). Let w ∈ L be fixed. A
continuous function f is said to belong to the space Cw(I) if and only if

sup
s,t∈I
s �=t

|f (s) − f (t)|
w(|s − t|) < ∞.

It is obvious that the space Cw(I) is a Banach space with the norm

‖f ‖w = sup
s∈I

|f (s)| + sup
s,t∈I
s �=t

|f (s) − f (t)|
w(|s − t|) .

For α ∈ (0, 1) and w(t) = tα , Cw(I) is nothing but the usual space Cα(I).
Let x0 ∈ (0, 1] and l : (0, x0] →R+ be a slowly varying function at zero in the sens of

Karamata (cf. [2]). It is well known that l has the representation

l(x) = exp

(
η(x) +

∫ x0

x

ε(t)

t
dt

)
, (4·1)
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114 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

where η, ε : [0, x0) →R are Borel measurable and bounded functions such that

lim
x→0

η(x) = η0 ∈ (0, ∞) and lim
x→0

ε(x) = 0.

An interesting property of slowly varying functions which gives some intuitive meaning to
the notion of “slow variation” is that for any τ > 0 we have

xτ l(x) → 0 and x−τ l(x) → ∞ as x → 0. (4·2)

It is known from Theorem 1·3·3 and Proposition 1·3·4 in [2] and the ensuing discussion that
there exists a function C∞ near zero l̃ : (0, x0] →R+ such that l(x) ∼ l̃(x) when x → 0, and
l̃(·) has the following form

l̃(x) = c exp

(∫ x0

x

ε̃(t)

t
dt

)
, (4·3)

for some positive constant c and ε̃(x) → 0. Such function is called normalized slowly varying
function (Kohlbecker 1958), and in this case

ε̃(x) = −x �̃′(x)/�̃(x) for all x ∈ (0, x0). (4·4)

A function vα,� : [0, x0] →R+ is called regularly varying function at zero with index α ∈
(0, 1) if and only if there exists a slowly varying function �, called the slowly varying part of
vα,�, such that

vα,�(0) = 0 and vα,�(x) = xα �(x), x ∈ (0, x0). (4·5)

vα,� is called a normalised regularly varying if its slowly varying part is normalised slowly
varying at zero. In the rest of this work, since the value of x0 is unimportant because �̃(x) and
ε̃(x) may be altered at will for x ∈ (x0, 1], one can choose x0 = 1 without loss of generality.
Furthermore, we will only consider normalised regularly/slowly varying function.

Here are some interesting properties of normalized regularly varying functions. Let vα,�

be a normalised regularly varying at zero with normalized slowly varying part l.

LEMMA 4·1.

(i) There exists small enough x1 > 0 such that

lim
x↓0

v′
α,�(x) = +∞ and vα,�(·) is increasing on (0, x1].

(ii) If in addition we assume that l is a C2 function such that

lim inf
x↓0

x ε′(x) = 0, (4·6)

where ε is given by (4·4). Then there exists small enough x2 > 0 such that vα,� is
increasingly concave on (0, x2]. Moreover for all x3 ∈ (0, x2) and all c > 0 small
enough there exists r0 < x3 such that

vα,�(t) − vα,�(s) ≤ c vα,�(t − s) for all s, t ∈ [x3, x2] such that 0 < t − s < r0.
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Proof.

(i) It stemmed from

v′
α,�(x) = xα−1 �(x) (α − ε(x)) ,

and (4·2).

(ii) It is easy to check that

v′′
α,�(x) = xα−2 �(x)

[
(α − 1 − ε(x)) (α − ε(x)) − x ε′(x)

]
.

(4·2) and hypothesis (4·6) ensure that limx↓0 v′′
α,�(x) = −∞. Then there exists x2 > 0 small

enough such that v′
α,�(x) > 0 and v′′

α,�(x) < 0 for all x ∈ (0, x2]. Thus vα,� is increasingly
concave on (0, x2].

For the rest, let x3 ∈ (0, x2] and c > 0 be arbitrary. Let s < t ∈ (x3, x2) and r < x3, then
using the monotonicity of v′

α,� we have for 0 < t − s < r that

vα,�(t) − vα,�(s)

vα,�(t − s)
≤ v′

α,�(x3)

v′
α,�(r)

. (4·7)

Since limx↓0 v′
α,�(x) = +∞, we can choose r0 to be smallest r guaranteeing that the term

v′
α,�(x3)/v′

α,�(r) will be smaller than c. This completes the proof.

Remark 4·2. As a consequence of the Lemma 4·1, for any normalised regularly varying at
zero vα,� that checks the condition (4·6), (s, t) �→ vα,�(|t − s|) defines a metric on [a, x2]2.

Let � be a normalised slowly varying function at zero. Now we consider the continuous
function wH,l given by

wH,�(0) = 0 and wH,�(x) = xH �(x) log1/2 (1/x), x ∈ (0, 1]. (4·8)

It is easy to see that �(x) log1/2 (1/x) stills a normalised slowly varying satisfying (4·3)
with ε̄(·) = ε(·) − log−1 (1/ · )/2. Hence assertion 1 of Lemma 4·1 provides that wH,� is
increasing on some interval (0, x1] with x1 ∈ (0, 1). Therefore wH,� ∈ L.

If we assume in addition that � satisfies

lim sup
x→0

�(x) log1/2 (1/x) = +∞, (4·9)

then the following inclusions hold

CH(I) � CwH,�(I) �
⋂
τ>0

CH−τ (I). (4·10)

Let θH be the normalised regularly varying function defined in (7·1) with a normalized
slowly varying part that satisfies;⎧⎪⎪⎨⎪⎪⎩

(i) lim inf
x→+∞ LθH (x) = 0, lim sup

x→+∞
LθH (x) < +∞;

(ii) lim sup
x→+∞

x ε′
θ (x) = 0.

(4·11)
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116 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

Here are some examples of normalised slowly varying functions for which the above
conditions are satisfied

LθH (x) = log−β (x) , LθH (x) = exp
(− logα (x)

)
, α ∈ (0, 1) and β > 0.

In what follows, we will adopt the following notation

�θH (·) := c1/2
H L−1/2

θH
(1/ · ). (4·12)

Now let us give the main result of this section.

THEOREM 4·3. Let {BH(t), t ∈ [0, 1]} be a d-dimensional fractional Brownian motion. Then
there exist a function f ∈ C

wH,�θH (I) \ CH (I), and compact sets E ⊂ I and F ⊂Rd such that

Cd
ρdH

(E × F) =Hd
ρdH

(E × F) = 0 and P
{
(BH + f )(E) ∩ F �=∅

}
> 0. (4·13)

In other words (3·4) fails to hold.

Remark 4·4

(i) It is worthwhile mentioning that C
wH,�θH (I) verifies (4·10) as �θH (·) defined in

(4·12) meets the condition (4·9) via the first term in assertion (i) of (4·11), i.e.
lim inf
x→+∞ LθH (x) = 0.

(ii) It follows from the fact (4·10) that the drift f in Theorem 4·3 belongs to
⋂
τ>0

CH−τ (I) \
CH (I).

Before drawing up the proof we provide the tools to be used. Let δθH be the function given
by the representation (7·3). Theorem 7·3·1 in [20] tells us that δθH is normalised regularly
varying with index H with a slowly varying part �δθH

that satisfies

�θH (h) ∼ �δθH
(h) as h → 0. (4·14)

For more details see (7·6). Now we consider another probability space (�′, F′, P′) on

which we define the real valued centered Gaussian process with stationary increments B
δθH
0 ,

satisfying B
δθH
0 (0) = 0 a.s. and

E′ (B
δθH
0 (t) − B

δθH
0 (s)

)2 = δ2
θH

(|t − s|) for all t, s ∈ [0, 1]. (4·15)

Proposition 7·1 gives a way to construct this process and Theorem 7·2 provides us its modu-

lus of continuity, that is B
δθH
0 ∈ C

wH,�θH (I) P′-almost surely. The d-dimensional version of the

process B
δθH
0 is the process BδθH (t) := (B

δθH
1 (t), ...., B

δθH
d (t)), where B

δθH
1 , ..., B

δθH
d are d inde-

pendent copies of B
δθH
0 . Let Z be the d-dimensional mixed process defined on the product

space (� × �′, F×F′, P⊗ P′) by

Z(t, (ω, ω′)) = BH(t, ω) + BδθH (t, ω′) for all t ∈ [0, 1] and (ω, ω′) ∈ � × �′. (4·16)
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It is easy to see that the components of Z = (Z1, ..., Zd) are independent copies of a real val-

ued Gaussian process Z0 = BH
0 + B

δθH
0 on (� × �′, F⊗F′, P⊗ P′). Furthermore we have

Ẽ (Z0(t) − Z0(s))2 = v2H,1+�2
δθH

(|t − s|) := |t − s|2H
(

1 + �2
δθH

(|t − s|)
)

,

where Ẽ denotes the expectation under the probability measure P̃ := P⊗ P′.
Using the assertion i. of (4·11) and (4·14) we obtain the following

LEMMA 4·5. There exists a constant q > 1 such that

q−1 v2H, �2
θH

(h) ≤ Ẽ (Z0(t + h) − Z0(t))2 ≤ q v2H, �2
θH

(h), (4·17)

for all h ∈ [0, 1] and t ∈ [0, 1].

For simplicity, we denote by dH,�δθH
and dH,(1+�2

δθH
)1/2 the canonical metrics of BδθH and

Z respectively. A consequence of the previous lemma these canonical metrics are strongly
equivalents to the metric (s, t) �→ dH,�θH

(t, s) := vH, �θH
(|t − s|), leading to the strong equiv-

alence of the metrics ρdH,�δθH
, ρd

H,(1+�2
δθH

)1/2 and ρdH,�θH
. Hence, their associated capacities

are also equivalents.

Proof of Theorem 4·3. Let us consider the Gaussian process Z stated above. Using condi-
tion (4·11) we infer that �θH (·) satisfies (4·6). Then Lemma 4·1 ensures that vH,�θH (·) verifies
[13, hypothesis 2·2]. Let M > 0, applying [13, theorem 4·1] and the fact that ρd

H,(1+�2
δθH

)1/2

and ρdH,�θH
are strongly equivalent, there exist a positive constant c1 depending only on I

and M such that

P̃ {Z(E) ∩ F �= ∅} ≥ c1 Cd
ρdH,�θH

(E × F), (4·18)

for any compact sets E ⊂ I and F ⊂ [ − M, M]d. Let 0 < γ < d and fix a γ -Ahlfors–David
regular set Fγ ⊂ [ − M, M]d. Then by using (2·21) with ρ1 = dH,�θH

and ρ3 = ρdH,�θH
and

(2·22) with ρ1 = dH and ρ3 = ρdH , we obtain

Cd
ρdH,�θH

(E × Fγ ) ≥ c−1
2 Cd−γ

dH,�θH
(E) and Hd

ρdH
(E × Fγ ) ≤ c2 HH(d−γ )(E), (4·19)

for all compact E ⊂ I and for some constant c2 > 0. Now it is not difficult to see that the
functions h(t) := tH(d−γ ) and

�(t) = 1/vd−γ

H,�θH
(t) = 1/v

H(d−γ ),�(d−γ )
θH

(t),

satisfy the hypotheses of [27, theorem 4] which allow us to conclude that there exists a
compact set Eγ ⊂ I such that

HH(d−γ )(Eγ ) = 0 and Cd−γ

dH,�θH
(Eγ ) > 0. (4·20)

Consequently, combining (4·19) and (4·20), we have

Hd
ρdH

(Eγ × Fγ ) = 0 and P̃
{
Z(Eγ ) ∩ Fγ �= ∅}≥ (c1/c2) Cd−γ

dH,�θH
(Eγ ) > 0. (4·21)
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Now the remainder of the proof is devoted to the construction of a drift f satisfying (4·13).
As a consequence of Fubini’s theorem, we have

E′
(
P
{
(BH + BδθH (ω′))(Eγ ) ∩ Fγ �= ∅}− c3 Cd−γ

dH,�θH
(Eγ )

)
> 0,

for some fixed positive constant c3 ∈ (0, c1/c2), leading to

P′
{
ω′ ∈ �′ : P

{
(BH + BδθH (ω′))(Eγ ) ∩ Fγ �= ∅}> c3 Cd−γ

dH,�θH
(Eγ )

}
> 0. (4·22)

We therefore choose the function f among of them. Hence we get the desired result.

5. Hitting points

As mentioned previously in the introduction our goal in this section is to shed some light
on the hitting probabilities for general measurable drift. The resulting estimates are given in
the following.

THEOREM 5·1. Let {BH(t) : t ∈ [0, 1]} be a d-dimensional fractional Brownian motion with
Hurst index H ∈ (0, 1). Let f : [0, 1] →Rd be a bounded Borel measurable function and let
E ⊂ I be a Borel set. Then for any M > 0 there exists a constant c1 ≥ 1 such that for all
x ∈ [ − M, M]d we have

c−1
1 Cd

ρdH
(GrE(f )) ≤ P

{∃ t ∈ E:(BH + f )(t) = x
}≤ c1 Hd

ρdH
(GrE(f )). (5·1)

The following lemmas are very valuable to prove Theorem 5·1
LEMMA 5·2 [1, lemma 3·1]. Let {BH(t) : t ∈ [0, 1]} be a fractional Brownian motion with
Hurst index H ∈ (0, 1). For any constant M > 0, there exists positive constants c2 and ε0 > 0
such that for all r ∈ (0, ε0), t ∈ I and all x ∈ [ − M, M]d,

P

(
inf

s∈I,|s−t|H≤r
‖BH(s) − x‖� r

)
� c2 rd. (5·2)

LEMMA 5·3 [1, lemma 3·2]. Let BH be a fractional Brownian motion with Hurst index
H ∈ (0, 1). Then there exists a positive constant c3 such that for all ε ∈ (0, 1), s, t ∈ I and
x, y ∈Rd we have∫

R2d
e−i(〈ξ ,x〉+〈η,y〉) exp

(
−1

2
(ξ , η)

(
εI2d + Cov(BH(s), BH(t))

)
(ξ , η)T

)
dξdη

≤ c3(
ρdH ((s, x), (t, y))

)d , (5·3)

where �ε(s, t) := ε I2 + Cov(BH
0 (s), BH

0 (t)), I2d and I2 are the identities matrices of order 2d
and 2 respectively, Cov(BH(s), BH(t)) and Cov(BH

0 (s), BH
0 (t)) denote the covariance matrix

of the random vectors (BH(s), BH(t)) and (BH
0 (s), BH

0 (t)) respectively, and (ξ , η)T is the
transpose of the row vector (ξ , η).

Proof of Theorem 5·1. We start with the upper bound. Choose an arbitrary constant γ >

Hd
ρdH

(GrE(f )), then there is a covering of GrE(f ) by balls {BρdH
((ti, yi), ri), i ≥ 1} in R+ ×Rd
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such that

GrE(f ) ⊆
∞⋃

i=1

BρdH
((ti, yi), ri) and

∞∑
i=1

(2ri)
d ≤ γ . (5·4)

Let δ0 and M being the constants given in Lemma 5·2. We assume without loss of generality
that ri < δ0 for all i ≥ 1. Let x ∈ [ − M, M]d, it is obvious that{∃s ∈ E : (BH + f )(s) = x

}⊆ (5·5)
∞⋃

i=1

{
∃ (s, f (s)) ∈

(
ti − r1/H

i , ti + r1/H
i

)
× B(yi, ri) s.t. (BH + f )(s) = x

}
.

Since for every fixed i ≥ 1 we have{
∃ (s, f (s)) ∈

(
ti − r1/H

i , ti + r1/H
i

)
× B(yi, ri) s.t. (BH + f )(s) = x

}
⊆
{

inf
|s−ti|H<ri

‖BH(s) − x + yi‖ ≤ ri

}
, (5·6)

then we get from [1, lemma 3·1] that

P
{
∃ (s, f (s)) ∈

(
ti − r1/H

i , ti + r1/H
i

)
× B(yi, ri) s.t. (BH + f )(s) = x

}
≤ P

{
inf

|s−ti|H<ri

‖BH(s) − x + yi‖ ≤ ri

}
≤ c2 rd

i , (5·7)

where c4 depends on H, I, M and f only. Combining (5·4)-(5·7) we derive that

P
{∃s ∈ E : (BH + f )(s) = x

}≤ 2−dc2 γ .

Let γ ↓Hd
ρdH

(GrE(f )), the upper bound in (5·1) follows.
The lower bound in (5·1) holds from the second moment argument. We assume that

Cd
ρdH

(GrE(f )) > 0, then let σ be a measure supported on GrE(f ) such that

EρdH ,d(σ ) =
∫

GrE(f )

∫
GrE(f )

dσ (s, f (s))dσ (t, f (t))

ρdH ((s, f (s)), (t, f (t)))d
≤ 2

Cd
ρdH

(GrE(f ))
. (5·8)

Let ν be the measure on E satisfying ν := σ ◦ P−1
1 where P1 is the projection mapping on

E, i.e. P1(s, f (s)) = s. For n ≥ 1 we consider a family of random measures νn on E defined
by

∫
E

g(s)νn(ds) =
∫

E
(2πn)d/2 exp

(
−n‖BH(s) + f (s) − x‖2

2

)
g(s)ν(ds)

=
∫

E

∫
Rd

exp

(
−‖ξ‖2

2n
+ i

〈
ξ , BH(s) + f (s) − x

〉)
g(s)dξν(ds), (5·9)

where g is an arbitrary measurable function on R+. Our aim is to show that {νn, n ≥ 1}
has a subsequence which converges weakly to a finite measure ν∞ supported on the set
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120 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

{s ∈ E : BH(s) + f (s) = x}. To carry out this goal, we will start by establishing the following
inequalities

E(‖νn‖) � c5, E(‖νn‖2) � c3EρdH ,d(σ ), (5·10)

which constitute together with the Paley–Zygmund inequality the cornerstone of the proof.
Here ‖νn‖ denotes the total mass of νn. By (5·9), Fubini’s theorem and the use of the
characteristic function of a Gaussian vector we have

E(‖νn‖) =
∫

E

∫
Rd

e−i〈ξ ,x−f (s)〉 exp

(
−‖ξ‖2

2n

)
E
(

ei〈ξ ,BH(s)〉) dξ ν(ds)

=
∫

E

∫
Rd

e−i〈ξ ,x−f (s)〉 exp

(
−1

2

(
1

n
+ s2H

)
‖ξ‖2

)
dξ ν(ds)

=
∫

E

(
2π

n−1 + s2H

)d/2

exp

(
− ‖x − f (s)‖2

2
(
n−1 + s2H

)) ν(ds)

≥
∫

E

(
2π

1 + s2H

)d/2

exp

(
−‖x − f (s)‖2

2s2H

)
ν(ds)

≥ c5 > 0. (5·11)

Since f is bounded, x ∈ [−M, M]d and ν is a probability measure we conclude that c5 is
independent of ν and n. This gives the first inequality in (5·10).

We will now turn our attention to the second inequality in (5·10). By (5·9) and Fubini’s
theorem again we obtain

E
(
‖νn‖2

)
=
∫

E

∫
E

ν(ds)ν(dt)
∫
R2d

e−i(〈ξ ,x−f (s)〉+〈η,x−f (t)〉)

× exp ( − 1

2
(ξ , η)(n−1I2d + Cov(BH(s), BH(t)))(ξ , η)T )dξdη

� c3

∫
GrE(f )

∫
GrE(f )

dσ (s, f (s))dσ (t, f (t))

( max{|t − s|H , ‖f (t) − f (s)‖})d
= c3 EρdH ,d(σ ) < ∞,

(5·12)

where the first inequality is a direct consequence of Lemma 5·3. Plugging the moment
estimates of (5·10) into the Paley–Zygmund inequality (c.f. Kahane [15, p.8]), allows us
to confirm that there exists an event �0 of positive probability such that, for all ω ∈ �0,
(νn(ω))n≥1 admits a subsequence converging weakly to a finite positive measure ν∞(ω) sup-
ported on the set {s ∈ E : BH(ω, s) + f (s) = x}, satisfying the moment estimates in (5·10).
Hence we have

P
{∃s ∈ E:(BH + f )(s) = x

}≥ P (‖ν∞‖ > 0) ≥ E(‖ν∞‖)2

E(‖ν∞‖2)
≥ c2

5

c3EρdH ,d(σ )
. (5·13)

Combining this with (5·8) yields the lower bound in (5·1). The proof is completed.

Remark 5·4. We mention that the covering argument used to prove the upper bound in (5·1)
can also serve to show that for any Borel set F ⊂Rd, there exists a positive constant c such
that

P
{
(BH + f )(E) ∩ F �= ∅}≤ c Hd

ρ̃H
(GrE(f ) × F). (5·14)
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Here Hα
ρ̃dH

( � ) is the α-dimensional Hausdorff measure on the metric space (R+ ×Rd ×
Rd, ρ̃dH ), where the metric ρ̃dH is defined by

ρ̃dH ((s, x, u), (t, y, v)) := max{|t − s|H , ‖x − y‖, ‖u − v‖}.
But it seems hard to establish a lower bound in terms of Cd

ρ̃H
(GrE(f ) × F) even for Ahlfors–

David regular set F.

As a consequence of Theorem 5·1, we obtain a weaker version of [9, theorem 3·2]

COROLLARY 5·5 Let BH, f, and E as in Theorem 5·1. Then:

(i) if Cd
ρdH

(GrE(f )) > 0 then λd
(
(BH + f )(E)

)
> 0 with positive probability;

(ii) if Hd
ρdH

(GrE(f )) = 0 then λd
(
(BH + f )(E)

)= 0 almost surely.

Proof. Integrating (5·1) of Theorem 5·1 over all cube [ − M, M]d, M > 0 with respect
Lebesgue measure λd, we obtain that

(2M)d c−1
1 Cd

ρdH
(GrE(f )) ≤E

[
λd

(
[ − M, M]d ∩ (BH + f )(E)

)]
≤ (2M)d c1 Hd

ρdH
(GrE(f )). (5·15)

Therefore if Cd
ρdH

(GrE(f )) > 0 we obtain

E
[
λd
(
(BH + f )(E)

)]
> 0.

Hence λd
(
(BH + f )(E)

)
> 0 with positive probability, which finishes the proof of (i). On the

other hand, if Hd
ρdH

(GrE(f )) = 0 we obtain that λd
(
[ − n, n]d ∩ (BH + f )(E)

)= 0 a.s. for all

n ∈N∗. Then we have λd
(
(BH + f )(E)

)= 0 a.s. Hence the proof of (ii) is completed.

Remark 5·6

(i) Let dimρdH
(·) be the Hausdorff dimension in the metric space (R+ ×Rd, ρdH ) defined

in (2·2). There is a close relationship between dimρdH
(·) and H-parabolic Hausdorff

dimension dim�,H (·), used in Peres and Sousi [25] and in Erraoui and Hakiki [9],
expressed by

dim�,H (.) ≡ H × dimρdH
(.).

See [9, remark 2·2].

(ii) The previous corollary is a weaker version of [9, theorem 3·2] in the following sense:
According to [25, theorem 1·2.] and (i) we have

dim (BH + f )(E) = dim�,H (GrE(f ))

H
∧ d = dimρdH

(GrE(f )) ∧ d.

Therefore [9, theorem 3·2.] asserts that, if dimρdH
(GrE(f )) > d then λd(BH +

f )(E)) > 0 almost surely. On the other hand, Corollary 5·5 (i) ensures, under the con-
dition Cd

ρdH
(GrE(f )) > 0, that λd(BH + f )(E)) > 0 only with positive probability. It is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004125000039
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 12 Mar 2025 at 05:12:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000039
https://www.cambridge.org/core


122 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

well known from Frostman’s Lemma that the condition Cd
ρdH

(GrE(f )) > 0 is weaker
than dimρdH

(GrE(f )) > d.

6. Application to polarity

Let E ⊂ I. We say that a point x ∈Rd is polar for (BH + f )|E, the restriction of (BH + f )
to E, if

P
{∃ t ∈ E : (BH + f )(t) = x

}= 0. (6·1)

Otherwise, x is said to be non-polar for (BH + f )|E. In other words, (BH + f )|E hits the
point x.

It is noteworthy that, when f ∈ CH(I), the hitting probabilities estimates in (5·1) becomes

c−1
1 CHd(E) ≤ P

{∃t ∈ E:(BH + f )(t) = x
}≤ c1 HHd(E). (6·2)

See also [5, corollary 2·8]. Consequently, all points are non-polar (resp. polar) for (BH + f )|E
when dim (E) > Hd (resp. dim (E) < Hd). However, the critical dimensional case, which is
the most important and not easy to deal with, is dim (E) = Hd. This is undecidable in general
as illustrated in the following

PROPOSITION 6·1. Let {BH(t):t ∈ [0, 1]} be a d-dimensional fractional Brownian motion
of Hurst index H ∈ (0, 1) such that Hd < 1. Let f : [0, 1] →Rd be a H-Hölder continuous
function and E ⊂ I be a Borel set. Then there exist two Borel subsets E1 and E2 of I such
that dim (E1) = dim (E2) = H d and for all x ∈Rd we have

P
{∃s ∈ E1 : (BH + f )(s) = x

}= 0 and P
{∃s ∈ E2 : (BH + f )(s) = x

}
> 0.

The following Lemma is helpful in the proof of Proposition 6·1.

LEMMA 6·2 Let α ∈ (0, 1) and β > 1. Let E1 and E2 are two Borel subsets of I supporting
two probability measures ν1 and ν2 respectively, that satisfy

c−1
1 rα logβ (e/r) ≤ ν1 ([a − r, a + r]) ≤ c1rα logβ (e/r) for all r ∈ (0, 1), a ∈ E1, (6·3)

and

c−1
2 rα log−β (e/r) ≤ ν2 ([a − r, a + r]) ≤ c2rα log−β (e/r) for all r ∈ (0, 1), a ∈ E2,

(6·4)

for some positive constants c1 and c2. Then we have

dim (E1) = dim (E2) = α

and

Hα(E1) = 0 and Cα(E2) > 0. (6·5)

See Appendix B for examples of such measures ν1 and ν2.

Proof. First, let us start by proving that dim (E1) = dim (E2) = α. Indeed, for all t ∈ [0, 1]
and n ∈N we denote by In(t) the nth generation, half open dyadic interval of the form
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[
j − 1

2n
,

j

2n
) containing t. Then, by using (6·3) and (6·4), it is easy to check that

lim
n→∞

log ν1(In(t))

log (2−n)
= lim

n→∞
log ν2(In(t))

log (2−n)
= α. (6·6)

Therefore, by Billingsley Lemma [3, lemma 1·4·1, p. 16] we have dim (E1) = dim (E2) = α.

Now we are going to look at (6·5). Let r ∈ (0, 1] and P|.|(E1, r) be the packing number of
E1. The lower bound in (6·3) leads via

c−1
1 rα logβ (e/r) P|.|(E1, r) ≤

P|.|(E1,r)∑
j=1

ν1(Ij) = ν1(E1) = 1,

to

P|.|(E1, r) ≤ c1r−α log−β (e/r).

So using the well-known fact that N|.|(E1, 2r) ≤ P|.|(E1, r), we may deduce that

N|.|(E1, r) ≤ c1 2α r−α log−β (2e/r), ∀r ∈ (0, 1).

Therefore, it is not hard to make out that

Hα(E1) ≤ lim sup
r→0

(2r)α N|.|(E1, r) = 0,

which gives the first outcome of (6·5). On the other hand, to show that Cα(E2) > 0 it is
sufficient to prove that

sup
t∈E2

∫
E2

ν2(ds)

|t − s|α < ∞.

Indeed, we first assume without loss of generality that κ = diam(E2) < 1. Now since ν2 has
no atom, then for any t ∈ E2 we have∫

E2

ν2(ds)

|t − s|α =
∞∑

j=0

∫
{s:|t−s|∈(κ2−(j+1),κ2−j]}

ν2(ds)

|t − s|α

≤
∞∑

j=0

κ−α2α (j+1)ν2
(
[t − κ 2−j, t + κ 2−j]

)
≤ 2αc2

∞∑
j=0

1

logβ (e 2j/κ)
, (6·7)

which is finite independently of t. Hence Eα(ν2) < ∞ and therefore Cα(E2) > 0.

Proof of Proposition 6·1. A direct consequence of (6·2) and Lemma 6·2 with α = Hd.

Against this background, it is worthy to note that, according to (6·2) and Proposition 6·1,
the H-Hölder regularity of the drift f is insufficient to guarantee the non-polarity of points
for (BH + f )|E for a Borel set E ⊂ [0, 1] such that dim (E) = Hd which implicitly involves
the need for a bite of drift roughness. Namely, the drift f will be chosen, as in the previous
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section, to be (H − ε)-Holder continuous for all ε > 0 without reaching order H. On the other
hand in accordance to Theorem 5·1, for a general measurable drift f , a sufficient condition
for (BH + f )|E to hits all points is Cd

ρdH
(GrE(f )) > 0. The overall point of what follows is

to provide some examples of drifts satisfying this last condition with a Borel set E whose
distinctive feature is dim (E) = Hd.

Given a slowly varying function at zero �:(0, 1] →R+ we associate to it the kernel
�H,�(·) defined as follows

�H,�(r) := r−Hd �−d(r) (1 + log (1 ∨ �(r))) . (6·8)

Let θHθHθH be the normalised regularly varying function defined in (7·1) with a normalised
slowly varying part LθHθHθH . As previously, we consider the normalised regularly varying func-
tion at zero δθHθHθH , with index H and normalised slowly varying part �δθHθHθH

, satisfying (7·4) and,
on the space (�′, F′, P′), the d-dimensional Gaussian process with stationary increments

BδθHθHθH (t) :=
(

B
δθHθHθH
1 (t), ...., B

δθHθHθH
d (t)

)
, t ∈ [0, 1], where B

δθHθHθH
1 , ..., B

δθHθHθH
d are d independent copies of

B
δθHθHθH
0 defined in (7·8). The following lemma will be useful afterwards.

LEMMA 6·3. There exists a positive constant c3 such that

E′ [(max
{
tH , ‖BδθHθHθH (t)‖})−d

]
≤ c3 �H,�δθHθHθH

(t), ∀t ∈ (0, t0), (6·9)

for some t0 ∈ (0, 1).

Proof. First we note that, since BδθHθHθH (t) is a d-dimensional Gaussian vector, the term on the

left-hand side of (6·9) has the same distribution as t−Hd
(

max
{

1, �δθHθHθH
(t)‖N‖

})−d
, where N

is a d-dimensional standard normal random vector. Due to simple calculations we obtain

E′
[(

max
{

1, �δθHθHθH
(t)‖N‖

})−d
]

= P′
[
‖N‖ ≤ �−1

δθHθHθH
(t)
]
+ �−d

δθHθHθH
(t)E′

[
1

‖N‖d
11{‖N‖>�−1

δθHθHθH
(t)

]
= (2π)−d/2

⎛⎝∫ {
‖y‖≤�−1

δθHθHθH
(t)

} e−‖y‖2/2dy + �−d
δθHθHθH

(t)
∫ {

‖y‖>�−1
δθHθHθH

(t)

} e−‖y‖2/2

‖y‖d dy

⎞⎠

≤ c4 �−d
δθHθHθH

(t)

⎛⎝1 +
∫ ∞

�−1
δθHθHθH

(t)

e−r2/2

r
dr

⎞⎠
≤ c4 �−d

δθHθHθH
(t)

⎛⎝1 +
∫ 1

1∧�−1
δθHθHθH

(t)
r−1 dr +

∫ ∞

1

e−r2/2

r dr

⎞⎠
≤ c4 �−d

δθHθHθH
(t)
(

1 − log
(

1 ∧ �−1
δθHθHθH

(t)
))

≤ c4 �−d
δθHθHθH

(t)
(

1 + log
(

1 ∨ �δθHθHθH
(t)
))

.

LEMMA 6·4. Let E be a Borel set of [0, 1]. If C�H,�δθHθHθH
(E) > 0, then P′-almost surely

Cd
ρdH

(
GrE(BδθHθHθH )

)
> 0.
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Proof. Firstly, the assumption C�H,�δθHθHθH
(E) > 0 ensures that there exists a probability

measure ν supported on E with finite energy, i.e.

E�H,�δθHθHθH
(ν) =

∫
E

∫
E
�H,�δθHθHθH

(|t − s|)ν(dt)ν(ds) < ∞.

Let μω′ be the random measure defined on GrE(BδθHθHθH ) by

μω′(G) := ν{s : (s, Bδθ0 (ω′, s)) ∈ G} for all G ⊂ GrE(BδθHθHθH (·, ω′)).

Hence P′-almost surely we have

EρdH ,d(μω′) :=
∫

GrE(B
δθHθHθH )

∫
GrE(B

δθHθHθH )

dμω′ (s,B
δθHθHθH (s))dμω′ (t,BδθHθHθH (t))

max
{
|t−s|Hd ,‖B

δθHθHθH (t)−B
δθHθHθH (s)‖d

}

=
∫

E

∫
E

ν(ds)ν(dt)

max
{
|t−s|Hd ,‖B

δθHθHθH (t)−B
δθHθHθH (s)‖d

} .

Therefore, in order to achieve the goal it is sufficient to show that EρdH ,d(μω′) < ∞ for P′-
almost surely, which can be done by checking E′

[
EρdH ,d(μω′)

]
< ∞. Indeed, using Fubini’s

theorem with the stationarity of increments and Lemma 6·3 we obtain

E′ [EρdH ,d(μω′)
]

=E′
[∫

E

∫
E

1

max
{|t − s|Hd, ‖BδθHθHθH (t) − BδθHθHθH (s)‖d

}ν(ds)ν(dt)

]

=
∫

E

∫
E
E′
[

1

max
{|t − s|Hd, ‖BδθHθHθH (|t − s|)‖d

}] ν(ds)ν(dt)

≤ c3 E�H,�δθHθHθH
(ν) < ∞.

(6·10)

Thus Cd
ρdH

(
GrE(BδθHθHθH )

)
> 0 P′-almost surely.

Remark 6·5. Notice that in both of Lemmas 6·3 and 6·4 we lose nothing by changing �δθH
(·)

by �θH (·) = cH L−1/2
θH

(1/ · ), due to the fact that �δθH
(h) ∼ �θH (h) as h → 0.

The following result is the consequence of the two previous lemmas.

PROPOSITION 6·6. Let {BH(t) : t ∈ [0, 1]} be a d-dimensional fractional Brownian motion
of Hurst index H ∈ (0, 1). If C�H,�δθHθHθH

(E) > 0, then there exists a continuous function f ∈
C

wH,�θH (I) \ CH (I) such that

P
{∃t ∈ E : (BH + f )(t) = x

}
> 0, (6·11)

for all x ∈Rd.

Proof. We start the proof by recalling that Theorem 7·2 provides the modulus of continu-
ity of BδθHθHθH that is BδθHθHθH ∈ C

wH,�θH (I), P′-almost surely. Now applying Theorem 5·1 we deduce
that for P′-almost surely there is a positive random constant C = C(ω′) > 0 such that
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P
{∃s ∈ :(BH + BδθHθHθH (ω′))(s) = x

}≥ C Cd
ρdH

(
GrE BδθHθHθH (·, ω′)

)
> 0.

Hence, by choosing f to be one of the trajectories of BδθHθHθH we get the desired result.

Remark 6·7. It is worthwhile mentioning that C
wH,�θH (I) verifies (4·10) as �θH (·) meets the

condition (4·9) via assertion (i) of (4·11).

Consequently we have the following outcome:

COROLLARY 6·8. Let {BH(t):t ∈ [0, 1]} be a d-dimensional fractional Brownian motion of
Hurst index H ∈ (0, 1). Assume that LθHθHθH , the normalised slowly varying part of θHθHθH, satisfies
(4·11). Then there exist a Borel set E ⊂ I, such that

dim (E) = Hd and HHd(E) = 0,

and a function f ∈ C
wH,�θH (I) \ CH (I), such that all points are non-polar for (BH + f )|E.

Remark 6·9. Similarly to Theorem 4·3, Corollary 6·8 confirms also the sharpness of the
Hölder regularity assumption made on the drift f in (6·2).

Proof of Corollary 6·8. (7·6) with lim inf
x→+∞ LθHθHθH (x) = 0 imply that

lim sup
x→0

�δθHθHθH
(x) = lim sup

x→0
�θHθHθH (x) = +∞.

Thus applying once again [27, theorem 4] with the functions h(t) := tHd and �(t) =
�H,�δθHθHθH

(t) we infer that there exists a compact set E ⊂ I such that

HHd(E) = 0 and C�H,�δθHθHθH
(E) > 0.

Finally Proposition 6·6 gives us the function that we are looking for, that is f ∈ C
wH,�θH (I)

for which (BH + f )|E hits all points.

7. Appendixes

7.1. Appendix A

In this section, we would like to investigate existence of a Gaussian process with station-
ary increments Bδθ with increments variance δθ (·), we also provides the uniform modulus
of continuity for Bδθ . First, let α ∈ (0, 1) and θα : R+ →R+ be a C∞ normalised regularly
varying function at infinity with index 2α + 1 in the sense of Karamata of the form

θα(x) = x2α+1 Lθα (x), (7·1)

with Lθα (·) is the normalised slowly varying part given as follows

Lθα (x) = c1 exp

(∫ x

x0

εθα (t)

t
dt

)
for all x ≥ x0, (7·2)

and Lθα (x) = c1 for all x ∈ (0, x0), where c1 is a positive constant. It is quite simple to check
that

εθα (x) = x L′
θα

(x)/Lθα (x) for all x ≥ x0.
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Let δθα : R+ →R+ be the continuous function defined by

δ2
θα

(h) := 2

π

∫ ∞

0
(1 − cos (x h))

dx

θα(x)
= 4

π

∫ ∞

0
sin2

(
x h

2

)
dx

θα(x)
. (7·3)

The special properties of the function θα make it easy to verify that δθα is well-defined.
Moreover, it follows from [20, theorem 7·3·1] that δ2

θα
is a normalised regularly varying

function at zero with index 2α such that

δ2
θα

(h) ∼ h2α �2
θα

(h) as h → 0, (7·4)

where

�θα (h) := c1/2
α L−1/2

θα
(1/h) and cα := 4

π

∫ ∞

0

sin2 s/2

s2α+1
ds. (7·5)

Hence δθα is normalised regularly varying at zero of index α, whence there exists
�δθα

: (0, 1] →R+ be normalised slowly varying at zero such that δθα (h) = hα �δθα
(h) =

vα,�δθα
(h) for all h ∈ [0, 1]. Therefore (7·4) ensures that

�δθα
(h) ∼ �θα (h) = c1/2

α L−1/2
θα

(1/h) as h → 0. (7·6)

In the following, we give a method for constructing real Gaussian centered processes with
stationary increments such that their increments variance are given by δ2

θα
.

PROPOSITION 7·1. Let α ∈ (0, 1) and θα be the normalised regularly varying function given

in (7·1). Then there exists a one-dimensional centered Gaussian process B
δθα

0 on R+ such
that for all

δ2
θα

(h) =E
(

B
δθα

0 (t + h) − B
δθα

0 (t)
)2

for all t ≥ 0 and h ≥ 0. (7·7)

Proof. First, let μ be the measure on R+ defined by μ(dx) = (πθα(x))−1 1R+(x) dx. Let
W1 and W2 be two independent Brownian motion on R+. Now we consider the Gaussian
processes B

δθα

0 represented as follows

B
δθα

0 (t) :=
∫ ∞

0

(1 − cos xt)

(π θα(x))1/2
W1(dx) +

∫ ∞

0

sin xt

(π θα(x))1/2
W2(dx). (7·8)

A simple calculation gives

E
[
(B

δθα

0 (t + h) − B
δθα

0 (t))
]2 = 2

∫ ∞

0
(1 − cos (x h))μ(dx) = δ2

θα
(h). (7·9)

Using (7·4) we get the following useful estimates helping us to provide uniform modulus
of continuity of Bδθα : there exist h0 > 0 and a constant q ≥ 1 such that

q−1 h2α �2
θα

(h) ≤E
[
B

δθα

0 (t + h) − B
δθα

0 (t)
]2 ≤ q h2α �2

θα
(h), (7·10)

for all t ∈R+ and h ∈ [0, h0).
Notice that, due to (7·10), all results of our interest are not sensitive to changing �δθα

by �θα . On the other hand, using �θα instead of �δθα
is especially important when the regu-

larity condition (4·11) on Lθ (·) is needed. Such condition leads to (4·6) for �θ (·), which is
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required for Lemma 4·1. The following result is about the uniform modulu of continuity of
the Gaussian process Bδθα

THEOREM 7·2. Let Bδθα := (B
δθα

1 (t), ...., B
δθα

d (t)) be a d-dimensional Gaussian process,

where B
δθα

1 , ..., B
δθα

d are d independent copies of B
δθα

0 . Let 0 < a < b < 1 and I := [a, b].
Then Bδθα ∈ Cwα,�θα (I) a.s. with wα,�θα

defined by

wα,�θα
(r) := rα �θα (r) log1/2 (1/r). (7·11)

In other words, there is an almost sure finite random variable η = η(ω), such that for almost
all ω ∈ � and for all 0 < r ≤ η(ω), we have

sup
s,t∈I

|t−s|≤r

∥∥Bδθα (t) − Bδθα (s)
∥∥≤ c1 wα,�θα

(r), (7·12)

where c1 is a universal positive constant.

Proof. First, we start by considering the function

w̃α,�θα
(r) = rα �θα (r) log1/2 (1/r) +

∫ r

0

uα �θα (u)

u[ log 1/u]1/2
du. (7·13)

It is simple to verify that w̃α,�θα
(·) is well defined in a neighbourhood of zero with

limr→0 w̃α,�θα
(r) = 0. Since Bδθα satisfies (7·10), then it follows from [20, theorem 7·2·1,

p. 304] that w̃α,�θα
(·) is a uniform modulus of continuity of Bδθα . That is there exists a

constant c2 ≥ 0 such that

lim sup
η→0

sup
|u−v|≤η

u,v∈I

‖Bδθα (u) − Bδθα (v)‖
w̃α,�θH

(η)
≤ c2 a.s. (7·14)

Hence there exists an almost surely positive random variable η0 such that for all 0 < η < η0,
we have

sup
|u−v|≤η

u,v∈I

∥∥Bδθα (u) − Bδθα (v)
∥∥≤ c2 w̃α,�θH

(η). (7·15)

The presence of an integral in (7·13) suggests that the modulus of continuity is artificial,
which leads to seek a simpler and more practical one. So it is easy to check, by using
Hopital’s rule argument, that∫ r

0

uα �θH (u)

u( log 1/u)1/2
du = o

(
rα �θH (r)

)
.

Therefore there exists r0 > 0 such that

w̃
α,L−1/2

θα
(1/·)(r) ≤ 2 rα �θH (r) log1/2 (1/r) = 2 wα,�θH

(r) for allr < r0.

Hence using this fact and (7·15), we obtain that almost surely

sup
u,v∈I

|u−v|≤η

∥∥Bδθα (u) − Bδθα (v)
∥∥≤ 2 c2 wα,�θH

(η) for all η < η0 ∧ r0,

which completes the proof.
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Remark 7·3. It is noteworthy that (7·4) ensures Cwδθα (I) ≡ C
wα,�θH (I), where wδθα

(·) =
δθα (·) log1/2(1/ · ).

7.2. Appendix B

Our aims here are twofold: first, to provide a proof of Lemma 2·3, and second, to
present examples of probability measures ν1 and ν2 supported on two Borel sets E1 and
E2 respectively, and satisfying (6·3) and (6·4).

Proof of Lemma 2·3. Without loss of generality we can assume that diam(X) = 1. Three
cases need to be discussed here: (i) θ < κ , (ii) θ = κ and (iii) θ > κ . For the first case θ < κ ,
we have to show only that

sup
r∈(0,1)

I(r) < ∞.

Indeed, for any v ∈ X we have∫
X

μ(du)

(max{ρ(u, v), r})θ ≤
∫

X

μ(du)

ρ(u, v)θ
=

∞∑
j=1

∫
{u:ρ(u,v)∈(2−j,2−j+1]}

μ(du)

ρ(u, v)θ

≤
∞∑

j=1

2jθμ
(

Bρ(v, 2−j+1)
)

≤ C1 2κ
∞∑

j=1

2−j(κ−θ ) < ∞.

Now for θ ≥ κ , we have first

I(r) ≤ sup
v∈X

∫
{u:ρ(u,v)<r}

μ(du)

rθ︸ ︷︷ ︸
:= I1(r)

+ sup
v∈X

∫
{u:ρ(u,v)≥r}

μ(du)

ρ(u, v)θ︸ ︷︷ ︸
:= I2(r)

with r ∈ (0, 1). By using (2.12) we get

I1(r) ≤ C1 rκ−θ . (7·16)

For estimating I2(r), we set j(r) := inf{j : 2−j ≤ r}. Then we have

{u:ρ(u, v) ≥ r} ⊂
j(r)⋃
j=1

{u:2−j ≤ ρ(u, v) < 2−j+1}. (7·17)

Simple calculations and (2.12) ensures that for any v ∈ X we have∫
{u:ρ(u,v)≥r}

μ(du)

ρ(u, v)θ
≤

j(r)∑
j=1

2j θμ
(
{u:2−j ≤ ρ(u, v) < 2−j+1}

)

≤ C1 2κ

j(r)∑
j=1

2j(θ−κ). (7·18)

It follows from the definition of j(r) that 2−j(r) ≤ r < 2−j(r)+1. Then, for θ = κ we get easily
that

I1(r) ≤ C1 and I2(r) ≤ C3 log (e/r) = C3 ϕθ−κ (r). (7·19)
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Hence we get the desired estimation for the case (ii). For the last case θ > κ , we use a
comparison with a geometric sum in (7·18) to obtain

I2(r) ≤ C4 rκ−θ . (7·20)

Putting (7·16) and (7·20) all together, the estimation (2·13) follows.

For the second aim, let ϕ be a continuous increasing function on R+, such that

ϕ(0) = 0 and ϕ(2x) < 2ϕ(x) for all x ∈ (0, x0), (7·21)

for some x0 ∈ (0, 1). Our aims is to construct a Cantor type set Eϕ ⊂ (0, x0) which support a
probability measure νϕ with the property νϕ([a − r, a + r]) � ϕ(r).

PROPOSITION 7·4. Let ϕ be a function satisfying (7·21). Then there exists a Borel set Eϕ ⊂
[0, x0] which support a probability measure ν such that

c−1
1 ϕ(r) ≤ ν([a − r, a + r]) ≤ c1 ϕ(r) for all r ∈ [0, x0] and a ∈ Eϕ . (7·22)

Proof. We will construct a compact set Eϕ inductively as follows: Let I0 ⊂ [0, x0) be a
closed interval of length l0 < x0. First, let l1 := ϕ−1

(
ϕ(l0)2−1

)
, and let I1,1 and I1,2 two

subintervals of I0 with length l1. For k ≥ 2, we construct inductively a family of inter-
vals {Ik,j : j = 1, ..., 2k}, in the following way: let lk := ϕ−1

(
ϕ(l0)2−k

)
and the intervals

Ik,1, ..., Ik,2k are constructed by keeping two intervals of length lk from each interval Ik−1,i

i = 1, . . . , 2k−1 of the previous iteration. We define Eϕ,k to be the union of the intervals(
Ik,j
)

j=1,...,2k of each iteration. The compact set Eϕ is defined to be the limit set of this
construction, namely

Eϕ :=
∞⋂

k=1

Eϕ,k. (7·23)

Now we define a probability measure ν on Eϕ , by the mass distribution principle [11].
Indeed, for any k ≥ 1 let us define

ν(Ik,i) = 2−k for i = 1, . . . , 2k (7·24)

and ν
(
[0, 1] \ Eϕ,k

)= 0. Then by [11, proposition 1·7], ν is a probability measure supported
on Eϕ . For a ∈ Eϕ and 0 < η < ϕ(l0) small enough. Let k be the smallest integer such that
ϕ(l0) 2−(k+1) < η ≤ ϕ(l0) 2−k, then it is not hard to check that the interval [a − ϕ−1(η), a +
ϕ−1(η)] intersects at most 3 intervals Ik,i, and contains at least one interval Ik+1,j. Therefore,
using (7.24) we obtain

(1/2ϕ(l0)) η ≤ ν
(

[a − ϕ−1(η), a + ϕ−1(η)]
)

≤ (6/ϕ(l0)) η. (7·25)

By making a change of variable r := ϕ−1(η), we get the desired result.

Now, we can remark that examples of measures ν1 and ν2 satifying (6·3) and (6·4) respec-
tively, could be deduced from Proposition 7.4 with the functions ϕ1(r) := rα logβ (e/r) and
ϕ2(r) := rα log−β (e/r) for α ∈ (0, 1) and β > 1.
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