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Abstract

Let B be a d-dimensional fractional Brownian motion with Hurst index H € (0, 1),
f:10,1] — R? a Borel function, and E C [0, 1], F Cc R? are given Borel sets. The focus
of this paper is on hitting probabilities of the non-centered Gaussian process B +f. It
aims to highlight how each component f, E and F is involved in determining the upper and
lower bounds of P{(B" 4 f)(E) N F # (). When F is a singleton and f is a general mea-
surable drift, some new estimates are obtained for the last probability by means of suitable
Hausdorff measure and capacity of the graph Grg(f). As application we deal with the issue
of polarity of points for (B 4 )| (the restriction of B + f to the subset E C (0, 00)).

Mathematics Subject Classification: 60G22, 60G17 (Primary); 60J45, 28A78 (Secondary)

1. Introduction

Hitting probabilities describes the probability that a given stochastic process will ever
reach some state or set of states F. To find upper and lower bounds for the hitting probabili-
ties in terms of the Hausdorff measure and the capacity of the set F, is a fundamental problem
in probabilistic potential theory. For d-dimensional Brownian motion B, the probability that
a path will ever visit a given set F C R, is classically estimated using the Newtonian capac-
ity of F. Kakutani [16] was the first to establish this result linking capacities and hitting
probabilities for Brownian motion. He showed that, for all x € R? and compact set F

P{BO,00)NF##}>0 <= Cap(F)=>0,

where Cap denotes the capacity associated to the Newtonian and logarithmic kernels (|- 1>,
if d>3 and |log (1/-)|, if d =2) respectively. The similar problem has been considered

by Peres and Sousi [24] for d-dimensional Brownian motion B with d > 2 with a drift
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104 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

function f. They showed that for a (1/2)-Holder continuous function f : R —> R? there
is a positive constant ¢, such that for all x € R4 and all closed set F C R?

¢, 'Capy (F) < P{(B+/)(0,00) N F # P} < ¢1Capy (F), (I-1)

where Capys (-) denotes the Martin capacity, see for example [23]. At the heart of their
method is the strong Markov property. It is noteworthy that since Kakutani’s characterisa-
tion, considerable efforts have been carried out to establish a series of extensions to other
processes, on the one hand, and, secondly, for a restricted subset E C (0, co). This has given
rise to a large and rapidly growing body of scientific literature on the subject. To cite a few
examples, we refer to Xiao [28] for developments on hitting probabilities of Gaussian ran-
dom fields and fractional Brownian motion; to Pruitt and Taylor [26] and Khoshnevisan
[17] for hitting probabilities results for general stable processes and Lévy processes; to
Khoshnevisan and Shi [18] for hitting probabilities of the Brownian sheet; to Dalang and
Nualart [6] for hitting probabilities for the solution of a system of nonlinear hyperbolic
stochastic partial differential equations; to Dalang, Khoshnevisan and Nualart [7, 8], for
hitting probabilities for the solution of a non-linear stochastic heat equation with additive
and multiplicative noise respectively; to Xiao [29] Biermé, Lacaux and Xiao [1] for hitting
probabilities of anisotropic Gaussian random fields.

An important remark should be made, Kakutani’s characterisation is not common to all
the processes and this is generally due to process dependency structures. Thus the lower
and upper bounds on hitting probabilities are obtained respectively in terms of capacity and
Hausdorff measure of the product set E x F. In this light, we cite Chen and Xiao result [4]
which is actually an improvement of results established by Xiao [29, theorem 7-6] and by
Biermé, Lacaux and Xiao [1, theorem 2-1] on hitting probabilities of the R4-valued Gaussian
random field X satisfying conditions (Cp) and (C3) (see Xiao [29] for precise definition)
through the following estimates

c; ' Co, (Ex F) <PX(E)NF # 0} < cyHj, (E x F),

where E C[a, 1]V, a€(0,1) and F CR?Y are Borel sets and C, is a constant which
depends on [a, 11V, F and H only. Cﬁdx(-) and ”H‘gdx(-) denotes the Bessel-Riesz type

capacity and the Hausdorff measure with respect to the metric pq,, defined on Ry x R4
by pay ((s,x), (¢, y)) := max {dx(s, ), |lx —y||} where dy is the canonical metric of the
Gaussian process X. Both of these terms are defined in the sequel. We emphasise that frac-
tional Brownian motion belongs to the class of processes that satisfy the conditions (C1) and
(C»). See Xiao [29] for information on the conditions (C) and (C»).

The similar issue for a multifractional Brownian motion B”®) governed by a Hurst func-
tion H(-) and drifted by a function f with the same Holder exponent function H(-) was
investigated by Chen [5, theorem 2-6]. The hitting probabilities estimates upper and lower
were given in terms of Hz - (E x F) and Cﬁ dﬁ(E x F) respectively. The metrics dy and dz

are defined by |7 — s/2 and |r — slﬁ respectively, where H and H are the extreme values of
the Hurst function H(-). Consequently, for the fractional Brownian BY of Hurst parameter H
(H is now time-independent), Chen’s result can be formulated as follows

c;' €y, (E X F) <P(B +/)E)NF #0) <c3H, (E x F), (1-2)
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Hitting probabilities of fractional Brownian motion with drift 105

for any H-Holder continuous drift f. What we notice in both above-mentioned results (1-1)
and (1-2) is that the drift f has H as the Holder exponent which is out of reach for fractional
Brownian paths. This brings us to consider the sensitivity problem of the above estimates
with respect to the Holder exponent of the drift. More precisely, could we obtain the same
results when the drift f is (H — ¢)-Holder continuous for any ¢ > 0 small enough?

Our first objective in this work is to give an answer to this issue. First of all, we seek
to provide some general results on Hausdorff measures and capacities that will be relevant
to reaching our main goal. Precisely, we established some upper bounds for the Hausdorff
measure (resp. lower bounds for the Bessel-Riesz capacity) of the product set E x F by
means of a suitable Hausdorff measure (resp. Bessel-Riesz capacity) of one of the compo-
nent sets £ and F in a general metric space. If either E or F is “reasonably regular” in the
sense of having equal Hausdorff and Minkowski dimensions, the bounds become as sharp
as possible. This constitutes the content of Section 2.

As a consequence, we obtain practical and appropriate bound estimates of hitting prob-
abilities for fractional Brownian motion with H-Holder continuous drift B + f involving
only Hausdorff measure (for upper bound) and Bessel-Riesz capacity (for lower bound) of
E or F, which we believe are of independent interest. All of this and related details make up
the content of Section 3.

Given Sections 2 and 3, in Section 4 we address the sensitivity question posed above and
the answer is negative. The idea is to look for drifts, linked with potential theory, that are
Holder continuous without reaching the Holder regularity of order H. To be more specific,
we seek drifts with a modulus of continuity of the form w(x) = x £(x), where £ is a slowly

varying function at zero in the sens of Karamata satisfying lim sup £(x) = +o0, and having
x—0
close ties to hitting probabilities. The potential candidates that best match the requested

features are the paths of Gaussian processes with covariance function satisfying
E (B (1) — B (5))” = 62 forall t,5 € [0, 1
o(1) =By (s)) =82 (It —s) forallz,se[0, 1],

for some regularly varying function function 8g,, (r) := r £y, (r) such that its slowly varying
part €5, satisfies lim sup €(r) = +oc. Indeed, on the one hand the paths of such Gaussian

r—0
processes are continuous with an almost sure uniform modulus of continuity given by

86y, (1) logl/ K¢ /r) up to a deterministic constant and, most of all, we are going to take advan-
tage of the hitting estimates already established for such processes on the other. Based on
a result due to Taylor [27] on the relationship between Hausdorff measure and capacity
and using the estimates established in Section 2, we construct two sets E and F and a drift
f, chosen amongst the candidates listed above, for which the inequalities in (1-2) are not
satisfied.

From this follows another question which will be dealt with in Section 5: what about the
hitting probabilities for general measurable drift?

In view of the lack of information about the roughness of the drift f it is difficult to
carry out upper and lower bounds on hitting probabilities even for regular sets £ and F.
We were only able to tackle the issue of hitting probabilities when F is a single point, for
a thorough explanation see Remark 5-4. The idea is to use information provided by the
graph Grg(f) = {(t,f(?)) : t € E} of f over the Borel set E in order to investigate the hitting
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106 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

probabilities. We establish, for a general measurable drift, upper and lower bounds on hitting
probabilities of the type

c; ' Co,, (Gre() <P (It E: B + 1)) =x} <ca Hj, (Gr(f). (1-3)

In connection with our previous work [9] on whether the image (B + f)(E) has a pos-
itive Lebesgue measure (B + f)(E) we have relaxed, thanks to the estimation above,
the main assumption dimde (Gre(f)) > d in [9, theorem 3-2]. Indeed, we show that the
weaker condition C‘[f i (Gre(f)) > O1is sufficient to provide A4 (BH + f) (E) > 0 with positive
probability.

The study of the polarity of points for processes with drift f began in the 1980s with
the seminal work of Graversen [12] on planar Brownian motion B. In his paper, Graversen
showed that for any 8 < 1/2 there exists a S-Holder continuous function f such that B + f
hits points. This result was later sharpened by Le Gall [19] who proved that points are polar
for B4 f when f is 1/2-Holder continuous. Mountford generalised these results to one-
dimensional stable processes Xy, @ € (0, 2). Specifically, for « > 1 he showed that Xy, + f
hits points for any Borel function f, and for « < 1 for any continuous function the range of
Xy +f is almost surely of positive Lebesgue measure. Subsequently, Evans [10] strength-
ened Mountford’s second result by proving that for Lévy processes whose paths are almost
surely real-valued jump functions, the negligible set is independent of f.

Section 6 is devoted to stress the link between the Hausdorff dimension dim (E) of E and
the polarity of points for (B + f)|E (the restriction of BX + f to the subset E C (0, 00)).
This will be done through the above estimates (1-2) (with F' a single point) and (1-3) as we
explain in more detail below. First when f is H-Holder continuous the above estimates (1-3)
take the following form

c5! CHE) <P {3te E: (B +f)(1) =x} < cs HHU(E). (1-4)

Hence the first conclusion that we can draw is: if dim (E) > Hd then (B + Jf)I|E hits points,
and if dim (E) < Hd then (B + f)|r doesn’t hit points, i.e. points are polar for (B + f)|g.
It is thus obvious that dim (E) = Hd is the critical dimension case. We show that this
case is undecidable, in the sense that we construct two Borel sets Eq, E, C [0, 1] such that
dim (E,) = dim (E») = Hd for which (B + f) |g, hits points but (B +f) |, doesn’t. This
suggest that the roughness provided by the H-Holder continuity of the drift f is insuffi-
cient to allow (B 4 f)|£ to hits points for general set E in the critical dimension case and
as foreseeable question: could this be done by adding little more roughness? The idea is
to take advantage of the lower bound of the hitting probabilities in (1-3) by looking for
drifts for which C/‘,f i (Gre(f)) > 0 even for the critical case dim (E) = Hd. Again, as before,

we use independent Gaussian process of type B to construct drifts with slightly more
roughness than that provided by H-Holder continuity and for which the last condition must
be satisfied. With an appropriate choice of ingredients, especially the kernel defining the
capacity with respect to the potential theory associated to B%#, to satisfy the assump-
tions of Taylor’s result [27] we construct drifts f, that are (H — ¢)-Holder continuous for
all small & > 0 without reaching order H, and allowing (B + f)|g to hit points. We can
safely say that the same method can be used in the case dim (£) < Hd. Namely, we can
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Hitting probabilities of fractional Brownian motion with drift 107

construct a drift f : [0, 1] — R? which is (¢ — ¢)-Holder continuous for all small & > 0, with
o := dim (FE)/d < H, such that (BH =+ /)| hits points.

Now we introduce some useful notations throughout the paper.

|.| denotes the usual metric on R, and ||-|| is the Euclidean norm on R4, For functions f.8,
f < g means that there exists a constant ¢ > 1 such that C’lg(-) <f(-)<cg().

2. Preliminaries on Hausdor{f measures and capacities

In this section, we would like to consider some comparison results that are intended to
provide upper bound for the Hausdorff measure (resp. lower bound of the Bessel-Riesz
capacity) of a product set G; x G2 in terms of the Hausdorff measures (resp. in terms of
capacity) of each of the component G| and G, with appropriate orders. Such results might
be useful in studying the problem of hitting probabilities for B + f. First of all, we need
to recall definitions of Hausdorff measures as well as Bessel-Riesz capacities in a general
metric space.

Let (Z, p) be a bounded metric space, 8 > 0 and G C 2. We define the B-dimensional
Hausdorff measure of G with respect to the metric p as

oo oo
Hﬁ(G):(}i_%inf Y ewf 6B, (rn),rn§8}, @1

n=1 n=1

where B,(r) denotes an open ball of radius  in the metric space (£, p). The Hausdorff
dimension of G in the metric space (X, p) is defined to be

dim, (G) =inf{B > 0: ’Hg(G) =0} forall GC Z. (2-2)

The usual B-dimensional Hausdorff measure and the Hausdorff dimension in Euclidean
metric are denoted by H# and dim (-), respectively. Moreover, H# is assumed equal to 1
whenever 8 < 0.

We introduce now the Minkowski dimension of E C (%, p). Let N,(E, r) be covering
number, that is the smallest number of open balls of radius r required to cover E. The lower
and upper Minkowski dimensions of E are respectively defined as

log N, (E,
dim ,/(E) = lim inf 2222 ")

P r—0t  log (1/r)
log N,(E, 1)

dim M(E) := lim sup
g o+ log (1/r)

Equivalently, the upper Minkowski dimension of E can be characterised by
dim, y(E) =inf{y : 3C € Ry such that N,(E, r) < Cr™Y for all r > 0}. (2-3)

In the Euclidean case, the upper Minkowski dimension will be denoted by dimyy;.
Let ¢ : (0, 00) — (0, o) be the function given by

r ¢ ifa >0,
po(r)={ log (%) ifa =0, 2-4)
1 ife <O.
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108 MOHAMED ERRAOUI AND YOUSSEF HAKIKI
The Bessel-Riesz type capacity of order o on the metric space (2, p) is defined by

neP(G)

-1
C%(G)=[ inf / / (Pa(P(”»V))M(du)M(dV)} , (2-5)
)

where P(G) is the family of probability measures carried by G.

We note that for @ < 0 we have C%(G) = 1 for any nonempty G. The usual Bessel-Riesz
capacity of order « in the Euclidean metric will be denoted by C¥.

Now let (% ,o,') i=1,2 be two metric spaces. Let p3 be the metric on 2] x 2> given
by

3 ((u, x), (v, y)) = max{p1(u, v), p2(x, y)}.

The following proposition if the main result of this section.

PROPOSITION 2-1. Leta >0and G;C Z;, i=1,2.

(1) If G| supports a probability measure | that satisfies
% (Bp] (a, r)) <’ foralla € Gy, and all 0 < r <diam(Gy), (2-6)

for some positive constants ¢| and y, then there exists a constant ¢; > 0 such that

C5, " (G2) <2 €} (G x Ga). 27
(i) If there exist constants y' < a and ¢3 > 0 such that
Ny (G1,r) <¢3 rfy/for all 0<r<diam(Gy), (2-8)
then we have
He (G1 x G) < 4 HE Y (Ga), 2.9)

for some constant ¢4 > 0.
Similar estimates hold true if we assume that G, verifies assumptions (i) and (ii). That is
there exist positive constants ¢5 and ¢¢ such that

€5, 7 (G1) = ¢5C (G1 x G), (2-10)

H% (G x Go) < e HEY (Gy). 2-11)

Remark 2-2.

1. By the mass distribution principle, we get from assertion (i). that dim,, (G1) > y.

2. Using the characterisation of the upper Minkowski dimension (2-3) we obtain from
assertion (ii). that ﬁpl,M(Gﬂ <y’ and ’H%;(Gl) < 0o. Hence by the Frostman’s
energy method [3, theorem 6-4-6 p.173] we immediately have C%I (G1)=0.

The following lemma will help us to establish (2-7) (resp. (2-10)).
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Hitting probabilities of fractional Brownian motion with drift 109

LEMMA 2.3. Let (4, p) be a bounded metric space and |1 a probability measure supported
on X satisfying

n (Bp(u, r)) <Cir forall ue Zand r> 0, (2-12)
for some positive constants C1 and k. Then for any 0 > 0, there exists Cy > 0 such that
1(r):= sup f My gy (o) 213)
veZ J X (max{p(u’ V)s r})

for all r € (0, diam(.Z)).

Proof of Proposition 2-1. We start by proving (i). Let us suppose that C%z_ Y(Gy) >0,
otherwise there is nothing to prove. It follows that for n € (0, Cp, ¥ (G»)) there is a probability
measure m supported on G; such that

€y () i= / / Gy (0205, ¥)) m(dIm(dy) < ", (2:14)
Gy /Gy

Since p© ® m is a probability measure on G| x G, then applying Fubini’s theorem and
Lemma 2-3 we obtain

E o / / © ® m(dudx)p ® m(dvdy)
prath N G1xGy JG1xGa (03 ((u, x), (v, ¥)) )*

<G / / Pa—y (p2(x,¥)) m(dx)m(dy) < Cy .
Gy /Gy

(2-15)

Consequently we have C%S(Gl x Gy) = C, ! n. Then we let n C%Z_ Y(G») to conclude that
the inequality in (2-7) holds true.

Now let us prove (ii). Let ¢ > 7-[‘;2_ J//(Gg) be arbitrary. Then there is a covering of G, by
open balls B, (x,, ) of radius r, such that

[e.¢] o
Gy | Bo(mr) and Y (@r)* 7 <2 (2:16)
n=1

n=1

For all n>1, let By (unj, rn), j=1,..., Ny (G1,r,) be a family of open balls covering
G . It follows that the family B, (u,, 1) X By, (Xn, 1n), j=1, ..., Ny (G1, 1), n>1 gives
a covering of G| x G by open balls of radius r, for the metric p3.

It follows from (2-8) and (2-16) that

o0 Np] (G1.1) o0

DY @t a2 Yy e <k 2t 217)
n=1  j=1 n=1

Letting ¢ | ’ng_ y,(Gz), the inequality in (2-9) follows with ¢4 = ¢3 2,

In the following we give a sufficient condition ensuring hypotheses (i) and (ii) of
Proposition 2-1.

PROPOSITION 2-4. The following condition
0 <y <dimy, (Gy) <dim,, u(G1) <y’ <a,
is sufficient to achieve (2-6) and (2-8).
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Proof. (1) (resp. (ii)) is a direct consequence of Frostman’s Theorem (resp. the character-
isation (2-3))

It is well known that Hausdorff and Minkowski dimensions agree for many Borel sets E.
Often this is linked on the one hand to the geometric properties of the set, on the other hand
it is a consequence of the existence of a sufficiently regular measure. Among the best known
are Ahlfors—David regular sets defined as follows.

Definition 2-5. Let (%, p) be a bounded metric space, y > 0 and G C Z. We say that G
is y-Ahlfors—David regular if there exists a finite positive Borel measure p supported on G
and positive constant ¢,, such that

c;l r<u (Bp (a, r)) <c¢,r’ foralla €G, andall O<r<1. (2-18)

For a Borel set £ C R" satisfying the condition (2-18) with p is the euclidean metric of
R”, it is shown in [21, theorem 5-7, p.80] that

y =dim (E) = dimy,(E) = dimp (E).

This statement still true in a general metric space (2, p), it suffices to go through the same
lines of the proof of the euclidean case. Here we provide some examples of such sets.

Examples 2-1

(1) If E is the whole interval I then the condition (2-18) is satisfied with y = 1. This
leads to the conclusion that the measure © can be chosen as the normalized Lebesgue
measure on I.

(i1)) The Cantor set C(1), 0 < A < 1/2, subset of I with u is the y-dimensional Hausdorff
measure restricted to C()), where y = dim C(A) =log (2)/ log (1/1). For more details
see [21, theorem 4-14 p.67]. In general, self similar subsets of R satisfying the open
set condition are standard examples of Ahlfors—David regular sets, see [14].

The following proposition states that when G (resp. G») is y;-Ahlfors—David regular set
(resp. y2-Ahlfors—David regular set), then inequalities (2-7) and (2-9) of Proposition 2-1 are
checked for y =y’ =y (resp. for y =y’ = y»).

PROPOSITION 2-6. Let o > 0, and assume that Gy is y1-Ahlfors—David regular set.

() Ify1 <athen

C%z_yl (G <¢7 C‘;S(Gl X (7). (2-19)
(i) If y1 <o then

HZa(Gl x Gp) < Cg?'[zz_yl (G2). (2-20)

Similar estimates hold true under the assumption Gy is y»-Ahlfors—David regular set.
Precisely we have

Ca71(Gy) < €9 C% (G % G), (2:21)
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H3, (G x Go) < c1oHy 7 (Gy). (2:22)

Proof. In order to prove (2-19) and (2-20) it is sufficient to check that conditions (2-6)
and (2-8) are satisfied with y =y’ = yy. Firstly, (2:6) is no other than the right inequality
in (2-18). On the other hand, let 0 < r < 1 and P,, (G, r) be the packing number, that is the
greatest number of disjoint balls By, (x;, r) with x; € Gy. The left inequality of (2-18) ensures
that

Py, (G1.0)

< P (G < Y w(By (g, n) = (G < 1.
j=1

Using the well-known fact that N, (G1,2r) < P,,(G1, r), we obtain the desired estimation
(2-8).

Remark 2-7. Notice that when both G, i = 1,2 are y;-Ahlfors David regular sets for some
constant y; > 0, then there exist two positive constants ¢y and ¢, such that

CHI72(Gy x Go) = €11 C2(Ga) v CUH(GY)
and  HJT(Gy x Gy) < e1a HIZ(Ga) A HEH(GY). (2:23)

3. Hitting probabilities for fractional Brownian motion with deterministic regular drift

Let H e (0, 1) and BY = {BOH 0,t> O} be a real-valued fractional Brownian motion of
Hurst index H defined on a complete probability space (€2, F, P), i.e. a real valued Gaussian
process with stationary increments and covariance function given by

1
E(By (5)Bg (1) = - (1> + 15 — e = M.
Let B{I s e Bg be d independent copies of Bg . The stochastic process B = {BH ), t> 0}
given by
B (1) = (BY (1), ...., B{ (1)),

is called a d-dimensional fractional Brownian motion of Hurst index H € (0, 1).
For d a metric on R, we define on R} X R the metric pq as follows

pa((s, x), (¢, ) =max{d (t,5) , [x =y} ¥(s, ), (t,y) e Ry x R”. (3-1)
We denote by dy the canonical metric of BY given by
dy(s,0):= |t—s|?  foralls,teRy. (3-2)

The associated metric pq,, on Ry x R? is called the parabolic metric.
Let I =[a, b], where a < b € (0, 1] are fixed constants. For « € (0, 1), C*(I) is the space
of a-Hélder continuous function f : [a, b] —> R? equipped with the norm

1l = supllfs)l + sup LD =T _
sel S’;SI |t—s|
SFEL

+o00. (33)

First we state the following result, which is easily deduced from [5, theorem 2-6].
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THEOREM 3-1. Let {B"(),t € [0, 11} be a d-dimensional fractional Brownian motion and
feC® ). Let F SR and E C 1 are two compact subsets. Then there exist a constant ¢ > 1
depending on 1, F, H and f only, such that

c7'cq, (ExF)<P(B" +HE)NF#0) <c Hj, (ExF). (3-4)

The aim of this section is to provide the hitting probabilities estimates for some particular
sets E and F. Such estimates would be helpful in the next section to establish a kind of of
sharpness of the H-Holder regularity of the drift f in Theorem 3-1.

3.1. Hitting probabilities estimates when E is B-Ahlfors—David regular set
First let us recall that, when E is an interval, [4, corollary 2-2] ensures that there exists a
constant ¢ > 1 depending only on E, F and H such that
¢ CVH(FY <P {BH(E)NF #£0) <cHIVHF),

for any Borel set F € R¥. Our next goal is to establish similar estimates for (B” + f) when
E be a B-Ahlfors—David regular set.

PROPOSITION 3-2. Let BY, . E and F as in Theorem 3-1 with E C (1, .|) is a B-Ahlfors—
David regular for some B € (0, 1]. Then there is a positive constant co, which depends on E,
F H, Ky and B, such that

cy | CUPIH(F) <P{(BY +f)E)NF # 0} < co HIPIH(F). (3:5)

Proof. Three cases are to be discussed here: (j) B < Hd, (jj) B = Hd and (jjj) B > Hd.
Let us point out first that for the lower bound, the interesting cases are (j) and (jj) while for
the upper bound it is the case (j) which requires proof. Using Proposition 2-6 with X1 =E,
p1(s, )=t —s|7, Xo =R4, pr(x,y) = ||x — y|l, and & = d, we get the first case (j). For the
case (jj) we only use Proposition 2-6 (i).

Following the same pattern as above we get the following corollary.

COROLLARY 3-3. Let BY, E and F as in Proposition 3-2. Then there is a positive constant
c3 which depends on E, F, H and B, such that

;! CTPIH(EY < PBT(E)NF # 0} < c3 HPIH(F). (3-6)
Remark 3-4.
(i) We note that [4, corollary 2-2] corresponds to the particular case E =1 for which
B=1.
(i1) For less regular set E, with 0 < 8 < dim (E) < dimy(E) < B’ < Hd, we can derive, as

a consequence of (2-7) and (2-9) of Proposition 2-1, Proposition 2-4 and Theorem 3-1,
the following weaker estimates

o' CPHE) < P(BT + HE)NF £B) <t HOPH@E), 3
where ¢ is a positive constant depends only on E, F, H, K¢, # and B'.
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Hitting probabilities of fractional Brownian motion with drift 113
3.2. Hitting probabilities estimates when F is y-Ahlfors—David regular

Now we get parallel results to those given in Proposition 3-2, emphasizing regularity
properties of F instead of E. If F C (Rd, ||-||) is a y-Ahlfors—David regular, we have the
following result, which could be proven similarly to Proposition 3-2 by making use of (2-21)
and (2-22).

PROPOSITION 3-5. Let B, f. E and F as in Theorem 3-1, such that F is a y-Ahlfors—David
regular compact subset of [ — M, M1 for some y € (0, d]. Then there is a positive constant
cs which depends on E, F, H, Ky and y only, such that

5! CHY(E) <P{(BT +f)(E)NF # 0} < cs HIUV(E). (3-8)

COROLLARY 3-6 Let B, E and F as in Proposition 3-5. Then there is a positive and
constant ce which depends on E, F, H and y, such that

cg ! CT=VN(E) <PBH(E)NF # B} < ce HIUVN(E). (3-9)

Remark 3-7. Similarly to Remark 3-4-(ii), for less regular set F, with 0 < y <dim (F) <
dimys(F) < y’ <d, we have

;! CHA(E) <P(B + f)(E) N F #0) < cg HV(E), (3-10)

where c4 is a positive constant which depends on E, F, H, K¢, y and y'.

4. Sharpness of the Holder regularity of the drift:

This subsection brings to light the essential role of the H-Holder regularity assumed on the
drift f in the following sense: the result of Theorem 3-1 fails to hold when the deterministic
drift f has a modulus of continuity W(-) satisfying

=0 W(r)) and w(r)=o0 (r'~*) when r — 0 forall ¢ € (0, H).

In this respect, we have to introduce some tools allowing us to reach our target.

Let .Z be the class of all continuous functions W: [0, 1] — (0, co0), w(0) =0, which
are increasing on some interval (0, rg] with ro = ro(w) € (0,1). Let w e % be fixed. A
continuous function f is said to belong to the space C"(I) if and only if

) —fOl _

s,tel W(|s —t])
SF#t

It is obvious that the space CV(I) is a Banach space with the norm
Ifs) —f@I
Ifllw = sup [f(s)] + sup ~————.
v sel s,tel W(|S - tl)
SF#t

For a € (0, 1) and w(r) =, C"(I) is nothing but the usual space C*(I).
Let xo € (0, 1] and [: (0, xg] & R4 be a slowly varying function at zero in the sens of
Karamata (cf. [2]). It is well known that [ has the representation

Y0 (1)
I(x) =exp <17(x) +/ Tdt) , “4-1)
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where 1, € : [0, xg) — R are Borel measurable and bounded functions such that
lim n(x) =n9 €(0,00) and lim e(x)=0.
x—0 x—0

An interesting property of slowly varying functions which gives some intuitive meaning to
the notion of “slow variation” is that for any 7 > 0 we have

Xlx)=0 andx TIlx)> o0 asx— 0. (4-2)

It is known from Theorem 1-3-3 and Proposition 1-3-4 in [2] and the ensuing discussion that
there exists a function C* near zero [: (0, xo] — R4 such that I(x) ~ I(x) when x — 0, and

7(~) has the following form
~ X0 2(t
I(x)=cC exp </ it)dt) , 4-3)
X

for some positive constant € and £(x) — 0. Such function is called normalized slowly varying
function (Kohlbecker 1958), and in this case

E(x)=—x0'(x)/E(x) forall xe (0,xp). (4-4)

A function Vg ¢ : [0, x0] = Ry is called regularly varying function at zero with index o €
(0, 1) if and only if there exists a slowly varying function £, called the slowly varying part of
Vg.¢, such that

Vo r(0)=0 and Vg e(x)=x%£L(x), xe€(0,xp). 4-5)

Vg ¢ 1s called a normalised regularly varying if its slowly varying part is normalised slowly
varying at zero. In the rest of this work, since the value of x is unimportant because £(x) and
£(x) may be altered at will for x € (xg, 1], one can choose xg = 1 without loss of generality.
Furthermore, we will only consider normalised regularly/slowly varying function.

Here are some interesting properties of normalized regularly varying functions. Let V, ¢
be a normalised regularly varying at zero with normalized slowly varying part /.

LEMMA 4-1.

(i) There exists small enough x| > 0 such that

liin(} V;’e(x) =400 and V() isincreasing on (0, x1].
X

(ii) If in addition we assume that l is a C* function such that

liminfx &' (x) =0, (4-6)
x}0

where ¢ is given by (4-4). Then there exists small enough xy > 0 such that V4 is
increasingly concave on (0,x2]. Moreover for all x3 € (0,x2) and all ¢ >0 small
enough there exists ro < x3 such that

Vo.o(t) — Vo,e(s) <cVuo(t—s) foralls,tex3,x2] suchthat Q0 <t—s < ry.
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Proof.

(i) It stemmed from
Vi () =271 0) (a — ex))

and (4-2).
(i1) Itis easy to check that

Vo o (0) = 72 0(x) [(@ — 1 —e() (@ — &) —x&'W)].

(4-2) and hypothesis (4-6) ensure that lim, o Vg’ (x) = —00. Then there exists x > 0 small
enough such that V(’M(x) >0 and ngz(x) <0 for all x € (0, x2]. Thus vy is increasingly
concave on (0, x2].

For the rest, let x3 € (0, x3] and € > 0 be arbitrary. Let s <t € (x3,x2) and r < x3, then
using the monotonicity of V(’L ¢, we have for 0 <7 —s < r that

/
Vo e(t) — Vo e(s) < Voz,l(x3)

. 4.7
Vo ot—s) V(/Lg(r) @7

Since lim, o V(’M(x) = +o00, we can choose rg to be smallest r guaranteeing that the term
V., ,(x3)/V,, ,(r) will be smaller than c. This completes the proof.

Remark 4-2. As a consequence of the Lemma 4-1, for any normalised regularly varying at
zero Vg ¢ that checks the condition (4-6), (s, ) = Vq ¢(|t — s]) defines a metric on [a, ]2

Let £ be a normalised slowly varying function at zero. Now we consider the continuous
function Wy given by

Wi e(0)=0 and Wy (x) =x7£(x) log!? (1/x), x€(0,1]. (4-8)

It is easy to see that £(x) logl/ 2 (1/x) stills a normalised slowly varying satisfying (4-3)

with g(-)=¢e(-) — log_1 (1/-)/2. Hence assertion 1 of Lemma 4-1 provides that Wy, is
increasing on some interval (0, x;] with x; € (0, 1). Therefore Wy ¢ € .Z.
If we assume in addition that £ satisfies
lim sup £(x)log'/? (1/x) = +o0, (4-9)

x—0

then the following inclusions hold

clme e (. (4-10)

>0

Let 0y be the normalised regularly varying function defined in (7-1) with a normalized
slowly varying part that satisfies;
(i) liminf Lg,(x) =0, limsup Lg,(x) <4o00;
x¥—>+00 x—>4-00
4-11)

(ii) limsup xep(x) =0.
X—+00
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Here are some examples of normalised slowly varying functions for which the above
conditions are satisfied

Lo, (x)=log™? (x), Lg,(x)=exp(—1log® ()), a«e(0,1)andp>0.

In what follows, we will adopt the following notation

oy ()= ey Ly (1) ). 4-12)

Now let us give the main result of this section.

THEOREM 4-3. Let {BH(¢),t € [0, 11} be a d-dimensional fractional Brownian motion. Then
there exist a function f € "oy (M) \ C (X), and compact sets E C X and F C R? such that

Cde (E x F) :H;ﬂdH (ExF)=0 and P{B"+fE)NF+#o}>0. (4-13)
In other words (3-4) fails to hold.

Remark 4-4

(i) It is worthwhile mentioning that c"'ton (I) verifies (4-10) as £q,(-) defined in
(4-12) meets the condition (4-9) via the first term in assertion (i) of (4-11), i.e.
lim Jrinf Loy (x)=0.

X—> 400

(ii) It follows from the fact (4-10) that the drift f in Theorem 4-3 belongs to ) ci—7 @)\
>0

cH ().

Before drawing up the proof we provide the tools to be used. Let dg,, be the function given
by the representation (7-3). Theorem 7-3-1 in [20] tells us that 8y, is normalised regularly
varying with index H with a slowly varying part €5, ~that satisfies

Loy (h) ~ Ls, (h) ash— 0. (4-14)

For more details see (7-6). Now we consider another probability space (', F,P’) on
. . . . . 3
which we define the real valued centered Gaussian process with stationary increments BOHH ,

satisfying Bf)e” (0)=0a.s. and

AR 8 2
E (BOGH(t)—BOHH(S)) = 82 (It —sl) foralls,se (0, 1]. (4-15)

Proposition 7-1 gives a way to construct this process and Theorem 7-2 provides us its modu-
. .58 . . .
lus of continuity, that is BOQH e C"ey () P'-almost surely. The d-dimensional version of the
Sor; . § § 3 3 .
process 30911 is the process B (f) := (BIQH @, ..., BdQH (1)), where BIQH, . BdQH are d inde-

pendent copies of BgeH . Let Z be the d-dimensional mixed process defined on the product
space (2 x @, Fx F,P®P) by

Z(t, (w, ")) = B (t, w) + B (1, ") for all t € [0, 1] and (w, ') € 2 x €. (4-16)
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Hitting probabilities of fractional Brownian motion with drift 117

It is easy to see that the components of Z = (Zy, ..., Z;) are independent copies of a real val-
. 3
ued Gaussian process Zy = Bg + BOQH on (2 x @, F® F,P®P). Furthermore we have

E Z0(0) = 205" =Vapy gz (1= sD):= It =P (1483, (1 = sD).
H

where E denotes the expectation under the probability measure P=PgP.
Using the assertion i. of (4-11) and (4-14) we obtain the following

LEMMA 4-5. There exists a constant q > 1 such that
g Va2 ) =B @ot+1) =200 <q Vopy 2 (B), (@17)
forallhe[0,1]and t € [0, 1].

For simplicity, we denote by dp ¢, anddy 2 the canonical metrics of B4 and

H ’ o
Z respectively. A consequence of the previous lemma these canonical metrics are strongly
equivalents to the metric (s, t) dH’ggH (t,8):= Vg, Coy (]t — s1), leading to the strong equiv-

alence of the metrics Pdugs, > Pdy 0 12 and Py iy, - Hence, their associated capacities
H ’ BQH

are also equivalents.

Proof of Theorem 4-3. Let us consider the Gaussian process Z stated above. Using condi-
tion (4-11) we infer that £g,, (-) satisfies (4-6). Then Lemma 4-1 ensures that VH ¢4, () verifies
[13, hypothesis 2-2]. Let M > 0, applying [13, theorem 4-1] and the fact that Pd, o

g,
and Py g, AT strongly equivalent, there exist a positive constant C; depending only on I

and M such that
P{ZE)NF#0} > c1C%  (ExF), (4-18)
H,Z@H
for any compact sets EC I and F c [ —M,M]?. Let 0 < y <d and fix a y-Ahlfors—David

regular set F, C[— M, M1%. Then by using (2-21) with p; = dH,gGH and p3 = :OdH,ng and
(2-22) with p1 =dg and p3 = pq,,, we obtain

d —1 nd— d H(d—
Couy, EXF)= 6 Cl (B) and Hy, (ExFy)< e HICIE). (419

for all compact E C I and for some constant C; > 0. Now it is not difficult to see that the
functions A(z) := #7@=7) and

d—
(1) =1/Vyy, ()= WV a0 O,

satisfy the hypotheses of [27, theorem 4] which allow us to conclude that there exists a
compact set £, C I such that

HI@(E)=0 and  CT7 (E,)>0. (4-20)

i ey,

Consequently, combining (4-19) and (4-20), we have

Ha, (B, x Fy)=0 and B{Z(E,)NF, #0} > (C]/Cz)Cfl;i;H (E,)>0. (421)
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Now the remainder of the proof is devoted to the construction of a drift f satisfying (4-13).
As a consequence of Fubini’s theorem, we have

E (]p {(BY + B (o ))E,)NF, #0} —c3 Cj;je (Ey)) >0,
“YH
for some fixed positive constant C3 € (0, C1/C2), leading to
P { o' € QP {(B" + B ())E,)NF, #08} > C3 cﬁ;jeH (Ey)} > 0. (4-22)
We therefore choose the function f among of them. Hence we get the desired result.

5. Hitting points

As mentioned previously in the introduction our goal in this section is to shed some light
on the hitting probabilities for general measurable drift. The resulting estimates are given in
the following.

THEOREM 5-1. Let {B(f):t € [0, 1]} be a d-dimensional fractional Brownian motion with
Hurst index H € (0, 1). Let f: [0, 1] — R? be a bounded Borel measurable function and let
E C1 be a Borel set. Then for any M > 0 there exists a constant ¢1 > 1 such that for all
x €[ —M, M) we have

er'Cs, (Gre() <P {3re BB + )0 =x) <e1 Hj, (Gre(). (51
The following lemmas are very valuable to prove Theorem 5-1

LEMMA 5-2 [1, lemma 3-1]. Let {BA(¢): 1 € [0, 1]} be a fractional Brownian motion with
Hurst index H € (0, 1). For any constant M > 0, there exists positive constants ¢y and gy > 0
such that for all r € (0,&p), telandallxe[ — M, M1,

P ( inf  |BH(s) —x|| < r) <er . (5-2)

sel,|s—t|H<r

LEMMA 5-3 [1, lemma 3-2]. Let BY be a fractional Brownian motion with Hurst index
H € (0, 1). Then there exists a positive constant ¢3 such that for all € € (0, 1), s,t €1 and
x,y € RY we have

/R e~ EXFID exp (—%@, n) (elaa + Cov(B™(s), B (1)) (¢, n)T) dedn

< e (5-3)

" (pay (s, ), (6, y0) "

where T'g(s,t):= e Ih + Cov(Bg (s), Bg (1)), g and I, are the identities matrices of order 2d
and 2 respectively, Cov(BH(s), BE (1)) and Cov(Bg (s), Bg (1)) denote the covariance matrix
of the random vectors (BY(s), B (1)) and (B(I){ (s), Bg (1)) respectively, and (£,n)T is the
transpose of the row vector (&, n).

Proof of Theorem 5-1. We start with the upper bound. Choose an arbitrary constant y >
’HﬁdH (Grg(f)), then there is a covering of Grg(f) by balls {deH ((ti, yi), ri), i > 1}in R4 x R4
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such that

Gre(f) S| Bpa, ((ti:y),ri) and >~ @r)' <. (54)
i=1 i=1

Let 89 and M being the constants given in Lemma 5-2. We assume without loss of generality
that r; < 8 forall i > 1. Let x € [ — M, M1, it is obvious that

[IseE: B +)(s)=x} (5:5)

U {3 G0 e (1=t ) x B s (BT 4+ =1

i=1
Since for every fixed i > 1 we have

(3 6o € (5=t ™) B st (B () = x]

C { inf  |BA(s) —x+yill < ri} , (5-6)

|s—t;f <r;
then we get from [1, lemma 3-1] that

P {3 (s.f(s)) € (ti At r}/H) x B(yi, 1i) s.t. (B +£)(s) =x}

51[”{ inf IIBH(S)—X—i—inISri}

ls—zi|H <r;
<er, (57)
where ¢4 depends on H, I, M and f only. Combining (5-4)-(5-7) we derive that
P{IseE: B +f)(s)=x} < 27, y.

Lety | 7—[‘; an (Gre(f)), the upper bound in (5-1) follows.
The lower bound in (5-1) holds from the second moment argument. We assume that
C;i) - (Gre(f)) > 0, then let o be a measure supported on Grg(f) such that

do (5. (5)dor 1. 1) 2
& = . 5-8
pa ) /Gmm /G,E(f) pan (GO FO) = T Gre)

Let v be the measure on E satisfying v := o o Pfl where P is the projection mapping on
E, i.e. P1(s,f(s)) =s. For n > 1 we consider a family of random measures v, on E defined
by

H _ 2
/E 2(s)vn(ds) = /E Q)2 exp (—””B ) +2f () | )g(s)v(ds)

[
=f/ exp <—— +i(&, B"(s) + f(5) — x) | g(s)dEv(ds), (59
E JRA 2n
where g is an arbitrary measurable function on Ry. Our aim is to show that {v,,n> 1}

has a subsequence which converges weakly to a finite measure vy, supported on the set
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{s € E: B (s) 4 f(s) = x}. To carry out this goal, we will start by establishing the following
inequalities

E(llvall) = es, E(vall®) < €3E g, a(0), (5-10)

which constitute together with the Paley—Zygmund inequality the cornerstone of the proof.
Here ||v,|| denotes the total mass of v,. By (5-9), Fubini’s theorem and the use of the
characteristic function of a Gaussian vector we have

E(val)) = / / oA oy (_@)E (16501 a v
= [ [ e e (=5 (55 ) 1ei?) e via
:/ (%)WZ exp (_w) v(ds)
E\n"+s 2(n‘+s2H)
Z/E (%)M exp G%) v(ds)

>¢5> 0. (5-11)

Since f is bounded, x € [-M, M]? and v is a probability measure we conclude that cs is
independent of v and n. This gives the first inequality in (5-10).

We will now turn our attention to the second inequality in (5-10). By (5-9) and Fubini’s
theorem again we obtain

IIvnII / / W(ds)v(dr) / o= E XS+ (0)

x exp (— 5(5, m(n~ g + Cov(BH (s), B (1)))(&, )T )dgdn

s / / bl =c3&p,, d(0) <00
- Gre(r) Jare(ry (max{lr — s/, |If (1) — f(9)|I1H? Py )
(5-12)

where the first inequality is a direct consequence of Lemma 5-3. Plugging the moment
estimates of (5-10) into the Paley—Zygmund inequality (c.f. Kahane [15, p.8]), allows us
to confirm that there exists an event 2o of positive probability such that, for all w € Q,
(Vn(w))n>1 admits a subsequence converging weakly to a finite positive measure Vs, (w) sup-
ported on the set {s€ E: B (w, s) + f(s) = x}, satisfying the moment estimates in (5-10).
Hence we have

Evel)® €5

P {3s € E:B" +f)(s) =x} = P (lveoll > O)—E(Hv 12) = €3Epy,, (o)’
o] Pdy

(5-13)

Combining this with (5-8) yields the lower bound in (5-1). The proof is completed.

Remark 5-4. We mention that the covering argument used to prove the upper bound in (5-1)
can also serve to show that for any Borel set F C R, there exists a positive constant ¢ such
that

P {(B" +f)(E) NF # 0} < cHE, (Gre(f) x F). (5-14)
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Hitting probabilities of fractional Brownian motion with drift 121
Here ’H%‘d () is the w-dimensional Hausdorff measure on the metric space (R4 x R9 x
'H
RY, Ba,,), where the metric pq,, is defined by

Payy (s, x, ), (1, y, v)) := max{|r — s|™, |lx =y, lu = vII}.

But it seems hard to establish a lower bound in terms of C%H (Gre(f) x F) even for Ahlfors—
David regular set F.

As a consequence of Theorem 5-1, we obtain a weaker version of [9, theorem 3-2]

COROLLARY 5-5 Let BY, . and E as in Theorem 5-1. Then:

(i) if Cde (Gre(f)) > 0 then Aq ((BH +f)(E)) > 0 with positive probability;
(ii) ifH;idH (Gre(f)) =0 then Aq (B + f)(E)) = 0 almost surely.
Proof. Integrating (5-1) of Theorem 5-1 over all cube [ — M, M]¢, M > 0 with respect
Lebesgue measure X4, we obtain that
My ¢'¢, (Gre() <E | ra (1= MM 0B +)B)) |
< @M e1 1y, (Gre(f). (5:15)

Therefore if Cg - (Gre(f)) > 0 we obtain

E [Aq (B +)(E))] > 0.
Hence A4 ((BH + f)(E)) > 0 with positive probability, which finishes the proof of (i). On the
other hand, if HgdH (Gre(f)) = 0 we obtain that A4 ([ — n, n] N (B + f)(E)) = 0 a.s. for all
n € N*. Then we have Ay ((BH + f)(E)) =0 a.s. Hence the proof of (ii) is completed.

Remark 5-6

(i) Letdim pay; () be the Hausdorff dimension in the metric space (R x RY, 04, ) defined
in (2-2). There is a close relationship between dimde (-) and H-parabolic Hausdorff
dimension dimy g (), used in Peres and Sousi [25] and in Erraoui and Hakiki [9],
expressed by

dimy g ()= H x dim,,, ().

See [9, remark 2-2].

(i1) The previous corollary is a weaker version of [9, theorem 3-2] in the following sense:
According to [25, theorem 1-2.] and (i) we have

dimy g (Gre(f))

. H _
dim (B"” + f)(E) = o

ANd= dimde (Gre(H)) A d.

Therefore [9, theorem 3-2.] asserts that, if dimde (Gre(f)) > d then ra(BR +
F)(E)) > 0 almost surely. On the other hand, Corollary 5-5 (i) ensures, under the con-
dition C‘é dyy (Gre(f)) > 0, that ra(B + F(E)) > 0 only with positive probability. It is
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122 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

well known from Frostman’s Lemma that the condition Cﬁ ag (Grg(f)) > 0 is weaker
than dimde (Grg(f)) > d.

6. Application to polarity

Let £ C I. We say that a point x € R? is polar for (B + f)|g, the restriction of (B” +f)
to E, if

P{3teE:(B" +f)(t)=x}=0. (6-1)

Otherwise, x is said to be non-polar for (B + f)|g. In other words, (B + f)|g hits the
point x.
It is noteworthy that, when f € CH(I), the hitting probabilities estimates in (5-1) becomes

¢, 'CHE) <P {3t e E:B" + 1)) =x} < ¢ H(E). (6-2)

See also [5, corollary 2-8]. Consequently, all points are non-polar (resp. polar) for (B + f)|g
when dim (E) > Hd (resp. dim (E) < Hd). However, the critical dimensional case, which is
the most important and not easy to deal with, is dim (£) = Hd. This is undecidable in general
as illustrated in the following

PROPOSITION 6-1. Let {BH(t):t € [0, 11} be a d-dimensional fractional Brownian motion
of Hurst index H € (0, 1) such that Hd < 1. Let f : [0, 1] — R? be a H-Holder continuous
Sfunction and E C1 be a Borel set. Then there exist two Borel subsets E1 and Ey of 1 such
that dim (E) =dim (E;) = H d and for all x € R? we have

P{IseE : (B +f)(s)=x} =0 and P{Ise€E:(B" +f)(s)=x}>0.
The following Lemma is helpful in the proof of Proposition 6-1.

LEMMA 6-2 Leta €(0,1) and B > 1. Let E| and E, are two Borel subsets of 1 supporting
two probability measures vy and v respectively, that satisfy

Cl_lr“ log? (e/r) <vi (la—r,a+r]) <cir*logl (e/r) forallre(0,1), acEy, (6:3)
and

c; ' log™P (e/r) < va (la —r,a+r]) <car®log # (e/r) forallre(0,1), a€E,

64
for some positive constants C| and Cy. Then we have
dim (E;) =dim (E>) =«
and
HY(E)=0 and C*(Ep)>0. (6-5)

See Appendix B for examples of such measures v and v;.

Proof. First, let us start by proving that dim (E}) = dim (£7) = «. Indeed, for all ¢ € [0, 1]
and n € N we denote by [,(¢) the nth generation, half open dyadic interval of the form
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j—1
2}’!

[ , 2J—n) containing ¢. Then, by using (6-3) and (6-4), it is easy to check that

logvia®) _ . logvalu(®) _

im = lim (6-6)
n—oo log (27") n—oo log (27")

Therefore, by Billingsley Lemma [3, lemma 1-4-1, p. 16] we have dim (E}) = dim (E3) = «.

Now we are going to look at (6-5). Let r € (0, 1] and P||(E1, r) be the packing number of
E1. The lower bound in (6-3) leads via

P |(EL,r)

¢ logf (e/r) PELN < D wilp=vi(E)=1,
J=1

to
P(E1,r)<cr® log P (e/r).
So using the well-known fact that N||(Ey, 2r) < P||(E1, r), we may deduce that
N ((E1, 1) <¢12% 1 log™F (2¢/r), ¥re(0,1).
Therefore, it is not hard to make out that

HY(E) < limsup (2r)* N||(E1, 1) =0,

r—0

which gives the first outcome of (6-5). On the other hand, to show that C*(E>) > 0 it is
sufficient to prove that
/ V2 (ds)
sup <0
1€y, J Ey 1T —s|¢

Indeed, we first assume without loss of generality that « = diam(E>) < 1. Now since v has
no atom, then for any ¢ € E; we have

/ Vz(ds) Z/ v2(ds)
E, |t —s|* :lt—s|e(c2=0+D 2=i7y [t — 5]¢

[o,0)
< Z )0 D, ([t — k277 t+« 2_‘/])
j=0

o0
1
<20 Y ———, 67
= 2J_:0 log? (e 2/ /x) ©7)

which is finite independently of ¢. Hence &, (v2) < oo and therefore C*(E3) > 0.
Proof of Proposition 6-1. A direct consequence of (6-2) and Lemma 6-2 with « = Hd.

Against this background, it is worthy to note that, according to (6-2) and Proposition 6-1,
the H-Holder regularity of the drift f is insufficient to guarantee the non-polarity of points
for (B + )| for a Borel set E C [0, 1] such that dim (E) = Hd which implicitly involves
the need for a bite of drift roughness. Namely, the drift f will be chosen, as in the previous
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section, to be (H — ¢)-Holder continuous for all ¢ > 0 without reaching order H. On the other
hand in accordance to Theorem 5-1, for a general measurable drift f, a sufficient condition
for (B + F)|E to hits all points is Cf) - (Gre(f)) > 0. The overall point of what follows is
to provide some examples of drifts satisfying this last condition with a Borel set £ whose
distinctive feature is dim (E) = Hd.

Given a slowly varying function at zero £:(0, 1] — R, we associate to it the kernel
Py ¢(-) defined as follows

Dpo(r):= r =4y (14+1og (1 V(). (6-8)

Let Oy be the normalised regularly varying function defined in (7-1) with a normalised
slowly varying part Lg,. As previously, we consider the normalised regularly varying func-
tion at zero &g, with index H and normalised slowly varying part Z,geH , satisfying (7-4) and,
on the space (', F,P), the d-dimensional Gaussian process with stationary increments

5 5 5 5
B (1) := (B]o,, ®,....B do” (t)) ,t€[0, 1], where Blo” ,....B de” are d independent copies of

8
BOB”’ defined in (7-8). The following lemma will be useful afterwards.

LEMMA 6-3. There exists a positive constant C3 such that
B [ (max {7, 1B 0]]}) ] < 03 ®pey,, (0. Vi€ ©10) (©9)

for some ty € (0, 1).

Proof. First we note that, since Blon (1) is a d-dimensional Gaussian vector, the term on the

left-hand side of (6-9) has the same distribution as ¢4 (max {1, Egeﬂ OIINI| }) , Where N
is a d-dimensional standard normal random vector. Due to simple calculations we obtain

—d 1
-1 —d
% [(max {1, Ly, DIN }) } _p [||N|I <6, (z)] + 6,0 OF [W 1{|N|>z59;1<t>]

112
o122

_ vl —
= (2m) "2 / Lo Pdy + 03¢ (t)/ R A
{l\yﬂs@ﬂ(r)} " {||y||>egoﬂ<r>}

2
oo e’ /2

dr

<430 (1) 1+/

%il o T

d 1 o0 —r2/2
<cs |1+ rldr+ | ——ar
OH 1Azg9;1 ) 7

<c bl (1 ~log (1 A z;e;(t))) <c bl (1 +log (1 v Ly, (t))) .
LEMMA 6-4. Let E be a Borel set of [0, 1]. IchpH’% (E) > 0, then P'-almost surely
'H
Chy,, (Gre(B™n) > 0.
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Hitting probabilities of fractional Brownian motion with drift 125
Proof. Firstly, the assumption Co,, ¢ (E) > 0 ensures that there exists a probability
s

measure v supported on E with finite energy, i.e.
Eopy, (V) =/ / e, (11— sDhv(dv(ds) < oo.
(728 EJ E H

Let 4,y be the random measure defined on Grg(B%H) by
Lo (G) := vis: (s, B% (&', 5)) € G} forall G C Grg(B%u (-, ).

Hence P’-almost surely we have

& d(e) = / / dp.w/(s,Ba"H (s))duw/(z,B(S"H )
P CEC ) Grpon) ) Grps®on y max lr—s11,)18°%H (05 (5)] )

_ / / v(ds)v(dt)
E Emax{ |t7s|Hd,||BéeH (t)*B(SgH (S)Hd} ’

Therefore, in order to achieve the goal it is sufficient to show that Sde,d(,uw/) < oo for P'-

almost surely, which can be done by checking E/ [5 pay; ,d(,u,wr)] < 00. Indeed, using Fubini’s
theorem with the stationarity of increments and Lemma 6-3 we obtain

1
E | W ds)v(d
[ Pdgy > d(l’(’ ) [/ /Emax t _ S|Hd ”B(SgH (t) BSGH( )”d} ( S)V( t)}

<cC3 &I’H,@so (v) < 0.
H

Thus Cf) an (GrE(B‘S"H )) > 0 IP’-almost surely.

Remark 6-5. Notice that in both of Lemmas 6-3 and 6-4 we lose nothing by changing £s, (-)
by €o, () =Cpr Ly, '*(1/ -), due to the fact that €, (h) ~ €g,,(h) as h— 0.

The following result is the consequence of the two previous lemmas.

PROPOSITION 6-6. Let {BY(t):t €0, 11} be a d-dimensional fractional Brownian motion
of Hurst index H € (0, 1). If Co, ¢ (E) > 0, then there exists a continuous function f €
gy

"o (1) \ CH (I) such that
P{3teE:(B" +f))=x} >0, (6-11)
for all x e R4

Proof. We start the proof by recalling that Theorem 7-2 provides the modulus of continu-
ity of B%H that is BYr € C"'"‘n (D), P’-almost surely. Now applying Theorem 5-1 we deduce
that for P’-almost surely there is a positive random constant C = C(w’) > 0 such that

Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 12 Mar 2025 at 09:10:47, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50305004125000039


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000039
https://www.cambridge.org/core
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P {3s € :(B7 + B (0))(s) =x} > C CﬁdH (Grg B%: (-, ) > 0.
Hence, by choosing f to be one of the trajectories of B we get the desired result.

Remark 6-7. It is worthwhile mentioning that c"'toy (I) verifies (4-10) as £g,(-) meets the
condition (4-9) via assertion (i) of (4-11).

Consequently we have the following outcome:

COROLLARY 6-8. Let {BH(1):t € [0, 11} be a d-dimensional fractional Brownian motion of
Hurst index H € (0, 1). Assume that Lgy,, the normalised slowly varying part of Oy, satisfies
(4-11). Then there exist a Borel set E C 1, such that

dim(E)=Hd and HME)=0,
and a function f € "oy (1) \ CH (1), such that all points are non-polar for (B + f)|g.

Remark 6-9. Similarly to Theorem 4-3, Corollary 6-8 confirms also the sharpness of the
Holder regularity assumption made on the drift f in (6-2).

Proof of Corollary 6-8. (7-6) with lim Jrinf Lgy (x) =0 imply that
X—> 100

lim sup gr?o,, (x) = lim sup £g, (x) = +-00.
x—0 x—0

Thus applying once again [27, theorem 4] with the functions A(?) := A4 and () =
dDH,eaeH (t) we infer that there exists a compact set E C I such that

HHAYE)=0 and Cayy,, (B)>0.
'H

Finally Proposition 6-6 gives us the function that we are looking for, that is f € oy @
for which (BY + f)| hits all points.

7. Appendixes
7.1. Appendix A

In this section, we would like to investigate existence of a Gaussian process with station-
ary increments B% with increments variance 8y (-), we also provides the uniform modulus
of continuity for B%. First, let a € (0, 1) and 6, : Ry — R, be a C*° normalised regularly
varying function at infinity with index 2c 4 1 in the sense of Karamata of the form

O (x) =" F Lg, (), (7-1)
with Lg, (+) is the normalised slowly varying part given as follows
. t
L, (x) = c1 exp ( / %"T()dt) for all x > xo, (7-2)
X0

and Ly, (x) = ¢ for all x € (0, xp), where c; is a positive constant. It is quite simple to check
that

&6, (¥) =x Ly (x)/Lg,(x) for all x > xq.
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Hitting probabilities of fractional Brownian motion with drift 127
Let §g, : Ry — R4 be the continuous function defined by

sr= 2 [Ta- [ (1) |
Sea(h)._n 0(1 cos(xh))ga(x)_n . sin > ) o (7-3)

The special properties of the function 6, make it easy to verify that dg, is well-defined.
Moreover, it follows from [20, theorem 7-3-1] that 83()( is a normalised regularly varying
function at zero with index 2« such that

85, (W)~ €5 (h) ash— 0, (7-4)

where

— 2
Co, (= c/* Ly *(1/h) and = — / Sl;ai/l ds. 7:3)

Hence &g, is normalised regularly varying at zero of index o, whence there exists
sy, (0, 1] —> R4 be normalised slowly varying at zero such that 8, (h) =h® L5, (h) =
Va e, (h) for all & € [0, 1]. Therefore (7-4) ensures that

Uy, () ~ Lo, () =YLy (/) as h— 0. (7-6)

In the following, we give a method for constructing real Gaussian centered processes with
stationary increments such that their increments variance are given by 5‘3“.

PROPOSITION 7-1. Let o € (0, 1) and 6y be the normalised regularly varying function given

in (7-1). Then there exists a one-dimensional centered Gaussian process BOG“ on Ry such
that for all

2
8,0 =E (By“(+m—B* () forallt =0and h =0. (7-7)

Proof. First, let u be the measure on R defined by u(dx) = (0, ()" 1R L (x) dx. Let
Wi and W, be two independent Brownian motion on R. Now we consider the Gaussian

]
processes Bog"‘ represented as follows

56 (1 — cos xt) /o" sin xt
B, “ (1) := —— W ———— Wh(dx). 7-8

A simple calculation gives
5 5 2 * 2
E [y +m - By )| =2 f (1 — cos (x )pa(dx) = 82 (h). (7:9)
0

Using (7-4) we get the following useful estimates helping us to provide uniform modulus
of continuity of B%: there exist /o > 0 and a constant ¢ > 1 such that

2
g G, (W <E[Bye(+ ) — By 0] a6, 0, (7:10)

for all r € Ry and h € [0, hg).

Notice that, due to (7-10), all results of our interest are not sensitive to changing €s,
by £g,. On the other hand, using ¢y, instead of €5, is especially important when the regu-
larity condition (4-11) on Lgy(-) is needed. Such condition leads to (4-6) for £4(-), which is
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required for Lemma 4-1. The following result is about the uniform modulu of continuity of
the Gaussian process B

THEOREM 7-2. Let B%« := (B(ig" (), ....,BZG"‘ (1)) be a d-dimensional Gaussian process,

where Biy", ...,Bfly" are d independent copies of ng‘)‘. Let O<a<b<1 and 1:= [a, b].
Then B%« e C"*%u (1) a.s. with Wq, ¢, defined by

Wa, e, (r)i= 1 Lo, (r) log"/? (1/). (7-11)

In other words, there is an almost sure finite random variable n = n(w), such that for almost
all w € Q and for all 0 < r < n(w), we have
sup |[B%%(r) — B ()| < c1 Wa.,, (), (7-12)

s,tel
[t—s|<r

where c1 is a universal positive constant.

Proof. First, we start by considering the function

"ou® g, (u)

oul log 1/ul /2" (7-13)

W, (1) = 0,0 log > 1/ + [
It is simple to verify that Wa,gea(-) is well defined in a neighbourhood of zero with
lim,_q \Tva,% (r) = 0. Since B%= satisfies (7-10), then it follows from [20, theorem 7-2-1,
p.- 304] that \Tva,ggu (+) is a uniform modulus of continuity of B%« . That is there exists a
constant ¢, > 0 such that

| B () — B )] _

limsup sup - < a.s. (7-14)
n—0 |u—v|<n Wa,ZQH (m)
u,vel

Hence there exists an almost surely positive random variable 7g such that for all 0 < n < ny,
we have

sup || B (u) — B (v)|| < c2 We g, () (7-15)
lu—v|<n
u,vel
The presence of an integral in (7-13) suggests that the modulus of continuity is artificial,
which leads to seek a simpler and more practical one. So it is easy to check, by using
Hopital’s rule argument, that

"ou® Ly, (u) 3 .
[ i =0 ().

Therefore there exists ry > 0 such that

\Tva,L;aI 20179(1) =27 Loy (1) log'/? (1/r) =2Wag,, (r)  forallr <ro.

Hence using this fact and (7-15), we obtain that almost surely

sup [[B%% () — B (v)|| <2 ca Weg,, (7) forall n<noAro,
el
\uu—vvtlein

which completes the proof.

Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 12 Mar 2025 at 09:10:47, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50305004125000039


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000039
https://www.cambridge.org/core

Hitting probabilities of fractional Brownian motion with drift 129
Remark 7-3. Tt is noteworthy that (7-4) ensures C"oou D= cVeton (I), where wg, ()=
86, () log2(1/ -).
7.2. Appendix B

Our aims here are twofold: first, to provide a proof of Lemma 2-3, and second, to
present examples of probability measures vy and vy supported on two Borel sets E; and
E; respectively, and satisfying (6-3) and (6-4).

Proof of Lemma 2-3. Without loss of generality we can assume that diam(.2) = 1. Three
cases need to be discussed here: (i) 6 < k, (ii) 0 =« and (iii) & > k. For the first case 0 < «,
we have to show only that

sup I(r) < oo.
re(0,1)

Indeed, for any v € X we have

/ (1(du) _ / wdu) i / (1(du)
2 (max{p(u, v), },.})9 —Ja p(u, V)e = {u:p(u,v)e(2~7,2-7+17} p(u, V)e

1

o o
<> 2y (Bp(v, 2—f+1)) <126 270 <,
j=1 j=1

Now for 6§ > k, we have first

d d
I(r) < sup/ pldu) + sup/ M u)e
ve Z Hu:p(u,v)<r} rf ve 2 Hu:p(u,v)>r} ou,v)

=1 =1 (r)

with r € (0, 1). By using (2.12) we get
L(n<C . (7-16)
For estimating I>(r), we set j(r) := inf{j : 277 < r}. Then we have
J _ ‘
{u:p(u,v)>r} C U{M:Z_j < pu,v) <2771, (7-17)
j=1
Simple calculations and (2.12) ensures that for any v € 2 we have

J(r

d ; . )
/ ik u)9 < Z 20 ({u:2_] < p(u,v) < 2_J+1})
{u:p(u,v)>r} p(u,v) =
J(r) _
<C 2 ) 20, (7-18)
j=1

It follows from the definition of j(r) that 277") <y < 27/")+1 Then, for 6 = k we get easily
that

II(n<C; and IDI(r)<Cz log(e/r)= C3@g—_i(r). (7-19)
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Hence we get the desired estimation for the case (ii). For the last case 6 > k, we use a
comparison with a geometric sum in (7-18) to obtain

L(r) < Cyr 7. (7-20)
Putting (7-16) and (7-20) all together, the estimation (2-13) follows.
For the second aim, let ¢ be a continuous increasing function on R, such that
9(0)=0 and ¢@Q2x)<2p(x) forallxe(0,xp), (7-21)

for some xq € (0, 1). Our aims is to construct a Cantor type set E, C (0, xo) which support a
probability measure v, with the property v,([a — 7, a + r]) < o(r).

PROPOSITION 7-4. Let ¢ be a function satisfying (7-21). Then there exists a Borel set E, C
[0, xo] which support a probability measure v such that

cl_1 p(r)<v(la—r,a+r])<cio(r) forallrel0,xo]and ackE,. (7-22)

Proof. We will construct a compact set E, inductively as follows: Let Iy C [0, xo) be a
closed interval of length Iy < xq. First, let /1 := (p‘l ((p(lo)2_1), and let /11 and 1 two
subintervals of Iy with length /. For k> 2, we construct inductively a family of inter-
vals {Ii;:j=1, ...2K}, in the following way: let [y := ¢! ((p(lo)2_k) and the intervals
I1, ..., Iy 5 are constructed by keeping two intervals of length /i from each interval Iy ;
i=1,...,2%51 of the previous iteration. We define E, 4 to be the union of the intervals
(Ik J)j:l ,« of each iteration. The compact set E, is defined to be the limit set of this

.....

construction, namely
o
Ey:= () Egu. (7-23)
k=1
Now we define a probability measure v on Ej,, by the mass distribution principle [11].
Indeed, for any k > 1 let us define
(k) =27k fori=1,... 2k (7-24)

and v ([0, 1] \Ew,k) = 0. Then by [11, proposition 1-7], v is a probability measure supported
on E,. For a € E, and 0 < n < ¢(lp) small enough. Let k be the smallest integer such that
o(lp) 2D < o(lo) 27k then it is not hard to check that the interval [a — (p‘l(n), a+
(p_l(n)] intersects at most 3 intervals Iy ;, and contains at least one interval I; 1 ;. Therefore,
using (7.24) we obtain

(1720000 1 < v (la— ¢~ (.a+¢~ 1) = 6/9o) 0 (7:25)

By making a change of variable r:= ¢~!(57), we get the desired result.

Now, we can remark that examples of measures v; and v, satifying (6-3) and (6-4) respec-
tively, could be deduced from Proposition 7.4 with the functions ¢ (r) := r“ logﬁ (e/r) and
oa(r):=1r* logf’3 (e/r)yfora €(0,1)and B8 > 1.
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