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Abstract

Introducing common shocks is a popular dependence modelling approach, with some recent applications
in loss reserving. The main advantage of this approach is the ability to capture structural dependence
coming from known relationships. In addition, it helps with the parsimonious construction of correlation
matrices of large dimensions. However, complications arise in the presence of “unbalanced data”, that is,
when (expected) magnitude of observations over a single triangle, or between triangles, can vary substan-
tially. Specifically, if a single common shock is applied to all of these cells, it can contribute insignificantly
to the larger values and/or swamp the smaller ones, unless careful adjustments are made. This problem is
further complicated in applications involving negative claim amounts. In this paper, we address this prob-
lem in the loss reserving context using a common shock Tweedie approach for unbalanced data. We show
that the solution not only provides a much better balance of the common shock proportions relative to
the unbalanced data, but it is also parsimonious. Finally, the common shock Tweedie model also provides
distributional tractability.

Keywords: Stochastic loss reserving; Common shock; Unbalanced data; Negative claims; Multivariate Tweedie distribution

1. Introduction

Outstanding claims reserves are typically some of the most critical components in the financial
statement of a non-life insurer (Abdallah et al., 2015; Heberle & Thomas, 2016; Saluz & Gisler,
2014). When estimating reserves, the insurer often has to provide the central estimate as well as
a risk margin to accommodate for the stochastic nature of outstanding claims. The estimation
of reserving variability is also required by many regulators (Gismondi et al., 2012). For example,
the Australian Prudential Regulation Authority (APRA) requires insurers to provide a risk mar-
gin calculated as the larger of a half of one standard deviation, and the difference between the
75th percentile and the expected value of the total outstanding claims distribution. The 99.5th
percentile of the distribution of total outstanding claims is also an input in the calculation of risk-
based capital for solvency purposes in many regulatory frameworks, for example, Solvency II in
Europe and APRA’s Prudential Standards in Australia. This was one of the motivations for the
development of stochastic reserving methodologies since the early 1980s. For general references
on reserving, one can refer to Taylor (2000) and Wiithrich & Merz (2008). A recent strand of
the literature focuses on the modelling of individual claims (see, for example, Avanzi et al., 2016;
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Pinheiro et al., 2003; Wiithrich, 2018; Zhao et al., 2009. However, the focus of this paper is on the
modelling of traditional aggregate data in the form of loss triangles.

Non-life insurers typically operate in multiple lines or segments and are required by regula-
tors to estimate loss reserves and risk capital on an aggregate level. Different business lines within
an insurer’s operation often lack a comonotonic dependence structure. This allows the insurer to
enjoy diversification benefits in the calculation of loss reserves and risk capital for their consol-
idated operation (Avanzi et al. 2016a). It is hence essential to develop an accurate approach to
the modelling of outstanding losses while allowing for dependencies (Coté et al., 2016; Shi et al.,
2012). This allows the insurer not only to accurately assess their performance but also to hold an
appropriate amount of reserves and capital to optimise its internal use, while satisfying regulatory
requirements (Ajne, 1994; Avanzi et al., 2018).

Various multivariate approaches have been developed for stochastic loss reserving, which take
into account the dependency across business lines or segments. Some well-known non-parametric
approaches include multivariate chain ladder frameworks in Braun (2004), Schmidt (2006), Merz
& Wiithrich (2007), Zhang (2010) and the multivariate additive loss reserving framework in Hess
et al. (2006), Merz & Wiithrich (2009). These approaches are non-parametric and do not utilise
any distributional assumptions. They also focus on specific cellwise dependence (i.e. the depen-
dence between cells that are in the same position) across loss triangles. Alternatively, parametric
approaches utilising distributional assumptions can be used, see, for example, Shi & Frees (2011),
Zhang & Dukic (2013), De Jong (2012), Abdallah et al. (2015), Shi (2014).

In this paper, we focus on the common shock approach to dependence modelling. Common
shock approaches use common random factors to capture drivers of dependence across related
variables. As a result, these drivers can be identified, as well as monitored if needed. The transpar-
ent dependence structures in common shock models can then be interpreted more easily. This is
indeed one of the four desirable properties of multivariate distributions considered in Joe (1997),
Chapter 4 which include

- interpretability;

- closure under the taking of marginals, meaning that the multivariate marginals belong to the
same family (this is important if, in modelling, we need to first choose appropriate univariate
marginals, then bivariate and sequentially to higher-order marginals);

- flexible and wide range of dependence;

- density and cumulative distribution function in closed-form (if not, they are computationally
feasible to work with).

Furthermore, the construction of correlation matrices can be facilitated. Correlation matrices
are tools extensively used by practitioners to specify dependence in the aggregation of out-
standing claims liabilities or risk-based capital. Explicit dependence structures captured using
common shock approaches allow correlation matrices to be specified in a more disciplined and
parsimonious manner (see, e.g., Avanzi, Taylor & Wong, 2018).

Common shock approaches have been used to good effect. They are typically used to cap-
ture structural dependence, that is, “structural co-movements that are due to known relationships
which can be accounted for in a modelling exercise” (International Actuarial Association, 2004).
De Jong (2006) introduced three different models to capture dependence across development
periods, accident periods and calendar periods, respectively. Calendar period dependence is cap-
tured using common shock variables in the multivariate log-normal model of Shi et al. (2012).
A common shock Tweedie framework was developed in Avanzi et al. (2016b) to capture cellwise
dependence across business lines. It is worth noting that these models are static models which
assume a single development pattern for all accident years through the use of fixed effects. A
recent use of common shock approach in evolutionary reserving models which allow claims devel-
opment pattern to evolve can be found in Avanzi et al. (2020). There are also various applications
of common shock models outside of the reserving literature, including mortality modelling (Alai
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et al., 2013, 2016), capital modelling (Furman & Landsman, 2010) and claim counts modelling
(Meyers, 2007).

Despite the benefits mentioned above, complications can arise in the application of common
shock approaches to loss triangle data. This is due to the “unbalanced” feature of data where
expected magnitude of observations within a loss triangle as well as across triangles varies substan-
tially. This feature represents the typical claim experience where the level of claim activity reaches
a peak in early years and then dies out as the development lag increases. The “unbalanced-ness”
can also be observed in loss data that consist of multiple business lines. In particular, the speed of
claims development can vary across business lines where some lines are longer tailed than others.
As a result, the magnitude of claim observations in the same accident year and development year
can vary across loss triangles. Because of this feature, we say that loss reserving data are an example
of “unbalanced data”. If a single common shock is applied to these observations that are of differ-
ent magnitudes, it can contribute insignificantly to the larger ones and/or swamp the smaller ones,
unless careful adjustments are made. It is the aim of this paper to study and address this problem.

While this paper aims to examine the challenges for common shock models and propose a
solution to address these challenges, a focus of the solution is placed on the Tweedie family of dis-
tributions. This is motivated by its popularity. This family is a major subclass of the Exponential
Dispersion Family (EDF) consisting of symmetric and non-symmetric, light-tailed and heavy-
tailed distributions (Alai et al., 2015; Jo rgensen, 1997). Various members of it have been frequently
used in the loss reserving literature, see, for example, Alai & Wiithrich (2009), Boucher & Davidov
(2011), England & Verrall (2002), Peters et al. (2009), Renshaw & Verrall (1998), Taylor (2009),
Taylor (2015), Wiithrich (2003), Zhang et al. (2012). Avanzi et al. (2016a) developed a common
shock Tweedie framework for reserving to allow for dependence across business line, while util-
ising the flexibility of this family of distribution. The solution proposed in this paper will be
illustrated using this framework.

Another feature that is occasionally observed in loss triangles is negative claim amounts.
These are due to various reasons, for example, salvage recoveries, or payment from third parties.
Many commonly used distributions such as gamma distributions and log-normal distributions
are unable to handle this feature due to their lack of support for negative values. A remarkably
small area of literature has been devoted for the treatment of negative payments in a single busi-
ness line. The existing methods include a three-parameter-log-normal model in De Alba (2006)
and a mixture model in Kunkler (2006). In the development of the new approach for unbalanced
data, we will also consider a treatment for negative claims.

The organisation of this paper is as follows: section 2 investigates the issue of unbalanced data
for common shock models. A common shock Tweedie approach to unbalanced data is introduced
in section 3. Simulation illustrations are provided in section 4, including an illustration using a
portfolio of triangles with different tail lengths, and a comparison of the performances of the
original common shock Tweedie approach and the modified Tweedie approach with treatment for
unbalanced data. An illustration using real data is provided in section 5 and section 6 concludes
the paper.

2. Unbalanced Feature of Reserving Data and Its Challenges to Common Shock
Models

In this section, we examine the unbalanced feature of loss reserving data in detail. The general

common shock framework developed in Avanzi et al. (2018) is then described. Challenges that

arise in applying common shock models to reserving data due to its unbalanced feature are then

discussed.

2.1 Unbalanced feature of reserving data

As described in section 1, loss reserving data typically exhibit unbalanced nature. We consider for
illustration a real data set from a Canadian insurer collected from 2003 to 2012 (denoted by years

https://doi.org/10.1017/51748499520000196 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499520000196

176

(a)

Benjamin Avanzi et al.

Year
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2009
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0.0052

7
0.0287
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0.0288
0.0418

2
0.0288
0.0074
0.0021

[l
0.0283
0.0030

10
0.0068

Year

6

7

10

0.0178
0.00659
0.0063
0.0245

0.0065
0.0128
0.0145
0.0113

0.0075
0.0068
0.0015

0.0038
0.0004

0.0045

(b)

Loss ratio
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0.10
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Figure 1. Loss ratios from Bodily Injury line and Accident Benefits line (from a Canadian insurer). (a) Heat maps of Bodily
Injury line (top) and Accident Benefit line (bottom). (b) Plot of loss ratios for accident year 2003.

1-10). This data set is used for illustration in C6té ef al. (2016) and is provided in Tables C.1 and
C.2 in Appendix C. The two lines of business (LOBs) used for illustration are Bodily Injury line
and Accident Benefits (excluding Disability Income).

Figure 1 provides heat maps of incremental loss ratios on the left and a plot of incremental loss
ratios for accident year 2003 from the two LOBs on the right. For a given accident year, the loss
ratio increment for development year j is defined as the ratio of incremental claim payments in
that development year to the earned premium for the accident year. Within a single loss triangle,
one can observe a quite significant variation in claim observations across development years for
any particular accident year. As shown in the heat map in Figure 1, the claim activity for the
Bodily Injury line is low in development year 0, then peaks in the next few years and dies out
after the peak. This typical pattern is also shown in the plot of loss ratio on the right-hand side of
Figure 1 for accident year 2003. For the Accident Benefits line, the claim activity is the highest in
development year 0 or 1, then drops quickly as we approach later development year. This pattern
is also shown in the plot of loss ratios for accident year 2003 of the Accident Benefit line. The plot
of ratios on the right-hand side of Figure 1 also indicates the difference in development patterns
for two different business lines. We can say that the Accident Benefits line is shorter-tailed than
the Bodily Injury line. A variation can be observed across claim observations that come from the
same accident year and the same development year, simply due to different claim development
patterns across these business lines. This is in addition to the variation between loss values in
different development lags and from different loss triangles, such as cells in development year 1
from the Bodily Injury line and cells in development year 10 from the Accident Benefit line.

Opverall, Figure 1 shows a large variation across claim observations in a loss reserving data
set. Within a single loss triangle, there is variation across development years due to the devel-
opment pattern of claims over time. Different claim development patterns can also result in
variation between observations across loss triangles. Typically, one often does not expect depen-
dence between lines that have different tail lengths, for example, an Auto Property Damage line is
often independent of a Workers Compensation line. However, lines with different tail lengths can
still have some association. One of such examples is a portfolio of Accident Benefits line and the
Bodily Injury line in the above illustration.

With the variations between claim observations within and across triangles, we refer to loss
reserving data as unbalanced data. This data feature creates a number of challenges in applying
common shock models to reserving data, which will be discussed in the remainder of this section.
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For generality and completeness, the focus is placed on the unbalanced feature of data consisting
of multiple LOBs.

2.2 General common shock framework

Consider N loss triangles of claim cells Y,-(’;?). The notation Y,-(;) can represent incremental claim
payments or counts. We have the indices i (i =1, ..., I) representing the accident period, j (j =
0, ..., J) representing the development period and n (n =1, ..., N) representing the business line. It
also follows that the claims Yi(;) belong to the calendar period t=i+j—1, (t=1,.., T).

Let S = {Ss(n);s= 1,.., S} be a partition of the set of all claims Yi(’;-l) from business line
n. Also assume that all partitions are the same for different lines #n for simplicity. Denote by

T (ij) = s a unique mapping of claim Y(") to a set S in the partition. For example, the parti-
tion S = {S";5=1, .., I}, where S(”) = {Y(") ;j=1,..,]} represents a partition of claims by

accident year. The selection of the partition S (”) is very flexible and can be specified for different
types of dependence.

Many multivariate models with different types of dependence can be generalised by the
common shock framework in Avanzi et al. (2018) with

(n) (n) (n) (1)
YlJn =Kij i Wy + A YUy +Zi,;l (1)

T (irj)

where 7 (; ;) = s denote the unique mapping of the claim Y,-(;) to the corresponding subset SS(") in

the partition S, and W, ) U,(,r:zj), and Z;g) are independent stochastic variates. The common
shock Wy, , introduces dependence across all business lines n =, 1..., N on claims that belong to

the subsets Ss("). For example, accident year dependence across lines can be captured using the
partition where S — {Y(") ;j=1,...,J}. The other common shock U,(,’:ij) introduces dependence

across claims within the set S of business line 7 only, such as development year dependence
with the partition set specification S;" % {Y(") i=1,...,I}. Overall, the flexibility of choice of the

subsets S{" allows different dependence structures to be captured. Lastly, the idiosyncratic com-
ponent, which is unique to the claim Y( i o " is denoted by Z( ) . Scaling factors, denoted by K(") A(")

control the extent to which the set-wide common shock contrlbutes to individual members of the
set. In this section, we have wished to preserve the link to the general notation of Avanzi et al.
(2018) through the use of the notation 7 ;). This notation will be simplified in section 2.3 for

specific examples.

Remak 2.1. There can be situations where variables {Yi(;);‘v’i, j; n > 2} are pairwise dependent (i.e.
the dependency between each pair of variables is driven by a different source). For example, there
can be a portfolio of three LOBs where there are three independent common shocks that drive
the dependence between each of the following three pairs, LoB 1 and LoB 2, LoB 2 and LoB 3

and LoB 3 and LoB 1, respectively. In such cases, one can consider having additional common
shock variables an that capture dependence across lines, for example, W,(rl(lzj)) R W(2 3) and W,(S(IB
for the above scenario of three LoBs. However, it is worth noting that these will result in more
parameters required for the framework.

2.3 Balancing common shock proportions in loss reserving data

As a result of the unbalanced feature of reserving data, a common shock model can create
problems in the absence of careful modelling.
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Consider a special case of equation (1) for dependence within a business line (i.e. W,,(Lj) =0).
Further specify accident period dependence (i.e. ”E?}) = p for the mapping of subsets in the parti-
tion where S\ = {Y(”), j=1,..,]}). This allows us to simplify U,(,Iq(?J) = X;™. Hence, the general
framework is reduced to

Yy — 5 (1) 5 () —|—Z(") )
ij = Mij i i

Consequently, the proportionate contribution of the common shock to the expected value of the
total observation is

AE [x]

MR [X§”’] +E [ij’]

3)

If the scaling factor is removed, that is, )‘E,};’) = 1, this proportion has an inverse relationship with

the mean of the idiosyncratic component E [Zl(?)] As aresult, in a set of loss cells in a triangle that
are dependent and share a common shock, the cells with large values have a smaller proportion
of common shock contribution and vice versa. This is because claims within the same accident
period, or within the same calendar period belong to different development periods. As explained
in section 2.1, their values can vary significantly due to the variation in claim activity across devel-
opment periods. This issue can also be observed in the case of calendar period dependence (i.e.
JIE:?) = s for the mapping of subsets in the partition where S = {Y( Lpi=Laou ).

A similar issue is encountered for a portfolio of dependent business lines w1th differing tail
lengths, such as the two business lines Bodily Injury and Accident Benefits in the illustration in
Section 2.1. We consider a special case of equation (1) that allows for dependence between busi-

ness lines only (i.e. U,(,'?, = 0). Further specify cellwise dependence (i.e. partition mapping where

S(") {Y(")}) This allows us to simplify Wx ;; = V;;. The contribution of the common shock to
the total expected observation is then given by

P E[Vi]
KB [Vig] + B[ 2]

(4)

If the scaling factor is removed, that is, x (") , this proportion also has an inverse relationship with

the mean of the idiosyncratic component E [Zl( ,j)]' As explained in section 2.1, values of claims in

a portfolio of multiple triangles can vary in two main ways: across development years within a loss
triangle, and across loss triangles. As a result, the proportion of common shock varies within and
across loss triangles, wherein loss cells with larger values have smaller common shock contribu-
tions. In the case of pairwise dependence considered above, the disproportion is typically a result
of varying tail lengths across business lines. However, it is worth noting that unbalanced com-
mon shock proportions can also be typically observed for accident year dependence, or calendar
dependence across business lines from the same cause.

We consider the case of accident year dependence across the two triangles illustrated in section
2.1 (i.e. partition mapping S; = {Y( ),] =1,..,Jin=1,..,N}, and we can simplify Wy, = V).
For illustration, the mean of the common shock E[V;] is set to 5% of the loss ratios in the first
development year of each accident year in the Bodily Injury line. The contributions of common
shock are shown in Figure 2 assuming no scaling terms. With accident year dependence across
business lines, claims within the same accident year share the same common shock. These include
claims from different development years within and across loss triangles. Because their values vary
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Year 0 1 2 3 4 5
2003 1.6% 1.4% 1.6% 1.5% 2.7%
2004 0.5% 0.8% 0.5% 0.5% 1.3%
2005 0.8% 0.5% 0.8% 0.8% 1.2%
2006 0.6% 0.5% 0.6% 0.6% 1.0% 1.3%
2007 0.7% 0.7% 0.7% 1.5% 2.1%
2008 0.7% 0.5% 0.5% 0.8%

2009 0.4% 0.5% 0.4%

2010 0.4% 0.5%

2011 0.5%

2012

Year 0 1 2 3 4
2003 | 17% 21%  3.8%  3.4%  4.1%
2004 | 10% 0.7% 08% 15% 2.0% 8% 4.6%
2005 | 1.0% 0.5% 0.7% 15% 12% 4.9%
2006 | 0.8% 0.5% 0.8% 09% 1.4% 22%  4.8%
2007 | 0.8% 0.6% 11% 19% 4.1%  26%

2008 | 0.8% 04% 0.6% 14%  21%

2009 | 0.5% 02% 05%  0.8%

2010 0.6% 0.3% 0.8%

2011 0.8% 0.5%

2012 | 0.6%

Figure 2. Heat maps of common shock contributions in Bodily Injury line (top) and Accident Benefit line (bottom) without
using scaling terms.

due to different claim activities within and across lines, their common shock proportions also vary.
Specifically, common shock proportions are significantly smaller in areas with high claim activity,
and larger in areas with low claim activity, as shown in Figure 2.

In general, quite significant variations in common shock proportions can be observed within
and across segments in the absence of careful modelling as a result of the unbalanced nature of loss
reserving data. One may wish to confine the relation of the common shock to total observations
over the entire range of the triangles.

2.4 Maintaining model parsimony

The most straightforward solution to the balancing common shock proportions within and across

(n)

triangles is to have cell-specific scaling factors Kij A( " to adjust the common shock effects for

each total observation Y( " However, this 1mp11es that 2IJN new parameters are required for the

entire range of triangles of observed data and outstanding claims to be predicted. Given that the
variation in claim observations typically occurs across development periods, one may simplify the

(m) _ (") A(") A(") However, this still results in 2JN new

scaling factors to be column-specific «;;
parameters.

Loss triangle data typically have a small sample size. While the presence of scaling factors can
mitigate the impact of the unbalanced nature of reserving data, it also adds many more parameters
to the model. If scaling factors are not chosen carefully, it may result in overfitting and the number

of parameters to be estimated can even exceed the number of observations.
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2.5 Maintaining distributional tractability
On some occasions, parameters X(") and K(") need to be specified such that the total observa-

tion Yl.()j) follows a specific dlstrlbutlon (Avanzi et al., 2018). This is referred to as distributional
tractability, or closure under the taking of marginals, which is considered in Joe (1997, Chapter 4)
to be one of the four desirable properties of a multivariate model (see also section 1).

Consider as an example the common shock Tweedie framework in Avanzi ef al. (2016b). This

framework is developed for cellwise dependence across business lines (i.e. S, (;1) = {Y(”)} U(") 0).

Fitting this into the general common shock structure in equation (1) and 51mphfy1ng We ) = Vijs
we have
() ( ) (1)

Vi =k Vij+ 25 (5)
where the two components V;j, Z ) are assumed to be independent and have Tweedie distribu-
tions

Vij~ Tweedie,(a, B) (6)
Z(") ~ Tweediep(1; () (") y™) (7)

Parameter p is the power parameter which specifies a member of the Tweedie family, for example,
p =1 corresponds to a Poisson distribution. The representation of Tweedie distributions used
is the reproductive representation (Jorgensen, 1997, Chapter 4). This representation specifies a

Tweedie random variable using a location (or mean) parameter and a dispersion parameter. In

(n),,(n)
J

eters B and y " are the dispersion parameters. The reproductive representation has a distinctive

property, wherein the weighted average of independent Tweedie variables with the same power
parameter p and the same location parameter is also a Tweedie variable with the same power and
location parameters. The weighting factors are determined using dispersion parameters of the
component variables in the weighted average.

the above model specification, parameters o and ), are the location parameters, and param-

It then follows that the mean and variance of the two components V; > Zl(;) are
E[Vij]=a, Var [ Vij] = Ba? (8)

E I:Zl(:;)] _ 77l(f’l)vj(n)’ Var [Zf;l)] — y(n)(ngn)vj(n))p (9)
As stated in Remark 2.2 of Avanzi et al. (2016b), the most simple parametrisation is used for the
common shock component V;; with parameters o and f.

As mentioned earlier in this section, it can be desirable to maintain distributional tractability, or
closure under the taking of marginals for ease of interpretation. It follows from the form of closure
under addition of the Tweedie family of distributions, as proven in Jorgensen (1997, Chapter 3),

that a specific choice of Ki(;') is required to ensure that Yi(;) also has a Tweedie distribution. This

choice is

P w

o) o v

L] 77En) V]‘(n) ﬂ

The mean expression is given by
2-p .
o 14 (n) (n) (n) (n)
E[v]= L R (11)
1, nl(n) vj(yl) ﬁ 1 i
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where the first term in the summation is the contribution from the common shock and the sec-
ond term is the contribution from the idiosyncratic component. The expected contribution of the
common shock to the total expected observation is

2-p
o y®
(n)  (n)
% ’ (12)
—p
a y(n)
(n)  (n) B +1
771 vj

The following observation can be made on the effect of the power parameter p:

- If p < 2: The above ratio increases as (" decreases. As a result, the proportion of common

shock is understated in early development periods and overstated in late development peri-
ods (Avanzi et al., 2018). In a portfolio of segments with varying tail lengths, the larger the
discrepancy between the tail lengths (i.e. between vj(") and v]-(m)), the larger the variation in
the common shock contributions. The behaviour of the above ratio has been examined with
respect to development factor vj(") in particular because variation within and across lines of
business is mainly driven by the development pattern of claims as explained in section 2.1. As
a result, one would expect the development factors to vary the most.

- If p > 2: The opposite observation is made for the relationship between the above ratio and
vj(”) (i.e. the above ratio decreases as vj(") decreases).

- If p = 2: In this special case, the common shock contribution is simplified to

y(”)

B
— (13)
(n)
1

B

which is now independent of accident and development periods. Consequently, the common
shock contributes proportionately to the total observations over the entire range of the trian-
gles. It is also worth emphasising that specifying p = 2 gives the multivariate gamma case of
the multivariate Tweedie framework.

The above analyses and examples show that the choices of scaling factors Ki(;)

subject to many constraints. To accurately capture the dependence structure, these parameters
are required to balance the common shock proportions within all claim observations over the
entire range of the triangles. However, this can result in overfitting, which can be a critical issue
in loss reserving due to small sample size data. Furthermore, the specification of these parameters
may need to be restricted in some cases for the purpose of preserving distributional tractability. It
is then the aim of this paper to find a solution that compromises between these conflicting issues
with a specific application on the common shock Tweedie approach in Avanzi et al. (2016b).

and )»5"]7) are

3. ACommon Shock Tweedie Approach to Unbalanced Data

In this section, we propose a solution that compromises between conflicting challenges encoun-
tered by common shock models when they are applied to reserving data due to the unbalanced
feature of the data. The focus of this development is on a common shock Tweedie approach to
unbalanced data. The estimation method for this approach is also given.
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The multivariate Tweedie framework described in section 2.5 is a typical example of an appli-
cation of the common shock approach in stochastic loss reserving. It is of particular interest due to
its various advantages. Developed on the Tweedie family of distributions, it offers flexible choices
of marginal density that also include Tweedie’s compound Poisson density with the ability to
deal with zero data points. The framework can also be generalised to more than two dimensions.
In addition, the explicit common shock structure allows the correlation matrix to be obtained
in closed form. Moment- and cumulant-generating-functions can also be obtained analytically,
enhancing the tractability of the model. Similar to other common shock models, this framework
also encounters the issue of unbalanced data. As explained in section 2, the selection of scaling
coefficients for the common shock term in this framework is constrained by the need to balance
common shock proportions, while maintaining model parsimony and distributional tractability.

3.1 Theoretical framework

Claims are first standardised using a common unit of exposure such as the number of claims, or
the total amount of premium collected, to ensure consistency across accident periods and busi-
ness lines. Recall the specification of the common shock Tweedie model in Avanzi et al. (2016b)
described in section 2.5,

V=i Vi + 2,7 4
where
Vij~ Tweedie,(a, B) (15)
Zi’j“)ma Tweediep(ngn)vj("), ™) (16)
-
(n)
() o Y
i,j 77l(n) U~(n) ﬁ

J

Recall that o and nl(")v].(") are location (mean) parameters, and g and y™ are dispersion

parameters of V;; and Z;}l), respectively.

As shown in equation (10), the common shock scaling factor has to be specified in the above
form that involves parameters of the common shock V;; and the idiosyncratic component Zl(;).
However, due to the unbalanced feature of reserving data with vj(n) varying across development lag
j and business line 1, the common shock contributes disproportionately to the total observation

Yi(;). It is also desirable to maintain model parsimony.

Given the above considerations, we can replace the non-cell-specific parameter « in the scaling
factor with column-specific parameter

1

N

N
aj=¢ (]‘[ E [Zg?)]) —¢ (]‘[ ng%;w) (18)
n n
~ ey vj(l)...vj(N) (19)

The parameter «; is also the location parameter of the common shock Vj;. As a result, we
approximately have

Vij~ Tweedie,(a;j, B) = Tweedie, <c N v;l)._.v],(N), ,3) (20)
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Essentially, the common shock parameter «; is proportional to the geometric average of
idiosyncratic components of claims which share the same common shock component. In this
case, these are claims in the same accident period and development period as the framework is
used to capture cellwise dependence. This geometric average can then be simplified by removing
accident period factors because we can reasonably expect limited variation across accident peri-
ods as a result of claims standardisation, assuming no significant changes occur across accident
periods.

The above specification of scaling factor aims to balance the impact of unbalanced feature in
(n)

loss reserving data which are mainly introduced by variations in development factors v . Using
this specification, the common shock proportion is given by
2-p
N )
CyfVj Y y ™
77,(”)”;”) B
- 1)
c N, U(l) U(N) (n)
Jo 4
(n) (n) B +1
n; Vj

This does not provide a complete balance of common shock proportions because the effect of
M
j

N,

is reduced by a factor /v ( ). However, it still provides quite a significant improvement over

the original framework. This w1ll be demonstrated in the simulation illustration in section 4. This
specification can also preserve distributional tractability of the framework. In addition, model
parsimony is retained as the total number of parameters in the framework is unchanged. This can
be considered an effective solution given the three constraints discussed in section 2.

In addition to the above treatment for unbalanced data, we also introduce a treatment for
negative claims

1-p
cNH® N (n)
(n) () _ J J 4 » (n)
+£& —ngn)v.(”) _,3 Vij+Zi; (22)
! i)

where a translation factor is used and defined such that
£ _ {O if min{Y, i, j1=0,

23
z—min{Yi(;)} if min{Y. (]) , Vi, j} <0 @3)

The translation is only needed for a loss triangle if it contains at least one negative value and it
must be large enough to offset the smallest negative value. It is worth emphasising that in this
case, while its lower bound is deterministic, the actual value of £ ™ still has to be estimated. The
generalisation of this treatment to the general common shock framework in Avanzi et al. (2018)
is straightforward.

Following from the above specification, the marginal density is then given by

2—p
c N p.(l)...UFN) (n)
(n) L g(n) M e -
Y +& Tweediep | n; v, (). (n) B =
’71 vj
1
S N
o | (A o (24)
vy g
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where the first parameter is the location parameter and also the mean of Yi()’?) + £™_ The second

parameter is the dispersion parameter. It follows that the vector of translated claims in the same
position across all triangles

)AI)+_E(U
£Yij= . (25)

(N) +E(N)

has a multivariate Tweedie distribution with the multlvarlate density

1 N
fory () + 60,0 +6V) =

O ™\ P

Ajj N ) ) Cij V] y(n)
fV,»,,-(Wi,j)l_[fZ(n) Vij Y€ —wij | dwij  (26)
0 n=1 " ni v B
J
where
m,m \'? ™ )\ P
. ni v, 8 ni v, B
A,',j=m1n I (1)( (1) +$(1)) i (N)( (N) +§(N))
My ™) ¢ Mp®_H®
i) 7]
(27)
and where f(.) is the Tweedie density in reproductive form (see also Jergensen, 1997,
Chapter 4).

3.2 Model estimation with Bayesian inference

Bayesian inference is used for model estimation. Bayesian estimation has gained its popularity
in the loss reserving literature due to rapid computing advancements and Markov Chain Monte
Carlo (MCMC) methods that allow the calculation of intractable posterior densities to be per-
formed significantly faster (Avanzi et al. 2016b; Verrall et al., 2012). In addition, the incorporation
of prior densities in the calculation of posterior densities is a natural way to allow for parameter
error in modelling (Shi et al., 2012; England et al., 2012). Another aim of using a Bayesian setup is
to also estimate the power parameter p and translation parameter £ ") with allowance of parame-
ter uncertainty. This is to formalise the estimation of these parameters as they are often estimated
heuristically in practice. It is worth emphasising that the Bayesian structure is not integral to our
model but serves as a device for estimation.

A two-step procedure is used for estimation, similar to that in Avanzi et al. (2016b). The first
stage is the estimation of all parameters except ¢ and B of the common shock V;;. This stage,
however, gives the estimate of a ratio of these parameters denoted as

5="— (28)
B

as can observed from equation (20). This is followed by the multivariate stage that estimates ¢
and B conditional on estimates of other parameters from the first stage. The motivation for this
procedure comes from properties of the common shock Tweedie framework. Claim observations
in the same position across triangles in this framework follow a multivariate Tweedie distribution,
and each observation itself also has a marginal Tweedie distribution. In addition, the multivariate
density has an integral calculation, as shown in equation (22). This can prolong the estimation of
the posterior density, making the tuning and convergence of MCMC much more difficult.
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A Bayesian setup requires the specification of the likelihood functions, prior densities and, if
posterior densities are not in closed form, computational algorithms used to approximate them.
The likelihood functions follow from equation (20) for the first stage and equation (22) for the
second stage.

Prior densities are then specified. Prior densities can be chosen to be informative or uninfor-
mative. Uninformative priors assign equal possibilities to all values in the feasible set of parameter
values, whereas informative priors convey some prior preference for certain values of the param-
eters. However, the use of informative priors can significantly improve the convergence rate,
especially when the parameter dimension is large (Congdon, 2010). Parameter estimates from uni-
variate Tweedie model (Alai & Wiithrich, 2009) can assist in the specification of informative prior

densities for parameters 7" vj(")

bt and y . A preliminary analysis of the dependence structure
can help select informative prior densities for the common shock parameters ¢ and . Regarding
the prior densities for p and £, some constraints need to be taken into account. In particular, p
is not defined in (0,1), and & has a lower bound as per its specification in equation (19).
Putting together the likelihood and prior specifications, the posterior density in the first stage

is given by

S @YYy o [Thy e (47 +5719) | HOROBGHMACH ) @9)

i,j,n
where
p ey
: £ ! - vjz v y
5 £@ ’752) B Uj( ) v, y®
Q= n E=1 . =) L =)L by= L =) b=
; gN) nlgN) N1 vj(N) vy y™

and where YV is a vector of claim observations in the upper claim triangles.

From the model structure in equation (18), we have that all claims YZ-(;) are independent condi-
tional on common shock. Hence, the joint likelihood can be written as a product of two separate
parts: a product of the densities of claims conditional on common shock, and the density of
the common shock. In the first stage of the estimation procedure, the likelihood obtained is the
first part of the joint likelihood. As also mentioned earlier, this stage provides the estimates of
mean parameters v, 7 and dispersion parameters p of the idiosyncratic variables ZE?), translation
parameters & and power parameter p. This stage also provides the estimate of § which is a function
of parameters c and B of the common shock V.

In the second estimation step, we work with the joint likelihood directly since common shock
components are not observed. In this step, the estimation of ¢ and B is carried out conditioning
on estimates of other parameters in the first step, including § which is a function of ¢ and B.
The multivariate Tweedie density of Y;; is used to obtain the likelihood in this estimation. The
posterior density in this step is given by

fC‘YU’Q(dYU,SZ)O( ]_[fgyi,j <§yiJ|c,Sl> fe(o) (30)
ij

The posterior densities in both stages are not in recognisable forms, hence MCMC algorithms
are required for the estimation. The MCMC algorithm used is Metropolis-Hastings, which is
a popular class of MCMC algorithms when the posterior distribution is not in a recognisable
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form. Random walk Metropolis-Hastings algorithms are used for marginal estimation and mul-
tivariate estimation. Proposal densities are chosen (tuned) so that acceptance probabilities are
within desirable ranges. The tuning process can be done manually using classical Metropolis-
Hastings algorithms. Alternatively, it can be done automatically in adaptive Metropolis-Hastings
algorithms using coerced acceptance rates (Haario et al., 2001; Vihola, 2012).

4. Simulation Illustrations

Two illustrations are performed on two data sets. The first illustration, provided in section 4.1,
is to assess the accuracy of the estimation procedure. Since true parameter values are known in a
simulated data, a comparison of their estimates with their true values gives an indication of the
appropriateness of the estimation procedure. The second illustration, provided in section 4.2, is to
compare the performance of the common shock Tweedie approach with treatment for unbalanced
data and the original common shock Tweedie approach in Avanzi et al. (2016b). This comparison
focuses particularly on the contributions of common shock estimated from the two approaches.

4.1 An illustration with unbalanced data and negative claims

A data set consisting of two business lines, one of which has a negative claim observation, is sim-
ulated. The two loss triangles are represented in Tables A.1 and A.2 in Appendix A. These two
triangles consist of simulated claim observations. Each observation in the triangles is drawn from
the multivariate Tweedie model for unbalanced data represented in section 3. For simplicity, these
observations are assumed to have been adjusted for changes in exposure across accident years.

The marginal fitting is first performed. Parameters are first transformed using the log transfor-
mation, and uniform prior densities are used. 200,000 simulations are run and 100,000 simulations
are discarded as the burn-in period. The sample chain is thinned by accepting every 5th iteration
to reduce the serial dependence between iterations. MCMC paths of some parameters are given in
Figure A.1. A similar procedure is performed for the multivariate estimate. The estimates of ¢ and
B are obtained from this step. Parameter estimates are provided in Table A.3 in Appendix A.

To evaluate the Bayesian inference used for estimation, we compare the true parameter values
with 90% confidence intervals obtained from the posterior distributions of these parameters. The
results the true values always lie within the corresponding 90% confidence intervals. This indicates
the accuracy of the estimation procedure.

We have calibrated the model on the same simulated data set using sub-triangles of dimension
5 x 5 to assess the robustness of the proposed calibration method. The results show that true val-
ues also fall within the 90% confidence intervals of the estimates from this calibration. However,
confidence intervals are generally larger than those from the calibration that uses full-size tri-
angles. This is expected due to higher uncertainty in the estimates coming from smaller sample
size.

To evaluate the bias in the resulting reserve predictions, forecasts of outstanding claims using
our model are compared with the true forecasts as well as forecasts from a multivariate chain
ladder model. The true forecasts are calculated as the expected value of outstanding claims using
true parameter values. The multivariate chain ladder model used is the model in Prohl & Schmidt
(2005). The results are shown in Table 1.

It can be observed from Table 1 that the true forecasts fall within the 90% confidence intervals of
the balanced multivariate Tweedie model forecasts. The forecasts from our model are also closer to
the true forecasts than those from the multivariate chain ladder model. However, it is worth noting
that the simulated data were generated from the multivariate Tweedie model in this illustration.

We further assess bias in the resulting dependence structure by comparing the true cellwise
Pearson correlation coefficients for the outstanding claims and the cellwise Pearson correlation
coefficients calculated using the parameter estimates. Residual ratios, defined as ratios of estimated
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Table 1. Comparison of outstanding claims forecasts

Balanced multivariate Tweedie Multivariate chain ladder
LoB Mean Standard error 90% ClI True forecasts Mean Standard error
1 159.38 19.74 (129.64;193.88) 157.56 138.97 16.55
. 59898 I 7615 I (48499,73418) I 56392 R 53131 I 5217 S
Total 75837 8288 (633.14;904.17) 72148 67028 6131

Table 2. Residual ratios of estimated Pearson correlation coefficients to true Pearson correlation coeffi-

cients
Development year
1 2 3 4 5 6 7 8 9 10
1
2 1.07
e L e )
> 4 1.02 1.04 1.04
é 5 100 098 099  1.00
E 6 1.03 1.02 1.01 1.02 1.03
9 1.04 1.03 1.04 1.05 1.05 1.03 1.05 1.05

100 099 098 099 100 100 098 100  1.00

=
o :

Pearson correlation coefficients to true Pearson correlation coefficients, are provided in Table 2.
The ratios are close to 1, indicating that the cellwise dependence in the data is well captured.

We acknowledge that the use of the two-step Bayesian inference does not provide the full pic-
ture due to the dependence between the estimated parameters and the reserve being a non-linear
function in terms of these parameters. However, this calibration approach was selected due to a
number of advantages as mentioned in section 3. These include overcoming the difficulties in deal-
ing with Tweedie densities which are not in tractable form and enhancing computational speed.
The above analyses indicate that

— the calibration method can capture the dependence structure well;
- the resulting reserve predictions show no apparent bias and they are in line with the chain
ladder predictions.

Therefore, even though we may not get the full picture, the above results give us confidence that
this would not have a material impact on the performance of the calibration.

4.2 A comparison of performances of multivariate Tweedie models on unbalanced data

A natural question arises regarding the performance of the multivariate Tweedie approach for
unbalanced data compared to the original multivariate Tweedie approach introduced in Avanzi et
al. (2016b). To be able to assess their performances more accurately, this comparison is performed
on a simulated data set whose underlying model is known. True common shock contributions are
also known, and these serve as the benchmark for the comparison.

To not put any particular framework at a disadvantage, the synthetic data used for this illustra-
tion are simulated from a mixture of models. We deliberately select a (extreme) data set to which
neither of the frameworks is properly adapted. In particular, two loss triangles of 10 development
periods and 10 accident periods are generated such that the dependence is strong in the first four

https://doi.org/10.1017/51748499520000196 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499520000196

188 Benjamin Avanzi et al.

Development year
1 2 3 4 5 6 7 8 9 10
1 0.947 0929 0985 0958 4398 4216 4320 459 4.163 3.783
2 0.932 0917 0975 0949 4413 4227 4327 4622 4174
3 0.995 0.965 1.018 0987 4.802 4598 4710 5.028
g 4 0.974 0.949 1.004 0974 4,649 4452 4.561
& 5 0.890 0.881 0.944 0.919 4.490 4.289
% 6 0.924 0.908 0.969 0.942 4.588
< 7 0.895 0.886 0.948 0.923
8 0.953 0.932 0.989
9 0.980 0.953
10 0.997
1.000
Development year
| 2 3 4 5 6 7] 8 9 10
1
2
3
g 4
£
8
9
10

Figure 3. Heat maps of ratios of fitted common shock proportions to true proportions for triangle 1 (top: Tweedie framework
modified for unbalanced data, bottom: original common shock Tweedie framework).

development periods, and not as strong in the last six periods. The common shock components

are generated with column-specific mean parameters o = cj,/ vj(l)vj(z) with ¢;=0.5for 1 <j <4,
and ¢j = 0.02 for 5 < j < 10. The second business line is also simulated to be longer-tailed than the
first. Similar to the previous illustration, each observation in the two triangles is drawn from the
multivariate Tweedie model for unbalanced data represented in section 3. These observations are
assumed to have been standardised for accident year effect for simplicity. The two loss triangles
are presented in Tables B.1 and B.2 in Appendix B.

Heat maps of ratios of fitted common shock proportions to true proportions are given in
Figure 3 for triangle 1. Fitted values are calculated using posterior median of parameters, and
true values are calculated using true parameter values. The modified Tweedie model provides a
very good fit for the first four development periods. The goodness of fit is considerably less sat-
isfactory in the later development periods when the true common shock proportion drops. The
discrepancy is more significant for the first business line which has shorter tail development. The
original common shock Tweedie model provides a poor goodness of fit overall, especially in early
development periods. The proportions of common shock are underestimated in early develop-
ment periods and overestimated in later periods. Even though not reported here, similar results
are also observed in heat maps of ratios of fitted common shock proportions to true proportions
for triangle 2.

https://doi.org/10.1017/51748499520000196 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499520000196

Annals of Actuarial Science 189

Overall the modified Tweedie framework does not fully eliminate the issues of unbalanced
data across development periods. However, there is a reduction. The fitting is quite good in early
development periods but is less satisfactory in later periods. The use of the geometric average
of column factors across multiple triangles may contribute to this performance as the geometric
average may not be close to some individual column factors if the development patterns are too
different. However, it is worth emphasising that the example used has quite an extreme varia-
tion in common shock proportions across development periods, and one should not expect such
radical variation in practice. In addition, the poor performance also arises from the discrepancy
between the modified model with a constant scaling term c and the true model generating the
data (with column-specific scaling term ;). With this specification, it is not surprising that the
earlier (large) development periods dominate the estimation of c. We do not expect good results
because of model misspecification, but we can arrive at two main conclusions: the modified frame-
work outperforms the original framework; and the common shock proportions are mis-estimated
in the higher development periods, where amounts are small and do not contribute significantly
to total liability. It is also worth noting that the poor estimation of common shock proportion
does not affect mean forecasts, only dependency between the triangles, and then only where the
magnitudes of the forecasts are small.

5. Illustration with Real Data

The data used for illustration are a set of two triangles from the Bodily Injury line (1) and the
Accident Benefit (excluding Disability Income) line (2) from a Canadian insurance company pro-
vided in Coté et al. (2016). These two triangles have also been used for illustrations in sections 1
and 2 and their details can be found therein.

5.1 Preliminary analysis

A preliminary analysis is performed to assess the suitability of this data set. This includes the
assessment of the tails, as well as the dependence structure.

5.1.1 Analysis of the tails

From the plots of loss ratios provided earlier in Figure 1, it can be observed that the Bodily Injury
line has longer claims development than the Accident Benefits line. Tail lengths of the two business
lines are also assessed using age-to-age development factors

i=1
fj(") = ’F— (31)

Results are given in Table 3. It can be observed that the development factors of the Bodily Injury
dominate those of the Accident Benefits line for all development periods, except in the final year.
However, this blip may be a false signal due to the truncation of data at the last development
period and only one single observation is made in this final year. Hence, the Bodily Injury line is
convincingly longer-tailed than the Accident Benefits line.

5.1.2 Explanatory dependence analysis
A heuristic dependence analysis is performed by fitting to each line a Tweedie Generalised Linear
Model (GLM) with a log-link and the chain ladder mean structure

a\" + b (32)
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Table 3. Claims development factors for each development period

j 1 2 3 4 5 6 7 8 9

fj(l) 8.1617 1.8968 1.4521 1.2652 1.1249 1.0624 1.0225 1.0254 1.0092

fj(z) 2.5844 1.3584 1.1708 1.1140 1.0481 1.0305 1.0137 1.0057 1.0118

Table 4. Correlation coefficients between cellwise GLM residuals and their
corresponding p-values

Pearson Spearman Kendall

0.3659 (0.0060) 0.3480 (0.0096) 0.2525 (0.0065)

Table 5. Correlation coefficients between cellwise GLM residuals and their
corresponding p-values after removing fixed calendar year effects

Pearson Spearman Kendall

0.3416 (0.0107) 0.3250 (0.0159) 0.2202 (0.0176)

This is to remove fixed accident period and development period effects. Correlations between
GLM Pearson residuals of the two lines are given in Table 4. The dependence between residuals is
strong and significant after allowing for fixed accident period and development period effects.

To examine whether this strong correlation comes from calendar year effects that can impact
both lines simultaneously, we also perform another GLM analysis with an additional fixed
calendar year effect in the mean structure

a" + b + (" (33)

Correlations between GLM Pearson residuals of the two lines are then given in Table 5. The
correlation coefficients have been reduced, however, not very significantly.

Heat maps of residual ratios are given in Figure C.1 in Appendix C. Residual ratios are defined
as ratios of observed values to GLM fitted values with the mean structure specified in equation
(29). There are some common cellwise patterns that are quite obvious from the heat maps, for
example, low payments in development year 7 compensated by accelerated payments in years 8-9
in the first accident year, payment dips in accident year 4 and development year 2. These show
that this data set is suitable for illustration of the model.

Results from the preliminary analysis show that this data set is suitable to be used for
illustration of the model.

5.2 Estimation and goodness-of-fit assessment

Bayesian inference is used for estimation. The marginal fitting is first performed. 400,000 simula-
tions are run, and 300,000 simulations are discarded as the burn-in period. The sample chain is
thinned by accepting every 5 iteration to reduce the serial dependence between iterations. The
multivariate fitting is then performed with 90,000 simulations, and the first 30,000 are discarded
as the burn-in period. The chain is then thinned by selecting every 3™ iteration. Summary statis-
tics are then computed on these posterior samples. The results are given in Tables C.3 and C.4 of
Appendix C.

Marginal and multivariate goodness of fits are assessed. Marginal goodness of fit is assessed
using QQ plots of residuals in Figure 4. The plot shows that the fit is quite off in the right tail of
the Bodily Injury line and slightly off in both tails of the Accident Benefit line. The goodness of fit
in other regions, however, is reasonable. This may be a result of the restriction of using the same
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Figure 4. QQ plots of residuals from common shock Tweedie model (p = 1.829).
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Figure 5. QQ plots of residuals from common shock normal model.

power parameter p for both lines. However, the multivariate Tweedie framework still provides
marginal flexibility with flexible choices of p. For comparison, similar QQ plots are performed
for a common shock normal model in Figure 5. It can be observed that the Tweedie marginals
provide a much better fit than the normal marginals (with power parameter p = 0).

Multivariate goodness of fit is assessed by comparing the empirical bivariate marginals of real
data observations and of back-fitted values. These are obtained using the empirical cumulative
distribution functions of claim observations from each triangle. Because of the use of a Bayesian
inference, various sets of back-fitted data can be generated. A path is randomly chosen for illus-
tration. Scatter plots of these empirical bivariate marginals are presented in Figure 6. It can be
observed that the model can capture the general positive dependence structure in the data.
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Figure 6. Plots of empirical bivariate marginals for observed values and back-fitted values.

To look for any trace of dependence not captured by the model, we examine the residuals from
model fitting. These residuals are obtained as the differences between observations and fitted val-
ues, where the latter are calculated using posterior estimates. The Pearson correlation coefficient of
these residuals reduces to 0.1204 (p-value 0.3812). This is much weaker than the correlation coeffi-
cient 0f 0.3416 of GLM Pearson residuals in section 5.1.2 and is also insignificant. The insignificant
correlation indicates that our model has explained away most of the dependence in the data.

5.3 Common shock proportions

Predictive distributions of outstanding claim observations in the lower triangles can be calculated
using predictive Bayesian inference. Using parameter estimates, the contributions of common
shock within each cell in the two triangles are calculated and given in Tables 6 and 7. It can be
observed that there is only a very mild variation in the common shock proportions within and
across triangles. We can relate this result to the challenges coming from applying a common shock
model to loss reserving data which has an unbalanced nature discussed in section 2. It shows that
the proposed approach has provided a balance of common shock proportions across all loss cells
within and across loss triangles.

5.4 Outstanding claims forecast

To obtain the distributions of the outstanding claims, posterior samples of parameters from the
Bayesian inference are used to project claims in lower triangles. This projection utilises the spec-
ification in equations (7), (16) and (18). This gives a set of samples of future claims in the lower
triangles. Using this set, summary statistics of the total outstanding claims distributions are given
in Table 8 and kernel densities of outstanding claims are given in Figure 7. Summary statistics
provided include the posterior mean, standard deviation, VaRy59, and VaRgsy, of the distribution
of total outstanding claims for each line, as well as for both lines.

The empirical bivariate marginals of total reserves are shown in Figure 8. For illustration pur-
pose, we show the scatter plot of total reserves from 1,000 posterior samples. The plot shows
a mild positive dependence structure in the total outstanding claims across two lines. This is
accompanied by a Pearson correlation of 0.0855 (p-value <2.2e-16). There is no clear evidence
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Table 6. Proportions of common shock to the expected total observations calculated using parameter
estimates - Bodily Injury

Development year

1 2 3 4 5 6 7 8 9 10
1 48%  42%  41%  40%  3.9%  3.9%  40%  41%  36%  4.2%
s s s

L3 4% 43%  42% 40% 3.9% 40% 41% 42% 37%  42%

S 4 51%  45% 43% 42% 41%  42%  42%  43%  38%  44%

R DD

)1 S S S S S
7 4T%  41% 40% 3.8% 3.7% 3.8% 39% 40%  35%  4.0%
8  50% 43% 42% 41% 40% 41% 41% 42% 3.7%  4.3%
s e i e
e o e s S e S

Table 7. Proportions of common shock to the expected total observations calculated using parameter
estimates - Accident Benefits

Development year

1 2 3 4 5 6 7 8 9 10
1 44% 50% 51%  53% 54%  54%  53%  52%  59%  5.1%
o N
R S T S e
g\ 4 4.2% 4.7% 4.9% 5.1% 5.2% 5.1% 5.0% 4.9% 5.6% 4.8%
§ 5 44% 50% 51% 53% 54% 54% 53% 52% 59%  51%
S 6  41% 47% 48% 50% 51% 51% 50% 49% 55%  4.8%
7 41%  47%  48% 50% 51%  5.0%  4.9% 48% 55%  4.7%
8 42%  48%  50% 51% 53%  52%  51% 50% 57%  4.9%
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Table 8. Summary statistics of outstanding claims distributions

Bodily Injury Accident Benefits Both lines
Mean 165,185.92 108,465.81 273,651.73
SD 22,720.88 18,554.65 30,538.83

| \/aR75% [ 179’05718 o 120,10043 I 293’06156
| VaR%% s 205,75220 S 141,42624 S 326)17722

of a concentration in the tail regions of the dependence. There can be diversification across claims
within a single loss triangle. Hence, the dependence on the aggregate reserves from each line is
mild and tail dependence may not be apparent.

The two business lines do not have a comonotonic dependence structure, and this allows the
insurer to gain some diversification benefits when they set their risk margins. Using the spec-
ification of a risk margin under APRA’s Prudential Standards GPS 340, we have the following
definition of risk margin and diversification benefit
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Table 9. Risk margin and diversification benefits statistics

Bodily injury  Accident benefits  Both lines  Diversification benefits (%)

Risk marginzse, ~ 13,871.26 11,634.61 19,409.83 23.9
Risk margingss,  40,566.28 32,960.43 52,525.49 28.6

= Bodily Injury
8 . = - Accient Benefits
o 1\ -+ Total
o
o
>
2
o w0
o9
g
<
o
o
+ ® e .
54 = S vats N—— e
= T T T T T

1e+05 2e+05 3e+05 4e+05 5e+05
Total unpaid losses

Figure 7. Kernel densities of predictive distributions of total outstanding claims in each line of business and in the aggregate
portfolio.

Risk margin, ¢ [Y] = max {VaRX%[Y] — E[Y]; %SD[Y]} (34)

Diversification benefit

Risk margin, ¢ [Y7] + Risk margin, ¢ [Y>]) — Risk margin, o [Y] + Y
| gin, o[ Y1] giny o [Y2]) giny oY1 + Y2] «100%  (35)

N Risk margin, o [Y7] 4+ Risk margin, o [Y>]

Risk marginyse, and Risk margingse, as well as associated diversification benefits, are provided in
Table 9. It can then be observed that diversification benefits can be gained as a result of allowing
for (non-comonotonic) dependence across business lines.

6. Conclusion

Common shock approaches can provide many benefits in the modelling of outstanding claims.
However, they often require very careful parametrisation. This arises from the unbalanced nature
of loss reserving data. It is often desirable to use scaling factors to adjust the common shock effects
so that they can contribute proportionately to the total observations over the entire range of
the triangles. However, an excessive use of scaling factors can result in overparametrisation. In
some cases, such as the common shock Tweedie framework developed in Avanzi et al. (2016b),
it is also desirable to select scaling factors such that distributional tractability is preserved. These
requirements place conflicting constraints on the specification of scaling factors in common shock
models.
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Total reserves

Accident Benefits

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Bodily Injury

Figure 8. Plot of empirical bivariate marginals of total reserves (using 1,000 posterior samples).

In this paper, we propose an approach that compromises the various constraints mentioned
above. This approach involves using careful and parsimonious parameterisation to develop a
common shock Tweedie framework modified for unbalanced data. Additional modifications for
negative claims are also undertaken under this framework. Illustrations using simulated and with
real data are presented. These illustrations show that while the proposed approach cannot fully
eliminate the issue of unbalanced common shock proportions, the improvement over the original
framework in Avanzi et al. (2016b) is quite substantial.

We examined a common shock Tweedie approach for cellwise dependence in this paper. Future
research could consider applications on other structures of dependence (such as calendar period
dependence). This paper raises some potential issues of common shock models when they are
applied to reserving data that have an unbalanced nature. These issues, however, might appear
whenever common shock models are applied to heterogeneous data. These can include mortal-
ity data for different group ages, or capital modelling for different types of risks. The proposed
solution could be extended to solve similar problems in other contexts. While this solution can
reduce the problems of unbalanced data quite substantially, a complete balance in common shock
proportions cannot be achieved. Future research could consider a better solution to this problem.
Other multivariate models with explicit dependence structures such as mixture models could also
be considered as they might be more applicable to unbalanced data.
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Appendix A. Simulated Data Set 1

Table A.1. Simulated triangle 1 (data set 1)

Development year
1 2 3 4 5 6 7 8 9 10

1 8557 4318 2058 1340 440 234 18 055 028 015
s e e
A R
2 4 678 3694 1601 1123 554 468 140
é e e
S o es ms s am e
7 7880 3117 1696 827
8 9032 3619 1356
0
555555550
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Table A.2. Simulated triangle 2 (data set 1)

Development year
1 2 3 4 5 6 7 8 9 10
1 2412 3893 4570 4319 1604 870 478 183 145 166
2 2104 4005 3583 1993 1527 1121 684 281 112
. 3 3% 3/SH 4073 472 201 1036 34 38
S 4 2634 4248 5727 2972 2403 1211 186
g 5 2946 33.18 4463 3951 2597 11.60
8 6 2367 4870 4966 2012 2134
7 2910 3651 5052  43.98 o
et
et
10 31.04
Table A.3. Posterior statistics of parameters (data set 1)
Truevalue Median SD 90% Cl Truevalue Median SD 90% Cl
oY 1.0300 0.8950 0.0756 (0.8250;1.0610) »? 11900 1.0620 0.1285 (0.8850;1.3050)
11900 12820 0.1523 (L0530;15560) 1 11700 12300 0.1693 (0.9950; 15440)
o 11200 1.0250 0.1190 (0.8590;1.2460) x'? 11500 1.1020 0.1507 (0.8860;1.3810)
a9 11s00 i.béo'o” 0.1200 (08790;12700) 4 11500 13190 0.1635 (LO710;16040)
;ygf 11600 11740 0.1468 (0.9650; 14460) ’ng)' 12000 11390 0.1421 (0.9340;13970)
% 11200 10010 0.1158 ”(0 8530; 1. 2270) 42 14000 'i.'44éd 'b'.iéiz” (1.1690; 1.7950)
'"ng) 11400 1.0380 01219(0 8690; 12700)“ : ng2> » “14500“ 15000 0.2095 (1189018750) :
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v 25000 22920 0.2783 (1.8700; 2.7830) v 150000 13.9600 1.6821 (11.4140; 16.8640)
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W 06000 07290 0.1453 (0.5320;1.0040) P  3.0000 ‘2‘.“757‘5‘5‘.47‘58 (20370;3.5830)
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y@W 055000 0.5530 0.0649 (04560 06680) y@ 07000 0.6220 0.0936 (0.4880;0.7930)
p 13000 13640 0.0507 (1.2850;14510) &0 00100 00120 0.0013 (0.0100;0.0140)
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Figure A.1. MCMC sample paths of some parameters.
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Appendix B. Simulated Data Set 2

Table B.1. Simulated triangle 1 (data set 2)
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Table B.2. Simulated triangle 2 (data set 2)
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Appendix C. Real Data Set
This data set is drawn from Coté et al. (2016).

Table C.1. Bodily Injury line (cumulative claims)

Premium Development year
1 2 3 4 5 6 7 8 9 10

3,488 14,559 27,249 37,979 49,561 55,957 58,406 60,862 63,280 63,86

1,169

s> 1186 1issr
111,176
B
126,442
e w

Accident year
Wi i~ A WIN R

=
=

Table C.2. Accident Benefits (cumulative claims)

Premium Development year
1 2 3 4 5 6 7 8 9 10

116,491 13,714 24,996 31253 38,352 44,185 46,258 47,019 47,894 48,334 48,902
111,467 6883 16,525 24,796 29,263 32,619 33,383 34,815 35569 35612
107,241 7933 22,067 32,801 38,028 44,274 44,948 46,507 46,665
o e e e o
D e S
111,487 9697 28,878 41,678 S
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R SR e
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Development year
1 2 3 4 5 6
1 | 1.000 0988 0938 1.028 0987 0.963
2 | 1132 1070 0.906 0.941 1..231 0.997
3 | 1131 1035 1172 0.767 1.106 1.027
';i 4 | 1.165 0.863 0.959 0.992 0.932 1.169
o 5 | 1.254 1079 1201 1.037  0.664 0.842
%’ 6 | 0983 0883 0994 1.111 1.009
< 7 | 084 099% 0917 1117
8 | 0.706 1.087 0.953
9 | 0.904 1.013
10 | 1.000
Development year
1 2 3 4 5 6 10
1 | 1.000 0906 0.879 1.193 1.187 1.006 1.000
2 | 1157 0994 1112 0.876 0.984
3 [ 1122 0914 1105 0968 | 1
g 4 | 0892 0.784 1.029 1.287
2 5 | 1161 1.032 0925 0.785
?':: 6 | 0962 1058 1130 0.864 0.821
< 7 | 088 1109 0931 1.045
8 | 0.974 1106 0.864
9 | 0.945 1.040
10 | 1.000

Figure C.1. Heat maps of ratios of observed values to GLM fitted values (top: Bodily Injury line, bottom: Accident Benefits).
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Table C.3. Posterior statistics of parameters from marginal estimation
Median ) 90% Cl Median ) 90% Cl
sV 0.6390 0.0875  (0.5120;0.7970) n? 0.7770 0.1119  (0.6230;0.9830)
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Table C.4. Posterior statistics of parameters from multivari-

ate estimation

Median SD 90% CI
G 1.0080 4.6868 (0.0570; 17.2280)
B 3.0910 0.9413 (1.8920; 5.0220)
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