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Abstract

Given an argumentation framework AF, we introduce a mapping function that constructs

a disjunctive logic program P, such that the preferred extensions of AF correspond to the

stable models of P, after intersecting each stable model with the relevant atoms. The given

mapping function is of polynomial size w.r.t. AF.

In particular, we identify that there is a direct relationship between the minimal models

of a propositional formula and the preferred extensions of an argumentation framework by

working on representing the defeated arguments. Then we show how to infer the preferred

extensions of an argumentation framework by using UNSAT algorithms and disjunctive stable

model solvers. The relevance of this result is that we define a direct relationship between one

of the most satisfactory argumentation semantics and one of the most successful approach of

nonmonotonic reasoning i.e., logic programming with the stable model semantics.

KEYWORDS: preferred semantics, abstract argumentation semantics, stable model semantics,

minimal models

1 Introduction

Dung’s approach, presented in Dung (1995), is a unifying framework which has

played an influential role on argumentation research and artificial intelligence (AI).

In fact, Dung’s approach has influenced subsequent proposals for argumentation

systems, e.g., (Bench-Capon 2002). Besides, Dung’s approach is mainly relevant in

fields where conflict management plays a central role. For instance, Dung showed

that his theory naturally captures the solutions of the theory of n-person games and

the well-known stable marriage problem.

� This is a revised and improved version of the paper Inferring preferred extensions by minimal models
which appeared in Guillermo R. Simari and Paolo Torroni (Eds), proceedings of the workshop
Argumentation and Non-Monotonic Reasoning (LPNMR-07 Workshop).
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Dung defined four argumentation semantics: stable semantics, preferred semantics,

grounded semantics, and complete semantics. The central notion of these semantics is

the acceptability of the arguments. The main argumentation semantics for collective

acceptability are the grounded semantics and the preferred semantics (Prakken and

Vreeswijk 2002; ASPIC:Project 2005). The first one represents a skeptical approach

and the second one represents a credulous approach.

Dung showed that argumentation can be viewed as logic programming with

negation as failure. Specially, he showed that the grounded semantics can be

characterized by the well-founded semantics (Gelder et al. 1991), and the stable

semantics by the stable model semantics (Gelfond and Lifschitz 1991). This result

is of great importance because it introduces a general method for generating

metainterpreters for argumentation systems (Dung 1995). Following this issue, we

will prove that it is possible to characterize the preferred semantics based on the

minimal models of a propositional formula (Theorem 1). We will also show that the

preferred semantics can be characterized by the stable models of a positive disjunctive

logic program (Theorem 3). The importance of this characterization is that we are

defining a direct relationship between one of the most satisfactory argumentation

semantics and may be the most successful approach of nonmonotonic reasoning of

the last two decades i.e., logic programming with the stable model semantics.

As a natural consequence of our result, we present two easy-to-use forms for

inferring the preferred extensions of an argumentation framework (AF ). The first

one is based on a mapping function which is quadratic size w.r.t. the number of

arguments of AF and UNSAT algorithms. The second one is also based on a

mapping function which is quadratic size w.r.t. the number of arguments of AF and

disjunctive stable model solvers.

It is worth mentioning that the decision problem of the preferred semantics is

hard, since it is co-NP-Complete (Dunne and Bench-Capon 2004). In fact, we can

find different strategies for computing the preferred semantics (Cayrol et al. 2003;

Besnard and Doutre 2004; Dung et al. 2006; Dung et al. 2007). However, we can find

really few implementations of them (ASPIC:Project 2006; Gaertner and Toni 2007).

One of the relevant points of our result is that we can take advance of efficient

disjunctive stable model solvers, e.g., the DLV System (DLV 1996), for inferring

the preferred semantics. The DLV System is a successful stable model solver that

includes deductive database optimization techniques, and nonmonotonic reasoning

optimization techniques in order to improve its performance (Leone et al. 2002;

Gebser et al. 2007). In fact, we can implement the preferred semantics inside object-

oriented programs based on our characterization and the DLV JAVA Wrapper

(Ricca 2003).

The rest of the paper is divided as follows: In Section 2, we present some basic

concepts of logic programs and argumentation theory. In Section 3, we present a

characterization of the preferred semantics by minimal models. In Section 4, we

present how to compute the preferred semantics by using the minimal models of

a positive disjunctive logic program. Finally in the last section, we present our

conclusions.
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2 Background

In this section, we present the syntax of a valid logic program, the definition of the

stable model semantics, and the definition of the preferred semantics. We will use

basic well-known definitions in complexity theory, such as that of co-NP-complete

problem.

2.1 Logic programs: syntax

The language of a propositional logic has an alphabet consisting of

(i) A signatureL that is a finite set of elements that we call atoms, denoted usually

as p0, p1, . . . ;

(ii) connectives : ∨,∧,←,¬,⊥,�;

(iii) auxiliary symbols : ( , ),

where ∨,∧,← are 2-place connectives, ¬ is 1-place connective, and ⊥,� are 0-place

connectives or constant symbols. A literal is an atom, a, or the negation of an atom

¬a. Given a set of atoms {a1, . . . , an}, we write ¬{a1, . . . , an} to denote the set of

literals {¬a1, . . . ,¬an}. Formulae are constructed as usual in logic. A theory T is a

finite set of formulae. ByLT , we denote the signature of T, namely the set of atoms

that occur in T.

A general clause, C, is denoted by a1 ∨ · · · ∨ am ← l1, . . . , ln,
1 where m � 0, n � 0,

m + n > 0, each ai is an atom, and each li is a literal. When n = 0 and m > 0,

the clause is an abbreviation of a1 ∨ · · · ∨ am ← �. When m = 0, the clause is an

abbreviation of ⊥ ← l1, . . . , ln. Clauses of this form are called constraints (the rest,

nonconstraint clauses). A general program, P , is a finite set of general clauses. Given

a universe U, we define the complement of a set S ⊆ U as eS = U\S .

We point out that whenever we consider logic programs, our negation ¬ corre-

sponds to the default negation not used in Logic Programming. Also, it is convenient

to remark that in this paper we are not at all using the so-called strong negation

used in ASP.

2.2 Stable model semantics

First, to define the stable model semantics, let us define some relevant concepts.

Definition 1

Let T be a theory, an interpretation I is a mapping from LT to {0, 1} meeting the

following conditions:

(1) I(a ∧ b) = min{I(a), I(b)};
(2) I(a ∨ b) = max{I(a), I(b)};
(3) I(a← b) = 0 iff I(b) = 1 and I(a) = 0;

1 l1, . . . , ln represents the formula l1 ∧ · · · ∧ ln.
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(4) I(¬a) = 1− I(a);

(5) I(⊥) = 0;

(6) I(�) = 1.

It is standard to provide interpretations only in terms of a mapping from LT to

{0, 1}. Moreover, it is easy to prove that this mapping is unique by virtue of the

definition by recursion (van Dalen 1994).

An interpretation I is called a model of P iff for each clause c ∈ P , I(c) = 1. A

theory is consistent if it admits a model, otherwise it is called inconsistent. Given a

theory T and a formula α, we say that α is a logical consequence of T , denoted by

T |= α, if for every model I of T it holds that I(α) = 1. It is a well-known result that

T |= α iff T ∪ {¬α} is inconsistent. It is possible to identify an interpretation with a

subset of a given signature. For any interpretation, the corresponding subset of the

signature is the set of all atoms that are true w.r.t. the interpretation. Conversely,

given an arbitrary subset of the signature, there is a corresponding interpretation

defined by specifying that the mapping assigned to an atom in the subset is equal

to 1 and otherwise to 0. We use this view of interpretations freely in the rest of the

paper.

We say that a model I of a theory T is a minimal model if there does not exist a

model I ′ of T different from I, such that I ′ ⊂ I . Maximal models are defined in the

analogous form.

By using logic programming with stable model semantics, it is possible to describe

a computational problem as a logic program whose stable models correspond to

the solutions of the given problem. The following definition of a stable model for

general programs was presented in Gelfond and Lifschitz (1991).

Let P be any general program. For any set S ⊆ LP , let PS be the general program

obtained from P by deleting

(i) each rule that has a formula ¬l in its body with l ∈ S , and then

(ii) all formulae of the form ¬l in the bodies of the remaining rules.

Clearly, PS does not contain ¬. Hence S is a stable model of P iff S is a minimal

model of PS .

In order to illustrate this definition, let us consider the following example.

Example 1

Let S = {b} and P be the following logic program:

b← ¬a. b← �.

c← ¬b. c← a.

We can see that PS is

b← �. c← a.

Notice that PS has three models: {b}, {b, c} and {a, b, c}. Since the minimal model

amongst these models is {b}, we can say that S is a stable model of P .

2.3 Argumentation theory

Now, we define some basic concepts of Dung’s argumentation approach. The first

one is that of an argumentation framework. An argumentation framework captures
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Fig. 1. Graph representation of the argumentation framework AF = 〈{a, b, c}, {(a, b), (b, c)}〉.

the relationships between the arguments. (All the definitions of this subsection were

taken from the seminal paper (Dung 1995).)

Definition 2

An argumentation framework is a pair AF = 〈AR, attacks〉, where AR is a finite set

of arguments, and attacks is a binary relation on AR, i.e., attacks ⊆ AR × AR.

For two arguments a and b, we say that a attacks b (or b is attacked by a) if

attacks(a, b) holds. Notice that the relation attacks does not yet tell us with which

arguments a dispute can be won; it only tells us the relation of two conflicting

arguments.

It is worth mentioning that any argumentation framework can be regarded as

a directed graph. For instance, if AF = 〈{a, b, c}, {(a, b), (b, c)}〉, then AF can be

represented as shown in Figure 1.

Definition 3

A set S of arguments is said to be conflict-free if there are no arguments a, b in S

such that a attacks b.

A central notion of Dung’s framework is acceptability. It captures how an

argument that cannot defend itself, can be protected by a set of arguments.

Definition 4

(1) An argument a ∈ AR is acceptable w.r.t. a set S of arguments iff for each

argument b ∈ AR: If b attacks a, then b is attacked by an argument in S . (2) A

conflict-free set of arguments S is admissible iff each argument in S is acceptable

w.r.t. S .

Let us consider the argumentation framework AF of Figure 1. We can see that

AF has three admissible sets: {}, {a}, and {a, c}. Intuitively, an admissible set is

a coherent point of view. Since an argumentation framework could have several

coherent point of views, one can take the maximum admissible sets in order to get

maximum coherent point of views of an argumentation framework. This idea is

captured by Dung’s framework with the concept of preferred extension.

Definition 5

A preferred extension of an argumentation framework AF is a maximal (w.r.t.

inclusion) admissible set of AF .

Since an argumentation framework could have more than one preferred extension,

the preferred semantics is called credulous. The argumentation framework of

Figure 1 has just one preferred extension which is {a, c}.

Remark 1

By definition, it is clear that any argument which belongs to a preferred extension E

is acceptable w.r.t. E. Hence, we will say that any argument which does not belong

to some preferred extension is a defeated argument.
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3 Preferred extensions and UNSAT problem

In this section, we will define a mapping function that constructs a propositional

formula, such that its minimal models characterize the preferred extensions of

an argumentation framework. This characterization will provide a method for

computing preferred extensions based on Model Checking and Unsatisfiability

(UNSAT).

In order to characterize the preferred semantics in terms of minimal models, we

will introduce some concepts.

Definition 6

Let T be a theory with signature L. We say that L′ is a copy-signature of L iff

• L ∩L′ = ∅,
• the cardinality of L′ is the same to L and

• there is a bijective function f from L to L′.

It is well known that there exists a bijective function from one set to another if

both sets have the same cardinality. Now one can establish an important relationship

between maximal and minimal models.

Proposition 1

Let T be a theory with signature LT . Let L′ be a copy-signature of LT . By g(T )

we denote the theory obtained from T by replacing every occurrence of an atom x

in T by ¬f(x). Then M is a maximal model of T iff f(LT\M) is a minimal model

of g(T ).

Proof

See appendix. �

Our representations of an argumentation framework use the predicate d(x), where

the intended meaning of d(x) is: “the argument x is defeated.” By considering the

predicate d(x), we will define a mapping function from an argumentation framework

to a propositional formula. This propositional formula captures two basic conditions

which make an argument to be defeated.

Definition 7

Let AF = 〈AR, attacks〉 be an argumentation framework, then α(AF) is defined as

follows:

α(AF) =
∧

a∈AR
((

∧

b:(b,a)∈attacks

d(a)← ¬d(b)) ∧ (
∧

b:(b,a)∈attacks

d(a)←
∧

c:(c,b)∈attacks

d(c))).

(1) The first condition of α(AF) (
∧

b:(b,a)∈attacks d(a) ← ¬d(b)) suggests that the

argument a is defeated when any one of its adversaries is not defeated.

(2) The second condition of α(AF) (
∧

b:(b,a)∈attacks d(a)←
∧

c:(c,b)∈attacks d(c)) suggests

that the argument a is defeated when all the arguments that defend2 a are

defeated.

2 We say that c defends a if b attacks a and c attacks b.
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Since α(AF) captures conditions that make an argument to be defeated, it is

quite obvious that any argument that satisfies these conditions could not belong to

an admissible set. Therefore these arguments also could not belong to a preferred

extension.

Notice that α(AF) is a finite grounded formula, this means that it does not contain

predicates with variables; hence, α(AF) is essentially a propositional formula (just

considering the atoms like d(a) as d a) of propositional logic. In order to illustrate

the propositional formula α(AF), let us consider the following example.

Example 2

Let AF = 〈AR, attacks〉 be the argumentation framework of Figure 1. We can see

that α(AF) is

(d(b)← ¬d(a)) ∧ (d(b)← �) ∧ (d(c)← ¬d(b)) ∧ (d(c)← d(a)).

Observe that α(AF) has no propositional clauses w.r.t. argument a. This is essentially

because α(AF) is capturing the arguments which could be defeated and the argument

a will be always an acceptable argument.

It is worth mentioning that given an argumentation framework AF , α(AF) will

have at most 2n2 propositional clauses such that n is the number of arguments in

AR and the maximum length3 of each propositional clause is n + 1. Hence, we can

say that α(AF) is quadratic size w.r.t. the number of arguments of AF .

Essentially α(AF) is a propositional representation of the argumentation frame-

work AF . However, α(AF) has the property that its minimal models characterize

AF ’s preferred extensions. In order to formalize this property, let us consider the

following proposition which was proved by Besnard and Doutre in 2004.

Proposition 2

(Besnard and Doutre 2004). Let AF = 〈AR, attacks〉 be an argumentation framework.

Let β(AF) be the formula
∧

a∈AR
((a→

∧

b:(b,a)∈attacks
¬b) ∧ (a→

∧

b:(b,a)∈attacks
(

∨

c:(c,b)∈attacks
c))),

then, a set S ⊆ AR is a preferred extension iff S is a maximal model of the formula

β(AF).

In contrast with α(AF) which captures conditions that make an argument to be

defeated, β(AF) captures conditions that make an argument acceptable. However,

we will prove that when the mapping f(x) of the theory g(β(AF)) corresponds to

d(x) such that x ∈ AF , α(AF) is logically equivalent to g(β(AF)) (see the proof

of Theorem 1). For instance, let us consider the argumentation framework AF of

Example 2. The formula β(AF) is

(¬a← b) ∧ (⊥ ← b) ∧ (¬b← c) ∧ (a← c).

3 The length of our propositional clauses C is given by the number of atoms in the head of C plus the
number of literals in the body of C
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If we replace each atom x by the expression ¬d(x), we get

(¬¬d(a)← ¬d(b)) ∧ (⊥ ← ¬d(b)) ∧ (¬¬d(b)← ¬d(c)) ∧ (¬d(a)← ¬d(c)).

Now, if we apply transposition to each implication, we obtain

(d(b)← ¬d(a)) ∧ (d(b)← �) ∧ (d(c)← ¬d(b)) ∧ (d(c)← d(a)).

The latter formula corresponds to α(AF). The following theorem is a straightforward

consequence of Proposition 2 and Proposition 1. Given an argumentation framework

AF = 〈AR, attacks〉 and E ⊆ AR, we define the set compl(E) as {d(a)|a ∈ AR\E}.
Essentially, compl(E) expresses the complement of E w.r.t. AR.

Theorem 1

Let AF = 〈AR, attacks〉 be an argumentation framework and S ⊆ AR. When the

mapping f(x) of the theory g(β(AF)) corresponds to d(x) such that x ∈ AR, the

following condition holds: S is a preferred extension of AF iff compl(S) is a minimal

model of α(AF).

Proof

See appendix. �

This theorem shows that it is possible to characterize the preferred extensions

of an argumentation framework AF by considering the minimal models of α(AF).

In order to illustrate Theorem 1, let us consider again α(AF) of Example 2. This

formula has three models: {d(b)}, {d(b), d(c)}, and {d(a), d(b), d(c)}. Then the only

minimal model is {d(b)}, this implies that {a, c} is the only preferred extension of

AF. In fact, each model of α(AF) implies an admissible set of AF, this means that

{a, c}, {a}, and {} are the admissible sets of AF.

There is a well-known relationship between minimal models and logical conse-

quence, see Osorio et al. (2004). The following proposition is a direct consequence

of such relationship. Let S be a set of well-formed formulae, then we define

SetToFormula(S) =
∧

c∈S c.

Proposition 3

Let AF = 〈AR, attacks〉 be an argumentation framework and S ⊆ AR. S is

a preferred extension of AF iff compl(S) is a model of α(AF) and α(AF) ∧
SetToFormula(¬Dcompl(S)) |= SetToFormula(compl(S)).

Proof

See appendix. �

There are several well-known approaches for inferring minimal models from a

propositional formula (Dimopoulos and Torres 1996; Ben-Eliyahu-Zohary 2005).

For instance, it is possible to use UNSAT’s algorithms for inferring minimal models.

Hence, it is clear that we can use UNSAT’s algorithms for computing the preferred

extensions of an argumentation framework. This idea is formalized with the following

proposition.
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Theorem 2

Let AF = 〈AR, attacks〉 be an argumentation framework and S ⊆ AR. S is a

preferred extension of AF if and only if compl(S) is a model of α(AF) and α(AF) ∧
SetToFormula(¬Dcompl(S)) ∧ ¬SetToFormula(compl(S)) is unsatisfiable.

Proof

Directly, by Proposition 3. �

In order to illustrate Theorem 2, let us consider again the argumentation

framework AF of Example 2. Let S = {a}, then compl(S) = {d(b), d(c)}. We have

already seen that {d(b), d(c)} is a model of α(AF), hence the formula to verify its

unsatisfiability is

(d(b) ← ¬d(a)) ∧ (d(b)← �) ∧ (d(c)← ¬d(b)) ∧ (d(c)

← d(a)) ∧ ¬d(a) ∧ (¬d(b) ∨ ¬d(c)).

However, this formula is satisfiable by the model {d(b)}, then {a} is not a preferred

extension. Now let S = {a, c}, then compl(S) = {d(b)}. As seen before, {d(b)} is also

a model of α(AF), hence the formula to verify its unsatisfiability is

(d(b) ← ¬d(a)) ∧ (d(b)← �) ∧ (d(c)← ¬d(b)) ∧ (d(c)

← d(a)) ∧ ¬d(a) ∧ ¬d(c) ∧ ¬d(b).

It is easy to see that this formula is unsatisfiable, therefore {a, c} is a preferred

extension.

The relevance of Theorem 2 is that UNSAT is the prototypical and best-researched

co-NP-complete problem. Hence, Theorem 2 opens the possibilities for using a wide

variety of algorithms for inferring the preferred semantics.

4 Preferred extensions and general programs

We have seen that the minimal models of α(AF) characterize the preferred extensions

of AF . One interesting point of α(AF) is that α(AF) is logically equivalent to the

positive disjunctive logic program ΓAF (defined below). It is well known that given a

positive disjunctive logic program P , all the minimal models of P correspond to the

stable models of P . This property will be enough for characterizing the preferred

semantics by the stable models of the positive disjunctive logic program ΓAF .

We start this section by defining a mapping function which is a variation of the

mapping of Definition 7.

Definition 8

Let AF = 〈AR, attacks〉 be an argumentation framework and a ∈ AR. We define the

transformation function Γ(a) as follows:

Γ(a) = {
⋃

b:(b,a)∈attacks
{d(a) ∨ d(b)}} ∪ {

⋃

b:(b,a)∈attacks
{d(a)←

∧

c:(c,b)∈attacks
d(c)}}.

Now we define the function Γ in terms of an argumentation framework.
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Definition 9

Let AF = 〈AR, attacks〉 be an argumentation framework. We define its associated

general program as follows:

ΓAF =
⋃

a∈AR
Γ(a).

Remark 2

Notice that α(AF) (see Definition 7) is similar to ΓAF . The main syntactic difference of

ΓAF w.r.t. α(AF) is the first part of ΓAF which is (
∧

b:(b,a)∈attacks(d(a)∨d(b))); however,

this part is logically equivalent to the first part of α(AF) which is (
∧

b:(b,a)∈attacks d(a)←
¬d(b)). In fact, the main difference is their behavior w.r.t. stable model semantics.

In order to illustrate this difference, let us consider the argumentation framework

AF = 〈{a}, {(a, a)}〉. We can see that

ΓAF = {d(a) ∨ d(a)} ∪ {d(a)← d(a)}

and

α(AF) = (d(a)← ¬d(a)) ∧ (d(a)← d(a)).

It is clear that both formulae have a minimal model which is {d(a)}4; however α(AF)

has no stable models. This suggests that α(AF) is not a suitable representation for

characterizing preferred extensions by using stable models. Nonetheless, we will see

that the stable models of ΓAF characterize the preferred extensions of AF .

Even though, in this paper we are only interested in the preferred semantics,

it is worth mentioning that the stable models of the first part of the formula

α(AF) i.e., (
∧

b:(b,a)∈attacks d(a)← ¬d(b)), characterize the so-called stable semantics in

argumentation theory (Dung 1995). It is also important to point out that α(AF) and

ΓAF have different use. On the one hand, we will see that ΓAF is a suitable mapping

for inferring preferred extensions by using stable model solvers. On the other hand,

α(AF) has shown to be most suitable for studying abstract argumentation semantics.

For example, in Nieves et al. (2006), α(AF) was used for defining an extension of the

preferred semantics. Also, since the well-founded model of α(AF) characterizes the

grounded semantics of AF , α(AF) was used for defining extensions of the grounded

semantics and to describe the interaction of arguments based on reasoning under

the grounded semantics (Nieves et al. 2008).

In the following theorem, we formalize a characterization of the preferred

semantics in terms of positive disjunctive logic programs and stable model semantics.

Theorem 3

Let AF = 〈AR, attacks〉 be an argumentation framework and S ⊆ AR. S is a

preferred extension of AF iff compl(S) is a stable model of ΓAF .

Proof

See appendix. �

Let us consider the following example.

4 Notice that {d(a)} suggests that AF has a preferred extensions, which is {}.
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Fig. 2. Graph representation of the argumentation framework

AF = 〈{a, b, c, d, e}, {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}.
.

Example 3

Let AF be the argumentation framework of Figure 2. We can see that ΓAF is

d(a) ∨ d(b). d(a)← d(a).

d(b) ∨ d(a). d(b)← d(b).

d(c) ∨ d(b). d(c) ∨ d(e).

d(c)← d(a). d(c)← d(d).

d(d) ∨ d(c). d(d)← d(b), d(e).

d(e) ∨ d(d). d(e)← d(c).

ΓAF has two stable models which are {d(a), d(c), d(e)} and {d(b), d(c), d(e), d(d))},
therefore {b, d} and {a} are the preferred extensions of AF.

4.1 Default negation

As we have commented in whole paper, ours mappings are inspired by two basic

conditions that make an argument to be defeated. One of the advantages of

characterizing the preferred semantics by using a logic programming semantics

with default negation, is that we can infer the acceptable arguments from the stable

models of ΓAF in a straightforward form. For instance, let ΛAF be the disjunctive

logic program ΓAF of Example 3 plus the following clauses:

a← ¬d(a). b← ¬d(b).
c← ¬d(c). d← ¬d(d).
e← ¬d(e),

such that the intended meaning of each clause is: the argument x is acceptable

if it is not defeated. ΛAF has two stable models which are {d(a), d(c), d(e), b, d} and

{d(b), d(c), d(e), d(d), a}. By taking the intersection of each model of ΛAF with AR (the

set of arguments of AF), we can see that {b, d} and {a} are the preferred extensions

of AF . This idea is formalized by Proposition 4 below.

Definition 10

Let AF = 〈AR, attacks〉 be an argumentation framework. We define its associated

general program as follows:

ΛAF =
⋃

a∈AR
{Γ(a) ∪ {a← ¬d(a)}}.

Notice that Γ(a) and Λ(a) are equivalent, the main difference between ΓAF and

ΛAF is the rule a← ¬d(a) for each argument.
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Proposition 4

Let AF = 〈AR, attacks〉 be an argumentation framework and S ⊆ AR. S is a preferred

extension of AF iff there is a stable model M of ΛAF such that S = M ∩ AR.

Proof

The proof is straightforward from Theorem 3 and the semantics of default negation.

�

It is worth mentioning that by using the disjunctive logic program ΛAF and the

DLV System, we can perform any query w.r.t. sceptical and credulous reasoning. For

instance let gamma-AF be the file that contains ΛAF such that AF is the argumentation

framework of Figure 2. Let us suppose we want to know if the argument a belongs

to some preferred extension of AF . Hence, let query-1 be the file:

a?

Let us call DLV with the brave/credulous reasoning front-end and query-1:

$ dlv -brave gamma-AF query-1

a is bravely true, evidenced by {d(b), d(c), d(e), d(d), a}
This means that it is true that the argument a belongs to a preferred extension and

even more, we have a preferred extension which contains the argument a. Now let

us suppose that we want to know if the argument a belongs to all the preferred

extensions of AF . Let us call DLV with the cautious/sceptical reasoning front-end

and query-1:

$ dlv -cautious gamma-AF query-1

a is cautiously false, evidenced by {d(a), d(c), d(e), b, d}
This means that it is false that the argument a belongs to all the preferred extensions

of AF . In fact, we have a counterexample.

5 Conclusions

Since Dung introduced his abstract argumentation approach, he proved that his

approach can be regarded as a special form of logic programming with negation as

failure. In fact, he showed that the grounded and stable semantics can be charac-

terized by the well-founded and stable models semantics, respectively. This result is

important because it defined a general method for generating metainterpreters for

argumentation systems (Dung 1995). Concerning this issue, Dung did not give any

characterization of the preferred semantics in terms of logic programming semantics.

It is worth mentioning that according to the literature (Dung 1995; Pollock 1995;

Bondarenko et al. 1997; Prakken and Vreeswijk 2002; ASPIC:Project 2005), the

preferred semantics is regarded as one of the most satisfactory argumentation

semantics of Dung’s argumentation approach.

In this paper, we characterize the preferred semantics in terms of minimal models

(see Theorem 1) and stable model semantics (see Theorem 3). These characterizations

are based on two mapping functions that construct a propositional formula and

a disjunctive logic program, respectively. These characterizations have as main

result the definition of a direct relationship between one of the most satisfactory

argumentation semantics and may be the most successful approach of nonmonotonic
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reasoning of the last two decades i.e., logic programming with the stable model

semantics. Based on this fact, we introduce a novel and easy-to-use method for

implementing argumentation systems that are based on the preferred semantics. It

is quite obvious that our method will take advantage of the platform that has been

developed under stable model semantics for generating argumentation systems. For

instance, we can implement the preferred semantics inside object-oriented programs

based on our characterization (Theorem 3, Proposition 4) and the DLV JAVA

Wrapper (Ricca 2003).

We can see that our approach falls in the family of the model-checking methods

for inferring the preferred semantics. In fact, our approach is closely related to the

methods suggested in Besnard and Doutre (2004) and Egly and Woltran (2006).

As seen in Theorem 1, our propositional formula α(AF) is closely related to one

of the propositional formulae (see Proposition 2) which were suggested in Besnard

and Doutre (2004). It is worth mentioning that the propositional formula suggested

by Egly and Woltran (2006) for inferring the admissible sets of an argumentation

framework is the same as the propositional formula of Proposition 2. The main

difference between the approaches suggested by Besnard and Doutre (2004) and

Egly and Woltran (2006) and our approach is the strategy for inferring the models

of a propositional formula. Instead of using maximal models for characterizing the

preferred semantics as it is done by (Besnard and Doutre 2004), we are using

minimal models/stable models. Hence, we can use any system which could compute

minimal models/stable models of a propositional formula. Maximality in Egly and

Woltran’s approach is checked on the object level, i.e. within the resulting quantified

Boolean formula (QBF).

An interesting property of our approach is that whenever we use stable model

solvers for computing the preferred extensions of an argumentation framework, we

can compute all the preferred extensions in full. In decision-making systems, it is

not strange to require all the possible coherent points of view (preferred extensions)

in a dispute between arguments. For instance, in the medical domain when a doctor

has to give a diagnosis under incomplete information, he has to consider all the

possible alternatives in his decisions (Cortés et al. 2005; Tolchinsky et al. 2005).
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Appendix

Proof of Proposition 1

Proof

First of all, we present the following two observations.

(1) Given M1,M2 ⊆ LT , it is true that M1 ⊂M2 iff f(LT\M2) ⊂ f(LT\M1).

(2) Given a propositional formula A, an interpretation M from LT to {0, 1} and

x ∈ {0, 1}. Then it is not difficult to prove by induction on A’s length5 that

M(A) = x iff f(LT\M)(g(A)) = x.

=> To prove that if M is a maximal model of T , then f(LT\M) is a minimal

model of g(T ). The proof is by contradiction. Let us suppose that M is

a maximal model of T , but f(LT\M) is a model of g(T ) and is not

minimal. Then if f(LT\M) is not minimal, then there exists M2 such that

f(LT\M2) is a model of g(T ) and f(LT\M2) ⊂ f(LT\M). Then by the

second observation, if f(LT\M2) is a model of g(T ), then M2 is a model of

T . By the first observation, if f(LT\M2) ⊂ f(LT\M) then M ⊂ M2. But

this is a contradiction because M is a maximal model of T .

<= To prove that if f(LT\M) is a minimal model of g(T ), then M is a

maximal model of T . The proof is also by contradiction. Let us suppose

that f(LT\M) is a minimal model of g(T ), but M is model of T and is

not maximal. If M is not maximal, then there exists a model M2 of T such

that M ⊂M2. Then by the second observation, if M2 is a model of T then

f(LT\M2) is a model of g(T ). By the first observation, if M ⊂ M2 then

f(LT\M2) ⊂ f(LT\M). But this is a contradiction because f(LT\M) is a

minimal model of g(T ). �

5 Since A is a disjunctive clause, the length of A is given by the number of atoms in the head of A plus
the number of literals in the body of A.
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Proof of Theorem 1

Proof

We present the following two observations.

(1) Since the mapping f(x) corresponds to d(x), then compl(S) = f(AR\S) because

compl(S) = {d(a)|a ∈ AR\S} and f(AR\S) = {f(a)|a ∈ AR\S}.
(2) α(AF) is logically equivalent to g(β(AF)),

g(β(AF)) =
∧

a∈AR
((¬d(a)→

∧

b:(b,a)∈attacks
d(b)) ∧ (¬d(a)→

∧

b:(b,a)∈attacks
(

∨

c:(c,b)∈attacks
¬d(c)))).

Since a→
∧

b∈S b ≡
∧

b∈S (a→ b), we get

∧

a∈AR
(

∧

b:(b,a)∈attacks
(¬d(a)→ d(b)) ∧ (

∧

b:(b,a)∈attacks
(¬d(a)→

∨

c:(c,b)∈attacks
¬d(c)))).

By applying transposition and cancelation of double negation in both impli-

cations, we get

∧

a∈AR
(

∧

b:(b,a)∈attacks
(¬d(b)→ d(a)) ∧ (

∧

b:(b,a)∈attacks
(¬

∨

c:(c,b)∈attacks
¬d(c)→ d(a)))).

Now for the right-hand side of the formula, we need to apply Morgan laws,

∧

a∈AR
(

∧

b:(b,a)∈attacks
(¬d(b)→ d(a)) ∧ (

∧

b:(b,a)∈attacks
(

∧

c:(c,b)∈attacks
d(c)→ d(a)))).

Finally by changing → by ←, we get α(AF),
∧

a∈AR
(

∧

b:(b,a)∈attacks
(d(a)← ¬d(b)) ∧ (

∧

b:(b,a)∈attacks
(d(a)←

∧

c:(c,b)∈attacks
d(c)))) =

α(AF).

Now the main proof: S is a preferred extension of AF iff (by Proposition 2) S is

a maximal model of β(AF) iff (by Proposition 1) f(AR\S) is a minimal model of

g(β(AF)) iff (by observations 1 and 2) compl(S) is a minimal model of α(AF). �

Proof of Proposition 3

First of all, let us introduce the following relationship between minimal models and

logic consequence.

Lemma 1

(Osorio et al. 2004). For a given general program P , M is a model of P and

P ∪ ¬fM) |= M iff M is a minimal model of P .
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This lemma was introduced in terms of augmented programs. Since a general

program is a particular case of an augmented program, we write the lemma in terms

of general programs (see Osorio et al. (2004) for more details about augmented

programs).

Proof

S is a preferred extension of AF iff (by Theorem 1) compl(S) is a minimal

model of α(AF) iff (by lemma 1) compl(S) is a model of α(AF) and α(AF) ∧
SetToFormula(¬Dcompl(S)) |= SetToFormula(compl(S)). �

Proof of Theorem 3

Proof

S is a preferred extension of AF iff compl(S) is a minimal model of α(AF) (by

Theorem 1) iff compl(S) is a minimal model of ΓAF (since ΓAF is logically equivalent

to α(AF) in classical logic) iff compl(S) is a stable model of ΓAF (since ΓAF is a

positive disjunctive logic program and for every positive disjunctive logic program

P, M is a stable model of P iff M is a minimal model of P ). �
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