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SUMMARY
This paper addresses robust stability and position tracking problems in teleoperation systems subject
to varying delay in the communication medium, uncertainties in the models of manipulators, and
non-passive interaction forces in the terminations. Fixed-structure nonlinear control law is developed
based on the notion of Interconnection and Damping Assignment Passivity-Based Control (IDA-
PBC) scheme. Then, utilizing the Lyapunov–Krasovskii theorem, sufficient conditions are derived
in terms of Linear Matrix Inequalities (LMIs) to tune the controller parameters. Differently from
literature, the objectives are achieved without requirement for any passive parts in the model of
interaction forces. Comparative simulations and experimental results demonstrate the applicability
and superiority of the proposed method.

KEYWORDS: Bilateral teleoperation system; Model uncertainty; Non-passive operator and envi-
ronment; Asymptotic stability; Passivity-based controller.

1. Introduction
Bilateral teleoperator is a human–robot system that provides a platform for the operator to physically
interact with an object in the remote environment. This system is composed of local and remote
manipulators, which are connected via a communication medium. The remote robot follows the
motion of local one, which is commanded by the human operator, and feeds back interaction forces
from the environment to the local robot to provide a sense of telepresence.1, 2 The existence of com-
munication delays, which degrades the system performance is one of the most significant issues in
the control of bilateral teleoperation systems. The stability, position, and force tracking problems in
the presence of time delay have been investigated in the studies by Nuno et al.3and Arcara et al.4

Since the physical parameters of robotic systems are difficult to be determined precisely in prac-
tice, often there are some uncertainties in their dynamical models; so, compensating the effects
of these uncertainties in developing control algorithms is necessary in the design of teleoperation
systems.5 There are many adaptive schemes for compensation of the effects of uncertainties in tele-
operation systems;5–8 wherein, by online identification of the models’ parameters, the destructive
influences of imperfections are reduced with imposing heavy computational load.

In the framework of robust control, using μ-synthesis and H∞ notions, controllers were
developed for linear teleoperation system in the studies by Leung et al.,9 Colgate et al.,10 and
Sirouspour.11 A guaranteed cost control for linear bilateral teleoperation systems was developed by
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Mohammadi et al.,12 in which Linear Matrix Inequalities (LMIs) were used to ensure robust stability
and performance in the presence of model uncertainty and varying transmission delay. For nonlin-
ear teleoperation systems, only a few works in the literature consider robust stability issue. In the
study by Shahdi et al.,13 first, the local Lyapunov-based adaptive nonlinear controllers were applied
to linearize the system equations and eliminate its dependency on the master and slave parameters;
then, H∞ controller was synthesized assuming constant communication delay. In the paper by Sharifi
et al.,14 a robust output feedback control strategy was presented for a nonlinear teleoperation system,
which can deal with stability as well as transparency, despite the variable time delay and uncertain
dynamics. First, local Lyapunov-based adaptive controllers were applied to both of master and slave
sides in order to suppress the nonlinearities in the system dynamics. Then, using the Lyapunov tech-
nique, stability and performance objectives were cast as an LMI feasibility problem. Also, in the
articles by Sun et al.15 and Dinh et al.,16 the fuzzy and neural network-based schemes were presented
to address the robust stability challenge in teleoperation systems. In the most of the aforementioned
works, the control law does not have a fixed structure and includes adaptive terms; so, it cannot be
implemented simply in real-world systems.

On the other hand, in many applications of teleoperation systems such as mining, drilling, and
beating heart surgery, the interaction forces between local robot and human operator and between
remote robot and environment are not energetically passive.17 In general, the non-passive behavior
of the human or environment, which can be modeled by a constant force can deteriorate the perfor-
mance of the teleoperation system or even destabilize it. Only a few papers consider this problem in
the controller design for teleoperation systems. These papers can be classified into two groups. In the
first cluster such as the study by Hashemzadeh et al.18 and Ganjefar et al.,19 there is no constraint on
passivity of terminal forces; but, costly and noisy force sensors are needed for implementation of con-
trol scheme. In the second collection, without using additional force sensors, the controller is tuned
to retain the stability of system despite non-passive termination.20–23 In the work by Hua et al.,20 a
teleoperation system interacting with constant human force and passive environment was developed
in the presence of varying communication delay; by using Layaounov–Krasovskii (LK) theorem, the
asymptotic stability of the closed-loop system was attained by employing the Proportional Derivative
controller with damping injection (PD+d). In the study by Jazayeri et al.,21 the Llewellyn’s criterion
was extended to stabilize a linear teleoperator, which is in contact with non-passive human operator
and environment neglecting the communication delay. The Input-to-State Stability (ISS) of non-
passive teleoperator controlled by P+d control law including dynamic model terms was considered
in the paper by Islam et al.,22, 23 in the presence of varying time delay; using LK theorem, criteria for
boundedness of positions errors and velocity were extracted to determine the controller gains.

In the most of aforementioned papers, to obtain the Input-to–State Stability (ISS), the non-passive
human operator and environment forces should satisfy hard-to-hold conditions, which relate their
values to the positions and velocities of local and remote manipulators. Moreover, the stability of
system relies on the existence of known passive terms in the models of interaction forces. Specifically,
asymptotical stability in the paper by Hua et al.20or the ISS in the works by Islam et al.22, 23was not
guaranteed for arbitrary external forces. Also, the challenge of asymptotic stability of the position
errors between local and remote manipulators was not considered for teleoperation systems, which
are in contact with non-passive termination forces.

In this paper, we address the problem of asymptotic stability and position tracking for bilat-
eral teleoperation systems interacting with non-passive human operator and environment, in the
presence of parametric uncertainties in the models of manipulators. By extension of the notion of
Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC)24scheme to time-
delay systems, a nonlinear control law that includes feedback of position errors and integral of
position errors is designed for the nominal system. Then, an appropriate LK functional is employed
to derive computationally amenable LMI conditions to tune the parameters of the fixed-structure
IDA-PBC such that the asymptotic stability of velocities and positions errors is achieved in spite of
models’ uncertainties and asymmetrical varying communication delays. The main novelties of the
paper are that the IDA-PBC design method is employed in the context of time-delay systems and
an LK functional composed of Hamiltonian function of teleoperator system is used to derive simple
conditions for robust tracking in the presence of model imperfections.

The features of the suggested scheme are summarized as follows: first, the robust asymptotic
stability and position tracking in the nonlinear teleoperation system are guaranteed by a new
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fixed-structure controller. Second, unlike the existing methods in the literature, the developed
controller leads to asymptotic stability in the system without any need for known passive parts in the
dynamical model of non-passive interaction forces. Third, the asymptotic stability of the position
errors in the system is provided because of using the feedback of their integrals. Fourth, no force
sensors are required for practical implementation of control strategy. The results of comparative
simulations and experimental verifications are presented to demonstrate the applicability and
efficiency of the proposed strategy.

The rest of paper is organized as follows: Section 2 presents problem formulation and prelimi-
naries. In Section 3, the main results in controller design and stability analysis are presented. The
simulation and experimental results and comparisons are shown in Section 4. Finally, conclusions
and future research directions have been discussed in Section 5.

Notation: we denote the set of real numbers by R = (−∞. + ∞), the set of all nonnegative real num-
bers by R = 0. Also, Rn and R

n×m show n-dimensional real vector space and n × m-dimensional
real matrix space, respectively. g⊥ symbolizes the full-rank left annihilator matrix of g, that is
g⊥g = 0. And ∇x H stand for ∂ H

∂x . The notations 0 and I∈R
n×m denote the zero and identity matrix,

respectively.

2. Problem Formulation
In this section, dynamical models of bilateral teleoperator and human operator and environment are
presented. Then the problem of interest is described in detail.

2.1. Dynamical model of teleoperation system
The Euler–Lagrange equations of the considered teleoperation system comprising n-Degrees of
Freedom (DOF) manipulators are as follows:20, 22, 25

Ml(ql)q̈l + Cl(ql .q̇l)q̇l + gl(ql) = τl
∗ + τh, (1)

Mr (qr )q̈r + Cr (qr .q̇r )q̇r + gr (qr ) = τr
∗ − τe, (2)

where qi .q̇i . q̈i ∈R
n for i = l.r are the joint positions, velocities, and accelerations .Mi (qi ) ∈R

n×n

for i = l.r is the inert matrix, Ci (qi .q̇i ) ∈R
n×n is the Coriolis and centrifugal effects matrix, and

gi (qi ) ∈R
n is the gravitational forces vector. τh ∈R

n and τe ∈R
n represent the external forces applied

by the human operator and environment to the local and remote manipulators, respectively; τi
∗ ∈R

n

are the control forces. Here, i = l indicates the local manipulator and i = r the remote one.
Model uncertainty refers to any discrepancy between a model describing a system and its true

behavior. Since the physical parameters of the manipulators are difficult to obtain precisely in prac-
tice, often there are some uncertainties in Eqs. (1) and (2). These dynamical uncertainties can be
modeled as additive terms to the nominal model of the system as

Mi (qi ) = Mi (qi ) + �Mi (qi ), (3)

Ci (qi .q̇i ) = Ci (qi .q̇i ) + �Ci (qi .q̇i ), (4)

gi (qi ) = gi (qi ) + �gi (qi ), (5)

where Mi (qi }.Ci (qi .q̇i ) and gi (qi ) are the nominal model matrices/vectors and �Mi (qi }.
�Ci (qi .q̇i )and �gi (qi ) are norm-bounded dynamical uncertainty matrices/vectors.

The dynamical models of manipulators presented in Eqs. (1) and (2) have the following well-
known properties:3

Property 1. The inertia matrix Mi (qi ) of a robot is symmetrical, bounded, and positive def-
inite, that is there exists positive constant λm and λM such that 0 < λm I ≤ Mi (qi ) ≤ λM I < ∞.
Consequently, 0 < ρm I ≤ Mi

−1(qi ) ≤ ρM I<∞, where ρm .ρM > 0.

Property 2. The Coriolis and inertia matrices are related as Ṁi (qi ) = Ci (qi .q̇i ) + Ci
T(qi .q̇i ).

The control scheme presented in this paper relies on the following assumptions:

Assumption 1. The joints’ positions and velocities (qi .q̇i ) are known from measurement or
estimation. Note that in the absence of velocity sensors, they can be estimated using the velocity
observers; for instance, by the one presented in the study by Erlic et al.26
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Assumption 2. To simplify the computations, it is assumed that the gravitational forces are locally
pre-compensated; so, the dynamical model (1) and (2) are changed to

Ml(ql)q̈l + Cl(ql .q̇l)q̇l = τl + τh, (6)

Mr (qr )q̈r + Cr (qr .q̇r )q̇r = τr − τe. (7)

Assumption 3. The uncertainty matrices/vectors are norm bounded and are as follows:

‖�Mi (qi )‖ ≤ δMi ; ‖�Ci (qi .q̇i )‖ ≤ δCi ; ‖�gi (qi )‖ ≤ δgi . (8)

Assumption 4. The local and remote robots exchange data by a communication channel which
imposes variable time delays, Ti (t) that has known upper bound.hi , and does not grow or decrease
faster than known value, μi , for i = l.r:

0 < Ti (t) ≤ hi < ∞, (9)∣∣Ṫi

∣∣ < μi. (10)

2.2. Models of operator and environment
The human operator and the environment define passive velocity to force map, if there exist κi ∈
R ≥ 0, such that

Eh(t) := −
∫ t

0
q̇T

l τhdσ + κl ≥ 0, (11)

Ee(t) :=
∫ t

0
q̇T

r τedσ + κr ≥ 0. (12)

Note that the signs are consistent with the standard power flow convention.3

The common model of non-passive human operator and environment in literature is represented
utilizing a passive spring–damper system along with constant force as follows:19, 20, 22

τh = τh0 − Slql − Dlq̇l, (13)

τe = τe0 + Sr qr + Dr ˙qr , (14)

where Si and Di ∈R
n×n denote the diagonal and positive definite matrices of the spring and damp-

ing constants and τh0 . τe0 ∈R
n are constant forces. It is evident that for nonzero τh0 and τe0 , the

input–output pair (q̇l , τh) and (q̇r ,τe) may not satisfy (11) and (12), and hence the human opera-
tor and environment are not energetically passive. This paper aims to develop a controller to attain
the asymptotic stability of system (6) and (7) interacting with unknown constant interaction forces
expressed in Assumption 5.

Assumption 5. The model of human operator and environment forces is considered by unknown
constant forces τh = τh0 . τe = τe0 without any known passive part in their dynamic, that is
Si and Di = 0.

It is worth noting that the passive parts of models in (13) and (14), that is, Si qi and Di q̇i help to
preserve the stability of system; however, they don’t exist or aren’t known in real-world applications.
So, the model described in Assumption 5 is more comprehensive than the ones in literature.

The problem of interest is to determine the control forces for both of local and remote manipu-
lators to achieve robust stable position tracking in spite of model uncertainty in the manipulators,
varying time delay in data exchange between them and unknown constant interaction forces in their
terminations. The schematic of the control system is depicted in Fig. 1. The IDA-PBC controllers
compute the control action employing nonlinear laws, which use the measurements of positions and
velocities of local and remote manipulators.

3. Main Results
In this section, first, the structure of controller is developed based on the nominal model of system
for free motion (τh = τe = 0); then, the results are extended to real system with constant interaction
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Fig. 1. Schematics of the teleoperator with the proposed control strategy.

forces (i.e., τh = τh0, τe = τe0 ). By applying LK theorem, synthesis conditions in the form of LMIs
are derived for tuning the controller parameters to achieve robust stability and position tracking in
the overall system.

3.1. Design of IDA-PBC for nominal system
To formulate the position tracking and stability objectives, we define the augmented state of sys-

tem as xi =
[
qi

T .pi
T .ei

T .
∫ t

0 ei (s)
T ds

]T ∈R
4n for i = l.r , where el := ql − qr (t − Tr (t)) and er :=

qr − ql(t − Tl(t)) are the position errors between local and remote manipulators, and the momentum
vectors of joints, pi , are

pi = Mi (qi )q̇.i (15)

Regarding Eqs. (6) and (7) and Property 2, the affine model of nominal system is expressed as
follows:

ẋl = fl(xl .xr (t − Tr )) + gul × (τl + τh), (16)

ẋr = fr (xr .xl(t − Tl)) + gur × (τr − τe), (17)

where for 0 .I ∈R
n×n

fl(xl .xr (t − Tr )) =

⎡
⎢⎢⎢⎢⎢⎢⎣

M
−1
l (ql)pl

Cl
T
(ql .q̇l)M

−1
l (ql)pl

M
−1
l (ql)pl − M

−1
r (qr (t − Tr ))pr (t − Tr )

el

⎤
⎥⎥⎥⎥⎥⎥⎦, gul =

⎡
⎢⎢⎢⎢⎢⎣

0

I

0

0

⎤
⎥⎥⎥⎥⎥⎦.

fr (xr .xl (t − Tl)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

M
−1
r (qr )pr

Cr
T
(qr .q̇r )M

−1
r (qr )pr

M
−1
r (qr )pr − M

−1
l (ql(t − Tl))pl(t − Tl)

er

⎤
⎥⎥⎥⎥⎥⎥⎦. gur =

⎡
⎢⎢⎢⎢⎢⎣

0

I

0

0

⎤
⎥⎥⎥⎥⎥⎦ ;

The proposed controller is designed based on (16) and (17) in what follows.
Consider the augmented model of local manipulator (16) with τh = 0. The aim is to find a control

torque τl such that the resulting closed loop of local subsystem (16) be as the following delayed
Port-Hamiltonian form

ẋl = Fl∇xl Hl (xl .xr (t − Tr )) + F̃r∇xr (t−Tr ) Hl (xl .xr (t − Tr )), (18)
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where Fl and F̃r ∈R
4n×4n are the interconnection/damping matrices of closed-loop system. Desired

closed-loop Hamiltonian function is chosen to be as

Hl(xl, xr (t − Tr )) = 1

2
xl

T xl + 1

2
xr (t − Tr )

T xr (t − Tr ) (19)

which is the sum of desired kinetic energy and desired potential energy. Therefore, the Eq. (18) is
rewritten as follows:

ẋl = Fl xl + F̃r xr (t − Tr }. (20)

By considering the full-rank left annihilator of input matrix of augmented system, gul . as g⊥
ul (xl) =[

0 0 I 0
]; 0 . I ∈R

n×n , the matching equation is

g⊥
ul (xl)

(
Fl xl + F̃r xr (t − Tr ) − fl (xl .xr (t − Tr ))

)
= 0 (21)

which can be trivially solved by

Fl =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 M
−1
l (ql) 0 0

f21 f22 f23 f24

0 M
−1
l (ql) 0 0

0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎦, F̃r =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 −M
−1
r (qr (t − Tr )) 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦, (22)

where f21. f22 . f23 and f24 ∈R
n×n are free parameters. So, the control law is obtained as follows:

τl = (
gT

ul gul
)−1

gT
ul

(
Fl xl + F̃r xr (t − Tr ) − fl (xl .xr (t − Tr ))

)
. (23)

Similarly, for the remote manipulator model, (17), when τe = 0, we have

τr = (
gT

ur gur
)−1

gT
ur

(
Fr xr + F̃l xl (t − Tl) − fr (xr .xl(t − Tl))

)
(24)

in which

Fr =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 M
−1
r (qr ) 0 0

f55 f56 f57 f58

0 M
−1
r (qr ) 0 0

0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎦, F̃l =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 −M
−1
l (ql(t − Tl)) 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (25)

with

Hr (xr .xl (t − Tl)) = 1

2
xr

T xr + 1

2
xl (t − Tl)

T xl (t − Tl). (26)

The free parameters of Fi are determined in the next subsection such that the robust stability in
position tracking is achieved for the real system.

Briefly, considering gravity pre-compensation, the final nonlinear control law is obtained from
(23) and (24) by straightforward manipulation as

τ ∗
l = gl(ql) + τl = gl(ql) − Cl

T
(ql .q̇l)q̇l + f21ql + f22 Ml(ql)q̇l + f 23 el + f24

∫ t

0
el(s)ds, (27)

τ ∗
r = gr (qr ) + τr = gr (qr ) − Cr

T
(qr .q̇r )q̇r + f55qr + f56 Mr (qr )q̇r + f57 er + f58

∫ t

0
er (s)ds. (28)
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The aforementioned strategy to obtain IDA-PBC parameters is known as algebraic IDA-PBC in
which the desired energy function is fixed and the matching equation of IDA-PBC is an algebraic
equation of unknown elements of Fi .

3.2. Robust stability
Now consider the teleoperation (1) and (2) with IDA-PBC control law (27) and (28) in contact with
constant interaction forces τh = τh0 . τe = τe0 . Now, the closed-loop system is

Ml(ql)q̈l + Cl(ql .q̇l)q̇l + (gl(ql) + �gl(ql))

= gl(ql)−Cl
T
(ql .q̇l)q̇l + f21ql + f22 Ml(ql)q̇l + f 23 el + f24

∫ t

0
el(s)ds + τh0,

(29)

Mr (qr )q̈r + Cr (qr .q̇r )q̇r + (gr (qr ) + �gr (qr ))

= gr (qr )−Cr
T
(qr .q̇r )q̇r + f55qr + f56 Mr (qr )q̇r + f57 er + f58

∫ t

0
er (s)ds − τe0 . (30)

The momentum vectors dynamics are computed as

ṗi = Ṁi (qi )q̇i + Mi (qi )q̈i (31)

Regarding Eqs. (29) and (30) and Property 2, momentum vectors dynamics are

ṗl = �Cl
T (ql .q̇l)q̇l − �gl(ql) + f21ql + f22 Ml(ql)q̇l + f 23 el + f24

∫ t

0
el(s)ds + τh0, (32)

ṗr = �Cr
T (qr .q̇r )q̇r − �gr (qr ) + f55qr + f56 Mr (qr )q̇r + f57 er + f58

∫ t

0
er (s)ds − τe0 . (33)

Define Xl = [ql
T .

∫ t
0 el(s)

T ds .pl
T ]T ∈R

3n and X r = [qr
T .

∫ t
0 er (s)

T ds.pr
T ]T ∈R

3n , the closed-
loop system is described as follows:

Ẋl = Ax Xl + Axy Xr (t − Tr ) + gx × (τh0 − �gl(ql)), (34)

Ẋr = Ay Xr + Ayx Xl (t − Tl) + gy × (−τe0 − �gr (qr )
)
, (35)

where

Ax :=
⎡
⎣ 0 0 Ml

−1(ql)

I 0 0
αx f24 βx

⎤
⎦. Axy :=

⎡
⎣ 0 0 0

−I 0 0
− f 23 0 0

⎤
⎦.

gx :=
⎡
⎣ 0

0
I

⎤
⎦. αx = f21 + f 23; βx = (�Cl

T (ql .q̇l) + f22 Ml(ql)
)

M−1
l (ql),

Ay :=
⎡
⎣ 0 0 Mr

−1(qr )

I 0 0
αy f58 βy

⎤
⎦. Ayx :=

⎡
⎣ 0 0 0

−I 0 0
− f 57 0 0

⎤
⎦.

gy :=
⎡
⎣ 0

0
I

⎤
⎦ αy = f 55 + f 57.βy = (�Cr

T (qr .q̇r ) + f56 Mr (qr )
)

M−1
r (qr }.
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From (32) and (33), the equilibrium points of positions denoted by ql
∗. qr

∗ satisfy

−
(

f21ql
∗ + f23 el

∗ + f24

∫ t∗

0
el(s)ds

)
= τh0 − �gl

(
ql

∗), (36)

f 55qr
∗ + f57 er

∗ + f58

∫ t∗

0
er (s)ds = τe0 + �gr

(
qr

∗), (37)

where el
∗ = − er

∗ = ql
∗ − qr

∗ = 0.

Let x = Xl − Xl
∗, and y = Xr − Xr

∗ where Xi
∗ =

[
qi

∗T .
∫ t∗

0 ei (s)
T ds .0

]T
is the equilibrium

points of Xi , where
∫ t∗

0 ei (s)
T = constant. Regarding (36) and (37), Eqs. (34) and (35) are rewritten as

ẋ = Ax x + Axy y (t − Tr ), (38)

ẏ = Ay y + Ayx x (t − Tl}. (39)

Remark 1. When there is no uncertainty in system, that is the nominal case, the system is
expressed by (38) and (39) with βx = f22 and βy = f56.

In the following theorem by using LK argument, LMI conditions are derived to tune efficiently
the free parameters of the control laws (27) and (28) such that the closed-loop system (38) and (39)
be robustly asymptotically stable.

Theorem 1. The system (38) and (39) is robustly asymptotically stable provided that the constant
matrix Q = QT > 0 with appropriate dimensions exist such that

πx := 2Ax Q + Axy Q Axy
T + (ξl + hl)Q < 0, (40)

πy := 2Ay Q + Ayx Q Ayx
T + (ξr + hr )Q < 0, (41)

where ξl := 1
1−µl

. ξr := 1
1−µr

.

Proof. The LK functional is selected as below:

V := V1 + V2 + V3, (42)

where

V1 = xT Px + yT Py,

V2 = ξl

∫ t

t−Tl (t)
xT (s)Px(s)ds + ξr

∫ t

t−Tr (t)
yT (s)Py(s)ds,

V3 =
∫ 0

−hl

∫ t

t+θ

xT (s)Px(s)dsdθ +
∫ 0

−hr

∫ t

t+θ

yT (s)Py(s)dsdθ,

where P = PT > 0. The time derivative of V1 along the system (38) and (39) is

V̇1 = 2xT Pẋ + 2yT P ẏ = 2xT P Ax x + 2xT P Axy y (t − Tr ) + 2 yT P Ay y

+ 2yT P Ayx x (t − Tl}. (43)

By using the inequality 2aT b ≤ aT Ma + bT M−1b, the upper bound of cross terms is obtained as
below:

2 xT P Axy︸ ︷︷ ︸
aT

y (t − Tr )︸ ︷︷ ︸
b

≤ xT P Axy︸ ︷︷ ︸
aT

P−1︸︷︷︸
M

xT P Axy︸ ︷︷ ︸
a

+ y (t − Tr )
T︸ ︷︷ ︸

bT

P︸︷︷︸
M−1

y (t − Tr )︸ ︷︷ ︸
b

. (44)

Similarly,

2yT P Ayx x (t − Tl) ≤ yT P Ayx P−1 Ayx
T P y + x (t − Tl)

T P x (t − Tl}. (45)
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So, we have

V̇1 ≤ 2xT P Ax x + xT P Axy P−1 Axy
T P x + y (t − Tr )

T P y (t − Tr ) + 2yT P Ay y

+ yT P Ayx P−1 Ayx
T P y + x (t − Tl)

T P x (t − Tl}. (46)

Also, the time derivative of V2 and V3 along the system trajectories are computed as

V̇2 = ξl x
T P x − ξl

(
1 − Ṫl

)
x (t − Tl)

T Px (t − Tl) + ξr yT P y

− ξr
(
1 − Ṫr

)
y (t − Tr )

T Py (t − Tr }. (47)

Regarding delay characteristics in Assumption 4, the upper bound of V̇2 is

V̇2 ≤ ξl x
T P x − ξl(1 − µl) x (t − Tl)

T Px (t − Tl) + ξr yT P y

− ξr (1 − μr ) y (t − Tr )
T P y (t − Tr ) (48)

and V̇3 is calculated as

V̇3 =
∫ 0

−hl

{xT P x − xT (t + θ) P x(t + θ)}dθ +
∫ 0

−hr

{yT P y − yT (t + θ) P y(t + θ)}dθ

= hl x
T P x −

∫ t

t−hl

xT (t + θ) Px (t + θ)dθ + hr yT P y −
∫ t

t−hr

yT (t + θ) Py (t + θ)dθ. (49)

Finally, by considering Eqs. (46), (48)–(49), the upper bound of V̇ is obtained as

V̇ ≤ xT
(
2P Ax + P Axy P−1 Axy

T P + (ξl + hl) P
)
x

+ yT
(
2P Ay + P Ayx P−1 Ayx

T P + (ξr + hr ) P
)
y

+ x (t − Tl)
T P(I − ξl (1 − µl))x (t − Tl) + y (t − Tr )

T P (I − ξr (1 − μr )) y (t − Tr }. (50)

By multiplying P−1 := Q to left and right side of the upper bound of V̇ , we have

V̇ ≤ xT
(
2 Ax Q + Axy Q Axy

T + (ξl + hl) Q
)

x + yT
(

2Ay Q + Ayx Q Ayx
T + (ξr + hr ) Q

)
y =: xT πx x + yT πy y. (51)

Now, to assure asymptotic stability from LK theorem, the matrices in the two quadratic terms
in (51) must be negative definite; namely, πx < 0 and πy < 0. By proper choosing of gains,
x = Xl − Xl

∗ → 0, and y = Xr − Xr
∗ → 0 when t → ∞. Regarding Property 1, from pi =

Mi (qi )q̇i → 0 we have q̇i → 0 when t → ∞. Also,
∫ t

0 ei (s)
T ds → constant results that ei (t) →

0 when t → ∞.
It should be noted that from Assumption 3, the parameters βx and βy in πx and πy are bounded

as β
x
< βx < βx and β

y
< βy < β y ; so, the set of LMIs (40) and (41) should be satisfied in the

corners, β
x
.βx .β y

and β y

Remark 2. In order to determine the gains of the control laws (27) and (28), first, boundary values
of uncertainty intervals, β

x
.βx .β y

and β y are replaced separately in model parameters in (38) and
(39), which are later substituted in inequalities (40) and (41). This procedure leads to 16 concurrent
LMIs that are solved easily by commercial software like LMI Toolbox of MATLAB�. Concisely,
the free parameters in the control law, Fi s are obtained offline by checking the feasibility of some
simple LMIs.

Remark 3. Differently from the adaptive methods5–8 which tackle the problem of model uncer-
tainties by computationally demanding online identification of models’ parameters, a fixed-structure
controller as (27)–(28) is used here to compensate for the effects of dynamical uncertainties in
nonlinear teleoperation system.

Remark 4. Unlike the rival methods20–23 in which attaining closed-loop stability relies on the
restrictive assumption for the existence of known passive part in interaction forces; one advantage
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Table I. The parameters of manipulators.

Parameters Symbol Value

Mass of first link m1i 0.11 ∓ 0.011 kg
Mass of second link m2i 0.14 ∓ 0.014 kg
Length of first link l1i 0.2 m
Length of second link l2i 0.18 m

Fig. 2. Considered teleoperation system with two degrees of freedom manipulators.

of the developed controller is that by incorporating position feedback terms in the control law (i.e.,
f21ql and f55qr ), asymptotic stability is achieved in the presence of non-passive interaction forces
without the need for passive parts (specially Si qi ) in their dynamical models; (13)–(14). Namely,
when the term Si qi in interaction forces exist, the non-passive part of interaction force (i.e., τh0 . τe0 )
are locally damped and the system preserves its stability. Moreover, the proposed controller can
provide stability of system when the interaction forces are active (i.e., τh = +Slql + Dlq̇l . τe =
−Sr qr − Dr q̇r ) by setting the controller parameters as f21 > Sl and f55 > Sr . Whereas, the
mentioned methods can’t provide asymptotic stability in contact with active interaction forces.

Remark 5. When the interaction forces have known passive part dynamic as (13) and (14),
the overall system is as (38) and (39) where αx = f21 + f 23 − Sl , βx = (�Cl

T (ql .q̇l) +
f22 Ml(ql) − Dl)M−1

l (ql), αy = f 55 + f57 − Sr ,βy = (�Cr
T (qr .q̇r ) + f56 Mr (qr ) − Dr )M−1

r (qr ). In
the presence of these known passive terms, the conservatism of stability condition is reduced.

4. Simulation and Experimental Results
In order to verify the merits and real-world applicability of the proposed control method, both sim-
ulation and experimental results are provided for the laboratory teleoperation system with 2-DOF
manipulators, as shown in Fig. 2, whose parameters are listed in Table I. The knowledge about the
masses of the links has 10% uncertainty.

The nonlinear model of system is expressed by Eqs. (1) and (2) and have the following inertia,
Coriolis/centrifugal and gravity matrices/vector:

Mi (qi ) =
[

Mi11 Mi12

Mi21 Mi22

]
. C i

(qi .q̇i ) =
[

Ci11 Ci12

Ci21 Ci22

]
. gi (qi ) =

[
gi 1

gi 2

]
,

where for i ∈ {l.r}. Mi11 = l2
2i

m2i + l2
1i
(m1i + m2i )+2 l1i l2i m2i cos(q2i ), Mi12 = Mi21 = l2

2i
m2i +

l1i l2i m2i cos(q2i ), Mi22 = l2
2i

m2i , Ci11 = −2 l1i l2i m2i sin(q2i )q̇2i , Ci12 = −l1i l2i m2i sin(q2i )q̇2i , Ci21 =
l1i l2i m2i sin(q2i )q̇1i , Ci22 = 0, gi 1 = g l2i m2i cos(q1i + q2i ) + l1i (m1i + m2i ) cos(q1i ), gi 2 =
gl2i m2i cos(q1i + q2i ). Here, qki . k ∈ {1.2} is the angular position of each link. In the simula-
tions, the actual masses are varied randomly in the intervals confined by ∓10% of their nominal
values to obtain the actual amounts; namely,

m1i ∈ [0.11︸︷︷︸
m1i

− 0.011︸ ︷︷ ︸
�m1i

. 0.11︸︷︷︸
m1i

+ 0.011︸ ︷︷ ︸
�m1i

; m2i ∈ [0.14︸︷︷︸
m2i

− 0.014︸ ︷︷ ︸
�m2i

, 0.14︸︷︷︸
m2i

+ 0.014︸ ︷︷ ︸
�m2i

],
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Table II. System and controller parameters.

System parameters IDA-PBC controller parameters

δMi δCi δgi f21 . f55 f22 . f56 f23 . f57 f 24 . f58

Nominal system 0 0 0 −I −12I −1.5I −0.01I
Uncertain system 0.0028 0.0012 0.98 −1.3I −14I −1.5I −0.01I

time (s)

tim
e-

de
la

y 
(s

)
tim

e-
de

la
y 

(s
)

time (s)

Fig. 3. The variable time delays in the forward and backward paths of communication channel.

where m1i and m2i denote the nominal amounts; �m1i = 10
100 m1i and �m2i = 10

100 m2i represent
10% uncertainties. It is evident that 0.0006 I<Mi (qi ) < 0.031 I ; I ∈R

2×2. The time delays in
forward and backward paths of communication channel are considered random and are shown
in Fig. 3. So, the lower and upper bounds of delays and their derivative are hl = 0.8, hr = 0.79,
μl = 0.72, μr = 0.75.

4.1. Comparative simulations
In this subsection, the teleoperation system, as shown in Fig. 2 with the designed IDA-PBC controller
is simulated by MATLAB�, and the results are compared to the ones obtained by the control method
proposed by Islam et al.22

Using the LMI toolbox of MATLAB�, the parameters of IDA-PBC controller (27) and (28) are
obtained from Theorem 1 as expressed in Table II; I ∈R

2×2 denotes identity matrix. The parameters
of system in Table II are derived with the assumption |q̇i | ≤ 1.5 rad/sec.

On the other hand, the rival controls adopted from Islam et al.22 are as follows:

τ ∗
l = gl(ql) + Cl(ql .q̇l)q̇l − kpl(ql − qr (t − Tr (t))) − kdl q̇l, (52)

τ ∗
r = gr (qr ) + Cr (qr .q̇r )q̇r + kpl(ql(t − Tl(t)) − qr ) − kdl q̇r , (53)

where kpl= 1.5 I. kdl = 0.5I ; I ∈R
2×2. The simulations are performed for two different types of

interaction scenarios. For the fair comparison, the first scenario is exactly similar to the one presented
in the study by Islam et al.22 and in the second scenario, a more comprehensive case is simulated.

4.1.1. Scenario #1. In the first scenario, the interaction forces between human and local manipula-
tors and between environment and remote manipulators are considered to be non-passive as in the
study by Islam et al.,22 that is the model of (13) and (14) is considered with known passive part,
whose parameters are Sl = I . Dl = I . Sr = I and Dr = I.; I ∈R

2×2 and τh0 and τe0 are bounded
signals as depicted in Fig. 4.

The position tracking of teleoperation system and the velocity of manipulations in the presence of
variable time delay in communication channel, uncertainties in the manipulators’ models, and non-
passive interaction forces in terminations are depicted in Figs. 5–6, respectively. Also control forces
are shown in Fig. 7. The initial conditions are chosen to be as ql = q̇l = q̇r = [0 0]T . qr = [0.1 0.1]T .
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time (s)

Fig. 4. The profile of the constant parts of non-passive interaction forces (τh0, τe0).
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Fig. 5. Positions and positions errors in the joint space for teleoperation system in contact with non-passive
interaction forces with known passive part, scenario #1, controlled by (a) proposed scheme, (b) method of
Islam et al.22
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Fig. 6. Velocities in the joint space for teleoperation system in contact with non-passive interaction forces with
known passive part, scenario #1, controlled by (a) proposed scheme, (b) method of Islam et al.22
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Table III. Position errors in joint space.

MSE (e1) (rad) MSE (e2) (rad) Max (e1) (rad) Max (e2) (rad)

Proposed method 0.076 0.009 2.593 0.845
Method of Islam et al.22 18.00 2.299 4.600 1.802

time (s) time (s)

(a) (b)

Fig. 7. Control forces of teleoperation system in contact with non-passive interaction forces with known passive
part, scenario #1, controlled by (a) proposed scheme, (b) method of Islam et al.22

As seen, when the interaction forces are non-passive with passive part in their dynamic, both
methods preserve stability of system while the proposed controller can provide better tracking per-
formance than rival one since the position errors converge to zero in our method; because of using the
integrals of position errors in IDA-PBC controller (i.e., f24

∫ t
0 eldt and f58

∫ t
0 er dt). Note that there

are tracking errors in system controlled by other methods.20–23 Simulation results in scenario #1 con-
firm this claim. Table III reports the Mean Square Errors (MSEs) and maximum errors for position of
links in the joint space, that is ek = qkl − qkr . for k = 1.2. As seen, the MSEs and maximum errors
obtained by our method are considerably lower than the rival ones.

4.1.2. Scenario #2. In the second scenario, the general non-passive interaction forces are considered
with no passive parts in their dynamic, that is Sl = 0 . Dl = 0. Sr = 0 . Dr = 0.; 0 ∈R

2×2. So, τh =
τh0 and τ e = τe0 , where τh0 and τe0 are bounded signals as depicted in Fig. 4. The simulation results,
in this case, are shown in Figs. 8–10.

As seen, for non-passive interaction forces without any known part, the controllers presented
in the Islam et al.22 can’t provide stability of system and the positions are increased without lim-
its and velocities are not zero, whereas the proposed controller yields to asymptotic stability of
position errors and velocities. Because the position feedback terms in the proposed IDA-PBC (i.e.,
f21ql . f55qr ) provide stability when interaction forces are non-passive with no passive part. In other
words, if f21 and f55 in Eqs. (36)–(37) are simultaneously zero, these equations have no solution.

4.2. Experimental verification
In this subsection, real-time implementation results are provided for the platform as shown in Fig. 2.
Each manipulator is made of plexi 4mm and is actuated by pair of DC motors MG946, which are
capable of producing torque up to 12 Nm with a nominal voltage of 6V and are driven by Arduino
Uno. The local and remote manipulators are connected to a laptop via USB ports. The local and
remote controllers and communication channel are realized in MATLAB. The time delay in forward
and backward paths is shown in Fig. 3.

To sense the angular position and velocity of the links, the platform is equipped with Inertial
Measurement Units (IMUs) MPU6050, which include a gyro to measure angular velocities around
three axes and an accelerometer to measure linear accelerations in the same axes, as shown in
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Fig. 8. Positions and positions errors in the joint space for teleoperation system in contact with non-passive
interaction forces with no passive part, scenario #2, controlled by (a) proposed scheme, (b) method of
Islam et al.22
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Fig. 9. Velocities in the joint space for teleoperation system in contact with non-passive interaction forces with
no passive part, scenario #2, controlled by (a) proposed scheme, (b) method of Islam et al22

Fig. 11(a). IMUs are installed on the body of manipulators, as shown in Fig. 11(b). Only the angular
velocity around the axis z and the acceleration on the perpendicular axes y and x are directly taken into
account, and the angular position is estimated through them. Since the estimation obtained through
the acceleration measurements has high-frequency noise, by sensor fusion, the complementary filters
are used to estimate the angular position of links by

q(kT s) = (1− ∝) qa(kT s)+ ∝ (
q ((k − 1) Ts) + Ts q̇(kT s)

); q = q1i , q2i
; i = l.r, (54)

where qa = arctan(
ay

ax
) is accelerometers angle estimation. The constant ∝ is typically close to 1.

When it is 1, we obtain the gyro solution, and when it is 0, we obtain the accelerometer solution.
Effectively, we will eliminate the drift, while retaining the good short timeframe qualities of the gyro.

The performance of the system is evaluated in both of free motion and in contact with non-passive
interaction forces. Consider the case that the human operator act on local manipulator and the remote
manipulator has free motion from 0 to 60 s and carry the 80 g weight from time 60 to 140 s. This
situation, as shown in Fig. 12, is a non-passive interaction force with no passive part, similar to the
scenario #2 in Section 4.1.2. The results of angular position and velocity of manipulator links are
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(a) (b)

time (s) time (s)

Fig. 10. Control forces of teleoperation system in contact with non-passive interaction forces with no passive
part, scenario #2, controlled by (a) proposed scheme, (b) method of Islam et al.22

Fig. 11. (a) IMU axes. (b) Installation of IMU on manipulator.

Fig. 12. Laboratory teleoperation system in contact with non-passive environment.

shown in Figs. 13–14(a), which are measured by IMU sensors. Also, the experimental results for the
method of Islam et al.22 are shown in Figs. 13–14(b).

As seen, in free motion from t = 0 to 60 s, when the environment force is zero, both methods
provide stability and desired performance, but in contact with non-passive interaction forces (carrying
the weight) from t = 60 to 140 s, only the proposed controller provide asymptotical stability and
position tracking and the method of Islam et al.22 cannot attain stability and tracking objective and
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Fig. 13. Angular positions for the teleoperator in contact with non-passive environment, controlled by (a)
proposed scheme, (b) method of Islam et al.22

Fig. 14. Angular velocities for the teleoperator in contact with non-passive environment controlled by (a)
proposed scheme, (b) method of Islam et al.22

the robot links fall due to gravitational forces of weight. Note that in real implementation, the position
is limited and cannot be larger than 2π rad.

It is worth noting that in Fig. 14, the peaks of velocities in some times; for instance, t = 5, 14, 68 are
related to the situations that human operator applies forces to the local manipulator; so, the positions
of links are suddenly changed; consequently, great velocities are appeared in the curve. In Fig. 14(b),
the peaks of velocities near t = 60 correspond to the condition that the external weight is hanged
to the remote robot; namely, peripheral force is applied to the remote manipulator. Briefly, peaks in
velocity profiles occur when the exogenous forces are exerted on manipulators and consequently the
position of links is abruptly altered.

5. Conclusions
This paper has studied the design of bilateral teleoperation system in the presence of asymmetrical
time-varying delays in the communication channel, uncertainties in the manipulators’ models, and
non-passive interaction forces in the terminations. The notion of IDA-PBC has been employed to
achieve stable position tracking. The controller parameters are determined by synthesis conditions,
which have been obtained via LK theorem to assure robust asymptotic stability of the closed-loop
system. The robust asymptotic stability and position tracking in the nonlinear teleoperation system
are guaranteed by a new fixed-structure controller whose parameters are computed offline via solving
a set of LMIs. The desired performance is achieved without any requirement for known passive
parts in the dynamic models of the interaction forces, because of using the position feedback in the
controllers. Also, asymptotic stability of the position errors in contact with non-passive interactions
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is attained because of using the feedback of their integrals in the control law. Comparative simulation
and experimental results illustrate the benefits and applicability of the proposed strategy; specifically,
mean square errors (MSEs) and maximum errors for the positions of links in the joint space are
considerably decreased by the suggested approach compared to a recent rival one. Considering more
performance specifications in the design of controller defines future research line.
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