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Abstract

Existential rules are Datalog rules extended with existential quantifiers in rule-heads. Three

fundamental restriction paradigms that have been studied for ensuring decidability of query

answering under existential rules are weak-acyclicity, guardedness and stickiness. Towards

the identification of even more expressive decidable languages, several attempts have been

conducted to consolidate weak-acyclicity with the other two paradigms. However, it is not

clear how guardedness and stickiness can be merged; this is the subject of this paper. A

powerful and flexible condition, called tameness, is proposed, which allows us to consolidate

in an elegant and uniform way guardedness with stickiness.

KEYWORDS: datalog extensions, query answering, decidability, complexity, guardedness,

stickiness

1 Introduction

The interest in using logic in databases gave rise to the field of deductive databases.

It appeared that logic programming (LP) was a suitable formalism for querying

relational databases. In this context, the LP-based query language Datalog has been

defined and intensively studied; see, e.g., (Ceri et al. 1990). Interestingly, Datalog gone

beyond its original purpose, and is now used in a variety of applications including

web data extraction (Gottlob and Koch 2004), source code querying and program

analysis (Hajiyev et al. 2006), and distributed system analysis (Marczak et al. 2012).

Furthermore, since Datalog rules are clauses in the function-free Horn fragment of

first-order logic, Datalog revealed itself relevant also for semantic web applications

such as ontological modeling and reasoning. As a consequence, Datalog has evolved
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into a first class formalism with efficient implementations such as cmodels (Lierler

and Maratea 2004), DLV (Leone et al. 2006) and clasp (Gebser et al. 2007).

Although Datalog is a powerful rule-based formalism, one of its main weaknesses,

already criticised by Patel-Schneider and Horrocks (2007), is its inability to infer

the existence of new objects which are not already in the extensional database.

Existential rules, also known as tuple-generating dependencies (TGDs) and Datalog±

rules, overcome this limitation by extending Datalog with existential quantification

in rule-heads (Baget et al. 2011; Krötzsch and Rudolph 2011; Calı̀ et al. 2012; Calı̀

et al. 2012; Leone et al. 2012). Notice that, in the context of the present paper, a set

of existential rules can be seen as a logic program since each existentially quantified

variable in the head of a rule can be appropriately replaced by a functional term;

more details are given in Section 2. Unfortunately, without syntactic restrictions, the

above extension leads to undecidability (Beeri and Vardi 1981; Calı̀ et al. 2008).

In this context, a query is not just answered against an extensional database D,

as in the classical setting, but against a logical theory constituted by D and a set

Σ of existential rules. Thus, for a Boolean conjunctive query (CQ) q, one checks

whether the logical theory D ∪ Σ entails q, rather than just checking whether D

entails q. Analogously, if q is a CQ p(X) ← ϕ(X,Y) with output variables X, then

its answer against D ∪ Σ consists of all tuples t of constants such that, when we

substitute the variables X with t, ϕ(t,Y) evaluates to true in every (possibly infinite)

model of D ∪ Σ. Answering a CQ q against D ∪ Σ is equivalent to evaluating

the same query over a universal model of D ∪ Σ, that is, a model that can be

homomorphically embedded into every other model of D ∪ Σ. Such a universal

model can be constructed via the well-known chase algorithm (Fagin et al. 2005;

Deutsch et al. 2008), which we will present in Section 2. Informally, the chase adds

new atoms to the extensional database D, possibly involving null values (Skolem

constants), until the final result satisfies Σ. For example, consider the database

D = {person(john)} and the set Σ consisting of the rules person(P )→ ∃Ffather(F, P )

and father(F, P ) → person(F), asserting that every person has a father, and every

father is a person. The chase-expansion of D w.r.t. Σ is the infinite set of atoms

{person(john), father(z1, john)} ∪
⋃∞
i=1{person(zi), father(zi+1, zi)}, where z1, z2, . . . are

(labeled) nulls representing unknown individuals. The Boolean conjunctive query

q : p ← father(X, john), person(X), which asks whether John’s father is a person, is

positively answered on this infinite expansion, and indeed D ∪ Σ entails q; however,

D does not entail q.

The discovery of expressive decidable fragments of TGDs is currently a field of

intense research in the AI and KR communities. Several abstract (a.k.a. semantic)

classes have been studied so far: finite expansions sets (fes), i.e., sets of TGDs which

ensure the termination of the chase, bounded treewidth sets (bts), i.e., sets which

guarantee that the (possibly infinite) instance constructed by the chase has bounded

treewidth, and finite unification sets (fus), i.e., sets which guarantee the termination

of (resolution-based) backward chaining procedures; see (Baget et al. 2011). Only

recently, parsimonious sets (ps), i.e., sets of TGDs under which the chase can be

precociously terminated, were introduced (Leone et al. 2012). Each one of the above

conditions has also its syntactic counterpart: weakly-acyclic rules are fes (Fagin et al.
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2005), guarded-based rules are bts (Calı̀ et al. 2008; Baget et al. 2011; Calı̀ et al.

2012), sticky rules are fus (Calı̀ et al. 2012), while shy rules are ps (Leone et al. 2012).

Towards the identification of even more expressive languages, several attempts have

been conducted to consolidate the aforementioned classes. Notable formalisms are

glut-guardedness (Krötzsch and Rudolph 2011) and weak-stickiness (Calı̀ et al. 2012),

obtained by joining weak-acyclicity with guardedness and stickiness, respectively.

Unfortunately, none of the above is expressive enough to model real-life cases such

as the example below.

Example 1.1
Consider the following set Σ of TGDs:

σ1 : foEmp(X)→ ∃Y hasMgr(X,Y ), foEmp(Y ) σ5 : foEmp(X), foEmp(Y )→ collOf (X,Y )

σ2 : boEmp(X)→ ∃Y hasMgr(X,Y ), boEmp(Y ) σ6 : boEmp(X), boEmp(Y )→ collOf (X,Y )

σ3 : hasMgr(X,Y ), foEmp(X)→ foEmp(Y ) σ7 : ceo(X)→ foEmp(X), boEmp(X)

σ4 : hasMgr(X,Y ), boEmp(X)→ boEmp(Y ) σ8 : moreSen(X,Y ), collOf (X,Y )→ moreThan(X,Y ).

They, respectively, express that: each front (resp., back) office employee has a

manager, who is also a front (resp., back) office employee; the manager of a front

(resp., back) office employee is a front (resp., back) office employee; front (or back)

office employees are colleagues; the chief executive officer presides both the front

and the back office; more senior employees earn more money. The set Σ is neither

fes (due to σ1; on a database as simple as {foEmp(a)}, the chase does not terminate),

nor bts (due to σ1 and σ5; the relation collOf stores an infinite clique, and thus

the instance constructed by the chase has infinite treewidth), nor fus/ps (due to σ1

and σ3).

Our goal is to propose new expressive fragments of TGDs that can cope with

such real-life scenarios. Let us say that Σs = {σ5, σ6} is sticky, while Σ \ Σs is

guarded. Both guardedness and stickiness, which we will discuss in Section 2, are

well-accepted paradigms. On the one hand, guarded TGDs, inspired by the guarded

fragment of first-order logic (Andréka et al. 1998), form a robust language which

captures important lightweight DLs such as DL-Lite and EL (Calı̀ et al. 2012);

in fact, a TGD is guarded if it has a body-atom, called guard, which contains all

the body-variables. On the other hand, sticky TGDs allow for joins in rule-bodies

which are expressible only via non-guarded rules, and they are able to capture well-

known data modeling constructs such as multivalued dependencies (Calı̀ et al. 2012).

The main research challenge underlying our work is to combine guardedness and

stickiness. This is a non-trivial task since we have to join two paradigms which are

completely different in nature. Although the techniques in Krötzsch and Rudolph

(2011); Calı̀ et al. (2012) allow for a natural consolidation of weak-acyclicity with

other languages, it is not clear how to merge non-weakly-acyclic formalisms that

admit infinite universal models. Hence, we had to come up with novel techniques

beyond the state of the art. As a central new paradigm we introduce tameness. The

key idea underlying this new notion is to tame the interaction between guarded and

sticky rules as follows: none of the sticky rules “feeds”, during the construction of

the chase, the guard atom of a guarded rule; however, sticky rules may “feed” the

non-guard atoms. Observe that σ5 in Example 1.1 may “feed” the atom collOf (X,Y )
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of σ8; however, by choosing moreSen(X,Y ) as the guard atom of σ8, the tameness

condition is satisfied. Our contributions can be summarized as follows:

1. We first investigate the union of guardedness and stickiness. It turns out

that query answering under the resulting formalism, called guarded|sticky, is

undecidable. In fact, this undecidability result holds even when further restrictions

are imposed.

2. We then suggest a natural restriction which is sufficient in order to tame the

interaction between guardedness and stickiness, and gain decidability of query

answering. Intuitively, we force that none of the sticky rules “feeds” the guard-

atom of a guarded rule; however, sticky rules may “feed” the non-guard atoms

in an unrestricted way. The above (abstract) condition, which heavily depends on

the extensional database, gives rise to a formalism called tame guarded|sticky.

A sufficient (syntactic) condition, called predicate-tameness, that can be checked

in polynomial time, is also proposed.

3. We investigate the complexity of query answering under tame guarded|sticky,

and we show that the consolidation of guardedness and stickiness comes without

paying a price in complexity. In fact, tameness has the same complexity as

guardedness, i.e., ptime-complete in data complexity (only the database is part

of the input), np-complete in case of a fixed set of TGDs, exptime-complete in

case of bounded arity, and 2exptime-complete in combined complexity (apart

from the database, also the query and the TGDs are part of the input). These

results are obtained by providing a novel alternating algorithm.

2 Definitions and background

Technical Definitions. We consider the following pairwise disjoint (infinite) sets: a

set Γ of constants, a set ΓN of labeled nulls, and a set ΓV of regular variables. We

denote by X sequences (or sets) of variables X1, . . . , Xk . A relational schema R is a

set of relational symbols (or predicates). A term t is a constant, null, or variable. An

atom has the form r(t1, . . . , tn), where r is a relation, and t1, . . . , tn are terms. For an

atom a, we denote terms(a), var(a) and pred (a) the set of its terms, the set of its

variables, and its predicate, respectively; these extend to sets of atoms. Conjunctions

of atoms are often identified with the sets of their atoms. An instance I for a schema

R is a (possibly infinite) set of atoms r(t), where r ∈ R and t is a tuple of constants

and nulls. A database D is a finite instance such that terms(D) ⊂ Γ. Two sets of

atoms A,A′ are S-isomorphic, where S is a set of terms, denoted A �S A′, if there

exists a bijective homomorphism h such that h(A) = A′, h−1 is a homomorphism,

h−1(A′) = A, and h, h−1 are the identity on S .

A conjunctive query (CQ) q of arity n over a schema R, written q/n, is an assertion

of the form p(X)← ϕ(X,Y), where X∪Y ⊂ ΓV , ϕ is a conjunction of atoms (possibly

with constants) over R, and p �∈ R is an n-ary predicate. Formula ϕ is the body of

q, denoted body(q). A Boolean conjunctive query (BCQ) is a CQ of arity zero. The

answer to a CQ q/n over an instance I , denoted q(I), is the set of all n-tuples t ∈ Γn
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for which there exists a homomorphism h such that h(ϕ(X,Y)) ⊆ I and h(X) = t. A

BCQ has a positive answer over I , denoted I |= q, if 〈〉 ∈ q(I).
A tuple-generating dependency (TGD) σ over a schemaR is a formula ∀X∀Yϕ(X,Y) →

∃Zψ(X,Z), where X ∪ Y ∪ Z ⊂ ΓV , and ϕ,ψ are conjunctions of atoms over R;

ϕ is the body of σ, denoted body(σ), while ψ is the head of σ, denoted head (σ).

For brevity, we will omit the universal quantifiers. An instance I satisfies σ, written

I |= σ, if the following holds: whenever there exists a homomorphism h such that

h(ϕ(X,Y)) ⊆ I , then there exists h′ ⊇ h such that h′(ψ(X,Z)) ⊆ I; I satisfies a set Σ

of TGDs, denoted I |= Σ, if I satisfies each σ ∈ Σ. The models of a database D and

a set Σ of TGDs, denoted mods(D,Σ), is the set of instances {I | I ⊇ D and I |= Σ}.
The answer to a CQ q w.r.t. D and Σ, denoted ans(q, D,Σ), is the set of tuples
⋂
I∈mods(D,Σ){t | t ∈ q(I)}. The answer to a BCQ q w.r.t. D and Σ is positive, denoted

D ∪ Σ |= q, if 〈〉 ∈ ans(q, D,Σ). The problem, called CQ answering, tackled in this

work is as follows: given a CQ q, a database D, a set Σ of TGDs, and a tuple

of constants t, decide whether t ∈ ans(q, D,Σ). In case that q is a BCQ, the above

problem is called BCQ answering. The data complexity of the above problems is

calculated taking only the database as input. The combined complexity is calculated

considering as input also the query and the set of TGDs. The above problems are

logspace-equivalent (implicit in Chandra and Merlin (1977)), and we focus only on

BCQs.

We are going to employ the chase procedure (Maier et al. 1979; Johnson and Klug

1984), which works on an instance through the TGD chase rule defined as follows.

Consider an instance I , and a TGD σ : ϕ(X,Y) → ∃Zψ(X,Z). We say that σ is

applicable to I if there exists a homomorphism h such that h(ϕ(X,Y)) ⊆ I . Let I ′

be the instance I ∪ h′(ψ(X,Z)), where h′ ⊇ h is such that h′(Z) is a “fresh” null not

occurring in I , for each Z ∈ Z. We say that the result of applying σ to I with h is

I ′, and write I〈σ, h〉I ′; in fact, I〈σ, h〉I ′ defines a single TGD chase step. The chase

algorithm for a database D and a set Σ of TGDs consists of an exhaustive application

of TGD chase steps in a fair fashion, which leads to a (possibly infinite) model of

D and Σ, denoted chase(D,Σ); for the formal definition see the online appendix. In

fact, the result of the chase is defined as the least fixpoint of a monotonic operator,

that is, the TGD chase step (similar to the immediate consequence operator in logic

programming). We denote by chase[k](D,Σ) the instance constructed after k � 0 TGD

chase steps. The instance chase(D,Σ) is a universal model of D and Σ, i.e., for each

I ∈ mods(D,Σ), there exists a homomorphism that maps chase(D,Σ) to I , and thus

D∪Σ |= q iff chase(D,Σ) |= q, for each BCQ q (Fagin et al. 2005). A useful notion, that

we are going to employ in our later technical definitions and proofs, is the so-called

chase relation (Calı̀ et al. 2012) of an instance I and a set Σ of TGDs. Roughly, it is a

binary relation on atoms, denoted by CR[I,Σ], which mimics all the chase derivations

of the chase and coincides with the maximum subset of chase(I,Σ)×chase(I,Σ) such

that 〈a, b〉 ∈ CR[I,Σ] if b is obtained from a via a chase step. More formally,

assuming that chase[k](I,Σ)〈σ, h〉chase[k+1](I,Σ), where k � 0, is applied during the

construction of chase(I,Σ), and Pk = h(body(σ)) × (chase[k+1](I,Σ) \ chase[k](I,Σ)),

the chase relation CR[I,Σ] of I and Σ is the set
⋃
i>0 Pi. The transitive closure of

CR[I,Σ] is denoted by CR+[I,Σ].
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Fig. 1. Sticky property and propagation step.

In the context of the present paper, a set of TGDs can be seen as a logic

program (or, equivalently, as an ASP program without disjunction and negation)

since existentially quantified variables in rule-heads are equivalent to appropriate

functional terms; e.g., the TGD r(X)→ ∃Y s(X,Y ) is equivalent (for query answering

purposes) with the rule r(X) → s(X, f(X)). This is true since we do not consider

negation in existential rules, and we operate under the certain semantics which

means that it suffices to employ the chase algorithm that never unifies null values.

Relevant Classes of TGDs. Guarded TGDs, inspired by the guarded fragment

of first-order logic (Andréka et al. 1998), were proposed in Calı̀ et al. (2008).

A TGD σ is guarded if there exists an atom a ∈ body(σ), called guard, which

contains all the variables occurring in body(σ); let guarded be the class of guarded

TGDs (Calı̀ et al. 2008). Guarded TGDs with exactly one body-atom are called

linear, and the resulted class is denoted linear (Calı̀ et al. 2012). For example, the

TGD r(X,Y ), s(Y ,X, Z) → ∃W r(Z,W ) is guarded, where s(Y ,X, Z) is the guard

and r(X,Y ) is a side atom. The chase of a database w.r.t. a set of guarded TGDs

has bounded treewidth. This property allows us to show that query answering under

guarded TGDs is decidable (Calı̀ et al. 2008). The complexity of guarded TGDs has

been also investigated in (Calı̀ et al. 2008; Calı̀ et al. 2012); it is ptime-complete in

data complexity, np-complete in case of fixed TGDs, exptime-complete in case of

bounded arity, and 2exptime-complete in general.

The class of sticky sets of TGDs, denoted sticky, was proposed in Calı̀ et al. (2012)

with the aim of identifying an expressive class that allows for joins in rule-bodies,

which are expressible only via non-guarded rules. The key idea underlying stickiness

is to ensure that, during the chase, terms which are associated with body-variables

that appear more than once (i.e., join variables) always are propagated (or “stick”)

to the inferred atoms; this is illustrated in Figure 1(a). In particular, stickiness

guarantees that the chase enjoys the so-called sticky property (Calı̀ et al. 2012);

for details see the online appendix. The definition of sticky sets of TGDs hinges

on a variable-marking procedure called SMarking. For notational convenience,

given a TGD σ, an atom a ∈ head (σ), and a universally quantified variable V of σ,

pos(σ, a, V ) is the set of positions in a at which V occurs. SMarking(Σ) is constructed
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as follows. First, we apply on Σ the initial marking step: for each σ ∈ Σ, and for each

variable V ∈ var(body(σ)), if there exists an atom a ∈ head (σ) such that V �∈ var(a),

then each occurrence of V in body(σ) is marked. SMarking(Σ) is obtained by

applying exhaustively on Σ the propagation step: for each pair 〈σ, σ′〉 ∈ Σ × Σ, for

each atom a ∈ head (σ), and for each universally quantified variable V of var(a), if

there exists an atom b ∈ body(σ′) in which a marked variable occurs at each position

of pos(σ, a, V ), then each occurrence of V in body(σ) is marked.

Example 2.1

Consider the set Σ constituted by σ1 : r(X,Y ) → ∃Z r(Y ,Z), σ2 : r(X,Y ) → s(X),

σ3 : s(X), s(Y ) → p(X,Y ) and σ4 : r(X,Y ), r(Z,X) → s(X). By applying the initial

marking (resp., propagation) step, the body-variables of Σ are marked with a cap

(resp., double-cap) as follows: σ1 : r(X̂,
ˆ̂
Y ) → ∃Z r(Y ,Z), σ2 : r(X, Ŷ ) → s(X),

σ3 : s(X), s(Y ) → p(X,Y ) and σ4 : r(X, Ŷ ), r(Ẑ , X) → s(X). Figure 1(b) depicts the

two ways of propagating the marking to the body-variable Y of σ1.

A set Σ of TGDs is sticky if, for every σ ∈ SMarking(Σ), each marked variable

in body(σ) appears only once. Observe that the set Σ given in Example 2.1 is sticky.

Although stickiness does not ensure the finiteness of the treewidth of the chase,

guarantees the termination of backward (resolution-based) chaining procedures,

which in turn implies decidability of query answering. Query answering under sticky

sets of TGDs is in ac0 in data complexity, np-complete in case of fixed TGDs, and

exptime-complete in combined complexity (Calı̀ et al. 2012).

3 Tameness

We study the problem of joining guardedness and stickiness. At first glance, it may

seem it could be sufficient to consider the union of guarded and sticky.

Definition 3.1 (Union of Classes)

Let C1 and C2 be arbitrary classes of TGDs. A set Σ of TGDs belongs to the union

of C1 and C2, denoted C1|C2, if there exists a partition {Σ1,Σ2} of Σ, where Σ1 ∈ C1

and Σ2 ∈ C2. Let PC1|C2
(Σ) be the set of all possible such partitions of Σ.

To avoid confusions, if {Σ1,Σ2} ∈ PC1|C2
(Σ), for some arbitrary set Σ of TGDs,

then Σ1 ∈ C1 and Σ2 ∈ C2, i.e., we first write the set of C1 and then the set of C2.

Notice that, by definition, the classes C1|C2 and C2|C1 coincide.

Example 3.1

Let Σ be the set of TGDs constituted by σ1 : r(X,X, Y )→ ∃Z∃W r(Y , Y , Z), s(Z), q(W ),

σ2 : t(X,Y ) → ∃Z r(Y ,Z), p(Z), σ3 : s(X), q(Y ) → u(X,Y ) and σ4 : p(X), p(Y ) →
v(X,Y ). Clearly, Pguarded|sticky(Σ) = {{{σ1, σ2}, {σ3, σ4}}, {{σ1}, {σ2, σ3, σ4}}}, and thus

Σ ∈ guarded|sticky.

As already thoroughly discussed in Baget et al. (2011), the union of two decidable

classes, in general, leads to undecidability of query answering. This holds also for

linear|sticky, even when further restrictions are imposed; for the proof see the online

appendix.
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Theorem 3.1

BCQ answering is undecidable under: (1) linear|sticky, even for a single linear TGD

and a single sticky TGD, and (2) linear|sticky, even for sticky rules where each

variable occurs only once.

The above result demonstrates the need of suggesting a class somewhat more

restrictive than guarded|sticky. To tame the interaction between guarded and sticky

rules it suffices to guarantee that none of the sticky rules “feeds” the guard atom of

a guarded TGD during the construction of the chase. In other words, whenever a

guarded rule σ is applied with homomorphism h, then its guard must be mapped by

h into an atom obtained from a guarded rule. However, each other atom of body(σ)

can be mapped by h into an atom obtained from either a guarded or a sticky rule.

To formalize this condition we need the so-called guard function.

Definition 3.2 (Guard Function)

Consider a set Σ ∈ guarded. A guard function of Σ is a function g : Σ →
∪σ∈Σbody(σ), where g(σ) ∈ body(σ) and var(g(σ)) = var(body(σ)), for each σ ∈ Σ.

Let Guard (Σ) be the set of all possible guard functions of Σ.

We are now ready to give the formal definition of tameness.

Definition 3.3 (Tameness)

A set Σ ∈ guarded|sticky is called tame if there exists {Σg,Σs} ∈ Pguarded|sticky(Σ) for

which the following condition holds: for each database D, and for each (possibly

infinite) sequence of TGD chase steps Ii〈σi, hi〉Ii+1, where i � 0 and I0 = D,

there exists a guard function g ∈ Guard (Σg) such that, for each k > 0 where

σk ∈ Σg , if � ∈ {0, . . . , k − 1} is the (unique) integer such that hk(g(σk)) ∈ I�+1 \ I�,
then σ� ∈ Σg .

Clearly, the tameness condition is not syntactic since it depends on the chase, and it

is at the same level of abstraction as the previously mentioned classes fes, bts, fus

and ps. However, if we force that none of the predicates that appear in the head

of a sticky rule is used as the predicate of a guard atom, then we get a sufficient

syntactic condition.

Definition 3.4 (Predicate-tameness)

A set Σ ∈ guarded|sticky is called predicate-tame if there exists {Σg,Σs} ∈
Pguarded|sticky(Σ) for which the following condition holds: there exists a guard

function g ∈ Guard (Σg) such that, for each σ ∈ Σs, there is no σ′ ∈ Σg for

which pred (g(σ′)) ∈ pred (head (σ)).

The set given in Example 1.1 is predicate-tame. It is easy to verify that predicate-

tameness implies tameness. Surprisingly, even if the number of partitions of

Pguarded|sticky(Σ) is exponential in the worst-case, predicate-tameness can be checked

in polynomial time; see the online appendix.

Proposition 3.1

The problem of deciding whether a set Σ ∈ guarded|sticky is predicate-tame is in

ptime.
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The predicate-tameness condition can be relaxed in several ways. For example,

we can exploit the notion of the dependency graph (Fagin et al. 2005); let us

illustrate this via an example. Consider the set Σ constituted by the TGDs σ1 :

r(X,Y , Z), s(X) → ∃W s(W ) and σ2 : s(X), s(Y ) → ∃Z r(Z,X, Y ); note that σ1 is

guarded while σ2 is sticky. Σ is not predicate-tame, but it is tame since the join

operation (over X) in body(σ1) cannot be satisfied, whatever the input database is.

This holds since the null value generated at position r[1] by applying σ2, cannot be

propagated to position s[1]. Thus, there is no way for an atom generated by applying

σ2 to “feed” the guard of σ1. This can be detected by inspecting the dependency

graph of Σ. For brevity, in the rest of the paper, whenever we say a tame set of

TGDs we mean a tame guarded|sticky set of TGDs.

4 Querying the tame fragment

We study the problem of query answering under tame sets of TGDs. The fact

that a sticky rule may “feed” a side atom of a guarded rule destroys the main

properties of the chase ensured by guardedness, and therefore the existing al-

gorithms for guarded TGDs are inappropriate in our case. Thus, we had to

look for new decision procedures beyond the state of the art. A key notion

employed in the guarded case is the type of an atom a ∈ chase(D,Σ), defined

as type(a, D,Σ) = {b ∈ chase(D,Σ) | terms(b) ⊆ terms(a)}. The central importance of

type in this case is that the subtree of the guarded chase forest of D and Σ, that

is, the structure obtained from chase(D,Σ) by keeping only the guards and their

children, rooted at a is determined by type(a, D,Σ) (modulo renaming of nulls) (Calı̀

et al. 2008). (In the sequel, the atoms that form the guarded chase forest rooted at

a are denoted by reachg (a, D,Σ).) This fact is at the basis of the existing algorithms

for guarded rules. Unfortunately, due to the presence of sticky rules, tame sets of

TGDs do not enjoy the above property as shown by the following example.

Example 4.1
Let Σ be the tame set of TGDs:

σ1 : p1(X)→ ∃Z p4(X,Z) σ6 : r(X), p5(X,Y , Z), p9(X,Y )→ ∃Wp11(Y ,W )

σ2 : p4(X,Y )→ ∃Z∃W p5(X,Y , Z), p6(Y ,W ,X) σ7 : p2(X), p6(Y ,Z,W ), p7(W,Y , V )→ p8(W,Y ,Z,X)

σ3 : p5(X,Y , Z)→ p7(X,Y , Z) σ8 : p8(X,Y , Z,W ), p3(V ,X)→ p9(X,Y )

σ4 : p5(X,Y , Z)→ s(X) σ9 : p8(X,Y , Z,W ), p3(W,X)→ p10(X,Y , Z,W ),

σ5 : p0(X,Y ), s(Y )→ r(Y )

where Σs = {σ7, σ8, σ9} and Σg = Σ \ Σs, and D = {p0(d, b), p1(b), p2(c), p3(c, b)}. The

chase of D and Σ is depicted in Figure 2. Bold and continuous arrows denote guarded

and sticky chase derivations, respectively; dashed arrows denote the contribution

from side atoms in guarded derivations only. Notice that p11(z1, z4) is obtained from

σ6, the application of which involves p9(b, z1) obtained from the sticky rule σ8, that

is triggered due to p3(c, b) �∈ type(a, D,Σ).

Plan of Attack. Our goal is to extend the notion of type in such a way that

the above key property for guarded TGDs holds also for tame sets of TGDs. In

particular, we associate to an atom a the so-called active type of a w.r.t. a database D
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Fig. 2. The instance chase(D,Σ) and the active type of an atom.

and tame set Σ of TGDs, denoted by atype(a, D,Σ); for example, the active type of

the atom p5(b, z1, z2) in Figure 2 is constituted by the five boldfaced atoms, which are

outside the dashed boundary. This extended notion of type allows us to determine

an interesting superset of reachg (a, D,Σ), denoted by reacht (a, D,Σ); see the atoms

inside the dashed boundary in Figure 2. Roughly, reacht (a, D,Σ) is the set of atoms of

the chase that depend directly or indirectly on a, and that they are generated either

by some guarded rule involving a guard atom which also belongs to reacht (a, D,Σ)

or by some sticky rule. Unfortunately, the active type is in general infinite. However,

what we really need is a relevant subset of reacht (a, D,Σ) constituted by the atoms

generated by guarded rules (p7(b, z1, z2), s(b) and p11(z1, z4) in Figure 2) plus those

that are used as side atoms, even if they are not generated by guarded rules

(p9(b, z1) in Figure 2); we refer to this set as reachgs (a, D,Σ). Interestingly, if Σ

consists of guarded rules, reachg (a, D,Σ), reacht (a, D,Σ) and reachgs (a, D,Σ) coincide,

while atype(a, D,Σ) ⊆ type(a, D,Σ). However, in case Σ is a tame set, to construct

reachgs (a, D,Σ) it is sufficient to consider a finite subset of the active type of a

which, asymptotically, has the same size as the type of a. Notice that the set of

atoms that depend on a, denoted as reach(a, D,Σ), is in general a superset of

reacht (a, D,Σ); atoms inside the dotted boundary in Figure 2. In fact, the atoms of

reach(a, D,Σ) \ reacht (a, D,Σ) (r(b) in Figure 2) are generated by guarded rules and

the guard atoms that are involved in their generation (p0(d, b) in Figure 2) do not

depend on a.

Technical Results. Let us now formalize the above intuitive description. Fix an

instance I , a tame set Σ, and an atom a ∈ chase(I,Σ). If a pair 〈a, b〉 belongs to

CR+[I,Σ], then b is obtained due to some chase derivation that involves a, and we

say that b is reachable from a. Accordingly, we define reach(a, I,Σ) = {b | 〈a, b〉 ∈
CR+[I,Σ]}. Let {Σg,Σs} ∈ Pguarded|sticky(Σ) be the partition of Σ, and g ∈ Guard (Σg)

be a guard function provided by Definition 3.3. For an atom b ∈ reach(a, I,Σ)

obtained from some σ ∈ Σ with homomorphism h, we denote by parent(b, I,Σ)
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the set {h(g(σ))} (resp., h(body(σ))) if σ ∈ Σg (resp., σ ∈ Σs). Notice that, for each

c ∈ parent(b, I,Σ), 〈c, b〉 ∈ CR[I,Σ]. Intuitively, if b is obtained from a guarded

rule, then its parent-set is a singleton containing the guard atom that has been

involved in its generation; otherwise, its parent-set contains all the atoms involved

in its generation. For example, in Figure 2, parent(p11(z1, z4), D,Σ) is the singleton

{p5(b, z1, z2)}, while parent(p9(b, z1), D,Σ) is the set {p3(c, b), p8(b, z1, z3, c)}. We are

now ready to define the set reacht (a, I,Σ) which is obtained from reach(a, I,Σ) by

eliminating every atom that is generated by a rule of Σg , but its parent is not

reachable from a. In fact, an atom belongs to reach(a, I,Σ) \ reacht (a, I,Σ) because

some side atom that has been involved in its generation is reachable from a (see

atom r(b) in Figure 2).

Definition 4.1 (Tame Reachability)

The set of atoms reacht (a, I,Σ) ⊆ reach(a, I,Σ) is inductively defined as {b | a ∈
parent(b, I,Σ)}∪ {b | parent(b, I,Σ) ∩ reacht (a, I,Σ) �= �}.

Recall that in case Σs is empty the set reacht (a, I,Σ) coincides with reachg (a, I,Σ).

We now refine, and at the same time extend, the notion of type by highlighting the

atoms which are not in reacht (a, I,Σ), but are directly involved in its construction;

this set is called the active type of a.

Definition 4.2 (Active Type)

An atom c ∈ chase(I,Σ) belongs to the active type of a w.r.t. I and Σ, denoted as

atype(a, I,Σ), if c �∈ reacht (a, I,Σ) and also there exists b ∈ reacht (a, I,Σ) such that

〈c, b〉 ∈ CR[I,Σ].

In Figure 2, the boldfaced atoms are in the active type of p5(b, z1, z2) since

they have outgoing arrows crossing the dashed boundary of reacht (a, D,Σ). Notice

that an atom of reach(a, I,Σ) \ reacht (a, I,Σ) may belong to the active type of

a w.r.t I and Σ (see r(b) in Figure 2). By definition 4.2, it is easy to see that

reacht (a, I,Σ) �terms(a) reacht (a, atype(a, I,Σ),Σ) which means that we can identify

reacht (a, I,Σ) by exploiting the active type of a. Observe that if Σs = �, then

atype(a, I,Σ) ⊆ type(a, I,Σ), and in case of linear rules, atype(a, I,Σ) = {a}. Unfortu-

nately, atype(a, I,Σ) is in general infinite. However, starting from an atom a obtained

due to a guarded rule, what we really need in order to design a query answering

algorithm for tame TGDs is to generate (as in the guarded case) (i) the atoms

of reacht (a, I,Σ) which are directly involved in the “guarded chase derivations”,

i.e., those that are generated by rules of Σg (atoms p7(b, z1, z2), s(b) and p11(z1, z4)

in Figure 2), and (ii) the atoms which have been used as side atoms during the

applications of rules of Σg (atom p9(b, z1) in Figure 2). We denote this set as

reachgs (a, I,Σ).

Definition 4.3 (Guard-side Reachability)

The set of atoms reachgs (a, I,Σ) is inductively defined as follows: (1) if c ∈
reacht (a, I,Σ) is generated by a rule of Σg and parent(c, I,Σ) = {a}, then c ∈
reachgs (a, I,Σ), (2) if c ∈ reacht (a, I,Σ) is generated by a rule of Σg and parent(c, I,Σ) ⊆
reachgs (a, I,Σ), then c ∈ reachgs (a, I,Σ), and (3) if c ∈ reachgs (a, I,Σ) is generated
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by a rule of Σg , and there exists b ∈ reacht (a, I,Σ) such that 〈b, c〉 ∈ CR[I,Σ], then

b ∈ reachgs (a, I,Σ).

Let Sin(a, I,Σ) =
⋃
b∈reachgs (a,I,Σ) terms(b) and Sout(a, I,Σ) =

⋃
b∈atype(a,I,Σ) terms(b).

In other words, Sin(a, I,Σ) collects the terms of reachgs (a, I,Σ), while Sout(a, I,Σ)

collects the terms of atype(a, I,Σ). For brevity, we refer to the above sets by Sin and

Sout, respectively. The next lemma shows that the terms occurring in the active type

of a but not in a, do not appear in reachgs (a, I,Σ).

Lemma 4.1

It holds that, Sin ∩ Sout ⊆ terms(a).

We are now ready to establish that reachgs (a, I,Σ) can be determined by a finite

subset of atype(a, I,Σ). The key idea underlying this result is that reachgs (a, I,Σ)

can be obtained by considering as a database some representative atoms of

atype(a, I,Σ), which in turn are obtained by keeping unaltered the terms of a

and replacing all the other terms occurring in atype(a, I,Σ) by some special

character. For instance, in Example 4.1, it is easy to verify that reachgs (a, D,Σ) =

{p7(b, z1, z2), s(b), p9(b, z1), p11(z1, z4)} can be generated by applying some chase steps

staring from a database constituted, apart from r(b) and p5(b, z1, z2), also by the

representative atoms p6(z1, �, b), p2(�) and p3(�, b), where � is a special “don’t care”

character.

Proposition 4.1

There exists a finite set T ⊆ atype(a, I,Σ) such that reachgs (a, I,Σ) �terms(a)

reachgs (a, T ,Σ).

Proof

We identify the set T as follows: (1) construct T� from atype(a, I,Σ) by replacing

every term of Sout \ terms(a) with the special symbol �, (2) for each b ∈ T�, if �

appears in b at position i, then replace this occurrence of � in b with the symbol

�b,i, and (3) for each b ∈ T�, add to T an atom c that is arbitrarily chosen from

atype(a, I,Σ) in such a way that there exists a homomorphism h such that h(b) = c.

To show that T is finite it suffices to show that T� is finite. By construction, T� is a

subset of the atoms that can be formed with predicates from the underlying schema

and terms from terms(a) ∪ {�}; thus, T� is finite. Clearly, the second step does not

alter the size of T�. Let us now show that reachgs (a, I,Σ) �terms(a) reachgs (a, T ,Σ).

By Definitions 4.1 and 4.2, each atom of atype(a, I,Σ) \ type(a, I,Σ) is involved in

the generation of some atom of reacht (a, I,Σ) only via sticky rules. (This is the kind

of atoms p2(c), p3(c, b), and p6(z1, z3, b) in Figure 2, which have outgoing arrows

crossing the boundary of reacht (a, D,Σ) and that are labeled by sticky rules.) By

stickiness, each term of Sout \ terms(a) which is lost in some chase derivation that

reaches an atom of reachgs (a, I,Σ) cannot be in any join, and also, by Lemma 4.1,

does not appear in Sin. But these are exactly the terms occurring in atype(a, I,Σ) that

have been replaced by � in the construction of T�. Thus, T is the correct witness of

atype(a, I,Σ) for the generation of the atoms that are used as side atoms in guarded

chase derivation starting from a. �
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Input: An instance q,D,Σ of query answering.

1 Guess the following (chase) structures, and universally goto steps 2, 5 and 13;
A homomorphism h : terms(q) → Γ∪ΓN , and assign h(q) to Q and terms(Q)∩ΓN to N;
A partition {Ng,Ns} of N;
A poset P = Ng, ˙ , where each minimal element is the root of a rooted tree;
A pair az,T (az) , for each z ∈ Ng, and an atom ay, for each y ∈ Ns;

2 Universally select every minimal element z of P and goto next step; //guarded resolution steps

3 Guess a TGD σ ∈ Σg that admits an MGU θ of az and head(σ);
4 Assign T (az)∪θ (body(σ)) to q, and goto step 1;
5 Universally select every z−̇→z̃ ∈ P and goto next step; //guarded chase steps

6 Let cjump = 6; if az Ng
az̃, then: If T (az) Ng

T (az̃), then accept, else reject;

7 Guess σ ∈ Σg, with g being its guard atom, that admits a homomorphism h such that h(g) = az;
8 Apply a chase step with σ and h, generate b, and guess a (finite) active type T (b) for b;
9 Assign (h(body(σ))∪T (b))\T (az) to Q;
10 Universally goto steps 11 and 13;
11 Assign T (b) to T (az), assign b to az, and assign the fresh null of b (if any) to z;
12 Goto step cjump;
13 Universally select every a ∈ Q\{az | z ∈ Ng} and goto next step; //hybrid steps

14 Let A = z∈Ng
T (az) denote the union of all the current (finite) active types;

15 If there is c ∈ D∪A s.t. a N c, then accept, else nondeterministically goto step 16 or 19;
16 Guess a TGD σ ∈ Σs that admits an MGU θ of a and head(σ); //sticky resolution steps

17 If σ contains an ∃-quantified variable Y and a N aθ(Y ), then reject;

18 Assign θ (body(σ)) to Q, and goto step 13;
19 If a contains a null of Ns or two nulls of Ng that are uncomparable w.r.t. −̇→, then reject;
20 Let z be the greatest element of the chain terms(a)∩Ng, ˙ ; //guarded chase steps

21 Let cjump = 21; if az Ng
a, then accept, else goto step 7;

Fig. 3. The alternating algorithm TameQAns.

The Algorithm TameQAns. We assume normalized sets of TGDs, where each

rule has a single head-atom which contains only one occurrence of an existentially

quantified variable; see the online appendix (Lemma C.1). Before presenting our

algorithm, let us highlight, with the aid of Figure 3, the atoms of the chase that are

crucial for deciding whether a query is entailed, and also how they are connected by

the chase relation. Consider a database D, a BCQ q, and a tame set Σ, for which there

exists a homomorphism h such that h(q) ⊆ chase(D,Σ). Figure 3 depicts a segment of

the chase of D and Σ; differently from Figure 2, each arrow may represent more than

one chase derivation. In fact, bold arrows denote guarded chase derivations, while

normal arrows denote sticky ones. Notice that between g4(z4, z3, . . .) and s5(z5, z4),

and also between g5(z5, z3, z1, . . .) and s4(y4, z5, z7, z6), we have a bold arrow followed

by a normal one. This means that a guarded chase derivation is followed by a sticky

one. The atoms at the bottom part form the set h(q), while a null x is in boldface in

an atom a if x is invented in a; we refer to a by ax.

Let {Ng,Ns} be the partition of terms(h(q)) \ Γ such that Ng (resp., Ns) are

the nulls introduced by guarded (resp., sticky) rules; clearly, Ng = {z1, . . . , z8} and

Ns = {y1, . . . , y4}. First, observe that by connecting the nulls of Ng with arrows of

the form −̇→, we obtain a poset where each minimal element (z1 and z6) is the root

of a rooted tree. In particular, each atom reached by a bold arrow contains the

null invented in its direct predecessor (which is not necessarily its parent). Second,
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due to the presence of sticky rules, an atom a ∈ h(q) can mix nulls introduced

by both guarded and sticky rules, or nulls introduced by guarded rules only, but

occurring in atoms which do not appear on the same guarded chase derivation. Our

alternating algorithm TameQAns is shown in Figure 3; for a detailed description of

the algorithm see the online appendix.

By exploiting Proposition 4.1 and the sticky property, we can show via an

inductive argument that indeed the algorithm TameQAns is sound and complete.

It is also possible to show that, at each step of the computation, our algorithm

needs exponential space in general, polynomial space in case of bounded arity, and

logarithmic space if the query and the set of TGDs are fixed. The next result follows

since aexpspace = 2exptime, apspace = exptime and alogspace = ptime; the lower

bounds are inherited from BCQ answering under guarded (Calı̀ et al. 2008).

Theorem 4.1

BCQ answering under tame sets of TGDs is 2exptime-complete in combined

complexity, exptime-complete in case of bounded arity, np-complete in case of

fixed TGDs, and ptime-complete in data complexity.

5 Conclusions

There is a number of challenging open problems to be tackled. The first one is

whether tame guarded|sticky is finitely controllable, i.e., query answering under

arbitrary models (the problem of this paper), and query answering under finite

models coincide. Such a result would be of high relevance in the context of classical

databases where finite models are considered. Notice that both guarded and sticky

are finitely controllable (Barany et al. 2010; Gogacz and Marcinkowski 2013). The

second one concerns the extension of tame guarded|sticky with disjunction. Note

that query answering under guarded-based disjunctive existential rules has been

studied in depth the last years (Alviano et al. 2012; Gottlob et al. 2012; Bourhis

et al. 2013). Finally, we would like to explore the possibility of reducing query

answering under tame guarded|sticky to the problem of evaluating a pure Datalog

query over a database. This will lead to a practical query answering algorithm; in

fact, we are currently working on a DLV-based reasoner for ontological reasoning

under existential rules, and the obtained algorithm will be part of it.
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