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NONLINEAR RISK
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This paper analyzes the joint time-series properties of the level and volatility of expected
excess stock returns. An unobservable dynamic factor is constructed as a nonlinear proxy
for the market risk premia with its first moment and conditional volatility driven by a
latent Markov variable. The model allows for the possibility that the risk–return
relationship may not be constant across the Markov states or over time. We find an overall
negative contemporaneous relationship between the conditional expectation and variance
of the monthly value-weighted excess return. However, the sign of the correlation is not
stable, but instead varies according to the stage of the business cycle. In particular, around
the beginning of recessions, volatility rises substantially, reflecting great uncertainty
associated with these periods, while expected return falls, anticipating a decline in
earnings. Thus, around economic peaks there is a negative relationship between
conditional expectation and variance. However, toward the end of a recession expected
return is at its highest value as an anticipation of the economic recovery, and volatility is
still very high in anticipation of the end of the contraction. That is, the risk–return relation
is positive around business-cycle troughs. This time-varying behavior also holds for
noncontemporaneous correlations of these two conditional moments.

Keywords: Expected Excess Return, Risk Premia, Conditional Variance, Dynamic Factor,
Markov Process

1. INTRODUCTION

In the past 20 years, great progress has been made in modeling the relation between
risk and expected return. Most of this research has focused on the single-period
risk–return trade-off among different securities. There is general agreement that
riskier securities are rewarded by larger expected returns, within a given time
period. However, there are less obvious conclusions about the joint dynamics of
risk and return over time. On a marketwide level, there is no general consensus in
most related empirical work concerning the temporal behavior of both stock market
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returns and their volatility, although there is substantial evidence of nonlinearity
in their dynamics.1 In particular, recent findings show that a distinct pattern is
revealed in expected stock returns and their conditional variances when they are
grouped according to the state of the business cycle.2 This implies that stocks may
bear more risk at some times than others, but it is not indisputable whether, on
average, investors require larger risk premia during times when stocks are riskier.

Theory also does not yield unambiguous insights about the relationship be-
tween risk and excess return. Backus and Gregory (1993), for example, find that
theoretical models are consistent with virtually any sort of relationship between
excess return and its conditional variance proxying for risk, depending on model
preferences and the probability structure across states. Further, using equilibrium
asset-pricing models, one would expect the relationship between excess return
and variables proxying for corporate cash flows and investors’ discount rates to be
nonlinear.

Related empirical research has focused on modeling the dynamics of time-
varying conditional second moments of stock returns as proxies for risk premia.
From a theoretical point of view, the predictability of the level and volatility of
returns should be connected.3 Thus, rather than modeling them separately, con-
siderable effort has gone into modeling their joint dynamic behavior. New models
such as ARCH, GARCH, and stochastic volatility (SV) have been developed to
capture the persistence in the volatility of returns. The main empirical framework
of the joint determination of the conditional mean and variance of stock returns
is the ARCH-M, in which time-varying conditional second moments account for
changes in risk premia. The underlying assumption of these models is that risk pre-
mia on assets can be represented as linear increasing functions of their conditional
covariance with the market.4

In this paper, we are particularly interested in using an empirical framework that
does not impose a priori structure between the conditional mean and volatility of
stock returns. We estimate an unobservable dynamic factor as a nonlinear proxy
for the market risk premia with first and second conditional moments driven by a
latent two-state Markov variable. That is, we consider the possibility that market
return and its volatility are not necessarily related directly but are a function of a
third variable—the Markov process, which represents the state of financial market
conditions.

The approach captures potential asymmetric responses by investors to changes
in risk, depending on their perception of the state of business conditions. The
two Markov states can be interpreted as bull and bear markets.5 Since expected
returns account for changes in the level of the market value and risk due to discrete
changes in the state of financial conditions, bad news may cause a switch to a
bear market (low-return state), whereas positive news can lead to a bull phase
(high-return state). Bear and bull markets could be associated with an increasing
relation between mean and variance for the market returns. However, they could
be associated with an inverse relation as well. In particular, in our framework,
expected stock returns can be higher or lower during periods when the market
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is more volatile. For example, it could be the case that, in those times, investors
desiring to hedge against risk might move back and forth from stocks, driving
changes in expected stock returns and the direction of the risk–return relation
according to the stage of the economy. Thus, as the market value and the level of
risk switch regimes, the model can account for the leverage effect—where negative
shocks to returns increase volatility; and to the volatility feedback—where high
expected future volatility is associated with low current stock prices and high
expected future returns.6

The proposed framework allows the use of multivariate information with a parsi-
monious variance–covariance structure to produce the sort of predictions obtained
from regression models. In contrast, most ARCH, GARCH, and SV models use
only the information contained in returns. The multivariate information is intro-
duced by constructing a stock market index, subject to switches between bull
and bear markets, from a range of financial variables, as in Chauvet and Potter
(2000). We also examine the risk–return relationship for stocks from different firm
sizes, which captures potential asymmetric behavior across financial states, de-
pending on different market capitalization. Ultimately, forecasts of excess returns
can be obtained from forecasts of the mean and volatility of the stock market in-
dex. Our analysis focuses on the risk–return dynamics across the Markov states
and the business-cycle phases. In particular, we study their contemporaneous as
well as offset correlations around business cycle turning points as dated by the
NBER.

In terms of results, we find a significant asymmetric behavior of conditional
excess returns according to firm size. In particular, excess returns on stocks of small
firms, as proxied by the CRSP equal-weighted index, are more reactive to changes
in the state of financial markets than large firms. In addition, a business cycle pattern
is present in the conditional expectation and variance of the value-weighted excess
return. Typically, the conditional mean decreases a couple of months before or at
the peak of expansions, and increases before the end of recessions. On the other
hand, the conditional volatility rises considerably during economic recessions.7

With respect to the risk–return relation, we find that, during bear markets, ex-
pected excess returns are low whereas the conditional volatility is high. In bull
markets, the conditional mean is high whereas the volatility is low. However, the
contemporaneous correlation is not stable, but changes signs according to the state
of the business cycle, as measured by the NBER. In particular, around the beginning
of recessions, expected returns decrease, anticipating a decline in earnings, and
volatility increases substantially, reflecting great uncertainty associated with these
periods. Thus, around economic peaks, there is a negative relationship between
conditional expectation and variance, as in the leverage effect. Toward the middle
of a recession, volatility is still very high and expected returns are at their highest
value, anticipating the imminent economic recovery. That is, the risk–return rela-
tion is positive around business-cycle troughs, as in the volatility feedback effect.
This time-varying behavior also holds for noncontemporaneous correlations of
these two conditional moments.
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The paper is organized as follows: The second section describes the model
and interprets nonlinear risk premia within the Markov-switching dynamic factor
framework. The third section discusses estimation and derives analytical expres-
sions of the conditional moments of the excess returns. In the fourth section, the
empirical results are presented and compared to extant literature. The fifth section
concludes.

2. MODEL DESCRIPTION

We propose modeling excess returns on stocks,Ykt, as a function of a common
unobserved dynamic factor,Ft , and individual idiosyncratic noises,εεkt. The factor
captures marketwide comovements underlying these stocks, and it is a parsimo-
nious proxy for the market risk premium:

Ykt = λst
k Ft + εεkt, k = 1, . . . ,4; St = 0, 1; εεkt ∼ i.i.d. N(0,Σ). (1)

In a first specification,Ykt is a 4× 1 vector of monthly excess stock return (defined
as the difference between continuously compounded stock returns and the 3-month
T-bill rate) on the valued-weighted index, the equal-weighted index, IBM stock,
and GM stock. In a second specification,Ykt includes other financial variables
such as price/earnings ratio, dividend yield, 3-month T-bill rate, in addition to the
excess return on the valued-weighted index. The state-dependent factor loadings,
λst

k , measure the sensitivity of thekth series to the market risk premia,Ft , in
Markov stateSt . The factor loading for the value-weighted excess return is set
equal to 1 in both states to provide a scale for the latent dynamic factor.8

To examine potential changes in conditional excess return and in its volatility
across different states of the financial markets, we allow the first and second
moments of the factor to switch regimes according to a Markov variable,St ,
representing the state of financial conditions9:

Ft = α1+ α0St + φFt−1+ ηSt , St = 0, 1; ηSt ∼ N
(

0, σ 2
ηSt

)
; (2)

that is, financial markets can be either in an expansion period (bull market),St = 1,
or in a contraction state (bear market),St = 0, with the switching ruled by the tran-
sition probabilities of the first-order two-state Markov process,pi j =Prob[St =
j | St−1= i ],

∑1
j=0 pi j = 1, i, j = 0, 1.10 The dynamic factor is, therefore, a repre-

sentation of nonlinear market risk across Markov states. Cyclical variation in the
nonlinear risk is generated from the common shock (ηSt ) to each of the observable
variables (Ykt), and all idiosyncratic movements arise from the termεεkt. That is,
we assume thatηSt andεεkt are mutually independent at all leads and lags, for all
k= 1, . . . ,4, for each model specification. The dynamic factor is the common ele-
ment among the financial variables and is produced as a nonlinear combination of
the observable variablesYkt. This factor has a time-varying conditional mean and
variance and, therefore, should play a role in determining the time-series behavior
of market risk premia.

https://doi.org/10.1017/S1365100501023082 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023082


NONLINEAR RISK 625

3. ESTIMATION AND ANALYSIS OF CONDITIONAL MOMENTS

The parameters of the model are estimated using a nonlinear discrete version of
the Kalman filter combined with Hamilton’s (1989) filter in one algorithm, as
suggested by Kim (1994) based on the work of Harrison and Stevens (1976). The
model is cast in state-space form, where equations (1) and (2) are, respectively, the
measurement and transition equations. The goal of the nonlinear filter is to form
forecasts of the factor and the associated mean squared error matrices, based not
only on information available up to timet − 1, It−1≡ [Y′t−1,Y

′
t−2, . . . ,Y

′
1]′, but

also on the Markov stateSt taking on the valuej , and onSt−1 taking on the valuei .
That is,

F (i, j )
t |t−1 = E[Ft | It−1, St = j, St−1 = i ], (3)

θ
(i, j )
t |t−1 = E[(Ft − Ft |t−1)(Ft − Ft |t−1)

′ | It−1, St = j, St−1 = i ], (4)

whereFt |t−1= E(Ft | It−1). The nonlinear Kalman filter is

F (i, j )
t |t−1 = µ j + φFi

t−1|t−1, (5)

θ
(i, j )
t |t−1 = φ2θ i

t−1|t−1+ σ 2
st
, (prediction equations) (6)

F (i, j )
t |t = F (i, j )

t |t−1+ K(i, j )
t N(i, j )

t |t−1, (7)

θ
(i, j )
t |t =

(
1− K(i, j )

t λ j
)
θ
(i, j )
t |t−1, (updating equations) (8)

where µ j =α1+α0St ,K
(i, j )
t = θ(i, j )t |t−1λ

j ′[Q(i, j )
t ]−1,N(i, j )

t |t−1=Yt −λ j F (i, j )
t |t−1 is the

conditional forecast error ofYt , and Q(i, j )
t =λ j θ

(i, j )
t |t−1λ

j ′ +Σ is its conditional
variance. Hamilton’s nonlinear filter is

Prob(St−1 = i, St = j | It−1) = pi j
1∑

h=0

Prob(St−2 = h, St−1 = i | It−1). (9)

From these joint conditional probabilities, the density ofYt conditional onSt−1, St ,
and It−1 is

f (Yt | St−1 = i, St = j, It−1) =
[
(2π)−k/2

∣∣Q(i, j )
t

∣∣−1/2

× exp

(
−1

2
N(i, j )′

t |t−1Q(i, j )−1

t N(i, j )
t |t−1

)]
. (10)

The joint probability density of states and observations is then calculated by mul-
tiplying each element of (9) by the corresponding element of (10):

f (Yt , St−1 = i, St = j | It−1) = f (Yt | St−1 = i, St = j, It−1)

×Prob(St−1 = i, St = j | It−1). (11)
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The probability density ofYt given It−1 is

f (Yt | It−1) =
1∑

j=0

1∑
i=0

f (Yt , St−1 = i, St = j | It−1). (12)

The joint probability density of states is calculated by dividing each element of
(11) by the corresponding element of (12):

Prob(St−1 = i, St = j | It ) = f (Yt , St−1 = i, St = j | It−1)/ f (Yt | It−1). (13)

Finally, summing over the states in (13), we obtain the filtered probabilities of bull
or bear markets:

Prob(St = j | It ) =
1∑

i=0

Prob(St−1 = i, St = j | It ). (14)

The link between the two filters arises as an approximation introduced through
F j

t |t andθ j
t |t , which truncates the forecasts at each iteration.11 The approximation is

required to make the filter computationally tractable, since at each datet the nonlin-
ear filter computes four forecasts, and at each iteration the number of possible cases
is multiplied by the number of states. The approximation consists of a weighted
average of the updating procedures by the probabilities of the Markov state:

F j
t |t =

1∑
i=0

Prob[St−1 = i, St = j | It ]F
(i, j )
t |t

Prob[St = j | It ]
, (15)

θ
j

t |t =

1∑
i=0

Prob[St−1 = i, St = j | It ]
{
θ
(i, j )
t |t +

(
F j

t |t − F (i, j )
t |t
)(

F j
t |t − F (i, j )

t |t
)′}

Prob[St = j | It ]
.

(16)

The nonlinear filter allows recursive calculation of the predicted equations using
only observations onYkt, k= 1, . . . ,4, given values for the parameters inφ,λ j , µ j ,

pi j , Σ, andσ 2
ηSt

, and initial inferences for the factor,F j
t |t , the mean squared error,

θ
j

t |t , and the joint probability of the Markov-switching states. The outputs are their
one-step updated values. This permits estimation of the unobserved state vector as
well as the probabilities associated with the latent Markov state. A byproduct of
this algorithm is the conditional likelihood of the observable variable, which can
be evaluated at eacht . The log likelihood function is

log f (YT ,YT−1,... | I0)) =
T∑

t=1

log
1∑

j=0

1∑
i=0

[
2π−k/2

∣∣Q(i, j )
t

∣∣−1/2

× exp

(
−1

2
N(i, j )′

t |t−1Q(i, j )−1

t N(i, j )
t |t−1

)]
Prob(St−1 = i, St = j | It−1). (17)
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The filter evaluates this likelihood function at eacht , which can be maximized with
respect to the model parameters using a nonlinear optimization algorithm. Thus,
the factor is constructed as a nonlinear combination of the observable variables
weighted by the probabilities of the Markov state, using information available
through timet :

Ft |t = E(Ft | It ) =
1∑

j=0

Prob(St = j | It )F
j

t |t . (18)

Finally, the conditional moments of the excess returns are obtained from forecasts
of the mean and volatility of the dynamic factor. The estimation yields first and sec-
ond conditional moments for each of the components of the dynamic factor. From
equations (1) and (2) and from the nonlinear algorithm, the conditional expectation
of excess returns is

E(Yt | It−1) =
∑

j

∑
i

λ j
[
µ j +φFi

t−1|t−1

]
Prob(St = j, St−1 = i | It−1) (19)

The conditional variances of excess returns are the conditional variance of the
forecast error ofYt obtained from the Kalman iterations:

Var(Yt | It−1) =
∑

j

∑
i

λ j
[
θ
(i, j )
t |t−1Prob(St = j, St−1 = i | It−1)

]
λ j ′ +Σ (20)

Hence, the Sharpe ratio is

SR= E(Yt | It−1)/
√

Var(Yt | It−1), (21)

which in this framework corresponds to the price of the marketwide risk.
As seen in equations (19) and (20), both expected excess returns and conditional

volatility are functions of the latent states of the stock market, as represented by
the Markov process. However, the model does not impose a direct relation between
the level and volatility of excess returns. In fact, expected excess return and its
conditional volatility may not be related directly but may be a nonlinear function of
the phase of the stock market, whether bull or bear. Thus, expected excess returns
and conditional volatility could be positively or negatively associated or they could
exhibit no relationship at all.12

4. EMPIRICAL RESULTS

4.1. Specification Tests and Results

Two specifications of the nonlinear dynamic factor model are reported for monthly
data from 1954:02 to 1997:12, in an application to the postwar U.S. financial
market.13 In Model 1,Ykt is composed of the excess return on the CRSP value-
weighted (VW) index, on the CRSP equal-weighted (EW) index, on the IBM
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stock, and on the GM stock. The excess return is defined as the difference between
continuously compounded stock returns and the 3-month T-bill rate in annual
terms.14 That is, in Model 1, excess returns are conditioned on the Markov pro-
cess and on a latent factor that captures comovements on past values of different
measures of excess returns. We use the excess returns on IBM and GM stocks
to represent large firms, and the excess returns on the EW index to proxy for
the dynamic behavior of small firms.15 The excess return on the value-weighted
index represents the market premium. Modeling the factor loadings as state depen-
dent in this setting allows analysis of potential asymmetric behavior of the risk–
return relationship for stocks with different market capitalization, across financial
states.

The variables that compose the factor are highly correlated with each other.
The dynamic factor structure captures commonalities underlying the observable
variables. The resulting dynamic factor is also highly correlated with all the excess
return series used to construct the factor, indicating that the structure was not simply
imposed on the data by assuming large idiosyncratic errors. In addition, tests for
the number of states support the single-factor specification.16

In Model 2,Ykt includes the growth rate of the S&P 500 dividend yield (Dyield),
changes in the 3-month T-bill rate (TB3) and in the S&P 500 price-earnings (P/E)
ratio, in addition to the excess return on the VW index. In this case, excess return
on the VW index is conditioned on a switching latent factor constructed from
comovements underlying past values of other financial variables. There is a large
literature on the predictability of excess stock returns that use lagged values of
the dividend yield, P/E ratios, interest rates, and measures of the term premium
or default risk as proxies for unobserved time-varying risk premia. The findings
systematically link variations in unobserved risk premia to the business cycle.17

Our framework allows the use of multivariate information with a parsimonious
variance–covariance structure to produce the sort of predictions obtained from
regression models—but in a nonlinear setting.

The dynamic factor obtained from Model 2 is highly correlated with the finan-
cial variables underlying the factor. Here again, the factor structure captures the
commonalities underlying the fast movements ofchangesin P/E ratio, dividend
yield, interest rates, and excess stock returns. Tests for the number of factors also
support the single-factor structure for Model 2.

The Markov process captures the potential switches between bear and bull
markets underlying financial variables. To verify this, we fit an AR(1) univari-
ate Markov-switching model to each of the components of the factors in Models 1
and 2, allowing both the mean and the volatility of the variables to switch regime.
Tests for the number of states favor the two-state specification.18 Figure 1 plots the
estimated filtered probabilities of bear markets against NBER-dated recessions.
The results show a dichotomous pattern in the series associated with the phases
of the stock market cycle, which, in turn, are related to future recessions and
expansions.19
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Thus, both the underlying correlation between the variables and the evidence of
a Markov-switching structure indicate that the switching dynamic factor structure
may well depict features of the data. The maximum likelihood estimates are shown
in Table 1. For both models the coefficients of the two Markov states are statistically
significant. In particular, we find that state 0 exhibits negative mean, high volatility,
and a shorter average duration, which is associated with the short-lived and nervous
bear markets. State 1 has a positive mean, low volatility, and a longer average
duration, capturing the features of bull markets. Here again, tests for the number
of states support the two-state specification.20

Specification tests are also implemented regarding the assumptions on the resid-
uals. We implement Brock et al.’s (1996) diagnostic test and it fails to reject the
hypothesis of i.i.d. disturbances.21 In addition, the one-step-ahead forecast errors
obtained from the Kalman filter are not predictable by lags of the observable
variables.

In both models, we set the factor loading of the value-weighted index to one
(λVW = 1).22 Thus, we can compare the sensitivity of the other components to the
factor in the same units as the excess returns on the VW index. The state-dependent
factor loadings can capture the asymmetric behavior of returns, depending on the
size of the firm across financial market states. Table 2 summarizes these findings.
In bull markets excess stock returns of large and small firms exhibit a similar
behavior (λ values around 1), but in bear markets, firm size makes a difference.
That is, during periods of low market excess return, small firms are the most
reactive to market risk (λEW= 1.32), whereas large firms are less sensitive to the
market (λIBM = 0.89, λGM= 0.97). That is, stock returns of large firms decrease
less than those of small firms during bear markets. These results also can be seen
from the estimated filtered probabilities of bear markets plotted in Figure 1. The
probabilities of bear markets from excess returns on small firms, as proxied by
the EW index, are the most volatile and strongly react to most of the economic
recessions in the sample data. On the other hand, the probabilities of bear markets
for IBM and GM excess stock returns are less volatile and are less associated with
the NBER-dated economic recessions.

Table 3 reports dating of the U.S. stock market cycle phases. The framework
adopted in this paper provides probabilities that can be used as filtering rules for
dating turning points. We use information from the frequency distribution of the
smoothing probabilities from Model 1 to define turning points: a peak (trough)
occurs if the smoothing probabilities of bear markets are greater (smaller) than
their mean plus one-half their standard deviation.23 The results for our sample
data confirm the empirical observation that there have been more bear markets
(10) than recessions (7), as measured by the NBER. With the exception of the
1960–1961 recession, all others in the sample data were associated with a bear
market. Generally, bear markets begin a couple of months before a recession
and end in the middle of it, anticipating economic recovery.24 These findings are
illustrated in Figure 2, which shows the smoothing probabilities of bear markets
and the NBER recessions.
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TABLE 1. Maximum likelihood estimates, 1954:02–1997:12

Parameters Model 1a Parameters Model 2b

α1 0.132 α1 0.038
(0.022)c (0.015)

α0 −0.355 α0 −0.113
(0.136) (0.079)

φ −0.078 φ 0.295
(0.041) (0.049)

σ 2εVW 0.013 σ 2εVW 0.135
(0.005) (0.009)

σ 2εEW 0.094 σ 2εDY 1.359
(0.008) (0.350)

σ 2εGM 0.364 σ 2εTB3 61.218
(0.023) (3.794)

σ 2εIBM 0.392 σ 2εP/E 5.621
(0.024) (0.514)

λ0
VW 1 λ0

VW 1
— —

λ0
EW 1.317 λ0

DY −9.134
(0.066) (0.737)

λ0
GM 0.968 λ0

TB3 −3.589
(0.106) (1.704)

λ0
IBM 0.888 λ0

P/E 10.070
(0.098) (0.892)

λ1
VW 1 λ1

VW 1
— —

λ1
EW 1.002 λ1

DY −11.204
(0.054) (1.001)

λ1
GM 0.978 λ1

TB3 −2.683
(0.096) (1.922)

λ1
IBM 1.022 λ1

P/E 10.859
(0.090) (1.036)

p11 0.961 p11 0.948
(0.018) (0.023)

p00 0.813 p00 0.703
(0.094) (0.133)

σ 2
η1 0.149 σ 2

η1 0.066
(0.015) (0.012)

σ 2
η0 0.511 σ 2

η0 0.306
(0.100) (0.090)

LogL(θ) −1,517.79 LogL(θ) −4,671.76

aYkt=λst
k Ft + εεkt; Ft =α1+α0St +φFt−1+ ηSt , St = 0, 1; k= excess returns on

VW, EW, GM, IBM.
bYkt =λst

k Ft + εεkt; Ft =α1+α0St +φFt−1+ ηSt , St = 0, 1; k= excess returns on
VW, changes in dividend yield, TB-3, P/E.
cAsymptotic standard errors are in parentheses.
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TABLE 2. Firm size asymmetries across states
(Model 1)

Asymmetries Bear market Bull market

Market:λVW 1 1
Large firms:λIBM 0.887 1.021
Large firms:λGM 0.969 0.978
Small firms:λEW 1.317 1.003

TABLE 3. Dating of the U.S. bear markets,a smoothed
probabilities, Model 1

NBER recessions Bear markets

Peak Trough Peak Trough

1957:08 1958:04 1957:08 1957:12
1960:04 1961:02 — —

— — 1962:03 1962:10
— — 1966:05 1966:09

1969:12 1970:11 1969:02 1970:09
1973:11 1975:03 1973:01 1975:02

— — 1978:08 1978:11
1980:01 1980:07 1979:09 1980:04
1981:07 1982:11 1981:06 1982:02

— — 1987:09 1987:11
1990:07 1991:03 1990:07 1990:10

aThe stock market is assumed to be in a bear market if the smoothed probabil-
ities of bear markets,P(St = 0 | IT ), is greater than their mean plus half their
standard deviation.

4.2. Contemporaneous Relationship of the Conditional Moments

To investigate the empirical relationship between conditional expected excess re-
turn and its volatility, we derive these moments as described in equations (19)–(21)
of Section 3.25 Figures 3 and 4 plot the Sharpe ratio obtained from Models 1 and 2,
the dating of bear and bull markets from Table 3, and NBER-dated recessions. We
find that the price of the marketwide risk varies across stock market phases and
business-cycle states.

For both models the expected excess return and volatility—and hence the Sharpe
ratio—display distinct business-cycle dynamics. Conditional excess return falls
during expansions, reaching a minimum in the middle of a recession, and rises in
the second half of a recession, reaching a maximum at its trough. On the other
hand, the conditional volatility is generally higher during economic recessions and
lower during expansions. This result can also be seen in Table 4, which reports
a series of regressions of the price of risk on measures of business cycles, such
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FIGURE 2. Smoothing probabilities of bear market from Model 1 and NBER-dated reces-
sions.

as a 0/1 dummy variable representing recessions as dated by the NBER, changes
in industrial production, and changes in the business-cycle indicator generated
by Chauvet (1998).26 We find that the regression coefficients are statistically sig-
nificant in all regressions and the Sharpe ratio displays a strong countercyclical
business pattern due to its behavior around economic turning points.

Table 5 shows the contemporaneous correlation between conditional expectation
and variance of excess returns across financial-cycle phases. For Model 1, where the
level and volatility of expected return are conditioned only to a Markov process and
no a priori association is imposed on them, there is a significant contemporaneous
negative risk–return relationship at the monthly frequency.27 This result reflects
the relationship between expected excess returns and volatility across bull and bear
markets. In bear markets the conditional mean is low and the volatility is high,
implying a low Sharpe ratio. In bull markets, with a high conditional mean and
low volatility, the Sharpe ratio is much higher (Figure 3).

A negative but weak relationship is also found, for example, by Fama and
Schwert (1977), Campbell (1987), Nelson (1991), and Glosten et al. (1993). As
discussed by Backus and Gregory (1993), negative, nonmonotonic, or positive re-
lationships between the first and second conditional moments of stock returns can
arise from equilibrium models. The empirical literature reports mixed findings,
depending on the way the moments are modeled and on the conditional variables
used.28 The analysis of conditional moments from Model 1 can add to the dis-
cussion in that it reflects expectations based only on past information of different
measures of excess returns and on the state of the economy, as represented by the
Markov process.

Using other financial variables in addition to the Markov state, as in Model 2,
allows us to study the role of conditioning variables and to compare our results to
existing literature. Figure 5 plots scatter diagrams for the mean and volatility of the
excess return on the VW index for Models 1 and 2. Notice that although the overall
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TABLE 4. Individual regressions of the Sharpe ratio on economic variablesa

Model 1 Model 2Independent
variable NBERb 1lnIPc SFCd NBERb 1lnIPc SFCd

Coefficient −1.214 0.294 0.020 −1.199 0.311 0.011
(−12.115) (6.873) (8.416) (−3.743) (2.324) (2.805)

Adj. R2 0.217 0.086 0.130 0.021 0.009 0.015

at-statistic inside parentheses.
bNBER is a 0/1 dummy variable taking the value of 1 at NBER-dated recessions.
cLog first difference of Industrial Production.
dBusiness-cycle index built from a switching dynamic factor, which is highly correlated with GDP growth
[see Chauvet (1998)]. We ran three simple regressions of the Sharpe ratio on a constant and each of the
independent variables, for Models 1 and 2. The constant term is positive and significant in all equations.

TABLE 5. Contemporaneous correlation be-
tween conditional expectation (CE) and con-
ditional variance (CV) of VW excess returns
across business and financial cycles

CorrelationCE and CV
During Model 1 Model 2

Bear market −0.505 −0.443
Bull market −0.978 −0.152
CE< 0 −0.985 −0.906
CE> 0 −0.971 0.438
Full sample −0.995 −0.399

Bear and Bull markets refer to the smoothed probabilities of
bear and bull markets, respectively, obtained from each model.
P-values are approximately zero for each entry of columns 1
and 2.

contemporaneous relation is still negative for Model 2, the relation between these
two moments is weaker than in Model 1. In particular, for Model 2 the volatility
is high for low values of the conditional expectation during bear markets. In bull
markets the reverse occurs for low values of the conditional expectation (Figure 6).

A closer examination suggests that there is a nonlinear relationship between
these moments, depending on whether conditional expectations are positive or
negative. In spite of being counterintuitive in theory, empirical evidence reveals
that, in certain periods, excess return is predicted to be negative.29 We find that neg-
ative expected excess returns occur mostly right before the beginning of economic
recessions. Dividing the sample into periods when the conditional expectation
is positive or negative shows a remarkable result—the risk–return relationship is
weakly positive if we exclude periods of negative conditional excess returns, and
significantly negative otherwise (Figure 6). This nonlinear behavior may be behind
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the diversity of empirical results found in the literature regarding the risk–return
relationship.

This finding arises from the dynamics of conditional expected return near the
beginning and end of business-cycle contractions. The conditional volatility is at
its highest values near peaks and troughs of business cycles. In fact, conditional
variance moves up and down during economic recessions, reflecting the great
uncertainty of these periods. On the other hand, expected excess return reaches
its minimum and its maximum values immediately before and during economic
recessions. Since the decrease in the expected excess returns is substantial (reach-
ing negative values) at the beginning of economic contractions, a net negative
contemporaneous relationship between risk–return prevails for the whole sample.

TABLE 6. Model 1 correlogram: Conditional
expectation (CE) and conditional variance
(CV) of the VW

CE of VW, CE of VW,
i CV of VW(−i ) CV of VW(+i )

0 −0.9950b −0.9950b

1 −0.7631b −0.7336b

2 −0.5475b −0.5195b

3 −0.4402b −0.4213b

4 −0.4191b −0.4018b

5 −0.3931b −0.3708b

6 −0.3136a −0.2912a

7 −0.2319 −0.2206
8 −0.1886 −0.1799
9 −0.1678 −0.1636

10 −0.1437 −0.1350
11 −0.1127 −0.1061
12 −0.1296 −0.1292
13 −0.1332 −0.1294
14 −0.1364 −0.1322
15 −0.1049 −0.1126
16 −0.0967 −0.1022
17 −0.0922 −0.0894
18 −0.0720 −0.0621
19 −0.0497 −0.0405
20 −0.0139 −0.0142
21 0.0195 0.0186
22 0.0481 0.0465
23 0.0502 0.0391
24 0.0640 0.0586

aStatistically significant at the 5% level.
bStatistically significant at the 1% level.
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However, toward the end of the recession, expected returns increase, foreseeing
rises in earnings. Thus, the risk–return relationship is strongly negative in the first
half of recessions and positive in the second half. This suggests that the risk–return
dynamic relationship can be better understood if studied within and as a function
of the different stages of the economy.

Table 5 summarizes these results. For Model 1, the correlation is negative across
the financial cycle. However, when excess returns are conditioned on other finan-
cial variables in addition to the Markov state, as in Model 2, the correlation is
−0.91 for times when the conditional expectation is negative and 0.44 for peri-
ods when it is positive. These results are statistically significant for any standard
level.

TABLE 7. Model 2 correlogram: Conditional
expectation (CE) and conditional variance
(CV) of the VW

CE of VW, CE of VW,
i CV of VW(−i ) CV of VW(+i )

0 −0.3993b −0.3993b

1 −0.3330b −0.1192b

2 −0.2066 −0.0164b

3 −0.1358 −0.0011b

4 −0.1500 0.0058b

5 −0.2220 0.0083b

6 −0.1948 0.0549b

7 −0.1561 0.0261b

8 −0.1550 0.0188b

9 −0.1077 0.0126a

10 −0.0524 0.0611
11 −0.0266a 0.1109
12 −0.0549a 0.0988
13 −0.0892 0.0514a

14 −0.0330 0.0644
15 0.0139 0.0403
16 0.0235 0.0149
17 0.0021 0.0263
18 −0.0313 0.0414
19 0.0279 0.0424
20 0.0071 0.0091
21 −0.0479 0.0046
22 0.0148 0.0091
23 0.0472 −0.0194
24 0.0305 −0.0643

aStatistically significant at the 5% level.
bStatistically significant at the 1% level.
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4.3. Noncontemporaneous Correlations

We find that the contemporaneous relationship between expected excess returns
and the conditional variance is not only time-varying, but also changes signs within
economic recessions. We further examine their correlation at leads and lags. Ta-
bles 6 and 7 show the cross-correlogram between conditional excess return and
variance for 24-month leads and lags of the conditional variance. For Model 1, their
cross-correlation is negative and significant up to six leads and lags. The offset
correlations are symmetric, implying that cyclical variations in risk and return are
negatively related but coincident. For Model 2, the cross-correlation between the
two moments is weaker. It is significantly negative up to two lags of the conditional
variance and statistically insignificant for higher lags. For leads of the conditional
variance, the relation is negative and significant up to 9 months. Using Granger
causality and spectral analysis, we find that expected excess return slightly leads
volatility. No strong conclusion can be drawn from this, since the relationship
between these two moments may be driven by the phase of the business cycle,
as examined here. However, using the whole sample, it seems that when excess
returns are expected to be low, an immediate increase in market volatility follows
as investors seek to move their position to hedge against noise.

Based on the findings of the previous session, an interesting question is whether
the noncontemporaneous relationship between expected excess returns and volatil-
ity is also nonstable around business-cycle turning points. Table 8 shows the cross-
correlation for the subsample of the data corresponding to periods of negative or
positive conditional expectation for Model 2. In fact, when the conditional expecta-
tion is positive, as during expansions and the second half of economic contractions,

TABLE 8. Model 2 correlogram: Conditional expectation (CE) and conditional
variance (CV) of the VW excess return

CE of VW, CE of VW, CE of VW, CE of VW,
CV of VW(−i ) CV of VW(+i ) CV of VW(−i ) CV of VW(+i )

i CE< 0 CE< 0 CE> 0 CE> 0

0 −0.9064b −0.9064b 0.4383b 0.4383b

1 −0.3151b −0.2111b 0.1267b 0.1756b

2 −0.1193 −0.0702a 0.0046 0.0820a

3 −0.0837 −0.0542 −0.0109 0.0347
4 −0.0975 −0.0614 0.1021a −0.0572
5 −0.1117 −0.0566 0.0304 −0.0502
6 0.0156 0.0063 0.0744 −0.0376
7 −0.0592 −0.0710 −0.0274 −0.0248
8 −0.0914 −0.0764 −0.0333 0.0002
9 −0.0837 −0.0473 0.0173 0.0148

10 −0.0610 −0.0421 0.0461 −0.0156

aStatistically significant at the 5% level.
bStatistically significant at the 1% level.

https://doi.org/10.1017/S1365100501023082 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023082


642 MARCELLE CHAUVET AND SIMON POTTER

we find that offset correlations are positive and significant for up to two leads and
lags (volatility feedback). However, restricting the sample for times when the con-
ditional expectation is negative—during the first half of contractions—the offset
correlations are significant and negative up to two leads and lags (leverage effect).30

5. CONCLUSIONS

This paper proposes an empirical framework that offers a flexible description of the
joint time-series properties of the level and volatility of expected stock returns. An
unobservable dynamic factor is built as a nonlinear proxy for the market risk premia
with conditional first and second moments driven by a latent Markov variable. That
is, we consider the possibility that the market expected return and its conditional
volatility are not necessarily directly related but are a function of a third variable—
the two states of the Markov process, which can be interpreted as bull and bear
markets.

We find a significant asymmetric behavior of conditional excess returns ac-
cording to firm size. In particular, excess returns on small firm stocks are more
reactive to changes in the state of financial markets than large firms. With respect
to the risk–return relationship, during bear markets, expected excess return is low
whereas the conditional volatility is high. In bull markets, the conditional mean
increases whereas the volatility decreases. That is, we find an overall contempo-
raneous negative risk–return relationship at the monthly frequency. This negative
relation is less significant when other conditional financial variables are considered.

Most important, the contemporaneous correlation is not stable, but instead it
changes signs according to the state of the business cycle. Around peaks and dur-
ing the first half of economic recessions as measured by the NBER, the trade-off
between risk and return is negative, whereas during the second half of economic
recessions, the relationship is positive. This result arises from the dynamics of
conditional expected returns near business-cycle peaks and troughs. In particular,
around the beginning of recessions, volatility rises considerably, whereas expected
return falls, anticipating a decrease in earnings. Thus, there is a negative relation-
ship between conditional expectation and variance. Toward the end of a recession,
expected returns are at their highest value as an anticipation of the economic re-
covery, and volatility is still very high in anticipation of the turning point. In fact,
we find that the conditional volatility is at its highest values near peaks and troughs
of business cycles, reflecting the uncertainty about the timing of these turns. Thus,
during times of high volatility, investors move back and forth from stocks, driving
changes in expected returns and the direction of the relationship, depending on the
stage of the economy.

This time-varying behavior also holds for noncontemporaneous correlations.
When the conditional expectation is positive, we find that offset correlations be-
tween conditional mean and variance are positive and significant for shorter leads
and lags (volatility feedback). However, restricting the sample for times when the
conditional expectation is negative, the offset correlation is significant and negative
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(leverage effect). The results suggest that the contemporaneous and offset risk–
return relationship change over time, as a result of the dynamics of conditional
expected returns around business-cycle peaks and troughs.

NOTES

1. Fama and Schwert (1977), Campbell (1987), Nelson (1991), Glosten et al. (1993), among others,
find a negative relation between conditional expected stock return and variance. On the other hand,
Bollerslev et al. (1988), Harvey (1989), and Chan et al. (1992) find a weak or no statistically significant
relationship between expected return and conditional variance in the stock market. Others, such as
French et al. (1987) and Campbell and Hentschel (1992) find a positive relation between expected
returns and conditional second moments.

2. For example, Fama and French (1989), Whitelaw (1994), Perez-Quiros and Timmermann (1998,
2001), Chauvet (1998/1999), and Chauvet and Potter (2000) find evidence of a significant state de-
pendence in the conditional distribution of stock returns, where financial variables proxying for risk
forecast business-cycle phases.

3. That is, predictability of the level implies predictability of volatility. However, if the level of
returns is difficult to predict, it does not imply that the volatility should be.

4. Further, when conditional variance is used to proxy for risk, the ARCH-M restricts the conditional
mean of excess returns to be positive.

5. In stock market jargon, bear markets are periods of persistent decrease in stock prices. Thus,
bear markets are also associated with periods when the excess return is negative.

6. For further discussion of the leverage effect and volatility feedback see, for example, Black
(1976), Christie (1982), Pindyck (1984), Poterba and Summers (1986), French et al. (1987), Turner
et al. (1989), Campbell and Hentschel (1992), Glosten et al. (1993), or Chauvet (2000b).

7. These findings are also corroborated by Perez-Quiros and Timmermann (1998, 2001).
8. Generally, to assign a scale to the factor, either its variance or one of the factor loadings is set

to 1. In our models, normalization of the factor is attained through the factor loadings because the
variances are state dependent.

9. In an initial stage of this project, different specifications were estimated in which the factor mean,
variance, and factor loadings do not switch across states. The likelihood ratio test rejects these models
at the 0.5% significance level.

10. The transition probabilities are assumed to be constant in this setting. Allowing the transition
probabilities to be time-varying in this multivariate framework does not change the results qualitatively,
while it amounts to additional complication in interpreting the model.

11. Smith and Makov (1980) simulate the filter and find that the approximation yields the smallest
mean squared error compared to any other estimator based on a linear function. Also it performs well
compared with other nonlinear approximation methods. The method yields the smallest sum of the
squared errors, tracks most closely the true observations, and is the best in estimating the jumps.

12. Notice that the sign ofµ j only determines the level of the stock market—bull or bear phases.
Whether bull or bear markets are associated with low or high conditional variances depends on the
properties of the data and not on any model restrictions.

13. The data are obtained from the 1997 release of the DRI Basic Economic Database, and from
the CRSP files.

14. We also estimate the model using only the excess returns on the value-weighted and on the
equal-weighted (k= 2), or using only one large firm (k= 3). The results are very similar to the ones
obtained for the four-variable model.

15. Small firms that were participating in the stock market in the beginning of the sample tended
to disappear over our 40 years of data whereas those that survived generally became medium or large
firms. Thus, we use the EW return index to proxy for small-firm dynamics instead of selecting individual
firms.
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16. The number of factors underlying the variables was tested by examining the eigenvalues from
the correlation matrix of the common factors. The magnitude of the eigenvalues for each factor reflects
how much of the correlation among the observable variables is explained by a particular factor. The
procedure indicates strong evidence for the single-factor specification for both models.

17. Some examples are Fama and Schwert (1977), Keim and Stambaugh (1986), Campbell and
Shiller (1988), Fama and French (1989), Whitelaw (1994), Perez-Quiros and Timmermann (1998,
2001), Chauvet and Potter (2000), or Chauvet (1998/1999).

18. We test for the number of states using the approach proposed by Garcia (1998), based on Hansen
(1993). The test provides strong evidence for the two-state model.

19. This evidence is also found by Perez-Quiros and Timmermann (1998, 2001), Chauvet
(1998/1999), and Chauvet and Potter (2000), among others.

20. Although Garcia’s critical values are designed for a univariate AR(1) regime-switching model
and the test is parameter dependent, the value of the likelihood ratios are about 3 times larger than the
highest value in Garcia’s table for the 1% significance level.

21. For a vectorεm
t = εt , εt+1, . . . , εt+m−1, we usem= 2, 3, 4 and we set the distanced between

any two vectorsεm
t andεm

S , equal to the standard deviation ofεt . The test estimates the probability
that these vectors are within the distanced.

22. The normalization affects only the scale of the factor. None of the time-series properties of the
dynamic factor or the correlation with its components is affected by the choice of the parameter scale.

23. These probabilities are obtained recursively from the Kalman filter based on full sample in-
formation, Prob(St = 0 | IT ). Similar dating of bull and bear markets is also obtained using different
threshold values for defining a turning point [see Chauvet (1998/1999)].

24. Chauvet (1998/1999) also finds that bear and bull market cycles, although more frequent, are
closely associated with future business-cycle phases.

25. We find that the dynamics of the risk–return relationship for the excess return series are all
qualitatively very similar. Thus, we focus mainly on the results for the VW excess return.

26. This monthly coincident indicator is constructed from a Markov-switching dynamic factor
using economic variables that move contemporaneously with business cycles, such as sales, personal
income, industrial production, and employment.

27. For Model 1, the autoregressive parameter is small and not significant, reflecting the low
persistence underlying the stock excess returns. However, the variables are strongly related to the
factor through the state-dependent first and second moments.

28. The role of conditioning and misspecification in determining the direction of the relationship
is discussed by Harvey (1991), Pagan and Hong (1991), and Glosten et al. (1993), among others,
particularly when a symmetric relation between risk and return is imposed.

29. See, for example, Whitelaw (1994), Harrison and Zhang (1999), Perez-Quiros and Timmermann
(1998, 2001), Chauvet and Potter (2000), or Chauvet (2000a).

30. These results are further examined by Chauvet (2000b).
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