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The hydrodynamics of an active squirming
particle inside of a porous container
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A microswimmer placed inside of a passive lamellar vesicle can hydrodynamically
induce directed motion of the vesicle so long as fluid is permitted to pass through the
vesicle’s surface. With an interest in understanding the underlying theoretical mechanism
responsible for this directed motion, we study the low Reynolds number fluid mechanics of
a reduced system in which a spherical squirming particle is encapsulated inside of a rigid
porous spherical container (membrane). We create a theoretical model for this system and
obtain two exact analytical solutions to the Stokes equations which describe the motion of
the squirmer and container under porous and non-porous container descriptions. Fluid flow
through the container’s surface is described using a model similar to Darcy’s law where
proportionality constants, R‖ and R⊥, parameterize the container’s resistance to permeable
flow parallel and normal to the container’s surface. We numerically simulate trajectories of
the squirmer–container system by reformulating the fluid mechanics problem as a coupled
set of second kind boundary integral equations (BIEs). This system of BIEs is solved
numerically using a Galerkin boundary element discretization on graphics processing
units enabled with NVIDIA’s Compute Unified Device Architecture. We obtain excellent
agreement between the analytical and numerical solutions for the concentric geometry.
Trajectories of pusher squirmers show earlier radial spread towards the container’s surface,
whereas puller squirmers tend to move radially inwards, towards the container’s centre.
Both the squirmer type (pusher, puller, neutral) and container resistance parameters
heavily influence net container motion and early squirmer dynamics.

Key words: boundary integral methods, membranes, micro-organism dynamics

1. Introduction

Over the past several years there has been great interest in designing and using synthetic
and biological microswimmers for a variety of biotechnological applications including
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targeted drug delivery (Medina-Sánchez, Xu & Schmidt 2018; Erkoc et al. 2019;
Singh et al. 2019; Bunea & Taboryski 2020; Li, Wan & Mao 2020) and biosensing
(Lebègue et al. 2018; Trantidou et al. 2018). In the context of targeted drug delivery,
the microswimmer’s surface is most commonly functionalized with a bio-particle cargo,
and then directed towards areas of interest by using combinations of endogenous stimuli
(e.g. chemotaxis (Park et al. 2017; Schauer et al. 2018)) and external stimuli (e.g.
magnetic fields (Felfoul et al. 2016; Park et al. 2017)). A variety of different cargos
have been attached to microswimmers including drug-containing nanoliposomes (Felfoul
et al. 2016), polyelectrolyte multilayer microparticles (Park et al. 2017), polymethyl
methacrylate microparticles (Schauer et al. 2018) and double-micelle microemulsions
(Singh et al. 2017). The majority of studies show that the effective diffusivity of the
cargo is greatly enhanced by the microswimmer’s active locomotion, and is in some
cases three to four orders of magnitude larger than the particle’s purely passive long-time
self-diffusivity (Singh et al. 2017).

At the same time there has been an increased interest in the design and usage of
vesicle based microsystems which are capable of passively delivering both drugs and
other bio-particles to living cells (Marchianò et al. 2020). Lipid based nanovesicles
(e.g. liposomes) are ideal candidates for the encapsulation and delivery of drugs since
they are biocompatible with human cells and are known to interact with living cells
through endocytosis and membrane merging (Pattni, Chupin & Torchilin 2015). Recently,
the mRNA-1273 vaccine candidate, developed by Moderna to address the SARS-CoV-2
pandemic, has utilized a lipid based nanovesicle as the main delivery framework for
introducing and eliciting an immune response to the SARS-CoV-2 spike glycoprotein
(Jackson et al. 2020). Lipid based vesicles also have various distinct advantages over other
drug delivery mechanisms since they can protect the encapsulated drug from chemical
and biological degradation, and can be loaded with both hydrophilic and lipophilic drugs
that are respectively contained within the vesicle’s aqueous core or embedded within the
vesicle’s membrane (Marchianò et al. 2020).

In this paper we perform a theoretical fluid mechanical analysis of a system which
combines the benefits of the vesicle and microswimmer targeted drug delivery systems.
The presence of the vesicle provides a protective, biocompatible and flexible framework
for drug encapsulation, while the encapsulated microswimmer provides the vesicle
with enhanced super-diffusive motion mediated through hydrodynamic interactions
between the microswimmer and the vesicle’s wall. Our work is largely motivated by
the experimental systems presented by Trantidou et al. (2018) and Takatori & Sahu
(2020) in which biological microswimmers have been successfully encapsulated inside
of engineered giant unilamellar vesicles (GUVs). In related work, Vutukuri et al. (2020)
have encapsulated self-propelled Janus colloidal particles inside of GUVs. The vesicle
that we model is most similar to their high membrane tension GUV. Using a viscous
drop instead of a vesicle, Ding et al. (2016) have developed microfluidic methods to
encapsulate synthetic artificial bacterial flagellates (ABFs) and have studied the collective
motion of the drop–ABFs system. We are specifically interested in studying the motility
of the combined vesicle and microswimmer system, since by controlling the motion of
the microswimmer, the hydrodynamically induced motion of the vesicle may in turn be
controlled. Additionally, we find motivation in some of Takatori’s unpublished research,
where vesicles encapsulating swimming magnetotactic bacteria were observed to translate
in the direction of an applied external magnetic field. Since these vesicles are passive
bodies, these experiments suggest that the vesicle’s motion is induced by hydrodynamic
interactions between the active encapsulated bacteria and the vesicle’s walls. We develop
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The hydrodynamics of a squirmer inside of a porous container

a theoretical hydromechanical model capable of explaining the underlying mechanism
by which the vesicle moves, and the effect of microswimmer type on the vesicle’s
motion.

Although this work is primarily motivated by the aforementioned experimental systems,
the theoretical formulation that we present is general in the sense that other abstractions
may be applied in place of the squirmer model to allow for modelling of other
biologically active particles or systems. In this way, our model has potential to be used for
simulating and understanding more complex biological phenomena and processes such
as motor protein induced cytoplasmic streaming (Goldstein & van de Meent 2015) and
fluid exchange during syncytium formation via cell–cell fusion (Feliciano, Nixon-Abell
& Lippincott-Schwartz 2018). We rigorously account for multi-body hydrodynamic
interactions (HIs) which have been unequivocally demonstrated to be determining factors
in controlling microswimmer dynamics (Drescher et al. 2011; Spagnolie & Lauga 2012),
and which are likely to be important in understanding various cellular processes such
as macromolecular diffusion (Ando & Skolnick 2010) and assembly of the cellular
mitotic-spindle (Shelley 2016; Nazockdast et al. 2017). A differentiating factor in this
analysis is the inclusion of full HIs and sampling of lubrication physics on close
squirmer–container contact.

We model the encapsulated microswimmer using the so-called squirmer model. The
squirmer model, originally formulated by Lighthill (1952) and Blake (1971), is a popular
model for performing theoretical active matter calculations in low Reynolds number flows.
The model is an exact solution to the Stokes equations and describes the motion of a
microorganism in an unbounded fluid by using a spherical surface deformation field or
slip velocity. In an important set of papers, the squirmer model was used to study the
HIs between two swimming microorganisms (Ishikawa, Simmonds & Pedley 2006), and
the rheology of both semi-dilute (Ishikawa & Pedley 2007a,b) and dense suspensions
(Ishikawa, Locsei & Pedley 2008) of microorganisms. Ishikawa and Pedley made an
important contribution by noticing that the velocity field of a tangential squirmer could
be written in a form independent of basis. In this study, we use this representation up to
the first two squirming modes Bsq

1 and Bsq
2 .

To date, there have only been a few theoretical fluid mechanics studies which
have analysed an encapsulated squirmer. The motion of a single spherical squirmer,
encapsulated by a viscous drop, was first studied by Reigh & Lauga (2017). In a second
closely related paper, Reigh et al. (2017) consider the motion of the viscous drop, and
present numerical trajectory simulations (based on boundary element simulations) of the
squirmer and drop motions. The analytical models presented in both papers are derived
as exact solutions to the Stokes equation for the concentric squirmer–drop geometry
since the Laplacian in the Stokes equations separates. Both papers also use a more
general squirmer model which features a surface velocity boundary condition with both
radial and tangential velocity components. With the added radial velocity components,
their numerical simulations show that the drop–squirmer system can move in a stable
co-swimming state.

Recently, Sprenger et al. (2020) also theoretically examined the low Reynolds number
locomotion of a microswimmer encapsulated inside of a viscous drop. They derive the
image solution for the point force and dipole singularities inside of a spherical drop, both
with a clean surface, or loaded with a surfactant. Using these image solutions, they are
able to describe the motion of the microswimmer and drop. The image solutions are an
important contribution since they can potentially be used to study the dynamics of groups
of encapsulated microswimmers in the dilute suspension limit.
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In related work, Nganguia et al. (2020) recently studied the locomotion of a squirmer
that is encapsulated by a surrounding Brinkman medium. Motivated by exploring the
motion of the squirmer in a heterogeneous fluid, the Brinkman medium is used to model a
surrounding viscous gel which does not collectively translate with the squirmer. Their
analysis presents exact analytical solutions to the Stokes equations for the swimming
speed, flow fields and power dissipation of the squirmer. Numerical simulations were not
performed. The squirmer’s swimming speed is seen to have a local minimum at a critical
thickness in the Brinkman medium. In our work, we observe a similar local minimum in
the squirmer’s speed, which depends on a critical container–squirmer size ratio.

In this paper we study a system with nearly identical geometry; however, our model
solves a different fluid mechanics problem where, instead of a drop or Brinkman medium,
a rigid leaky container (thin membrane) is used to confine the squirmer. A Brinkman
medium, such as the one used in Nganguia et al. (2020), could be used to model a
membrane with finite thickness; however, the thin membrane model, proposed in this
paper, is designed to be a minimal model that is capable of explaining both squirmer
and vesicle motions. Including the viscous term from the Brinkman equation would
not only add additional analytical and numerical complexities, but may not significantly
alter the results, since at least for small permeabilities, the Darcy term in the Brinkman
equation typically dominates the viscous term. Similar to the techniques used by Nganguia
et al. (2020), we obtain analytical solutions for the translational motions of the squirmer
and container using streamfunctions and eigenfunction expansion methods, which are
in contrast to the methods used by Reigh & Lauga (2017) in which Lamb’s general
axisymmetric solution is directly used. Our model reproduces two solutions that are special
limiting cases of the general solution presented in Reigh et al. (2017). The first case
is when the viscosity ratio, μe/μi, between the exterior and inner fluids relative to the
drop interface becomes infinite. This corresponds to the case where our leaky container
becomes impermeable (see § 3.1 or (3.27) in the limit that {R⊥,R‖} → {∞,∞}). The
second case is when their viscosity ratio becomes one, in which case we achieve identical
results if we impose no resistance to fluid flow tangential to the membrane (R‖ = 0)
and infinite resistance to fluid flow normal to the membrane (R⊥ → ∞). Under these
conditions we achieve continuity of the tangential component of the total stress across the
membrane which is the usual boundary condition used when describing a viscous drop
(Leal 2007).

In the numerical portion of our work we present a method that is original and
significantly different than the methods used in Reigh et al. (2017) and the vast majority
of low Reynolds number boundary element literature. While we both use boundary
element methods to perform squirmer–container trajectory studies, our formulation is
based on Fredholm integral equations of the second kind, uses conformal adaptive meshing
techniques and employs a more accurate Galerkin discretization procedure. The method
in Reigh et al. (2017) uses an inherently less accurate collocation method to discretize the
integral equations, a non-conformal adaptive meshing technique which introduces hanging
T-nodes, and relies on a direct integral formulation involving a Fredholm integral equation
of the first kind, which for mobility problems, tends to be ill posed (Kim & Karrila 2005).
In all other related literature, numerical calculations are not performed.

Our paper is organized as follows. We first obtain exact mobility solutions for both the
squirmer and container when the squirmer–container geometry is perfectly concentric.
The analytical models serve two purposes: to aid in validating the numerical portion
of the work, and to provide comparisons with the analytical solutions for the viscous
drop and Brinkman medium studies (Reigh et al. 2017; Nganguia et al. 2020). Section
3.1 derives the mobility solutions in the case of a non-porous container, and in doing
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The hydrodynamics of a squirmer inside of a porous container

so recapitulates a reduced version of the results from Reigh & Lauga (2017, § IV),
specialized to purely tangential squirmers, but does so in the context of streamfunctions.
Next, we derive mobility solutions for the porous–container and squirmer. The porous
container is modelled using a generalization of Darcy’s law. Fluid flow through the
container’s surface is driven by the motion of the squirmer, and made proportional to a
jump in fluid stress across the container’s surface. In § 4, the squirmer–container fluid
mechanics problem is reformulated as a coupled set of second kind boundary integral
equations. The system of equations is solved using a Galerkin discretization on Compute
Unified Device Architecture (CUDA)-enabled graphics processing units (GPUs). Finally,
we perform numerical trajectory simulations of the squirmer and container and analyse
general mechanisms by which the squirmer and container move. We close the paper with
a summary of our work and provide appendices which give further details related to the
analytical and numerical portions of the work. Appendix A presents the streamfunction
solutions, and appendix B presents the Galerkin discretization procedure and adaptive
meshing technique in detail.

2. Problem formulation

The squirmer–container geometry is illustrated in figure 1 in which the fluid domain is
partitioned, relative to the container’s surface, into interior, porous and exterior regions
respectively represented by Ωi, Ωp and Ωe. The container’s normal vector points into
Ωe, and the normal vector on the squirmer’s surface points into Ωi. The interior fluid
region, Ωi, is bounded by the squirmer and inner container surfaces, Γsq ∪ Γc. The
fluid in all regions is water, with a shear viscosity of μ = 10−3 Pa s, and density ρf =
103 kg m−3. For a squirming particle with size a ∼ 1–100 μm and characteristic velocity
Usq ∼ 1–100 μm s−1, the Reynolds number is Re ∼ 10−6–10−2, which implies that the
squirmer moves at low Reynolds number, Re � 1, and that inertia plays no significant role
in the squirmer’s propulsion. Under these conditions the fluid mechanics and motion of
the squirmer and container are governed by the steady Stokes equations and continuity
equation for incompressible flows

μ∇2ui,e(x) = ∇pi,e(x), (2.1a)

∇ · ui,e(x) = 0, ∀x ∈ {Ωi,Ωe}, (2.1b)

where ui,e(x) ∈ R
3 and pi,e(x) are the fluid velocity and pressure at a point x in either

Ωi or Ωe, and μ is the shear viscosity of the fluid. Solution of (2.1) requires specification
of fluid velocity boundary conditions (usl(x) and uc(x)) on the squirmer and container
surfaces respectively at r = a and r = b. In addition, either the mobility or resistance
problem may be solved on specification of either the external force and torque acting on
the squirmer and container or the linear and angular velocity of the squirmer and container.
In the following sections the squirmer–container mobility problem is solved.

2.1. Tangential squirmers
The particle is modelled as a time independent tangential squirmer. The fluid velocity at
the squirmer’s surface is (Ishikawa et al. 2006, p. 156)

usl(es) = Bsq
1 (1 + β(es · r̂sq))

[
(es · r̂sq)r̂sq − es

]
, (2.2)

and may be obtained by keeping the first two expansion coefficients from the full
representation of the squirmer’s tangential surface deformation field. The squirmer moves

919 A31-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.276


K.J. Marshall and J.F. Brady

U

uc (x)

Fext

Text

�

�e

�i

�p

U
ez

ey

ex
es

lc
Rm ≡ {R⊥, R||}

sq

a

n

n

b

usl (x)

Fext

Text

�c

Figure 1. The concentric squirmer–container geometry is shown with an attached world space Cartesian
coordinate system. The fluid region is partitioned into interior, porous and exterior regions, represented
respectively by Ωi, Ωp and Ωe. The container and particle have radii of b and a. Container thickness and
resistance parameters, lc and Rm, are used to model a porous container.

or swims in the direction of its orientation, es. The ratio, β = Bsq
2 /B

sq
1 , describes the type of

squirmer, the coefficients, Bsq
1 and Bsq

2 , are referred to as squirming modes, and r̂sq = rsq/a
is the radial unit vector pointing from the centre of the squirmer to the squirmer’s surface.
Far away from the squirmer, the velocity field created by the first mode, Bsq

1 , is that of a
source dipole and decays as O(r−3). The velocity field created by the second mode, Bsq

2 , is
that of a force dipole and decays as O(r−2). These two squirming modes have been shown
to sufficiently capture the far field dynamics of a variety of biological microswimmers
(Spagnolie & Lauga 2012). In the literature, the sign of Bsq

2 is associated with the names
pusher and puller for Bsq

2 < 0 and Bsq
2 > 0. When Bsq

2 = 0, the squirmer is termed neutral
and becomes a source dipole swimmer.

Equation (2.2) expresses the fluid velocity at the squirmer’s surface in a body fixed
frame of reference attached to and moving with the squirmer. This surface slip velocity
is axisymmetric relative to the squirmer’s swimming orientation. The reciprocal theorem
(Stone & Samuel 1996) provides an elegant method to calculate the squirmer’s free space
translational velocity, U sq

fs , from which it may be found that U sq
fs = 2/3Bsq

1 es, implying
that the first tangential squirming mode provides the only non-zero contribution to the
squirmer’s velocity.

3. Analytical theory

Analytical solutions for the translation velocities of the squirmer and container (U sq and
Um) may be obtained when the squirmer–container geometry is perfectly concentric.
Since the geometry and boundary conditions are axisymmetric (u = u(r, θ)), solutions
may be obtained using streamfunctions and eigenfunction expansion techniques (Happel
& Brenner 1983; Leal 2007).
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The hydrodynamics of a squirmer inside of a porous container

In the following analysis, rather than using the polar angle, θ , it is more convenient to
use

ζ := cos θ. (3.1)

The non-zero fluid velocity components in spherical coordinates may be expressed in
terms of the streamfunctions, ψ i,e, by using the definitions

ui,e
r (r, θ) := − 1

r2 sin θ
∂ψ i,e(r, θ)

∂θ
= 1

r2
∂ψ i,e(r, ζ )

∂ζ
, (3.2a)

ui,e
θ (r, θ) := 1

r sin θ
∂ψ i,e(r, θ)

∂r
= 1

r
√

1 − ζ 2

∂ψ i,e(r, ζ )
∂r

, (3.2b)

where superscripts i, e denote the streamfunction defined over either Ωi or Ωe. Taking the
curl of (2.1a) and applying (3.2) gives the fourth-order linear partial differential equation

E4ψ i,e(r, ζ ) = E2(E2ψ i,e(r, ζ )) = 0, (3.3)

for ψ i,e, where the axisymmetric operator E2 takes the form

E2 := ∂2

∂r2 + sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
= ∂2

∂r2 + 1 − ζ 2

r2
∂2

∂ζ 2 . (3.4)

Equation (3.3) has the general solution (Happel & Brenner 1983, 4-23.34)

ψ(r, θ) =
∞∑

n=2

(
Anrn + Bnr−n+1 + Cnrn+2 + Dnr−n+3

)
Jn(ζ ), (3.5)

where the expansion coefficients, {An,Bn,Cn,Dn} for n ∈ {2, . . . ,∞}, are constants, and
Jn are polynomial functions in ζ that are closely related to the Gegenbauer polynomials.
The first two Jn polynomials are given by (Happel & Brenner 1983, 4-23.19)

J2(ζ ) := 1
2 (1 − ζ 2) ≡ 1

2 sin2 θ, (3.6a)

J3(ζ ) := 1
2(1 − ζ 2)ζ ≡ 1

2 sin2 θ cos θ. (3.6b)

The Jn polynomials form complete set of orthogonal functions and satisfy the
orthogonality condition (Happel & Brenner 1983, 4-23.37)

∫ 1

−1

Jm(ζ )Jn(ζ )

1 − ζ 2 dζ =
⎧⎨
⎩

0, m /= n,
2

n(n − 1)(2n − 1)
, m = n.

(3.7)

The expansion coefficients in (3.5) may be determined by solving a coupled system
of linear equations that is generated by using the orthogonality relation in (3.7) on the
boundary conditions prescribed at the squirmer and container surfaces. The remainder of
this section presents an overview of the streamfunctions and their use in solving for the
translational velocities of the squirmer, non-porous container and porous container.
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3.1. The rigid non-porous container
In the case of the non-porous rigid container, the fluid mechanics problems in regions
Ωi and Ωe are fully decoupled. The container is at rest with velocity Um = 0. The
kinematic and dynamic boundary conditions on the surface of the container are given by
the vanishing of the normal and tangential fluid velocity components and may be written
as

ψ i(r, ζ )
∣∣∣
r=b

= 0, (3.8a)

∂ψ i(r, ζ )
∂r

∣∣∣∣
r=b

= 0. (3.8b)

Under a Cartesian world space basis (see figure 1) with ez pointing upwards and ey
pointing into the page, the squirmer’s swimming orientation, es, points in the direction of
ez. The translational velocity of the squirmer is U sq = Usq

z ez. The kinematic and dynamic
boundary conditions on the squirmer’s surface are given by matching the squirmer’s
surface velocity to the fluid velocity at r = a and may be written as

[
ui(r, θ)−

(
U sq + Ωsq × r + usl(r, θ)

)]
· er

∣∣∣
r=a

= 0, (3.9a)[
ui(r, θ)−

(
U sq + Ωsq × r + usl(r, θ)

)]
· eθ

∣∣∣
r=a

= 0, (3.9b)

where U sq and Ωsq denote translational and angular velocities of the squirmer, and
usl(r, θ) is the squirmer’s surface slip velocity defined in (2.2). Since the squirmer’s
surface velocity has no azimuthal or radial component, no net angular motion can be
generated along ez, and so it must hold that Ωsq = 0. Using intrinsic coordinates on the
surface of the squirmer and recalling the relationships (Happel & Brenner 1983, 4-5.3,
4-5.4)

ui
r(a, θ) = − 1

a sin θ
∂ψ i(a, θ)
∂θ

, (3.10a)

ui
θ (a, θ) = 1

a sin θ
∂ψ i(r, θ)

∂r

∣∣∣∣
r=a

, (3.10b)

∂(r sin θ)
∂θ

= er · ez, (3.10c)

∂(r sin θ)
∂r

= −eθ · ez, (3.10d)

the velocity boundary condition in (3.9a) simplifies as

∂

∂θ

(
ψ i(a, θ)+ 1

2
a2Usq

z sin2 θ

)
= 0. (3.11)

After integrating around the squirmer in θ , and setting the constant of integration to zero
to be consistent with the general convention that streamfunctions vanish along the axis
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The hydrodynamics of a squirmer inside of a porous container

θ = 0, (3.11) reduces to the expression

ψ i(r, θ)|r=a = −1
2 Usq

z a2 sin2 θ,

= −1
2 Usq

z a2(1 − ζ 2). (3.12)

Similarly, using (3.10), (3.9b) simplifies as

∂ψ i(r, θ)
∂r

∣∣∣∣
r=a

= a sin2 θ
(
Bsq

1 (1 + β cos θ)− Usq
z )

)
,

= a(1 − ζ 2)
(
Bsq

1 (1 + βζ)− Usq
z )

)
. (3.13)

Based on the ζ dependence in the J2 and J3 eigenfunctions it is straightforward to see
that the first two terms of (3.5) are sufficient to satisfy the boundary conditions on the
squirmer’s surface, (3.12), (3.13), and on the container’s surface, (3.8a), (3.8b). Therefore,
the streamfunction, ψ i(r, θ), defined over Ωi, takes the form

ψ i(r, θ) =
(

Ai
2r2 + Bi

2r−1 + Ci
2r4 + Di

2r
)
J2(ζ )

+
(

Ai
3r3 + Bi

3r−2 + Ci
3r5 + Di

3

)
J3(ζ ). (3.14)

The procedure used to obtain the expansion coefficients, {Ai
n,Bi

n,Ci
n,Di

n} for n ∈ {2, 3},
in (3.14) is explained in appendix A.1. Solutions for these coefficients are provided in
(A7). The expansion coefficients may be determined by using the orthogonality relations
of the Jn polynomials from (3.7) on the four boundary conditions (3.8a), (3.8b), (3.12)
and (3.13). Applying these orthogonality conditions over J2(ζ ) and J3(ζ ) yields eight
linear equations in the eight unknown expansion coefficients. The solution of this system
of equations yields expressions for the expansion coefficients in terms of Usq

z . A force
balance on the squirmer provides the final equation for determining Usq

z .
In the absence of fluid inertia, a force balance on the neutrally buoyant, net force- and

torque-free squirming particle reveals that the net hydrodynamic force and torque are zero

F H = F P + F D = 0, (3.15a)

T H = 0. (3.15b)

The net hydrodynamic force in (3.15a) is expressed as a sum of two separate contributions:
a propulsive force F P induced by the squirmer’s slip velocity, and a drag force F D induced
by the rigid body motion of the squirmer through the fluid. Fundamentally, the squirmer
generates directed motion by balancing the drag force with an internally generated equal
and opposite propulsive force. Once the expansion coefficients of ψ i(r, θ) are determined,
(3.15) may be used to solve for the translational velocity of the squirmer, U sq, subject to
the formula (Happel & Brenner 1983, 4-14.18)

FH
z = μπ

∫
Γsq

[
(r sin(θ))3

∂

∂r

(
E2ψ(r, θ)
(r sin(θ))2

)
r
]∣∣∣∣

r=a
dθ. (3.16)

Alternatively, since the squirmer is a sphere, the expression (Happel & Brenner 1983,
4-23.35)

FH
z = 4πμD2, (3.17)

can be used to directly find FH
z from the Di

2 coefficient.
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Figure 2. The non-dimensional centre of mass translational speeds of a forced particle, Ufp
z , and a squirmer,

Usq
z , are plotted as a function of the container–particle size ratio, b/a. The squirmer translational velocity

approaches its free space squirming velocity rapidly in comparison to the forced particle as b/a → ∞.

Using the expansion coefficients from (A7) and solving either (3.16) or (3.17) together
with net force- and torque-free constraints of (3.15), the squirmer’s translational velocity
is found to be

U sq = Bsq
1 (b − a)

(
3a3 + 6a2b + 4ab2 + 2b3)

3
(
a4 + a3b + a2b2 + ab3 + b4

) ez. (3.18)

Equation (3.18) and the solution to the unit forced concentric sphere problem (Happel
& Brenner 1983, pp. 130–133) are shown in figure 2. When compared with the forced
particle–container solution, the squirmer–container solution shows much faster decay to its
free space velocity, U sq

fs = 2/3Bsq
1 ez, as the container to particle size ratio increases. This

faster decay is partially explained by the faster far field decay in the squirmer’s disturbance
velocity field when compared with the forced particle solution which decays as O(r−1).
The squirmer’s slip velocity also provides an explicit mechanism by which fluid can move
anti-parallel to the swimming orientation making the squirmer more efficient at moving in
confinement than a forced particle.

3.2. The rigid porous container
If the container is now made into a rigid porous membrane, the exterior and interior
fluid regions become coupled across the membrane through the region Ωp. The container
now moves with velocity Um = Umez. Fluid transport in this region is modelled using
a macroscopic approach, similar to Darcy’s law; however, the porous region, Ωp, is
ultimately modelled as a thin permeable interface. The model for the porous container
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is partially motivated by the structure of Darcy’s law which reads

up = −K

μ
∇pp, (3.19)

where K is a second-order permeability tensor, and pp, μ and up are respectively the
volume averaged pressure, viscosity and fluid filtration velocity. For a thin membrane, the
gradient in pressure from (3.19) may be approximated using a first-order finite difference.
For a finite second-order derivative in the pressure, this approximation is accurate to O(lc)
for membrane thickness lc under the assumption that lc � {a, b, b − a}.

Instead of using K it is more convenient to define a membrane resistance tensor, Rm :=
lcK−1, formulated as an inverse to permeability whose magnitude describes resistance to
fluid transport across the membrane. Much like permeability, the membrane’s resistance
can be understood as an effective parameter, translating volume averaged fluid–solid
quantities from a scale proportional to the membrane pore size, ap, to a scale that may
be several orders of magnitude larger.

Under a local spherical basis, {er, eθ , eφ}, the resistance tensor is diagonal with normal
and tangential resistance parameters R⊥ := Rr and R‖ := Rθ = Rφ ; therefore, pressure
driven flow normal to the membrane is controlled by R⊥. Performing a normal stress
balance on the membrane interface implies the following generalized condition:

− pe + pi + μ(er · τ eer − er · τ ier) = R⊥μ(up − Um) · er, (3.20)

for viscous stress τ and translational membrane velocity Um. Similar to (3.19), (3.20)
states that a discontinuity in the normal stress drives the relative filtration velocity, up −
Um, normal to the membrane.

Since the order of the derivative in up is one less than in the Stokes equations, coupling
Darcy’s law to the Stokes equations requires making an additional assumption on a
tangential boundary condition. If the vesicle were modelled as a Brinkman medium,
an assumption on the tangential boundary condition would not be necessary. Rather,
boundary conditions that express the continuity of the stress components between the free
fluid in Ωi and Ωe and the Brinkman medium would be sufficient to create a well-posed
system (Keh & Lu 2005). When coupling to Darcy’s law, no slip in the tangential direction
is often the simplest condition to enforce, however, research on these boundary conditions
has led to alternative tangential stress discontinuity conditions (Beavers & Joseph 1967;
Saffman 1971; Jones 1973). Recently, Zampogna & Gallaire (2020) have developed a
macroscopic model for a stress jump boundary condition across thin membranes. This
model appears promising, however, to keep our analysis simple yet representative of
a porous membrane, we have taken inspiration from the empirical model proposed by
Beavers & Joseph (1967) which reads

∂u
∂y

= α√
k
(u − q), (3.21)

where u is the mean velocity parallel to the surface, q is the tangential volume flow
rate inside the porous medium, y is the coordinate normal to the surface, α is a
dimensionless constant depending on the properties of the porous surface and k is an
isotropic permeability constant. Equation (3.21) implies that the fluid velocity at the porous
interface does not have to be continuous and that the magnitude of the slip velocity is
directly proportional to the shear stress. Jones (1973) solved for the flow past a spherical
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shell and proposed a generalization of (3.21) given by

τrθ = α√
k
(uθ − qθ ). (3.22)

The stress jump condition in (3.22) may become relevant when describing engineered
membranes or vesicles featuring large pores, as tangential slip between the free fluid
velocity and the velocity in the porous medium becomes much more physically plausible.

For a thin membrane, a tangential stress balance across the interface, taken together with
(3.22), motivates the generalized condition

μ(eθ · τ eer − eθ · τ ier) = R‖μ(up − Um) · eθ , (3.23)

where slip in the tangential component of the relative filtration velocity is driven
by a discontinuity in the tangential stress at the interface. Equation (3.23) results in
discontinuous partial derivatives

∂ui
θ

∂r

∣∣∣∣∣
r=b

/= ∂ue
θ

∂r

∣∣∣∣
r=b

, (3.24)

and may be understood as one mechanism by which the squirmer’s tangential slip velocity
is transmitted to the container ultimately resulting in directed container motion.

The normal and tangential stress balances of (3.20) and (3.23) are supplemented with
the conditions

ui(r, θ)|r=b · er = up(r, θ)|r=b · er = ue(r, θ)|r=b · er, (3.25a)

ui(r, θ)|r=b · eθ = up(r, θ)|r=b · eθ = ue(r, θ)|r=b · eθ , (3.25b)

which state that the fluid velocity is continuous at r = b.
The streamfunction, ψ i(r, θ), takes the same form as in (3.14) as the squirmer’s

boundary conditions have not changed. The conditions of (3.25) require that ψe(r, θ)
take the same form as ψ i(r, θ). The fluid velocity in Ωe decays to quiescence as r → ∞
and requires limr→∞ ψe/r2 = 0, implying that Ae

2 = Ce
2 = Ae

3 = Ce
3 = 0. Therefore, the

streamfunction, ψe(r, θ), takes the form

ψe(r, θ) =
(

Be
2r−1 + De

2r
)
J2(ζ )+

(
Be

3r−2 + De
3

)
J3(ζ ). (3.26)

Equations (3.14) and (3.26) collectively have 12 unknown expansion coefficients. The six
boundary conditions, (3.12), (3.13), (3.20), (3.23), (3.25a) and (3.25b) are sufficient to
determine ψ i,e(r, ζ ) in terms of Usq

z and Um
z since they yield 12 equations after applying

the orthogonality relation (3.7) over the J2(ζ ) and J3(ζ ) eigenfunctions. Force balances
on the squirmer and container surfaces in combination with (3.16) or (3.17) are sufficient
to determine Usq

z and Um
z . Additional details pertaining to the structure and solution of

these 12 linear equations are provided in appendix A.2.
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Solutions for the 12 expansion coefficients from (3.14) and (3.26) are provided in (A23).
The squirmer and membrane translational velocities are found to be

U sq = Bsq
1
(
3a5R⊥R‖ − 5a3b2R⊥R‖ + 2b5R⊥R‖ + 10b4(R⊥ + 2R‖)

)
3
(
(b5 − a5)R⊥R‖ + 5b4(R⊥ + 2R‖)

) ez, (3.27)

Um = 10a3bBsq
1 (R⊥ − R‖)

3
(
(b5 − a5)R⊥R‖ + 5b4(R⊥ + 2R‖)

)ez. (3.28)

Both (3.27) and (3.28) are independent of β and therefore Bsq
2 which indicates that all

types of squirmers (pushers β < 0, neutral β = 0, and pullers β > 0) move with the same
translational speed.

The reason that (3.27) and (3.28) are independent of Bsq
2 is largely of mathematical

consequence. As seen in (3.17), the Di,e
2 coefficients determine the total hydrodynamic

force on the squirmer and container, and are paired with the J2(ζ ) eigenfunctions in
(3.14). The streamfunction, ψ i(r, θ), must satisfy (3.13) on the surface of the squirmer.
Since the Di

2 coefficient is paired with the J2(ζ ) eigenfunction, and the eigenfunctions
are orthogonal, the Di

2 expansion coefficient can only match the portion of the squirmer’s
velocity boundary condition that is proportional to sin2 θ . The portion of the squirmer’s
tangential boundary condition that is proportional to sin2 θ is precisely independent of
the Bsq

2 parameter. Therefore, the Bsq
2 will never be involved in the calculation of the

hydrodynamic force on the squirmer. Since this force calculation is ultimately used to
determine the squirmer’s translational velocity, the Bsq

2 parameter will not contribute to the
squirmer’s velocity. In the same way, the streamfunctionsψ i,e(r, θ), have to match at r = b
which means that the J2(ζ ) portions of ψ i,e(b, θ) must match. The J2(ζ ) eigenfunction
in ψ i propagates the functional Bsq

1 dependence and Bsq
2 independence to the container’s

velocity.

3.3. Limiting behaviours
Several important limiting behaviours may be recovered from (3.27) and (3.28). Fixing the
squirmer’s size as a, if the size ratio b/a → ∞, the squirmer’s speed is affected less and
less by confinement, and the free space squirming velocity, 2/3Bsq

1 , is recovered with a
container velocity that approaches zero. If b/a → 1, then the squirmer perfectly transmits
its boundary conditions to the container and the squirmer moves with the free space
velocity, 2/3Bsq

1 , with the container translating at a speed reduced by (R⊥ − R‖)/(R⊥ +
2R‖). Summarized more formally, for these two simple cases,

lim
b→∞

U sq = 2
3 Bsq

1 ez, lim
b→∞

Um = 0, (3.29a,b)

lim
b→a

U sq = 2
3

Bsq
1 ez, lim

b→a
Um = 2

3
Bsq

1

(
R⊥ − R‖
R⊥ + 2R‖

)
ez. (3.30a,b)

In the case where fluid travels through the membrane isotropically (R⊥ = R‖ = R) the
container does not translate, but the squirmer translates with a speed

lim
R⊥→R‖

U sq = Bsq
1
(
3a5R − 5a3b2R + 2b5R + 30b4)

3
(
R(b5 − a5)+ 15b4

) ez. (3.31)

The cases in which the fluid is restricted to either leak normally or tangentially through
the container results in two different container and squirmer velocities which implies that
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mechanisms for normal and tangential fluid leakage are not equivalent in the sense that
only discontinuities in the normal stress may be driven by a finite pressure jump. There is
no equivalent mechanism for driving fluid tangentially across the membrane. These two
limiting cases correspond to where either R⊥ or R‖ diverges. In these cases, container and
squirmer translational velocities become

lim
R⊥→∞

U sq = Bsq
1
(
3a5R‖ − 5a3b2R‖ + 2b5R‖ + 10b4)

3
(
R‖(b5 − a5)+ 5b4

) ez,

lim
R⊥→∞

Um = 10a3bBsq
1

3
(
R‖(b5 − a5)+ 5b4

)ez,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.32)

lim
R‖→∞

U sq = Bsq
1
(
3a5R⊥ − 5a3b2R⊥ + 2b5R⊥ + 20b4)

3R⊥(b5 − a5)+ 30b4 ez,

lim
R‖→∞

Um = − 10a3bBsq
1

3R⊥(b5 − a5)+ 30b4 ez.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.33)

The limit in which both R⊥ → ∞ and R‖ → ∞ recovers the solution for the rigid
non-porous container, (3.18). The case in which {R⊥,R‖} → {∞, 0} recovers the solution
for a viscous drop, in which there is no viscosity discontinuity, yet a zero shear stress
jump at the fluid–membrane interface. For a viscous drop, U sq becomes (3.18) and
Um = 2/3Bsq

1 a3/b3ez. This solution agrees with the more general viscous drop solution
presented by Reigh et al. (2017). In the limits that R⊥ → 0 or R‖ → 0 the squirmer
velocity goes to the free space solution, U sq → 2/3Bsq

1 ez, yet the container moves at a
reduced speed given by

lim
R⊥→0

U sq = 2
3

Bsq
1 ez, lim

R⊥→0
Um = −a3Bsq

1
3b3 ez, (3.34a,b)

lim
R‖→0

U sq = 2
3

Bsq
1 ez, lim

R‖→0
Um = 2a3Bsq

1
3b3 ez, (3.35a,b)

owing again to the difference in whether a normal or shear stress discontinuity drives fluid
across the membrane.

3.4. Velocity fields
Velocity fields with streamlines have been constructed over the set of squirmer types β ∈
{−5, 0,+5} and resistances Rm := {R‖,R⊥}, for a fixed container to squirmer size ratio
b/a = 5. Velocity fields for a β = −5 pusher, β = 5 puller, and β = 0 neutral squirmer
are shown respectively in panel pairs 3(a,d), 3(b,e) and 3(c, f ). The aforementioned pairs
of panels are grouped by resistance parameterizations R‖ < R⊥ for R/a = {10, 100} and
R‖ > R⊥ for R/a = {100, 10}. The velocity fields are constructed in Cartesian coordinates
by sweeping over the sets {ψ i(x, z, φ) : b2 ≥ x2 + z2 ≥ a2, φ ∈ [0,π]} and {ψe(x, z, φ) :
x2 + z2 > b2, φ ∈ [0,π]} and applying (3.2). Streamlines are constructed using standard
formalisms.

Velocity fields in which R‖ < R⊥ show that the fluid exits preferentially in tangential
directions relative to the membrane surface. Conversely the condition, R‖ > R⊥ forces
fluid to enter and exit the membrane with a larger normal velocity component. Although
translational velocities of the squirmer and container, in the concentric geometry,
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Figure 3. Velocity fields are shown for a container to particle size ratio b/a = 5, squirmer types β ∈ {−5, 0, 5}
and membrane resistance parameters Rm = {R‖,R⊥} = {10, 100} and {100, 10}. The centre arrow shows the
squirmer’s swim direction, es := ez. The fluid velocity scales have normalized units |u(x, z)|/|U sq

fs |.

are independent of the squirmer’s type, β, the flow fields are very much dependent on
β. Neutral squirmers are seen to produce flow fields that are similar to the source dipole
flow field. Pushers tend to draw fluid in radially (relative to es) and expel it out axially.
Pullers draw fluid in axially and expel it out radially. Both pushers and pullers expel
fluid asymmetrically relative to the xy-plane, and thus generate net motion along their
orientation es (in this case in +ez). Pushers and pullers should functionally behave like the
point force dipole solution of Stokes flow; however, the container induces vortical flows in
both the z-anterior and z-posterior portions of the container. This phenomenon is purely
of hydrodynamic origin, owing to the confinement effects of the container.

4. Boundary integral formulation

The basis for the direct boundary integral method is the integral representation (Pozrikidis
1992; Kim & Karrila 2005)∫

Γ

K ij(x, y)uj( y) dS( y)−
∫
Γ

Gij(x, y) fj( y) dS( y) =
{

2ui(x), x ∈ Ω
0, x /=Ω , (4.1)

where x is a point inside the volume Ω , u is the velocity, f is a force density and the
integrals are performed over the surface Γ in the variable y. The tensors, K(x, y) and
G(x, y), are the double and single layer potentials for Stokes flow

K ij(x, y) := − 2
3π

( y − x)i( y − x)j( y − x)knk( y)
|( y − x)|5 , (4.2a)

Gij(x, y) := 1
4πμ

(
δij

|( y − x)| + ( y − x)i( y − x)j
|( y − x)|3

)
, (4.2b)
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which differ from their classical definitions by an additional factor of two, and where n( y)
is the surface normal vector. Across a Lyapunov-smooth surface, it is well known that the
single layer potential is continuous whereas the double-layer potential is discontinuous and
satisfies the jump conditions (Phan-Thien & Kim 1994; Steinbach 2008)

ui,e(x) = lim
ε→0+

u(x ∓ εn(x)),

= ∓φ(x)+
∫
Γ

K(x, y)φ( y) dS( y),
x ∈ Γ, (4.3)

for an arbitrary velocity density, φ(x), and normal vector, n(x), that points into Ωe.
The integral in (4.3) should be understood as a Cauchy principal value integral, and the
negative or positive sign applies when the limit is taken from the internal (Ωi) or external
(Ωe) side of Γ (Pozrikidis 1992). Taking the limit as x → Γ of (4.1) in the direction that
the surface normal points yields the boundary integral equation (BIE)

ui(x) =
∫
Γ

K ij(x, y)uj( y) dS( y)−
∫
Γ

Gij(x, y) fj( y) dS( y), x ∈ Γ, (4.4)

where a jump of +u(x) has been accounted for as required by (4.3). Apart from a factor
of 1/2 (recall that (4.2a) and (4.2b) have been multiplied by an extra factor of two),
and modulo sign conventions used in (4.2), (4.4) is the usual boundary integral equation
that provides the starting point for boundary element analysis in most boundary element
literature.

When solving mobility problems, the force density distribution is unknown, and
(4.4) becomes an ill-posed Fredholm integral equation of the first kind. To formulate a
well-posed integral equation of the second kind, the fluid velocity may instead be written
in terms of the double-layer potential and an aphysical velocity density, φ(x), as

u(x) = φ(x)+
∫
Γ

K(x, y)φ( y) dS( y), x ∈ Γ. (4.5)

It is well known that (4.5) can only describe a force- and torque-free surface. In fact,
the completed double-layer boundary integral equation method (CDLBIEM) (Power &
Miranda 1987; Karrila & Kim 1989; Phan-Thien & Kim 1994; Kim & Karrila 2005) seeks
to generalize (4.5) to surfaces with finite forces and torques. However, since the squirmer
is by definition force and torque free there is no need to use the full range completion terms
from the original CDLBIEM method, and (4.5) is sufficient for describing the squirmer.
To describe the container, the BIE in (4.1) will be used to derive a second kind integral
equation that is a function of a discontinuous interfacial force.

Since the Stokes equations are linear partial differential equations, individual velocity
contributions may be superimposed to construct the full velocity field. In the context
of the squirmer–container geometry, the fluid velocity inside of the container may be
decomposed as a sum of velocities arising from integral contributions from singularity
distributions over squirmer and container surfaces. Therefore, the fluid velocity at point x
in the interior fluid region, Ωi, may be generically written as

u(x) = usq(x)+ uc(x), x ∈ Ωi. (4.6)
It is then useful to define disturbance velocity fields ūsq(x) and ūc(x) such that

ūsq(x) = u(x)− usq(x), (4.7)

ūc(x) = u(x)− uc(x). (4.8)
Equations (4.6)–(4.8) simplify notation as they allow individual velocity contributions to
be expressed relative to a disturbance velocity field.
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4.1. Squirmer velocity contribution
Since the Stokes double-layer potential is able to fully represent flow fields that correspond
to force- and torque-free surfaces, the double-layer potential can be used to elegantly
describe the squirmer’s disturbance velocity field. The squirmer’s velocity contribution
is formulated based on (4.5) as an indirect Fredholm integral equation of the second
kind in an aphysical velocity density acting on the Stokes double-layer bivariate potential.
Observing the form of (4.5) and the aforementioned jump properties of the double layer
potential in (4.3), the squirmer’s disturbance velocity field in (4.7) is found to be

U sq + Ωsq × (x − xsq
c )+ usl(x)− ūsq(x) = φ(x)

+
∫
Γsq

K(x, y)φ( y) dS( y), x ∈ Γsq, (4.9)

where the velocity boundary condition at the squirmer’s surface is used in conjunction
with (4.7) to couple the fluid velocity on the squirmer’s surface to the squirmer’s rigid
body motion. The slip velocity usl(x), defined in (2.2), is solely responsible for generating
the propulsive force, F P, that drives the squirmer whereas the rigid body motion terms,
U sq and Ωsq, give rise to the drag force F D from (3.15a). Although the singularity present
in the kernel K is proportional to 1/r2, (4.9) is a second kind integral equation and admits
rigorous analysis under the Fredholm–Riesz–Schauder theory (Hsiao & Wendland 2008;
Kress 2014) so long as the surface is sufficiently smooth.

Using the CDLBIEM completion relationships (Karrila & Kim 1989; Kim & Karrila
2005)

U sq = −
3∑

j=1

ϕj,RBM(x)〈ϕj,RBM,φ〉, (4.10)

Ωsq × (x − xsq
c ) = −

6∑
j=4

ϕj,RBM(x)〈ϕj,RBM,φ〉, (4.11)

where xsq
c is the squirmer’s centroid, (4.9) may be written solely in terms of the velocity

potential φ. The, ϕi,RBM, i ∈ {1, . . . , 6}, are the rigid body motion (RBM) eigenfunctions
of the homogeneous form of (4.3) with eigenvalue –1, which are proportional to ex, ey, ez,
ex × (x − xsq

c ), ey × (x − xsq
c ) and ez × (x − xsq

c ). In practice, when dealing with a mesh
approximation to Γsq, these functions are numerically determined by making them
orthonormal with respect to the natural inner product norm on the surface

〈a, b〉 =
∫
Γsq

ai(x)bi(x) dS(x), (4.12)

using the modified Gram–Schmidt process. For a perfectly spherical surface they take the
forms (Phan-Thien & Kim 1994)

ϕi,RBM(x) = 1√|Γsq|
ei, (4.13a)

ϕi+3,RBM(x) = 1√
Ii

ei × (x − xsq
c ), (4.13b)
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where |Γsq| is the surface area of the squirmer and

Ii =
∫
Γsq

[
( y − xsq

c ) · ( y − xsq
c )− ( y − xsq

c )
2
i

]
dS( y), i ∈ {1, . . . , 3}, (4.14)

are the surface moments.
Substituting (4.10) and (4.11) into (4.9) results in

usl(x)− ūsq(x) = φ(x)+
∫
Γsq

K(x, y)φ( y) dS( y)+
6∑

j=1

ϕj,RBM(x)〈ϕj,RBM,φ〉, (4.15)

where the integral equation’s eigenvalue at −1 of rank six, corresponding to the operator
(I + K), is mapped to zero. After solving for φ, post processing with the completion
relations, (4.10) and (4.11), allows for recovery of U sq and Ωsq.

4.2. Container velocity contribution
In formulating the container contribution, explicit indications of where x and y are located
are made relative to the defined container normal vector, n. Since the container normal
points exterior to the container, quantities that depend on points x and y in Ωe and in the
direction of n, are denoted with a superscript +. Similarly, quantities that depend on x and
y in volume Ωi bounded by Γc−, are denoted with a superscript −.

Under zero viscosity contrast inside and outside of the container, the Stokes boundary
integral equations in the primary variables (surface velocities u(x) and tractions f (x))
may be applied to both sides of the container to find that

uc(x)− ūc(x) = [
u+(x)− u−(x)

] +
∫
Γc

K(x, y)
[
u+( y)− u−( y)

]
dS( y)

− 1
2

∫
Γc

G(x, y)
[
f +( y)− f −( y)

]
dS( y), (4.16)

where uc(x) is the fluid velocity evaluated on the container/membrane surface. This fluid
velocity is different from the membrane’s physical point-wise velocity, um(x), unless no
slip is used in conjunction with the standard kinematic boundary condition. The fluid
velocity is assumed to be continuous across the membrane, as would be the case for
pressure driven flow through a cylindrical pore (i.e. fully developed Hagen–Poiseuille
flow). Imposing this condition as u+(x) = u−(x), (4.16) reduces to

uc(x)− ūc(x) = −1
2

∫
Γc

G(x, y)
[
f +( y)− f −( y)

]
dS( y). (4.17)

To proceed with modelling the squirmer–container system, a constitutive law, analogous
to (3.23) and (3.20), is needed to describe the stress jump across the membrane. The jump
in stress is modelled as

�f ( y) := [
f +( y)− f −( y)

]
,

= −
[
f b( y)+ f γ ( y)+ f p( y)

]
, (4.18)

which includes forces related to membrane bending f b, tension f γ and resistance to
permeable flow f p. In the present model the membrane is rigid and can only support a

919 A31-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.276


The hydrodynamics of a squirmer inside of a porous container

permeable force density expressed as

f p( y) = − [
uc( y)− um( y)

] · [Rnn( y)n( y)+ Rbb( y)b( y)+ Rtt( y)t( y)
]
,

= − {
uc( y)− [

Um + Ωm × ( y − xc
c)
]}

· {Rnn( y)n( y)+ Rbb( y)b( y)+ Rtt( y)t( y)} . (4.19)

This model is equivalent to the analytical formulation under the identifications R⊥ :=
Rn, R‖ := Rb = Rt. The vectors t, b,n are respectively the tangent, bitangent and normal
vectors and provide a localized point-wise tangent space on the container’s surface.

In addition, integral constraints on the total hydrodynamic force and torque on the
membrane container must be made to fix the system∫

Γc

�f ( y) dS( y) = F H = 0, (4.20)

∫
Γc

( y − xc
c)×�f ( y) dS( y) = T H = 0, (4.21)

where xc
c is the container’s centroid, and F H and T H are the hydrodynamic force and

torque acting on the container.

5. Results

The numerical solution to the coupled set of boundary integral equations, (4.15) and (4.17),
subject to the constraints, (4.20) and (4.21), is computed over a range of container–particle
size ratios of b/a ∈ {1.05, . . . , 10} and maintains accuracy by using adaptive mesh
refinement. Additional details relevant to the numerical discretization, assembly of the
global linear system and mesh adaptivity algorithm may be found in both appendix B
and Marshall (2018). In brief summary, the weak forms of both BIEs are constructed and
solved over discrete triangular mesh decompositions of the surfaces Γsq and Γc. Mesh
adaptivity is maintained in near surface-to-surface contact regions using a conformal
h-adaptive meshing algorithm that extends the newest vertex bisection (NVB) method of
Mitchell (1989). The linear system is solved using an in-house Galerkin boundary element
method (GBEM) implementation called GPU-GBEM that runs on CUDA enabled GPUs.
This implementation has been created as a general framework for solving a wide variety
of multi-body fluid–structure interaction problems in Stokes flow. The GPU-GBEM
framework maps GBEM calculations and assembly routines onto the GPU using analogous
implementations of the well-known fast-nbody simulation techniques (Nguyen 2007).
Issues related to race conditions, data partitioning and thread concurrency all manifest
and may be dealt with using standard methods.

5.1. Numerical comparison with the analytical model
The analytical solutions in (3.27) and (3.28) are compared with the GBEM numerics in
figures 4 and 5 when the container’s and squirmer’s centres of mass are coincident. This
comparison is made for a variety of confinement ratios b/a > 1, resistance parameter sets
R = {R‖,R⊥}, and squirmer types (defined by β = Bsq

2 /B
sq
1 ). So long as the number of

nodes is kept relatively small, the solution of the linear system may be obtained using
standard LU decomposition. Situations in which b/a ≈ 1 or where (b − a)/a ≈ δ for δ �
1 require one to use either mesh adaptivity and/or efficient nearly singular quadratures to
control element size and errors in numerical integrations.
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Figure 4. The non-dimensional centre of mass translational speed of a β = 5 squirming particle (see (3.27)) is
plotted as a function of the container–particle size ratio, b/a for various sets of membrane resistance parameters
Rm = {R‖,R⊥}. Numerical solutions obtained by solving (B35) are shown with symbols. For a concentric
squirmer–container configuration the squirmer’s velocity is independent of the second squirming mode Bsq

2
which indicates that all types of squirmers (pusher, puller, neutral) move with the same velocity.
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Figure 5. The non-dimensional centre of mass translational speed of the porous container (see (3.28)) is
plotted as a function of the container–particle size ratio, b/a for various sets of membrane resistance parameters
Rm = {R‖,R⊥}. For a concentric squirmer–container configuration the container’s velocity is independent of
the squirmer’s type but dependent on the sign of the quantity R⊥ − R‖.

919 A31-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.276


The hydrodynamics of a squirmer inside of a porous container

The resistance parameters Rm = {R‖,R⊥} have units 1/L and so membrane resistances
in all plots are non-dimensionalized by multiplying with the particle size a. When there
is relatively weak resistance to normal permeable flow through the membrane, R‖ > R⊥,
the squirmer moves opposite to the membrane. However, when R‖ < R⊥ and tangential
flow through the membrane is favoured, the membrane and squirmer both move in the
same direction. In the situation where R‖ < R⊥, flow across the membrane is primarily in
the tangential direction and almost exactly mirrors the squirmer’s tangential slip boundary
condition. The squirmer is able to transmit its slip boundary condition onto the container’s
surface by forming recirculating vortical flows which extend out beyond the container’s
surface. This effectively turns the container into a larger version of a tangential squirmer.
On the other hand, when there is weak resistance to normal permeable flow, the squirmer
always pushes a net volume of fluid behind its body. Consequently, the passive porous
container, which now allows this fluid to flow through its surface in the normal direction,
is convected backwards with this net fluid motion. These effects are seen more clearly in
the velocity fields from § 3.4.

In the limit that {R‖,R⊥} → {∞,∞}, the numerical calculations show agreement
with the analytical non-porous container solution, (3.18). Additionally, the numerically
calculated U sq shows a global minimum that is in agreement with the analytic model.
This minimum is at a particular size ratio where the squirmer moves the slowest, and
is understood as a confinement effect where the squirmer becomes inefficient at moving
fluid tangentially around its body. Both U sq and Um decay respectively to the free space
squirming velocity, 2/3Bsq

1 ez, and 0 as b/a → ∞. Similar plots (not shown) have been
constructed for a wider variety of resistances, and show in general that a higher resistance
leads to slower squirmer and container translational speeds.

5.2. Mobility fields
Squirmer and container trajectories may be simulated by integrating the solutions to
the mobility problem, (B35), over time. However, instead of solving the quasi-static
mobility problem separately at each point in time, mobility solutions are obtained using
interpolation over a special set of standard mobility solutions. A standard mobility solution
is defined as a solution to the squirmer porous container problem under a standard
parameterization

P0(x, z) = 〈a, b,Rt,Rb,Rn,Bsq
1 ,Bsq

2 , es = ez, xsq
c = (x, 0, z), xc

c = (0, 0, 0)〉. (5.1)

Solutions to the mobility problem are obtained at regularly spaced parameterizations
P0(x, z) on a circularly masked Cartesian grid in the region defined by

rcp := |xsq
c − xc

c| < b − a(1 + δ) =: rmax
cp , (5.2)

where δ is a fractional container to squirmer gap size.
Figures 6 and 7 show the translational velocity mobility fields for the squirmer and

container. Point-wise vectors indicate the velocity of either the squirmer or container if
the squirmer were located at the corresponding point. In all of the following trajectory and
mobility field calculations, computations are performed down to δ = 0.05. Owing to the
fact that it is physically impossible for a squirmer to pass through the container surface,
a simple collision model is used where squirmers attempting to cross the container
boundary remain fixed at a centre to centre separation of rmax

cp , yet may continue to keep
running into the container boundary at the δ = 0.05 level mobility solution.
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Figure 6. The translational container velocity, Um, is plotted for parameterizations P0(x, z) with b/a = 5.
Panels (a–c and d– f ) show results for resistances where either R‖ < R⊥ or R‖ > R⊥ for {R‖,R⊥} = {10, 100}.
Panels (a,d), (b,e) and (c, f ) are grouped by squirmer type. The black, red, pink and grey circles give notions of
regions where r = b, r = b − aδ, r = rmax

cp and r = a respectively.

5.2.1. Effect of container resistances on Um and U sq

Variations in the container resistance parameters have the most striking effect on the
container velocity Um. If the squirmer type is held constant, cases R‖ > R⊥ and R‖ < R⊥,
approximately differ by a mirror flipping of the container velocity across both the xy- and
yz-planes. This effect is shown in figure 6 for panel pairs (a,d), (b,e) and (c, f ) and exists
for all tested size ratios and squirmer types. This indicates that the directed motion of the
porous container may be changed by modifying its intrinsic porous structure so that either
normal or tangential flow through the container’s surface is favoured.

Effects on the squirmer’s translational velocity are less dramatic. Figure 7(a,b) shows
that weak tangential resistance to permeable flow (R‖ < R⊥) results in weak (small
magnitude) swimming near the anterior and posterior part (relative to ez) of the region
defined by r = rmax

cp for respectively β = −5 and β = +5. The swimming direction is
reversed in these regions, and this causes pullers to remain trapped towards the posterior
of the container. Conversely weak normal resistance to permeable flow (R‖ > R⊥) does
not significantly affect the overall swimming direction or magnitude to the same degree,
although different types of squirmers still produce fundamentally different velocity fields.

5.2.2. Effect of squirmer type on Um and U sq

Holding the resistance parameters fixed, each squirmer type (pusher, puller, neutral)
produces a different mobility velocity field. In general, β < 0 pushers produce U sq

mobility fields that show net motion directed upwards and radially outwards relative to
the z-axis towards r = rmax

cp . Mirror symmetry exists across the yz-plane. Pullers with
β > 0 also show net motion upwards with mirror symmetry across the yz-plane, but
on the contrary, their velocity is directed radially inward towards the z-axis. A neutral
squirmer creates a mostly uniform mobility field which indicates that it is relatively
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Figure 7. The translational squirmer velocity, U sq, is plotted for parameterizations P0(x, z). Figures are
grouped to correspond with figure 6 using the same resistance parameters and squirmer types.

unaffected by the presence of the container. This distinction in how squirmers move
radially outward or inwards relative to the z-axis may be further understood by examining
squirmer angular velocities. Squirmer angular velocities (not shown) are directed along
ey and are anti-parallel relative to the yz-plane. The angular velocity of pushers causes
net rotation in the squirmer’s swim orientation away from the yz-plane. Conversely, the
angular velocity of pullers causes net rotation towards the yz-plane.

The container velocity field shows a similar mirror symmetry reversal as was observed
when switching from weak normal to weak tangential resistances. However, this time the
mirror symmetry flipping of Um across the xy- and yz-planes is caused by changes in
β = 5 → −5. This implies a second mechanism for controlling the directed motion of
a container – the translational motion of the container may be reversed by changing the
squirmer’s type from a pusher to a puller.

5.3. Trajectory analysis
Simulating squirmer and container trajectories requires solving the mobility problem
at arbitrary squirmer positions and orientations. Due to the symmetry of the
squirmer–container geometry, arbitrary mobility solutions may be expressed as affine
transformations of the standard mobility solutions. To find the mobility solution for a
squirmer with arbitrary position and orientation, several rotation matrices are needed
to relate the squirmer’s position and orientation to a standard mobility solution at
some rsq,xz

0 = xsq
c − xc

c ∈ P0(x, z). The needed rotation matrices are Rrsq,xz

rsq which rotates

rsq = xsq
c − xc

c into the xz-plane, R
exz

s
es which rotates the squirmer’s orientation es

into the xz-plane and R
ez

s
exz

s
which transforms exz

s → ez
s. Then, by transforming

rsq → rsq
0 = R

ez
s

exz
s

Rrsq,xz

rsq rsq, the squirmer’s reference position, rsq,xz
0 , in P0

k , may be found.
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Figure 8. Several squirmer trajectories are shown for various squirmer types β ∈ {−5, 5, 0} at different
starting positions in the posterior part of the container. Figures are grouped to correspond with figure 7 using
the same resistance parameters and squirmer types. Each squirmer is initialized with es = ez.

Bicubic interpolation is then used to find the standard mobility solution at rsq,xz
0 . Centred

difference approximations are used to approximate first derivatives in x and y of the
container’s and squirmer’s centre of mass velocities and angular velocities. To recover
the actual mobility solution for a squirmer at an arbitrary position and orientation, the
interpolated standard mobility is rotated back by the inverse of the rotation that was used
to transform es → ez.

Squirmer and container trajectory plots are shown in figures 8 and 9 for a
container–particle size ratio of b/a = 5. Squirmer trajectories are shown in a coordinate
frame that moves with the container, and container trajectories are shown in world space
coordinates. Trajectories are simulated over a run time trun = a/|U sq

fs | from which a total
simulation time may be calculated as ttot = trunb/a. This total time is roughly the time
that it takes the squirmer to move a distance b. Since the squirmer’s translational velocity
is bounded above by U sq

fs , simulations are run for a constant multiple of trun so that the
squirmer has a chance to run across the container.

5.3.1. Squirmer trajectories
In a container with weak tangential resistance to permeable flow, R‖ < R⊥, (figure 8a–c)
pullers (β > 0) tend to move radially inwards relative to their initial orientation,
which in these simulations is es = ez. Conversely, pushers (β < 0) tend to move
radially outwards as they swim upwards in z. Neutral squirmers (β = 0) swim along
relatively straight trajectories. Viewed differently, pushers tend to be attracted towards the
container’s surface and pullers tend move away from the container’s surface. Since pushers
draw fluid in radially relative to their squirming direction and expel the fluid out in the axial
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Figure 9. Several container trajectories are shown for various squirmer types β ∈ {−5, 5, 0} with trajectory
colours corresponding to squirmer positions from figure 8. Figures are grouped to correspond with figure 7
using the same resistance parameters and squirmer types. The container is initialized to start at xc

c = 0.

direction (see figure 3a,d), they tend to pull themselves towards the container’s surface.
Conversely, pullers draw fluid in axially and expel the fluid out radially which tends to
have a centring effect on their trajectories (see figure 3b,e).

For a container with weak tangential resistance to permeable flow, there exists certain
starting positions where a puller may become hydrodynamically trapped, and be unable
to swim away from its initial position relative to the container. These initial trapping
positions can be seen in figure 8(b) near (0, 0,−b). The puller’s velocity reverses sign in
this region forcing it to swim towards the container’s surface. Above a certain initialization
point in z, all pullers are able to completely translocate to the other side of the container.
Once at the container’s surface, they proceed to slide inward along the container surface
and migrate towards (0, 0,±b) in the P0 parameterization. On the other hand, pushers,
in containers with weak tangential resistance to flow (figure 8a), nearly all successfully
translocate several run lengths across the container. However, all pusher trajectories tend
to move away from (0, 0,+b) towards radial regions that are symmetric with respect to
the yz-plane. Neutral squirmers migrate towards (0, 0,+b) behaving like pullers but avoid
hydrodynamic trapping.

For a container with weak normal resistance to permeable flow, R‖ > R⊥, (figure 8d– f )
all starting positions of pullers are able to completely translocate across the container.
All puller trajectories end up colliding with the container’s surface and move towards
(0, 0,+b). Pusher trajectories show more radial spread and move away from the z-axis,
although this time at more acute angles relative to the yz-plane. Additionally, all pushers
are able to completely translocate across the container. Neutral squirmers again show a
relatively straight trajectory and all migrate towards (0, 0,+b).
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Squirmer type Weak normal flow Weak tangential flow
(R‖ > R⊥) (R‖ < R⊥)

β = +5 ↑↓ ↑↑, ↑↓, ↓↓
β = 0 ↑↓ ↑↑
β = −5 ↑↑ ↑↓

Table 1. Net squirmer and container swimming directions are shown for the P0 parameterization relative to
ez. An up arrow ↑ indicates net motion in ez. A down arrow, ↓, indicates net motion in −ez. The first and
second arrows represent the net directional motion of the squirmer and container, respectively. Arrows are to
be understood as the overall direction of the net motion of the squirmer and container for sufficiently long
trajectories.

5.3.2. Container trajectories
A permeable container gives rise to a finite container velocity and net container motion.
The trajectory plots shown in figure 9 serve to illustrate the unique, often non-monotonic
motion of the container. In the subsequent discussion, parallel swimming or co-swimming
means that the container and squirmer both end up moving a net-positive distance in the
sense that they both move upwards in z in world coordinates. Anti-parallel swimming
means that the container either moves a net-negative or net-positive distance, and the
squirmer respectively either swims a net-positive or net-negative distance. These notions
of co-swimming and anti-parallel swimming are to be understood only up to the point
where the squirmer’s motion stagnates near the container boundary.

General trends which influence net container parallel swimming or anti-parallel
swimming can be observed by examining the net displacement of the container. Net
container and squirmer swimming directions are summarized in table 1. For weak normal
permeable flow, container trajectory plots show that pullers induce net anti-parallel
swimming of the container. Pushers on the other hand, induce co-swimming. Even
though the container trajectories are non-monotonic, the net motion is monotonic across
all studied resistance parameterizations and squirmer types. Neutral squirmers always
induce anti-parallel swimming of the container. Pullers will always translocate across the
container the fastest since they enjoy the added benefit of net-negative container swimming
distances.

For weak tangential flow, the situation is more complex. Pullers now induce
co-swimming of the container except when initialized at a hydrodynamically trapping
position. Several of the squirmer positions that are very near the container’s posterior
relative to a squirmer orientation of es = ez result in container co-swimming in the
−ez direction, although some positions give rise to net anti-parallel swimming. Pushers
always induce anti-parallel swimming of the container. Neutral squirmers always show
co-swimming of the container.

6. Conclusion

The dynamics of an active squirming particle inside of a rigid container is both rich and
complex. In this paper we analysed this system starting with a static fluid mechanical
analysis of a concentric squirmer–container geometry. The locomotion of the squirmer was
first studied in the context of a non-porous rigid container. An exact analytical solution for
the translational velocity of the squirmer was derived and compared with the solution for a
forced particle moving inside of an identical container. When compared with the velocity
of the forced particle, the velocity of the squirmer was seen to be much less influenced
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by the hydrodynamic confinement effects of the surrounding container. This phenomenon
is attributed to the fact that the velocity field associated with a squirmer decays more
rapidly in free space (∝ 1/r2,3) than the point force free space solution (∝ 1/r), and so
the squirmer will tend to move in a less hindered manner sooner than the forced particle
as b/a → ∞.

A new model was proposed for describing fluid flow across a thin porous rigid container.
The underlying basis of this model is Darcy’s law, but this porous container model is
more general and also allows for discontinuous jumps in both the normal and tangential
fluid stresses across the membrane. This porous container model was solved exactly for
the concentric squirmer–container geometry under a membrane resistance coefficient
parameterization, R‖ and R⊥, that controls how fluid passes through the container’s
surface. For all resistance combinations, {R‖,R⊥}, there exists a global minimum value in
the squirmer’s translational velocity at a particular size ratio (b/a)min. This was understood
as the size ratio where the squirmer becomes the most inefficient at moving fluid through
the container’s surface. Velocity flow fields with streamlines for the squirmer and porous
container were generated from the exact analytical solutions. Each flow field was seen to
be heavily influenced by the squirmer type β. Pushers, defined by β < 0, tend to draw fluid
in along the radial direction and expel it out axially relative to the squirmer’s orientation,
es. They do so asymmetrically so as to push more net flow towards −ez thereby generating
net thrust in ez. Pullers, defined by β > 0, swim by a different mechanism, and tend to
draw fluid in axially relative to es and expel it out radially. Again, this is performed
asymmetrically so as to generate net thrust in ez. Pushers and pullers were seen to both
create vortical flows in the axial z-anterior and z-posterior portions of the container. This
effect is purely of hydromechanical origin. These vortical flows hydrodynamically transmit
the container’s slip velocity to the container’s walls thereby causing the container to swim.

Next, a coupled set of boundary integral equations were derived for describing the
squirmer and porous container. A completed double-layer boundary integral representation
was used to described the squirmer’s fluid dynamics. Since the squirmer is by definition,
a force- and torque-free body, it can be perfectly represented by the Stokes BIE
operator K. The container BIE representation was expressed using a Stokes single layer
potential with operator, G, acting on a surface traction discontinuity � f . This term
was written using the newly proposed porous membrane model. The porous container’s
resistances were generalized under the identification Rm = {Rt,Rb,Rn} = {R‖,R‖,R⊥}
with tangent, bitangent and normal permeable resistances given respectively by Rt,Rb,Rn.
This description of the container yielded a second kind BIE equation making the
overall description of the coupled system second kind although with container force- and
torque-free constraints.

The coupled system of boundary integral equations describing the dynamics of the
porous container and squirmer system was discretized using the Galerkin method. While
this discretization method has been well known since the inception of the finite element
method, its application to BEM and multi-body hydrodynamics problems is relatively
unexplored. The squirmer porous container problem was solved under this discretization
using the GPUGBEM framework. All boundary element calculations were performed on
CUDA-enabled GPUs. Accuracy in all calculations was maintained using an adaptive
local refinement algorithm that preserves the mesh manifold property, and thus global
C0 continuity of all underlying unknown boundary datums.

Numerical solutions were obtained for the perfectly concentric geometry, and
were found to be in excellent agreement with the exact analytical model. The
squirmer’s translational velocity was seen to be bounded below by the solution for the
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non-porous container. Global minima in the squirmer’s velocity, present in the analytical
model, were recovered in the GBEM numerics.

In order to fully characterize the squirmer’s and container’s dynamics, a trajectory
analysis was performed using an interpolation procedure. An important symmetry
observation of the system was made, namely that the container and squirmer always share a
symmetry plane that contains both of their individual centres of mass, and that the mobility
solution is only unique up to how the squirmer is oriented. If the fluid mechanics can be
resolved in this single plane at a standard squirming orientation, then the fluid mechanics
is known in all space up to an affine transformation. Knowing the mobility solution up to
an affine transformation allowed for the fast simulation and calculation of trajectories for
arbitrary squirmer orientations and positions. The planar grid containing all the relevant
fluid mechanics information was referred to as a mobility solution field. Mobility solution
fields were constructed in a standard but arbitrary reference configuration, namely the
xz-plane, and with a standard squirmer orientation ez. Mobility solution fields were used
to interpolate squirmer and container trajectories for a variety of size ratios, resistance
parameters and squirmer types.

Lastly, both squirmer and container trajectories were simulated. Several general trends in
the squirmer trajectories were observed, namely that squirmer type determines the degree
of radial spread in the squirmer’s trajectory relative to its initial swimming orientation.
For a container with weak tangential resistance to permeable flow, pullers were seen to
move radially inward and upwards towards the anterior portion of the container. However,
there were some hydrodynamically trapping starting positions where a puller may never
be able to swim past the container’s axial equatorial xy-plane. Conversely, pushers were
seen to move radially outward. For weak normal resistance to permeable flow, the trapping
positions, seen previously for pullers, disappeared which allowed pullers, initialized at
arbitrary starting positions, to successfully translocate across the container. A container
with weak normal resistance to permeable flow was seen to have the general effect of
reducing radial spread in the squirmer trajectories.
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Appendix A. Streamfunction solutions

The orthogonality conditions from (3.7) may be applied to the boundary conditions (3.12)
and (3.13) by multiplying each equation with J2(ζ )/(1 − ζ 2) or J3(ζ )/(1 − ζ 2) and
integrating over the domain ζ ∈ [−1, 1]. This procedure produces the four equations

∫ 1

−1

ψ i(a, ζ )J2(ζ )

1 − ζ 2 dζ = −1
2

Usq
z a2

∫ 1

−1
J2(ζ ) dζ, (A1a)

∫ 1

−1

ψ i(a, ζ )J3(ζ )

1 − ζ 2 dζ = −1
2

Usq
z a2

∫ 1

−1
J3(ζ ) dζ, (A1b)
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The hydrodynamics of a squirmer inside of a porous container∫ 1

−1

∂ψ i(a, ζ )
∂r

J2(ζ )

1 − ζ 2 dζ = a
∫ 1

−1
(Bsq

1 (1 + βζ)− Usq
z )J2(ζ ) dζ, (A1c)

∫ 1

−1

∂ψ i(a, ζ )
∂r

J3(ζ )

1 − ζ 2 dζ = a
∫ 1

−1
(Bsq

1 (1 + βζ)− Usq
z )J3(ζ ) dζ. (A1d)

After evaluating the integrals and grouping terms, the equations in (A1) respectively
simplify to

a2
(

a3Ci
2 + a(Ai

2 + Usq
z )+ Di

2

)
+ Bi

2 = 0, (A2a)

a2(a5Ci
3 + a3Ai

3 + Di
3)+ Bi

3 = 0, (A2b)

a2(4a3Ci
2 + 2a(Ai

2 − Bsq
1 + Usq

z )+ Di
2)− Bi

2 = 0, (A2c)

a4(5a3Ci
3 + 3aAi

3 − 2Bsq
1 β)− 2Bi

3 = 0. (A2d)

A.1. The rigid non-porous container
The orthogonality conditions from (3.7) may be applied to the container boundary
conditions of (3.8) to find ∫ 1

−1

ψ i(b, ζ )J2(ζ )

1 − ζ 2 dζ = 0, (A3a)

∫ 1

−1

ψ i(b, ζ )J3(ζ )

1 − ζ 2 dζ = 0, (A3b)

∫ 1

−1

∂ψ i(b, ζ )
∂r

J2(ζ )

1 − ζ 2 dζ = 0, (A3c)

∫ 1

−1

∂ψ i(b, θ)
∂r

J3(ζ )

1 − ζ 2 dζ = 0. (A3d)

After evaluating the integrals and grouping terms, the equations in (A3) respectively
simplify to

b2
(

b3Ci
2 + bAi

2 + Di
2

)
+ Bi

2 = 0, (A4a)

b2
(

b5Ci
3 + b3Ai

3 + Di
3

)
+ Bi

3 = 0, (A4b)

b2
(

4b3Ci
2 + 2bAi

2 + Di
2

)
− Bi

2 = 0, (A4c)

b5
(

3Ai
3 + 5b2Ci

3

)
− 2Bi

3 = 0. (A4d)

The system of eight equations defined in (A2) and (A4) is linear in the unknown
expansion coefficients {Ai

n,Bi
n,Ci

n,Di
n} for n ∈ {2, 3} and may be solved in terms of

Usq
z using standard methods. Once the coefficients are determined, the hydrodynamic

force, FH
z , may be calculated by evaluating (3.16). The squirmer’s translational velocity is

determined by solving (3.15a) for Usq
z . Alternatively, (3.17) can be used directly to find Usq

z .
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Performing either procedure yields the expression for U sq previously reported in (3.18).
To simplify notation we define

Δ1 = 3(b5 − a5) = 3(b − a)(a4 + a3b + a2b2 + ab3 + b4), (A5)

Ξ1 = (a − b)2(4a6 + 16a5b + 40a4b2 + 55a3b3 + 40a2b4 + 16ab5 + 4b6). (A6)

The final expressions for the eight expansion coefficients are given by

Ai
2 = 5a3b2Bsq

1
�1

, (A7a)

Bi
2 = −2a3b5Bsq

1
�1

, (A7b)

Ci
2 = −3a3Bsq

1
�1

, (A7c)

Di
2 = 0, (A7d)

Ai
3 = −2a2Bsq

1 β(2a5 + 4a4b + 6a3b2 + 8a2b3 + 10ab4 + 5b5)

Ξ1
, (A7e)

Bi
3 = −2a4b5Bsq

1 β(3a3 + 6a2b + 4ab2 + 2b3)

Ξ1
, (A7f )

Ci
3 = 2a2Bsq

1 β(2a3 + 4a2b + 6ab2 + 3b3)

Ξ1
, (A7g)

Di
3 = 2a2b3Bsq

1 β(5a5 + 10a4b + 8a3b2 + 6a2b3 + 4ab4 + 2b5)

Ξ1
. (A7h)

The velocity field, ui(r, θ), may be constructed by substituting the constants from (A7)
into (3.14) and using (3.2) to relate the stream function to the velocity components.

A.2. The rigid porous container
Using the orthogonality conditions of (3.7) on the normal stress jump boundary condition,
(3.20), gives the equations∫ 1

−1

[
−pe(b, ζ )+ pi(b, ζ ) +μ(τ e

rr(b, ζ )− τ i
rr(b, ζ ))

] J2(ζ )

1 − ζ 2 dζ

=
∫ 1

−1
R⊥μ(ue

r(b, ζ )− Um
z ζ )

J2(ζ )

1 − ζ 2 dζ, (A8a)

∫ 1

−1

[
−pe(b, ζ )+ pi(b, ζ ) +μ(τ e

rr(b, ζ )− τ i
rr(b, ζ ))

] J2(ζ )

1 − ζ 2 dζ

=
∫ 1

−1
R⊥μ(ue

r(b, ζ )− Um
z ζ )

J3(ζ )

1 − ζ 2 dζ, (A8b)

where τrr is the normal component of the viscous stress defined by

τ i,e
rr (r, θ) := 2

∂ui,e
r (r, θ)
∂r

= 2
∂

∂r

(
1
r2
∂ψ i,e(r, ζ )

∂ζ

)
. (A9)
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The fluid pressure in regions Ωi and Ωe is defined in terms of the stream functions
ψ i,e(r, θ) through the relations (Happel & Brenner 1983)

∂pi,e(r, θ)
∂r

:= − μ

r2 sin θ
∂E2ψ i,e(r, θ)

∂θ
= μ

r2
∂E2ψ i,e(r, ζ )

∂ζ
, (A10a)

∂pi,e(r, θ)
∂θ

:= μ

sin θ
∂E2ψ i,e(r, θ)

∂r
,

= −
√

1 − ζ 2 ∂pi,e(r, ζ )
∂ζ

= μ√
1 − ζ 2

∂E2ψ i,e(r, ζ )
∂r

. (A10b)

The total differential of the pressure is given by

dpi,e(r, θ) = ∂p(r, θ)
∂r

dr + ∂p(r, θ)
∂θ

dθ,

= μ

r2
∂E2ψ i,e(r, ζ )

∂ζ
dr − μ

1 − ζ 2
∂E2ψ i,e(r, ζ )

∂r
dζ. (A11)

Since (A11) is an exact differential, the pressure may be determined by integrating (A10a)
in r and (A10b) in ζ , setting the constant of integration to the ambient pressure p∞, adding
the results, and subtracting out the common parts. The pressures in regions Ωi and Ωe are
found to be

pi(r, ζ ) = μ
[
(1 − 3ζ 2)(7r5Ci

3 + 2Di
3)− 2rζ(10r3Ci

2 + Di
2)
]

2r3 , (A12a)

pe(r, ζ ) = μ
[
(1 − 3ζ 2)De

3 − rζDe
2
]

r3 . (A12b)

After using (A12) in (A8a) and evaluating the integrals, we find that (A8a) simplifies to
an identity expression and (A8b) simplifies to the expression

3b2(2b3Ci
2 − De

2 + Di
2)− bR⊥(Be

2 + b2(De
2 + bUm

z ))+ 6(Bi
2 − Be

2) = 0. (A13)

Similarly, the equations generated by applying orthogonality on the tangential stress
jump condition of (3.23) are

∫ 1

−1
μ(τ e

rθ (b, ζ )− τ i
rθ (b, ζ ))

J2(ζ )

1 − ζ 2 dζ

=
∫ 1

−1
R‖μ(ue

θ (b, ζ )+ Um
z

√
1 − ζ 2)

J2(ζ )

1 − ζ 2 dζ, (A14a)

∫ 1

−1
μ(τ e

rθ (b, ζ )− τ i
rθ (b, ζ ))

J3(ζ )

1 − ζ 2 dζ

=
∫ 1

−1
R‖μ(ue

θ (b, ζ )+ Um
z

√
1 − ζ 2)

J3(ζ )

1 − ζ 2 dζ, (A14b)
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where τrθ is the tangential component of the viscous stress tensor defined by

τ
i,e
rθ (r, θ) := r

∂

∂r

(
ui,e
θ (r, θ)

r

)
+ 1

r
∂ui,e

r (r, θ)
∂θ

,

= r√
1 − ζ 2

∂

∂r

(
1
r2
∂ψ i,e(r, ζ )

∂r

)
−

√
1 − ζ 2

r
∂

∂ζ

(
1
r2
∂ψ i,e(r, ζ )

∂ζ

)
. (A15)

The equations from (A14) respectively simplify to

6(Bi
2 − Be

2 + b5Ci
2)+ bR‖(b2(De

2 + 2bUm
z )− Be

2) = 0, (A16a)

3b5Ai
3 + 8Bi

3 + b2(8b5Ci
3 + 3(Di

3 − De
3))− Be

3(8 + bR‖) = 0. (A16b)
Finally, the boundary conditions of (3.25a) and (3.25b) respectively generate the equations∫ 1

−1

[
ψe(b, ζ )− ψ i(b, ζ )

]J2(ζ )

1 − ζ 2 dζ = 0, (A17a)

∫ 1

−1

[
ψe(b, ζ )− ψ i(b, ζ )

]J3(ζ )

1 − ζ 2 dζ = 0, (A17b)

∫ 1

−1

[
∂ψe(b, ζ )

∂r
− ∂ψ i(b, ζ )

∂r

] J2(ζ )

r(1 − ζ 2)3/2
dζ = 0, (A17c)

∫ 1

−1

[
∂ψe(b, ζ )

∂r
− ∂ψ i(b, ζ )

∂r

] J3(ζ )

r(1 − ζ 2)3/2
dζ = 0, (A17d)

which simplify to

b2(2bAi
2 + 4b3Ci

2 − De
2 + Di

2)+ Be
2 − Bi

2 = 0, (A18a)

b5(3Ai
3 + 5b2Ci

3)+ 2(Be
3 − Bi

3) = 0, (A18b)

b2(bAi
2 + b3Ci

2 − De
2 + Di

2)+ Bi
2 − Be

2 = 0, (A18c)

b5Ai
3 + b2(b5Ci

3 − De
3 + Di

3)+ Bi
3 − Be

3 = 0. (A18d)
The system of eleven equations defined in (A2), (A13), (A16), (A18) is linear in the
unknown expansion coefficients {Ai

n,Bi
n,Ci

n,Di
n,Be

n,De
n} for n ∈ {2, 3} and may be solved

in terms of Ai
3,Usq

z and Um
z using standard methods. Once the coefficients are determined,

the hydrodynamic force on the squirmer or container may be calculated by evaluating
(3.16) or by using (3.17). The squirmer’s and container’s translational velocities are
determined by solving the system

4πDi
2 = 0, (A19)

4πDe
2 = 0, (A20)

for Usq
z and Um

z . The unknown coefficient Ai
3 is then determined by enforcing (3.20). To

simplify notation we define

�2 = 3((b5 − a5)R⊥R‖ + 5b4(R⊥ + 2R‖)), (A21)

Ξ2 = 350b8 + 210a5b4R⊥ − 175a3b6R⊥ + 4a10R⊥R‖

− 25a7b3R⊥R‖ + 42a5b5R⊥R‖ − 25a3b7R⊥R‖

+ 4b10R⊥R‖ − 25a7b2(3R⊥ + 2R‖)+ 10b9(4R⊥ + 5R‖). (A22)
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The final expressions for the 12 expansion coefficients are given by

Ai
2 = 5a3b2Bsq

1 R⊥R‖
�2

, (A23a)

Bi
2 = −2a3b4Bsq

1 (10R‖ + R⊥(5 + bR‖))
�2

, (A23b)

Ci
2 = −3a3Bsq

1 R⊥R‖
�2

, (A23c)

Di
2 = 0, (A23d)

Ai
3 = −2a2Bsq

1 βR⊥(2a7R‖ − 7a2b4(5 + bR‖)+ 5b6(7 + bR‖))
Ξ2

, (A23e)

Bi
3 = −

2a4b4Bsq
1 β(175b4 − b�2 + 15a5R⊥ − 35a3b2R⊥

− 5a3b3R⊥R‖ + 5b6R⊥R‖ + 5b5(7R⊥ + 11R‖))
Ξ2

, (A23f )

Ci
3 =

2a2Bsq
1 β(2a5R⊥R‖ + 3b4R⊥(5 + bR‖)

− 5a2b2(2R‖ + R⊥(3 + bR‖)))
Ξ2

, (A23g)

Di
3 =

2a2b2Bsq
1 β(175b6 − 35a5b2R⊥ + (5a7b − 7a5b3 + 2b8)R⊥R‖

+ 5a7(3R⊥ + 2R‖)+ 5b7(4R⊥ + 5R‖))
Ξ2

, (A23h)

Be
2 = −10a3b4Bsq

1 (R⊥ + 2R‖)
�2

, (A23i)

De
2 = 0, (A23j)

Be
3 = −10a2b4Bsq

1 β(R⊥(3a7 − 7a5b2 + 7a2b5 − 3b7)+ 35a2b4)

Ξ2
, (A23k)

De
3 =

10a2b2Bsq
1 β(35b6 − 7a5b2R⊥ + 7a2b5(R⊥ − R‖)

+ a7(3R⊥ + 2R‖)+ b7(−3R⊥ + 5R‖))
Ξ2

. (A23l)

The velocity fields, ui,e(r, θ), may be constructed by substituting the expansion
coefficients from (A23) into (3.14) and (3.26) and using (3.2) to relate the streamfunction
to the velocity components. The pressure and stress fields can be evaluated by substituting
(A23) into (A12), (A9) and (A15).

Appendix B. Galerkin boundary element discretization

The Bubnov–Galerkin representation of BIEs (4.15) and (4.17) is constructed by
multiplying each equation by a global test function, ψi(x), and transferring to a weak
residual form by integrating over the BIE’s domain. Under the isoparametric interpolation
scheme, unknown field quantities are expanded in terms of a set of equivalent trial
functions, ψi(x), that belong to the same discrete function space as the test functions.
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The weak residual forms are discretized on a discrete conformal mesh decomposition

Γk ≈ Γ h
k,M =

⋃Mk

m=1
τ̄m, (B1)

where the kth surface corresponds to either of the continuous surfaces Γsq or Γc. Each
mesh has Mk boundary elements, τm, and an attached mesh metric, h, that represents a
globally defined notion of element width.

Both test and trial functions belong to a continuous finite dimensional boundary element
space of degree p, which is constructed on each discrete mesh Γ h

k as

Sp(Γ h
k ,χ) := {ψ ∈ C0(Γk)|∀τ ∈ Γ h

k : ψ |τ ◦ χτ ∈ P
τ̂
p}, (B2)

where χ = {χτ : τ ∈ Γ h
k } is an element mapping vector, and P

τ̂
p is a degree p element

polynomial space on the reference element τ̂ . The mapping χτ (ξ) given by χτ : τ̂ ⊂ R
2 →

τ ⊂ R
3 is defined by a p-parametric element mapping

χτ (ξ) =
∑

(i,j)∈I τ̂p
pp
(i,j)(τ )ψ

p
(i,j)(ξ), ξ ∈ τ̂, (B3)

over an element τ with a local element nodal indexing set

I τ̂p := {(i, j) ∈ N
2
0 : 0 ≤ i ≤ j ≤ p}. (B4)

In this work, continuous surfaces Γsq and Γc are both decomposed into discrete meshes
of linear triangular boundary elements, τ�, with a reference element defined by

τ̂� := {ξ ∈ R
2 : 0 ≤ ξ2 < ξ1 ≤ 1}, (B5)

where {p̂1
(0,0), p̂1

(0,1), p̂1
(1,1)} are the corners of the domain τ̂�, and identify with their lifts

into R
3 as χτ�(p̂

1
(i,j)) = p1

(i,j). Lagrangian 3-node shape functions are used as the trial
functions on τ̂� and may be written as

ψ1
(0,0)(ξ) = ψ(0,0) = 1 − ξ1, (B6)

ψ1
(0,1)(ξ) = ψ(0,1) = ξ1 − ξ2, (B7)

ψ1
(1,1)(ξ) = ψ(1,1) = ξ2, (B8)

with the general property that

ψ
p
(i,j)(p̂

p
(k,l)) = δ(i,j)(k,l). (B9)

The unknowns, {φ,uc,Um,Ωm}, are each expanded in the appropriate kth mesh’s space
of continuous linear boundary element trial basis functions, S1(Γ h

k ,χ). By introducing a
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global nodal indexing set for Γ h
k defined by

Ik := {χτ�(p̂1
(i,j)) : ∀τ� ∈ Γ h

k , ∀(i, j) ∈ I τ̂�1 }, (B10)

the global interpolation of the unknown double-layer potential and membrane fluid
velocity read

φ(x) =
∑
j∈Isq

φjψj(x), (B11)

uc(x) =
∑
j∈Ic

uc
jψj(x), (B12)

in which nodal quantities φj and uc
j are unknowns and ψj are global trial functions.

Global test and trial functions are defined on triangle patch domains under a globally
labelled node’s vertex-face 1-ring v∗

i,k := {τ : τ ∈ Γ h
k , pi ∈ τ̄ }. For the ith globally

labelled node this domain may be written as

supp(ψi,k) = {τ ∈ Γ h
k : τ ∈ v∗

i }. (B13)

These global test and trial functions are then defined though the notion of local element
interpolants

ψi(x)
∣∣
τk

=
{
(ψj,τk ◦ χ−1

τk
)(x), τk ∈ supp(ψi), ψj,τk(χ

−1
τk
(pi)) = 1,

0, otherwise,
(B14)

under the identification that τk is in the support of the global basis function and that the
locally defined shape function and its node identifies precisely with the globally labelled
node.

B.1. Discrete matrix representation
Multiplying (4.15) and (4.17) by a test-function ψi(x), integrating over the BIE’s relevant
domain and using linearity yields the weak forms

〈ψi,usl〉Γsq − 〈ψi, ūsq〉Γsq = 〈ψi,φ〉Γsq + 〈ψi, (Kφ)Γsq〉Γsq

+
6∑

j=1

〈ψi,ϕ
j,RBM〉Γsq〈ϕj,RBM,φ〉Γsq, (B15)

〈ψi,uc〉Γc − 〈ψi, ūc〉Γc = −1
2 〈ψi, (G�f )Γc〉Γc, (B16)

where form notation, 〈f , g〉Γ := ∫
Γ

f (x)g(x) dS(x), defines the inner product of two
functions over the surface Γ . Operator notation (Kφ)Γ := ∫

Γ
K(x, y)φ( y) dS( y) is used

for its compact notational representation. Operator forms 〈·, ·〉ΓtestΓtrial are to be read as an
inner product and imply a nested double integral first over the test-function space defined
on Γtest and the trial-function space defined on Γtrial.

The appropriate number of equations is obtained by passing each ψi ∀i ∈ Ik through
(B15) and (B16). This procedure yields two dependent rectangular linear systems of
equations, which when combined yield a square linear system of dimension 3(|Isq| +
|Ic|)× 3(|Isq| + |Ic|).
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Inspection of (B15) and (B16) reveals that there are several different general classes
of computations. Terms involving the inner product with a known function are single
integrals. If this known function is expanded using isoparametric interpolation, the inner
product becomes the classical sparse mass matrix times the nodal values of the known
function. For example, in the evaluation of 〈ψi,usl〉Γsq we find that

〈ψi,usl〉Γsq =
∫

supp(ψi)

ψi(x)
∑
j∈Isq

usl
j ψj(x) dS(x),

=
∑
j∈Isq

usl
j

∫
supp(ψi)

ψi(x)ψj(x) dS(x). (B17)

Passing each ψi ∀i ∈ Isq through (B17) implies that the overall matrix representation for
〈ψi,usl〉 may be written as MΓsq(u

sl)Γsq ≡ (Musl)Γsq where the general form of the mass
matrix elements, MΓk [i, j] may be written as

MΓk [i, j] =
∫

supp(ψi)∩supp(ψj)

ψi(x)ψj(x) dS(x). (B18)

The matrix representation of 〈ψi,φ〉Γsq is identically (Mφ)Γsq . Discretization of the rigid
body motion terms, 〈ψi,ϕ

j,RBM〉Γsq〈ϕj,RBM,ϕ〉Γsq , follow along the same lines as (B17)
and are constructed as

〈ψi,ϕ
j,RBM〉Γsq〈ϕj,RBM,ϕ〉Γsq → (Mϕj,RBM)Γsq(ϕ

j,RBM · M)Γsq . (B19)

Terms involving inner products between a basis function and BEM operator imply
double integrals over two possibly identical or dissimilar meshes, respectively giving rise
to the self-interaction and pairwise dense interaction matrices. Care must be taken when
evaluating the self-interactions since BEM operators are always singular for x → y or
y → x and singular integrations dominate the matrix diagonals, and thus the conditioning
of the linear system and the overall accuracy of the solution. The squirmer self-interaction
〈ψi, (Kφ)Γsq〉Γsq , computation is given more explicitly by

〈ψi, (Kφ)Γsq〉Γsq =
∑
j∈Isq

φj

∫
supp(ψi)

∫
supp(ψj)

K(x, y)ψi(x)ψj( y) dS( y) dS(x). (B20)

Equation (B20) generates the dense matrix representation KΓsqΓsq given by

KΓsqΓsq[i, j] =
∫

supp(ψi)

∫
supp(ψj)

K(x, y)ψi(x)ψj( y) dS( y) dS(x), (B21)

where the shorthand KΓtestΓtrial has been used in which test and trial are the domains on
which the test and trial basis functions are defined.

When mapped to reference elements τ̂x and τ̂y, the kernel of the integral in (B21) may
be written as

K̂(ξ y − ξ x) = ψ
γ

i (ξ
x)K(χτy(ξ

y)− χτx(ξ
x))ψ

γ

j (ξ
y)

√
gτx(ξ

x)
√

gτy(ξ
y), (B22)

for Gram determinants gτ (ξ) := det(Jᵀ
τ (ξ) · J τ (ξ)) and Jacobian matrix J τ ∈ R

3×2.
Individual matrix elements are computed by performing numerical quadrature over
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patch product domains (τx, τy) ∈ supp(ψγi )× supp(ψγi ). For example, depending on the
singularity type, an element–element assembly procedure computes

I[K ] =
∫
τ̂x

∫
τ̂y

K̂(ξ y − ξ x) dξ y dξ x ≈
n∑

k=1

m∑
l=1

ωx
kω

y
l K̂(ξ y

k − ξ x
l ), (B23)

for an nm quadrature rule, where ωx
k, ω

y
l are appropriately chosen quadrature weights,

and ξ x
k, ξ

y
l are appropriately chosen quadrature points on the reference elements τ̂x and

τ̂y. Individual entries of I[K ] are then combined based on their mapping from (B10) to
ultimately obtain a numerical expression for (B21). Different quadrature rules are used
depending on the type of element–element singularity: regular, nearly singular, vertex
adjacent, edge adjacent or coincident. Integrals over coincident, edge adjacent and vertex
adjacent pairs of elements are computed using order 10, 7 and 6 (36, 16 and 16 point
rules) Sauter–Schwab quadrature rules (Erichsen & Sauter 1998; Sauter & Schwab 2011).
A combination of the exact quintic rules from Walkington (2000) and 16-point Dunavent
rules (Dunavant 1985) enhanced with additional precision obtained from Zhang, Cui & Liu
(2009) are used for performing integration over well separated regular triangular boundary
elements.

The integration and matrix representation of 〈ψi, (G� f )Γc〉Γc follows identically to
(B20) and (B21) with the singularity of G now being one order less than K. Since the
unknowns Um,Ωm are constant vectors, they interpolate as constants. The resistance
function RTBN may be defined and written as

RTBN( y; Rt,Rb,Rn) = Rnn( y)n( y)+ Rbb( y)b( y)+ Rtt( y)t( y)

= R⊥n( y)n( y)+ R‖b( y)b( y)+ R‖t( y)t( y). (B24)

The term (G� f )Γc may then be written as a sum of three terms

(G�f )Γc =
∫
Γ h

c

G(x, y)[{uc( y)

− [Um + Ωm × ( y − xm
c )]} · RTBN( y)] dS( y), (B25)

= (GTBNuuc)Γc − (GTBNUUm)Γc − (GTBNΩΩm)Γc . (B26)

Discretization of the force and torque constraints as single integrals over Γc only requires
expansion in the trial boundary element space defined on Γc and follow all the same lines
as (B17). The force constraint may be expanded as∫

Γc

�f ( y) dS( y) =
∫
Γc

{
uc( y)− [

Um + Ωm × ( y − xm
c )

]} · RTBN( y) dS( y), (B27)

= (RTBNuuc)Γc − (RTBNUUm)Γc − (RTBNΩΩm)Γc . (B28)

Similarly, the torque constraint reads∫
Γc

( y − xc
c)×�f ( y) dS( y), =

∫
Γc

( y − xc
c)× [

{
uc( y)− [

Um + Ωm × ( y − xm
c )

]}
· RTBN( y)] dS( y), (B29)

= (RTBNr×uuc)Γc − (RTBNr×UUm)Γc − (RTBNr×ΩΩm)Γc . (B30)

Pairwise interactions between disjoint surfaces must also be computed when evaluating
the disturbance flow inner products 〈ψi, ūsq〉Γsq and 〈ψi, ūc〉Γc . The structure of these
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terms is similar to the self-interaction terms, except the double integrals are now computed
over patch product domains on dissimilar meshes, e.g. (τi, τj) ∈ Γ h

sq × Γ h
c . When the

disjoint surfaces are in close contact, integrals involving kernels proportional to 1/r1,2

become nearly singular. The accurate evaluation of these integrals is addressed using
adaptive mesh refinement.

B.2. The h-adaptive mesh refinement
A heuristic called the nearly singular distance ratio (NSDR) is used to detect when two
boundary elements, τx and τy, are in near contact. To formalize the NSDR let hx denote
the diameter of τx such that

hx = sup
x,y∈τx

|x − y|, (B31)

and denote the distance between elements τx and τy as

dist(τx, τy) = min{|y − x| : x ∈ τx, y ∈ τy}. (B32)

Defining the element diameter of τy in an analogous way, the NSRD is defined as

dxy = dist(τx, τy)

max{hx, hy} . (B33)

All element pairs (τx, τy) such that dxy ≤ Cd for some distance cutoff Cd are refined using
an extension of the NVB method (Mitchell 1989). In this work the distance cutoff is always
set to Cd = 1. This distance cutoff yields high quality results, and importantly allows
sampling of Stokes lubrication physics. Additionally, a second refinement cutoff parameter
Ch is used to help regularize the size of mesh elements such that hx/hy ≤ Ch. In applying
NVB to BEM meshes we build a hierarchical tree-style refined mesh and perform all BEM
calculations on leaf elements that are obtained using depth first search.

B.3. Global linear system
The global linear system may be assembled by first constructing the matrix representation
of each inner product, factoring out unknowns and then inserting each inner product matrix
block into the global BEM stiffness matrix. Let the number of nodes in geometry Γ h

k
be defined by the cardinality of the index set Ik. Since the Stokes equations are vector
equations and the singularity solutions are second-order tensors, the matrix dimensions
follow by multiplying the number of nodes by three. For the squirmer porous container
geometry the number of nodes for each geometry is defined as Nsq = 3|Isq| and Nc =
3|Ic|. The squirmer porous container problem then takes the form

Ax = b,

dim(A) = (Nsq + Nc + 6)× (Nsq + Nc + 6),

dim(x) = dim(b) = (Nsq + Nc + 6)× (1),

⎫⎪⎬
⎪⎭ (B34)

where A is the BEM stiffness matrix, x is the vector of unknowns and b is the load vector.
Expanding A as a block matrix, (B34) is equivalent to⎡

⎢⎣
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎤
⎥⎦
⎡
⎢⎣
(φ)Γsq

(uc)Γc
Um

Ωm

⎤
⎥⎦ =

⎡
⎢⎣
(usl)Γsq

(0)Γc
0
0

⎤
⎥⎦ , (B35)
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where the self-interaction terms along the diagonal are given by

A11 = MΓsq + KΓsq,Γsq +
6∑

j=1

(Mϕj,RBM)Γsq(ϕ
j,RBM · M)Γsq, (B36)

A22 = −1
2 GTBNu

ΓcΓc
− MΓc, (B37)

A33 = −RTBNU
Γc

, (B38)

A44 = −RTBNr×Ω
Γc

. (B39)

The pairwise interactions terms are given by

A12 = −1
2 GTBNu

ΓsqΓc
, A13 = 1

2 GTBNU
Γsq

, A14 = 1
2 GTBNΩ

Γsq
, (B40a–c)

A21 = KΓcΓsq, A23 = 1
2 GTBNU

Γc
, A24 = 1

2 GTBNΩ
Γc

. (B41a–c)

The final two rows of the stiffness matrix are given by discretizing the force and torque
integral constraints, (4.21) and (4.20), as

A31 = [0]3×Nsq, A32 = RTBNu
Γc

, A34 = −RTBNΩ
Γc

, (B42a–c)

A41 = [0]3×Nsq, A32 = RTBNr×u
Γc

, A34 = −RTBNr×U
Γc

. (B43a–c)
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