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The Bragg scattering of random, non-stationary surface gravity waves by random
topography on a gently sloping bottom is investigated. A correction is given of
previously published expressions for the triad wave–wave–bottom interaction source
term in the spectral energy balance equation, and the result is reconciled with
deterministic theories for the reflection of waves from sinusoidal seabed undulations.
For both normal and oblique incidence, the stochastic and deterministic theories are
equivalent in the limit of long propagation distances. Even for relatively short distances
(for example two bottom undulations), the reflected energy predicted by the stochastic
source term formulation is generally within 15% of values predicted by deterministic
theories. The detuning of Bragg resonance by refraction and shoaling is discussed,
suggesting practical validity conditions for the stochastic theory. The effect of bottom
scattering on swell propagation is illustrated with numerical model computations for
the North Carolina continental shelf using high-resolution bathymetry and an efficient
semi-implicit scheme to evaluate the bottom scattering source term and integrate
the energy balance equation. Model results demonstrate the importance of forward
scattering of waves that propagate at large oblique angles over bottom features
with typical scales of one to several surface wavelengths. This process contributes
significantly to the directional spread of swell on the continental shelf by diffusing
energy, in the spectrum, around the mean wave direction. Back-scattering, caused by
bottom features with crests parallel to those of the surface waves and wavelengths
close to half the surface wavelength, is weak, owing to the sharp roll-off of the bottom
elevation spectrum at high wavenumbers. Model predictions are consistent with field
measurements.

1. Introduction
Many theories have been proposed that describe the effects of natural depth

variations on the propagation of surface gravity waves over a continental shelf or
in a shallow marginal sea. The importance of wave refraction and shoaling caused
by large-scale features (i.e. many surface wavelengths) such as submarine shoals and
canyons, islands, bays and headlands is well known (Munk & Traylor 1947), and
these effects are well described by numerical models (see for example O’Reilly &
Guza 1993). The effects of depth variations with intermediate scales of the order of
the surface wavelength are less well understood.

Hasselmann (1966) proposed a statistical theory for the evolution of random surface
gravity waves over an irregular bottom, assuming spatially homogeneous conditions
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Figure 1. Geometric properties of wavenumbers satisfying the resonance condition. The interaction
between a surface wave with wavenumber k′ and a bottom component with wavenumber l excites
a surface wave with the sum wavenumber k = k′ + l. For fixed k, the resonant k′ and l lie on the
solid and dashed circles, respectively.

(i.e. uniform surface wave and bottom elevation spectra). At the lowest order, two
wave components with the same radian frequency ω but different wavenumber
vectors k and k′ exchange energy in a resonant triad interaction with the bottom
component that has the difference wavenumber l = k − k′ (figure 1). This process is
potentially important for the directional properties of the waves. Long (1973) applied
Hasselmann’s theory to swell in the North Sea with some assumptions about the
unknown statistical properties of the bottom topography. His results suggested that
back scattering of surface waves from bottom undulations with wavelengths close to
half the surface wavelength (k ≈ −k′, l ≈ 2k) could explain the swell energy decay
observed during the JONSWAP experiment (Hasselmann et al. 1973). Subsequent
bathymetric surveys (Richter, Schmalfeldt & Siebert 1976) showed that the amplitude
of seabed undulations at the site of the JONSWAP experiment was too small to
cause significant back scattering. Although the potential importance of wave–bottom
scattering is widely recognised (see for example Mei & Liu 1993), the lack of detailed
bathymetric data has prevented further investigations of this process over natural
seabed topography (Komen et al. 1994).

Different deterministic theories have been developed for wave reflection by periodic
bottom undulations. Davies (1979) derived an analytical solution for the weak reflec-
tion of a monochromatic wavetrain propagating at normal incidence over a patch of
sinusoidal bars, that was subsequently verified in laboratory experiments (Heather-
shaw 1982; Davies & Heathershaw 1984). Davies’ theory does not account for the
decay of the incident wave, losing energy to the reflected component, and therefore
overestimates strong reflections, in particular at resonance where l = 2k. Mei (1985)
derived a more accurate energy conserving solution, valid close to resonance, that
was confirmed by experiments (Hara & Mei 1987). The more general case of oblique
incidence was considered by Mei (1985), Dalrymple & Kirby (1986) and Kirby (1993).
Mei (1985) further generalized his theory to bars superimposed on a sloping bottom.
Kirby (1986a, b) subsequently showed that Mei’s (1985) generalized theory can also
be derived from modified mild slope equations. Other related developments include
nonlinear effects in a long-wave approximation (Benjamin, Boczar-Karakiewicz &
Pritchard 1987), higher-order Bragg scattering (Mitra & Greenberg 1984; Belzons,
Rey & Guazzelli 1991; Liu & Yue 1998; Agnon & Sheremet 2000), extended mild
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Bragg scattering of surface gravity waves 3

slope equations for steep topography (Athanassoulis & Belibakis 1999), and investi-
gations of Anderson localization of waves on a random bottom (Devillard, Dunlop
& Souillard 1988; Belzons, Guazzelli & Parodi 1988). Implications for sediment trans-
port and the formation of multiple sand bar systems just outside the surf zone were
discussed by Heathershaw (1982), Mei (1985) and Dulou, Belzons & Rey (2000).

Whereas Hasselmann’s (1966) stochastic theory gives an energy balance equation
that is an efficient tool for predicting the spectral evolution of random waves, it
is restricted to homogeneous wave and bottom topography properties, and has not
been verified experimentally. In contrast, Mei’s (1985) deterministic theory is more
general and has been verified for simple cases, but it has not yet been applied to
a natural seabed because it requires a numerical solution to an elliptic equation
that is prohibitively expensive for large domains. Kirby (1986a) discussed these two
complementary theories but could not reconcile them for the case of monochromatic
waves travelling over a sinusoidal bottom. Indeed, Hasselmann’s theory assumes that
the wave energy spectrum is continuous across the resonance manifold in order to
determine its long-term evolution, and thus cannot be applied to monochromatic
waves (see Hasselmann 1962 and Komen et al. 1994 for detailed discussions of the
continuum approximation in random wave scattering theory).

In this paper, we examine the effects of wave scattering from natural seabed
topography by extending Hasselmann’s (1966) theory to heterogeneous waves and
bottoms. In § 2 we rederive Hasselmann’s scattering source term on a gently sloping
bottom with slowly varying wave and bottom spectral properties, correcting for an
apparent error in the wave–bottom coupling coefficients given by Hasselmann (1966)
and Long (1973). In § 3 the predicted scattering source term for a sinusoidal bottom is
shown to be in agreement with the well-verified solutions of deterministic theories. The
effects of Bragg scattering on swell propagation across the North Carolina continental
shelf are illustrated in § 4 with an implementation of the scattering source term in the
spectral wave prediction model CREST (Ardhuin, Herbers & O’Reilly 2001) using
measured wave spectra and high-resolution bathymetric data. Conclusions are given
in § 5.

2. Scattering theory for random waves in heterogeneous conditions
The present derivation of the energy balance equation for random waves propa-

gating over an irregular sea floor uses a perturbation expansion of the wave energy,
closely following Hasselmann’s (1962) derivation of energy transfers in quartet wave–
wave interactions, and a ray approximation of medium variations adapted from Mei
(1989, ch. 3). The result is a local energy balance equation that incorporates refrac-
tion and shoaling by large-scale depth variations, and a source term describing Bragg
scattering by seabed topography with small horizontal scales (of the order of the
surface wavelength).

2.1. General formulation

We consider weakly nonlinear random waves propagating over an irregular bottom
with a slowly varying mean depth and random small-scale topography. For the
sake of simplicity, we will neglect the effects of mean currents on wave propagation
(see for example Bretherton & Garrett 1969) and on wave scattering by bottom
undulations (Kirby 1988). All variables are non-dimensionalized with a representative
wavenumber k0, acceleration due to gravity g and water density ρ. The bottom
elevation is represented by z = −H(x) + h(x), where h is a zero-mean small deviation
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4 F. Ardhuin and T. H. C. Herbers

h(x)

f(x)

z = 0

z = –H(x)

Figure 2. Definition sketch.

from the gently sloping large-scale bottom features represented by −H(x), x is the
horizontal position vector, and z is the elevation relative to the mean water level.
The vertical position of the ocean free surface is given by ζ(x, t) with a zero mean
value (figure 2). Assuming irrotational flow for an incompressible fluid, the horizontal
velocity field u is equal to ∇φ, the horizontal gradient of a velocity potential, and
the vertical velocity w is equal to ∂φ/∂z. We further assume that ρ is constant. The
governing equations for φ are

∇2φ+
∂2φ

∂z2
= 0 for −H + h 6 z 6 ζ, (2.1)

∂φ

∂z
= ∇φ · (∇h− ∇H) at z = −H + h, (2.2)

∂2φ

∂t2
+
∂φ

∂z
= ∇φ · ∇ζ − ∇φ · ∂∇φ

∂t
− ∂φ

∂z

∂2φ

∂t∂z
at z = ζ. (2.3)

Equation (2.1) is Laplace’s equation, (2.2) is the ‘free slip’ bottom boundary condition,
and the ‘combined’ surface boundary condition (2.3) is obtained by eliminating
linear terms involving ζ from the dynamic (i.e. Bernoulli’s equation) and kinematic
conditions at the free surface (see for example Hasselmann 1962). ζ is given by
Bernoulli’s equation,

ζ +
∂φ

∂t
= −1

2

[
|∇φ|2 +

(
∂φ

∂z

)2
]

at z = ζ. (2.4)

Assuming that h varies on scales of the order of the surface wavelength, we
introduce three small parameters: the wave slope ε = k0a0, the small-scale bottom
slope η = k0h0, and a measure β of the large-scale bottom slope |∇H |. Equations
(2.1)–(2.3) are scaled as

∇2φ+
∂2φ

∂z2
= 0 for (−H + ηh) 6 z 6 εζ, (2.5)

∂φ

∂z
= ∇φ · (η∇h− β∇H) at z = −H + ηh, (2.6)

∂2φ

∂t2
+
∂φ

∂z
= ε∇φ · ∇ζ − ε∇φ · ∂∇φ

∂t
− ε∂φ

∂z

∂2φ

∂t∂z
at z = εζ. (2.7)

Following Keller (1958) we introduce slow space x̃ = αx and time t̃ = γt variables. h
and φ are assumed to be semi-stationary random processes in horizontal space and

time (for φ only), with evolution scales (αk0)
−1 and γ−1k

−1/2
0 , respectively (Priestley

1965), that can be decomposed into Fourier modes with slowly varying amplitudes.
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Bragg scattering of surface gravity waves 5

Following Hasselmann (1962) we shall approximate h and φ with discrete sums, and
take the limit to continuous integrals after deriving expressions for the evolution of
the phase averaged wave energy. We write

h(x) =
∑
l

Bl(x̃)eil·x, (2.8)

where l are regularly spaced wavenumbers of bottom undulations and Bl are slowly
varying amplitudes. Anticipating the effects of refraction, φ is decomposed as

φ(x, t) =
∑
k

Φk(x̃, t, z)e
iSk(x), (2.9)

where k are regularly spaced surface wavenumbers, and each k-component has an
amplitude Φk, an eikonal Sk, and a local wavenumber

kr(k, βx) = ∇Sk(x) (2.10)

such that kr = k at the origin x = 0; Φk and kr are Lagrangian variables following
a wave component along a ray trajectory. The spectral decomposition (2.9) for an
evolutionary process is ‘unique’, in a sense defined by Priestley (1981, theorem 11.2.3),
only for a finite region in space and time, and is used here only to evaluate local
variations of Φk.

The slow spatial variations of Φk can result from shoaling, refraction, and scattering
processes, as well as non-stationary and non-uniform wave conditions. Since φ and
h are real, it follows that Φk = Φ−k and Bl = B−l , where the overbar denotes the
complex conjugate.

In the vicinity of x = 0, the decomposition (2.9) reduces to a Fourier sum

φ(x, t) =
∑
k

Φk(0, t, z)e
ik·x + O(α|x|, β|x|). (2.11)

The simplified decomposition (2.11) will be used when no space differentiation is
involved, taking advantage of the orthogonality of Fourier modes.

The goal of the present derivation is to determine from (2.1)–(2.4) the energy
balance at x̃ = 0 for each k-component of the wave spectrum (2.9). The solution
depends on the relative magnitudes of the five small parameters: α, β, γ, η and ε.
Here, we use

α ≈ β ≈ γ ≈ η2 ≈ ε2 � 1. (2.12)

The choice of a small-scale bottom slope η much larger than the large-scale slope β
is usually well suited to sandy continental shelves, with the exception of the steeper
beach and shelf break regions. This choice makes the present derivation a priori
different from Mei’s (1985) theory in which α ≈ β ≈ η.

Following the method of Hasselmann (1962), the solution to (2.5)–(2.7) is obtained
through a perturbation expansion in powers of ε,

φ = φ1 + εφ2 + ε2φ3 + h. o. t. (2.13)

The boundary conditions (2.6) and (2.7) are expressed at z = −H and z = 0, respec-
tively, using Taylor series expansions of φ about z = −H and z = 0, e.g. at the bottom,

φ|z=−H+h = φ|z=−H + ηh
∂φ

∂z

∣∣∣∣
z=−H

+ η2 h
2

2

∂2φ

∂z2

∣∣∣∣
z=−H

+ h. o. t. (2.14)
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6 F. Ardhuin and T. H. C. Herbers

Each term in (2.13) will be found to be of the form

φi =
∑
k,s

cosh(krz + krH)

cosh(krH)
Φsi,k(x̃, t)e

iSi,k(x) + bound wave terms, (2.15)

where kr is the magnitude of the local wavenumber vector kr , s is a sign index (+
or −), Φsi,k is the amplitude of the free wave component (k, s) that propagates in the

direction of skr , and Φsi,k = Φ−si,−k.
The slowly evolving spectral statistics of free wave components can be expressed

in terms of the covariances FΦi,j,k of the velocity potential amplitudes:

FΦi,j,k =
〈
Φ+
i,kΦ

−
j,−k + Φ−i,−kΦ

+
j,k

〉
. (2.16)

where the angular brackets denote an average over many realizations of the wave
field, and in local space and time over a region that is large compared to the ‘fast’
scales k−1

0 of sea surface excursions, but small compared to the slow scales (αk0)
−1 and

γ−1(k0)
−1/2 of spectral variations. The contribution of the complex conjugate pairs of

components (k, +) and (−k, −) are combined in (2.16) so that Fi,j,k is the covariance
of waves propagating in the direction of k. Note that the wavenumber separations
∆kr=(∆kr,x, ∆kr,y) in the sum (2.9) vary along rays owing to refraction. In the limit of
small wavenumber separation, a continuous cross-spectrum can be defined at x̃ (e.g.
Priestley 1981, ch. 11)

FΦi,j(x̃, t̃, k) = lim
|∆k|→0

FΦi,j,k(x̃, t̃ )

∆kx∆ky
. (2.17)

The definitions of all spectral densities are chosen so that the integral over the entire
wavenumber plane yields the total covariance of φi and φj .

The slowly varying bottom elevation spectrum in discrete form is given by FBl =
〈BlB−l〉 and in continuous form by

FB(x̃, l) = lim
|∆l|→0

FBl (x̃)

∆lx∆ly

, (2.18)

so that

〈h2(x̃)〉 =

∫ +∞

−∞

∫ +∞

−∞
FB (x̃, l) dlxdly. (2.19)

This definition differs by a factor of 2 from that chosen by Hasselmann (1966) and
Long (1973).

The total wave energy at x̃ = 0, in non-dimensional form,

E(0, t̃ ) =

〈∫ ζ

−H+h

1

2

[
|∇φ|2 +

(
∂φ

∂z

)2
]

dz

〉
+

1

2

〈
ζ2
〉
, (2.20)

can be written as

E(0, t̃ ) =

∫ ∞
−∞

∫ ∞
−∞

[
ε2E2(k) + ε3E3(k) + ε4E4(k)

]
dkxdky + O(ε5), (2.21)

where

E2(k) = E1,1(k), (2.22)

E3(k) = E2,1(k) + E1,2(k), (2.23)

E4(k) = E2,2(k) + E3,1(k) + E1,3(k). (2.24)
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Bragg scattering of surface gravity waves 7

Here, Ei,j(k) is the (i+j)th order energy contribution from correlations between ith and
jth-order components with wavenumber k. Since the average in (2.20) is over several
wavelengths, correlations between wave components with different wavenumbers
that result from reflections (i.e. standing wave patterns of nodes and antinodes)
are averaged out and do not contribute to (2.21). For all (i, j) pairs, Ei,j(k) =
Ej,i(k). Hasselmann (1962) discarded odd-power energy terms E3 and E5 under the
assumption that the sea surface is Gaussian. It was later found that this assumption
is unnecessary (Benney & Saffman 1966; Newell & Aucoin 1971) as dispersion
decorrelates the wave components during their propagation. Here, additional terms
involving correlations between two wave and one bottom component contribute to E3,
but these terms are shown to be bounded in Appendix A. The dynamically important
growing terms will be found in the 4th-order energy E4 (2.24).

For freely propagating waves, the potential and kinetic energy contributions to
(2.20) are equal and Ei,j is approximately given by the linear relation

Ei,j(0, t̃, k) = kFΦi,j
(
0, t̃, k

)
tanh(kH). (2.25)

Neglected in (2.25) are the contributions to the kinetic energy integral (2.20) from the
z-intervals [−H + h, −H] and [0, ζ]. Although these contributions are O(ε4) for E1,1

and thus should be included in E4, their magnitude is bounded and thus their time
derivative is O(ε6). All O(ε4) bounded terms resulting from the surface and bottom
boundary conditions can be discarded in the following analysis of energy transfers
within the wave spectrum (see Hasselmann 1962 for a detailed discussion).

2.2. First-order solution

Substitution of the first-order wave field φ1

φ1 =
∑
k,s

cosh(krz + krH)

cosh(krH)
Φs1,k(x̃, t)e

iS1,k(x) (2.26)

in the surface boundary condition (2.7) yields

Φs1,k(x̃, t) = Φ̂s1,k(x̃, t̃ )e
−isωt, (2.27)

where the radian frequency ω(k) is constant along rays, and is given by the linear
dispersion relation (in non-dimensional form):

ω(k) = [kr tanh(krH)]1/2. (2.28)

The slow space and time modulations of Φ̂s1,k and the associated variations of the
energy spectrum E2(kr) are not constrained by the first-order equations, but can be
determined from the fourth-order energy E4(kr) (2.24), that depends on both second-
and third-order waves.

2.3. Second-order solution

Substituting (2.13) in (2.5)–(2.7) and collecting terms of order ε and η yields the
governing equations for the second-order velocity potential φ2

∇2φ2 +
∂2φ2

∂z2
= 0 for −H 6 z 6 0, (2.29)

∂φ2

∂z
= −h∂

2φ1

∂z2
+ ∇φ1 · ∇h at z = −H, (2.30)

∂2φ2

∂t2
+
∂φ2

∂z
= NL2 at z = 0, (2.31)
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8 F. Ardhuin and T. H. C. Herbers

where NL2 contains the nonlinear terms in the surface boundary condition that force
a bound wave solution φnl

2 (Hasselmann 1962 (47)). Note that refraction and shoaling
terms associated with the large-scale bottom slope ∇H are of higher order and do
not contribute to the second-order equations. Therefore, ray curvature effects on φ1

can be neglected, and we can use kr ≈ k and Sk(x) ≈ k · x in the vicinity of x = 0.
A general solution to Laplace’s equation (2.29) is formed with a Fourier sum of free
and bound wave components with amplitudes Φs2,k and Φsi,s

2,k:

φ2 =
∑
k,s

[
cosh(kz + kH)

cosh(kH)
Φs2,k(t) +

sinh(kz + kH)

cosh(kH)
Φ

si,s
2,k(t)

]
eik·x + φnl

2 , (2.32)

Φ
si,s
2,k follows from substituting the first-order wave field ((2.26) and (2.27)) in the

right-hand side of the bottom boundary condition (2.30).

Φ
si,s
2,k(t) = −∑

k′ ,s

k · k′
k

Bk−k′Φ̂s1,k′e
−isω′t, (2.33)

where (ω′, k′) obey the dispersion relation (2.28). The bound wave Φsi,s
2,k effectively

couples the bottom and surface waves. Substitution of (2.32) and (2.33) in (2.31) yields
a forced harmonic oscillator equation for the free wave amplitude Φs2,k,(

d

dt2
+ ω2

)
Φs2,k(t) =

∑
k′

[
k − ω′2 tanh(kH)

] k · k′
k

Bk−k′Φs1,k′(t). (2.34)

Following the method of Hasselmann (1962), the time derivative of the energy density
E2,2(k) of the second-order waves in the limit of large t at x̃ = 0, can be written in
the form (Appendix A)

∂E2,2(k)

∂t
= K(k,H)

∫ 2π

0

cos2(θ − θ′)FB(k − k′)E2(k
′) dθ′, (2.35)

where k = (k cos θ, k sin θ), k′ = (k cos θ′, k sin θ′), and

K(k, H) =
4πωk4

sinh(2kH)[2kH + sinh(2kH)]
. (2.36)

2.4. Third-order solution

Slow modulations of φ1 yield third-order terms in Laplace’s equation. Substituting
(2.13), (2.26) and (2.27) in (2.5)–(2.7), collecting terms of order ε2, εη, η2, α, β and
γ, and using the approximations (in the vicinity of x = 0) kr = k + O(βx), and
Sk(x) = k · x + O(αx, βx), yield the following equations for the third-order velocity
potential φ3

∇2φ3 +
∂2φ3

∂z2
= −i

I︷ ︸︸ ︷∑
k,s

k · ∇
(
Φ̂s1,k

cosh (krz + krH)

cosh (krH)

)
ei(k·x−sωt)

−i

II︷ ︸︸ ︷∑
k,s

∇ ·
(
krΦ̂

s
1,k

cosh (krz + krH)

cosh (krH)

)
ei(k·x−sωt) for −H 6 z 6 0,

(2.37)
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Bragg scattering of surface gravity waves 9

∂φ3

∂z
= −

III︷ ︸︸ ︷
h
∂2φ2

∂z2
+

IV︷ ︸︸ ︷
∇φ2 · ∇h −i

V︷ ︸︸ ︷∑
k,s

k · ∇HΦ̂s1,kei(k·x−sωt) at z = −H, (2.38)

∂2φ3

∂t2
+
∂φ3

∂z
= i

VI︷ ︸︸ ︷∑
k,s

2sω
∂Φ̂s1,k

∂t̃
ei(k·x−sωt) +NL3 at z = 0. (2.39)

Note that third-order terms involving φ1 in the bottom boundary condition (2.38)
vanish because ∂3φ1/∂z

3 = 0 and ∂φ1/∂z = 0 at z = −H . The right-hand side forcing
terms of (2.37)–(2.39) include Bragg scattering terms (III and IV), effects of spatial
heterogeneities (I, II and V), non-stationarity (VI), and third-order nonlinear surface
terms that are gathered here in the term NL3. This set of equations is linear in
φ3. Therefore, φ3 is the sum of a homogeneous solution (absorbed in φ1) and four
particular solutions,

φ3 = φsc
3 + φhe

3 + φns
3 + φnl

3 , (2.40)

where sc, he, ns and nl, stand for scattering, heterogeneity, non-stationarity and non-
linarity, respectively. Each solution satisfies (2.37)–(2.39) forced, respectively, by the
scattering terms (III and IV) only, the heterogeneity terms (I, II and V) only, the non-
stationarity term (VI) only, and the surface nonlinearity terms (NL3) only. Although
φnl

3 is resonantly forced, it contributes only bounded terms to E4 (Hasselmann 1962).
Similarly, nonlinear contributions to the scattering terms III and IV (the O(ε2η)
products involving φnl

2 and bottom undulations) yield only bounded contributions
in E4. The remaining solutions φsc

3 , φhe
3 and φns

3 contribute growing terms, Esc
3,1, E

he
3,1

and Ens
3,1, to E4. Following the method used to obtain ∂E

2,2
4 /∂t, at x̃ = 0 we have

(Appendices B, C and D)

∂
[
Esc

3,1(k) + Esc
1,3(k)

]
∂t

= −K(k,H)

∫ 2π

0

cos2(θ − θ′)FB(k − k′)E2(k) dθ′, (2.41)

∂
[
Ens

3,1(k) + Ens
1,3(k)

]
∂t

= −∂E2(k)

∂t
, (2.42)

∂
[
Ehe

3,1(k) + Ehe
1,3(k)

]
∂t

= −Cg(k) · ∇E2(kr), (2.43)

where C g(k) is the group velocity of linear waves (equation (D 9)), and E2(kr) is a
Lagrangian variable that describes energy evolution along the ray trajectory [x(k, βr),
kr(k, βr)] of wave component k, where r is the along-ray coordinate. E2(kr) is defined
by

FΦ1,1(x̃, t̃, kr) = lim
|∆kr |→0

FΦ1,1,k(x̃, t̃ )

∆kr,x∆kr,y
, (2.44)

E2(x̃, t̃, kr) = krF
Φ
1,1(x̃, t̃, kr) tanh (krH). (2.45)

Note that the advection term Cg(k)·∇E2(kr) describes the divergence of the energy flux
in Lagrangian coordinates, and thus incorporates refraction and shoaling effects. All
other terms in (2.42)–(2.43) depend only on the energy at x̃ = 0 where the Lagrangian
wavenumber kr is equal to the Eulerian wavenumber k, and E2(kr) = E2(k).
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Figure 3. Values of χ(kH), as defined by (2.49).

2.5. Energy balance

Combining (2.35) and (2.41)–(2.43), the rate of change of the fourth-order spectrum
(2.24) at x̃ = 0 is given by

∂E4(k)

∂t
= −∂E2(k)

∂t
− Cg(k) · ∇E2(kr)

+K(k,H)

∫ 2π

0

cos2(θ − θ′)FB(k − k′)[E2(k
′)− E2(k)] dθ′, (2.46)

where K(k,H) is given by (2.36).
To ensure that E4 is bounded for large t, that is ∂E4/∂t = O(ε), the right-hand side

terms of (2.46) must balance. Recognizing the first two of these terms as the total
derivative of E2(kr) along a ray trajectory, and replacing E2 by E, we obtain (using
dimensional and unscaled variables from now on) the Lagrangian energy balance
equation at x̃ = 0

dE(kr)

dt
= SBragg(k) + O(ε5), (2.47)

SBragg(k) = 4πg1/2H−9/2χ(kH)

∫ 2π

0

cos2(θ − θ′)FB(k − k′)[E(k′)− E(k)] dθ′, (2.48)

with

χ(kH) =
(kH)9/2 [tanh(kH)]1/2

sinh(2kH) [2kH + sinh(2kH)]
. (2.49)

Equation (2.47) describes the net energy transfer at x̃ = 0 to a wave component
with wavenumber k (propagating in direction θ), resulting from triad interactions
involving a wave of the same radian frequency ω and a different wavenumber k′
(direction θ′), and a bottom component with the difference wavenumber l = k − k′
(figure 1). The energy transfer between components k and k′ is proportional to
the energy difference of the wave components and the bottom spectrum density at
l = k − k′. The factor cos2(θ − θ′) in (2.48) indicates that there is no energy transfer
between waves propagating in perpendicular directions. The factor χ(kH) has a single
maximum, approximately equal to 0.049 for the intermediate water depth kH ≈ 1.27
(figure 3). In addition to directional and wavenumber dependencies, the scattering
strength is proportional to H−9/2, increasing strongly with decreasing water depth.
Taking into account their different normalization of the bottom elevation spectrum,
the present expression (2.48) of SBragg is 4 and 8 times smaller than the expressions
given by Long (1973) and Hasselmann (1966), respectively.
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Bragg scattering of surface gravity waves 11

2.6. Conditions of validity

The present theory is both a spectral generalization and higher-order energy con-
serving form of the solution given by Davies (1979) for sinusoidal bed undulations.
Davies describes the generation of second-order waves φ2, but uses constant ampli-
tudes for φ1, and thus does not account for the associated energy losses of the
primary waves. In the present theory, the extension of the perturbation expansion to
third-order provides the balancing terms E1,3 and E3,1 (equation (2.41)), necessary for
the conservation of the total energy in (2.47). Whereas Davies’ theory assumes small
reflected wave amplitudes, (2.47) can describe finite cumulative reflections over large
distances and even complete localization of waves over rough bottom topography.
However, the present theory assumes that significant wave-amplitude variations occur
over scales of O(α−1) wavelengths with α ≈ ε2, and thus cannot accurately describe
strong localized scattering that modifies the wave amplitudes over scales of only a few
wavelengths (see Mei 1985 for a discussion of those effects over sinusoidal bottom
topography, including, in particular, the importance of near-resonant interactions in
that case).

It should be noted that the wavenumber spectrum E(k) =
∫ 2π

0
kE(k) dθ was assumed

to be continuous in order to derive (2.47) in the limit of large times, removing the
singularities for perfect resonance in (A 6), and reducing the bandwidth of important
near-resonant interactions to a region of the spectrum where E(k) can be considered
constant. Thus, (2.47) is not valid for monochromatic waves. Whereas the initial
growth of the scattered energy is proportional to t2 for resonant monochromatic
waves, it is only proportional to t for waves with a continuous spectrum, because
resonance becomes more selective with time, affecting a wavenumber bandwidth that
narrows proportionally to t−1.

Another consequence of the asymptotic large time limit taken in Appendices A–D,
is that the stochastic model (2.47) may not describe accurately wave evolution over
natural seabeds which are often not homogeneous over scales of many wavelengths.
The robustness of (2.47) for short propagation distances is examined in § 3 through
comparisons with deterministic models for wave evolution over a finite patch of
sinusoidal bars. Equation (2.47) includes wave–bottom interactions with |k − k′| � k,
violating our scaling assumption l ≈ k. This particular aspect is discussed in § 3.4.

2.7. Extensions of the present theory

The present energy balance (equation (2.47)) may be extended to higher orders of η
and/or ε by closing the energy Taylor expansion at E6, giving an evolution equation
for E2 + E4. In the case of steeper waves, say α ≈ β ≈ γ ≈ η2 ≈ ε4, it can be seen
that all the energy transfer terms derived here (equations (2.35), (2.41)–(2.43)) are
moved from E4 to E6, joining the additional source term Snl that represents resonant
quartet wave–wave interaction (Hasselmann 1962; Herterich & Hasselmann 1980).
Extensions to steeper waves and steeper topography, for example α ≈ β ≈ γ ≈ η4 ≈ ε4,
should yield at least two additional source terms, corresponding to higher-order Bragg
scattering (class II and III, see for example Liu & Yue 1998).

Furthermore, it can be expected that including higher-order heterogeneity effects
and nonlinearity should introduce nonlinear effects on the left-hand side of (2.47),
as described by Willebrand (1975). For example, in the present theory, E6 contains
correlations between the tertiary waves φnl

3 and the heterogeneity and non-stationarity
terms φhe

3 and φns
3 . Thus, it may be possible to derive a more complete energy balance

equation with not only the source terms for the individual physical processes that
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Figure 4. Schematic of incident waves (dashed crests) and reflected waves (dotted crests) on a
patch of sinusoidal bars (grey shades).

contribute to the evolution of the wave spectrum, but also the cross-interactions of
these processes that are usually neglected in wave prediction models (Komen et al.
1994).

3. Random waves over a finite patch of sinusoidal bars
Following Davies (1979), we consider a simple seabed consisting of sinusoidal bars

on an otherwise flat bottom for which analytical results exist that have been verified
in laboratory experiments. Waves arriving from x = −∞ at an incidence angle θI
are partially reflected, in a direction θR = π − θI by a patch of m sinusoidal bars
of amplitude b, aligned with the y-axis. The barred profile h = b sin(lx) covers the
region −L < x < L where L = mπ/l and l is the bar wavenumber (figure 4). The
incident wave field is assumed to be a continuous spectrum EI (k) of unidirectional
(θ = θI ) waves. The total reflected energy ER in the far field (x � −L) predicted by
the stochastic and deterministic theories are compared for both normal and oblique
incidence cases, in the limit of large m, corresponding to large propagation times for
which (2.47) is valid, and for finite m.

3.1. Stochastic source term approach

In a steady state, uniform along the y-axis, the energy balance (2.47) for the bottom
profile described above, simplifies to

Cg cos θ
dE(k)

dx
= SBragg(k). (3.1)

In order to evaluate SBragg (equation (2.48)), we approximate the finite patch of
sinusoidal bars as a subsection of a sinusoidal bottom extending to infinity, for which
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Bragg scattering of surface gravity waves 13

–l l kx

ky

kIkR

h

Figure 5. Resonant triads for waves over sinusoidal bars represented on the wavenumber plane.
The bar wavenumbers are fixed at (l, 0) and (−l, 0) and all possible pairs of resonant surface
wavenumbers kI and kR lie on the vertical dashed lines. For the wave direction θ shown here, the
directional spectral density E(θ) (the integral of kE(k) along the thick arrow) is affected by energy
transfers in the resonant (kI , kR, l) triad.

the bottom variance spectrum FB is a double Dirac distribution

FB(l) = 1
4
b2 [δ(l, 0) + δ(−l, 0)] . (3.2)

Outside the barred section (|x| > L), FB is set equal to zero. The singularity in (3.2) is
removed in SBragg by integrating (3.1) over k for a fixed direction θ (figure 5). Changing
variables from (k, θ′) to (lx, ly) = k(cos θ − cos θ′, sin θ − sin θ′) (the corresponding
resonant bottom wavenumber) we obtain

dE(θ)

dx
=

8π

cos θ

∫∫
k·l>0

cos2(θ − θ′)Fb(l) [E(k − l)− E(k)] k5

[1− cos(θ − θ′)] [2kH + sinh(2kH)]2
dlx dly, (3.3)

where

E(θ) =

∫ ∞
0

kE(k cos θ, k sin θ) dk (3.4)

is the directional spectrum integrated over all wavenumbers, and the Jacobian J =
1/{k[1 − cos(θ − θ′)]} of the transform from (k, θ′) to (lx, ly) is used. Note that the
integration over l is restricted to the half-plane where k · l > 0 (figure 5).

For − 1
2
π < θ < 1

2
π (3.3) describes the evolution of an incident component with

direction θI = θ. Only interactions in the neighbourhood of the resonant triad
kI = 1

2
l(1, tan θ), kR = 1

2
l(−1, tan θ), l = (l, 0) contribute to this integral (figure 5). For

1
2
π < θ < 3

2
π, (3.3) describes the evolution of a reflected component with direction

θR = θ resulting from the resonance of kI = 1
2
l(1, − tan θ), kR = 1

2
l(−1, − tan θ),

l = (−l, 0). Substitution of (3.2) in (3.3) yields

dER
dx

= −Dx[E(kI )− E(kR)] for − L < x < L, (3.5)

where

Dx =
πb2 cos2(2θI )l

5

16 cos6 θI [1 + cos(2θI )]
[
lH/cos θI + sinh(lH/cos θI )

]2 . (3.6)

For weak reflection (E(kI )� E(kR)), we can neglect changes in E(kI ). Integrating
(3.5) from L to −L yields

ER = 2LDxE(kI ) for x < −L. (3.7)

For unidirectional incident waves with a spectrum EI (k) = δ(θ− θI )EI (k)/k, the total
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14 F. Ardhuin and T. H. C. Herbers

reflected energy is given by

ER = DlEI (kI ), (3.8)

where D is a non-dimensional coefficient

D =
2LDx
lkI

=
mπ2b2 cos2(2θI )l

2

4 cos5 θI [1 + cos(2θI )]
[
lH/cos θI + sinh(lH/cos θI )

]2 . (3.9)

For the particular case of normal incidence (θI = 0) D reduces to

D =
mπ2b2l2

8 [lH + sinh(lH)]2
. (3.10)

3.2. Comparison with deterministic theory for normal incidence

In Davies’ (1979) theory for weak reflection of a normally incident monochromatic
wavetrain by a patch of m sinusoidal bars with amplitude b, the ratio of the reflected
and incident wave amplitudes is given by

κDH =
2bk

2kH + sinh(2kH)

(−1)m2k

l

sin(2kL)

(2k/l)2 − 1
. (3.11)

Theoretical values of κDH have been verified experimentally by Heathershaw (1982;
see also Davies & Heathershaw 1984), even in cases with large reflection coefficients.

For random waves with a wavenumber spectrum EI (k), the reflected energy ER,DH

is therefore the convolution of |κDH(k)|2 and EI (k),

ER,DH =

∫ ∞
0

|κDH(k)|2 EI (k) dk. (3.12)

The response function |κDH|2 has a ‘resonant lobe’ of width π/L and height propor-
tional to m2 centred at the resonant wavenumber k = 1

2
l, and narrower side lobes

at higher and lower wavenumbers (figure 6, dotted curve). In the limit of large m
(equivalent to the large t limit in the stochastic theory), |κDH|2 approaches a Dirac
distribution

|κDH|2 ∼ mπ2l

8

(
2bk

2kH + sinh(2kH)

)2(
2k

l

)2

δ

(
l

2

)
. (3.13)

Since EI (k) is continuous, the substitution of (3.13) in (3.12), yields

ER,DH ∼ mπ2b2l3

8 [lH + sinh(lH)]2
EI

(
l

2

)
, (3.14)

which is identical to the stochastic theory prediction (equations (3.8) and (3.10)). The
exact agreement of the stochastic and (experimentally verified) deterministic theories
in the limit of large m, where both are valid, confirms that the coupling factor χ
(equation (2.49)), which differs by factors of 8 and 4 from previous publications
(Hasselmann 1966; Long 1973), is correct.

3.3. Oblique incidence and finite numbers of bars

Davies’ (1979) theory for wave reflection from sinusoidal bars was generalized to
oblique incidence and finite reflection coefficients by Mei (1985), using an approxi-
mation for weak detuning from resonance. Dalrymple & Kirby (1986) applied Mei’s
theory to a finite patch of bars and derived the amplitude reflection coefficient κDK

(their equations 5 and 9). For normal incidence, κDK is in good agreement with the
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Figure 6. Response function |κDK|2 for H = 25 m, 2π/l = 300 m, b = 0.05 m, m = 4, and
three incidence directions: ——, θi = 0; – – –, θi = 60◦; · · · , θi = 75.5◦ (corresponding to resonant
wavenumbers k = 1

2
l, k = l and k = 2l). The response functions are normalized by their maximum

values indicated on the figure. For reference, a generic wave spectrum is included (◦, arbitrary
units) with a Pierson–Moskowitz shape, a peak period of 14 s, and uniform infragravity energy

levels. The total reflected energy is the convolution of |κDK|2 and the wave spectrum.

experimental results of Davies & Heathershaw (1984), and reduces to κDH in the limit
of small bar amplitude b. For oblique incidence, no experimental verification exists,
but Mei’s theory was verified numerically with solutions of Kirby’s generalized mild
slope equations (Kirby 1993). Values of |κDK|2 for a patch of four bars of wavelength
2π/l = 300 m, and amplitude b = 0.05 m in 25 m depth, are shown in figure 6 as a
function of k/l for different incidence angles θI . The interaction between the bottom
undulations and the surface gravity waves is dominated by near-resonant triads, for
which |κDK|2 is maximum. The Bragg resonance condition k = 2l/ cos θI determines
the wavenumber for which reflection is maximum, as a function of the incidence
angle. For example, for the wave spectrum shown in figure 6, back scattering (θI ≈ 0,
θR ≈ 180◦) is confined to the long wavelength (infragravity) part of the spectrum,
and shorter swells are scattered forward (see the response functions for θI = 60◦,
θR = 120◦ and θI = 75.5◦, θR ≈ 104.5◦ in figure 6).

To determine the accuracy of the stochastic theory for a finite patch of bars, the
total reflected energy ER predicted by (3.8)–(3.9), valid only in the limit of large m, is
compared to the ‘exact’ ER,DK predicted by the deterministic theory (equation (3.12)
where κDH is replaced by κDK), valid for arbitrary m. In these calculations, EI (k)
is taken to be a Pierson–Moskowitz spectrum (Pierson & Moskowitz 1964) with a
peak period Tp = 14 s. A white background spectrum E(k) = 0.04EI (kp) is added
to represent contributions of longer wavelength infragravity waves (figure 6). The
convolution integral (3.12) is computed numerically over the range 0.005 < k/l < 4,
for incidence angles θI = 0◦, 60◦ and 75.5◦. Other parameters are H = 25 m and b =
0.05 m. A small b value was chosen to have a small reflection coefficient (κDK < 0.1)
because (3.8) neglects variations in the incident energy EI and thus is valid only for
weak reflections. The relative difference between stochastic and deterministic theories
is shown in figure 7 as a function of m. The difference is sensitive to the variations
of the wave spectrum across the resonant lobe and the relative magnitude of the
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Figure 7. Relative differences between the reflected energy predicted by the stochastic theory
(equation (3.8)) and the spectral form (equation (3.12), replacing κDH by κDK) of Dalrymple and
Kirby’s theory, as a function of the number of bars m. All other parameters are the same as in
figure 6. The incident wave spectrum is shown in figure 6.

side-lobes of the response function |κDK|2, these effects vanish in the limit m → ∞
as the width of the resonant lobe and the height of the side-lobes go to zero. As m
increases, the predictions of both theories converge, as expected since both theories
are valid for large m. For all three incidence angles θI = 0◦, 60◦ and 75.5◦, the
difference in wave energy reflections predicted by the stochastic and deterministic
theories is less than 10% for more than three bars. This rapid convergence not only
provides a further consistency check on the coupling factor χ (equation (2.49)) for
cases of oblique incidence, but also indicates that the stochastic Bragg scattering
theory is surprisingly robust, although formally valid only in the asymptotic limit
of many bottom wavelengths, and yields reasonable estimates of energy transfers
resulting from scattering by only a few bottom undulations.

3.4. Bottom slope effects

The large time limit used to evaluate fourth-order energy terms in Appendices A–D
requires implicitly that the large-scale bottom slope does not significantly change the
interaction over a distance ∆r that allows waves to propagate across a sufficiently large
number of bars ma to approach the asymptotic limit of the energy transfer (figure 7).
Wave refraction by the large-scale bottom slope changes the surface wavenumbers
and thus introduces a detuning of near-resonant wave–bottom interactions. This
detuning effect can be neglected only if changes in the surface wavenumbers are small
compared to the width of the resonant lobe of the response function |κDK|2 (figure 6).

For simplicity we consider a finite patch of ma sinusoidal bars aligned with the
y-axis, with wavenumber l, superimposed on a plane bottom with a downward slope β
in a direction θb. The along-ray gradient of the resonance mismatch u = (2k cos θ−l)/l
is given by

∂u

∂r
=

2

l

(
cos θ

∂k

∂r
− k sin θ

∂θ

∂r

)
. (3.15)

Using Snel’s law we have

∂u

∂r
=

−4βk2 cos θb
l [2kH + sinh(2kH)]

. (3.16)
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Bragg scattering of surface gravity waves 17

For small bottom slopes, the distance travelled by the waves across the bar field is
∆r ≈ 2maπ/(l cos θ), giving a change in the resonance mismatch

∆u ≈ − 2πmaβ cos θb
cos3 θ [2kH + sinh(2kH)]

. (3.17)

Detuning of resonant interactions by refraction can be neglected if |∆u| is small
compared with the (normalized) width of the resonant lobe 1/ma, that is

ma |∆u| � 1. (3.18)

Equation (3.18) also follows from considering the phase difference between waves
reflected by the first and math bars, which should be small compared to 1

2
π to allow

the constructive interference that causes resonance.
Equation (3.18) is a necessary condition for the application of the stochastic theory.

For a given bottom slope β, (3.18) imposes a maximum incidence angle θmax. For
practical purposes, we assume that the largest acceptable value of ma |∆u| is about
0.5, giving

cos3 θmax >
4πm2

aβ cos θb
2kH + sinh(2kH)

. (3.19)

For example, considering 14 s period waves in 25 m depth with a bottom slope
β = 2 × 10−4 at an angle θb = 60◦, and taking ma = 2, the source term (2.48) is
expected to overestimate significantly the energy of scattered waves for incidence
angles greater than θmax ≈ 83◦, corresponding to a ratio k/l = 4.3.

It should be noted that (3.18) is consistent with the scaling of (2.1)–(2.4) requiring
that bottom and surface elevations have comparable horizontal scales. This scaling
is violated for large-angle interactions (i.e. k � l for θ close to 90◦), even on a flat
bottom. In the following, the contribution of wave–bottom interactions to (2.48) is
taken to be accurate for θ < θmax and is neglected for θ > θmax. This crude truncation
of the interactions is expected to give only qualitative results for the scattering of
waves at large incidence angles. Sensitivity of predicted spectral evolution to the
choice of the cutoff angle θmax is examined for natural shelf topography in § 4.

4. Hindcast of wave scattering on a natural shelf
The effect of Bragg scattering on directional wave spectra evolution is illustrated

here with a numerical model hindcast of swell evolution observed across the North
Carolina shelf. The scattering source term SBragg (equation (2.48)) was implemented
in the spectral model CREST (Ardhuin et al. 2001), that solves the energy balance
(equation (2.47)) using a hybrid Eulerian–Lagrangian numerical scheme. In addition
to SBragg, a bottom friction source term Sfric is included in the energy balance to account
for energy dissipation in the boundary layer over a sandy movable bottom. Details
of the model formulation, numerical scheme, treatment of boundary conditions, and
parameterization of bottom friction are given in Ardhuin et al. (2001). SBragg is
evaluated using bottom elevation spectra that were estimated from high-resolution
bathymetry surveys. Processes not represented in the model such as wind–wave
generation, effects of currents, wave breaking, and nonlinear effects, are expected to
be negligible because at the time of the hindcast (21:00 Greenwich Mean Time, 20
October 1994) local wind speeds (3 m s−1), and current velocities (≈ 20 cm s−1, Lentz
et al. 1999) were weak, and the observed waves were long-period (≈ 13 s) swell with
low significant height (≈ 1 m).
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Figure 8. (a) Bottom topography of the North Carolina continental shelf. The squares marked S1
and S2 are the regions enlarged in (b, c). Other symbols indicate locations of the FRF 8 m depth
array (8M) and NDBC 3 m discus buoy (44014).
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Figure 9. Contour plots of the bottom variance spectra estimates for regions (a) S1 and (b) S2. The
contour values are log10(4π2FB) with FB in m4 rad−2, and the contour interval is 0.5. Circles indicate
the bottom components that interact with waves arriving from the east with frequencies 0.05 (inner
circle), 0.12 (middle circle) and 0.25 Hz (outer circle). Axes units are reciprocal wavelengths lx/(2π)
and ly/(2π). (c) Direction-integrated spectra for ——, S1; - - -, S2. The vertical lines indicate the
bottom scales responsible for scattering 0.08 Hz swell, for various incidence angles θI .

4.1. Wave data

Frequency-directional wave spectra were estimated from measurements on the outer
and inner shelf near Duck, North Carolina (figure 8a). An array of pressure sensors,
located 1 km from the shoreline in 8 m depth, was operated by the Army Corps
of Engineers Field Research Facility (FRF), in Duck, North Carolina, and a 3 m
discus pitch and roll buoy located close to the shelf break, in 49 m depth, was
operated by the National Data Buoy Center (NDBC). Standard techniques (Herbers,
Elgar & Guza 1999; Ardhuin et al. 2001) were used to obtain estimates of the
frequency-directional wave spectra at both locations. The NDBC buoy wave spectrum
was transformed across the shelf break to deep water using Snel’s law, assuming
parallel depth contours, in order to obtain the offshore boundary condition for the
model.
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Figure 10. Model grid. The grid points where the source term is evaluated are the nodes of the
triangular mesh. A linear interpolation is applied in each triangle to approximate the source term
along the rays. The 100 m depth contour is indicated by the dotted line.

4.2. Bottom topography

Bathymetric data for most of the shelf was available from the National Ocean Service
(NOS). In regions not covered by the NOS archives, water depths were measured dur-
ing instrument deployment and recovery cruises in a series of experiments (DUCK94;
Sandy Duck; SHOWEX) on the North Carolina continental shelf, using a single
precision depth recorder. Additionally, high-resolution multibeam sonar bathymetric
surveys were conducted during the SHOWEX experiment in November and Decem-
ber 1999, in two 6× 6 km2 regions of the inner shelf (labelled S1 and S2 in figure 8a).
This data set was processed with the MB-System software (Caress & Chayes 1995)
to obtain 10 m resolution grids shown in figure 8(b, c). The vessel motion and tide
were carefully removed, although a slight but systematic measurement bias is still
noticeable in the striped pattern of figure 8(c), yielding an artificial ridge of spectral
densities on the x-axis of figure 9(b). Although the high-resolution bathymetry data
were acquired five years after the wave data, comparisons with depth soundings,
performed within a few months of the wave data collection, show good agreement,
suggesting that bottom topographic features of scales larger than 500 m have not
moved in regions S1 and S2.

Bottom elevation spectra FB1 (l) and FB2 (l) (figure 9a, b) were estimated for regions S1

and S2, respectively, based on bidimensional Fourier transforms of Hanning windowed
1.6×1.6 km2 segments with 50% overlap. The large-scale bottom slope was previously
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Figure 11. (a) Predicted wave spectrum E in region S1 (figure 8) and (b) corresponding Bragg
scattering source term SBragg, based on bottom spectrum FB1 . Contours in (b) are solid for positive
values (yellow to red colour shades), solid and thick for zero, and dashed for negative values
(green to blue colour shades). Hs = 0.92 m; fp = 0.078 Hz; mean direction at fp = 69.5◦; spread at
fp = 24.00◦.

removed from each segment using a bilinear fit. Spectra of the large-scale shelf
topography (not shown), computed from the entire bathymetry grid, are consistent
with the spectral levels at small l shown in figure 9(a, b). The bottom elevation
spectra are not isotropic, showing a preferential north-east/south-west orientation of
intermediate scale features (200–1000 m) that are most important for swell scattering.
It also appears that bottom spectral levels at these scales are about a factor 4 higher
in region S1 (15–25 m water depth, variance 1.4 m2) than in the deeper region S2 (20–
40 m, variance 0.35 m2, see figure 9c). As we lack detailed topographic information in
other regions, the bottom elevation spectrum used in model hindcasts is taken to be
uniform over the entire continental shelf. Hindcasts are presented in § 4.4 based on
both estimates FB1 (l) and FB2 (l), illustrating the likely range of scattering effects.

4.3. Numerical model

The numerical wave model CREST used for the present calculations is described by
Ardhuin et al. (2001). The model consists of a precomputation of wave rays and
a Lagrangian time integration scheme for the energy balance (equation (2.47)). In
contrast to more widely used finite-difference schemes (see for example the WAMDI
group 1988; Booij, Ris & Holthuijsen 1999), the Lagrangian approach avoids nu-
merical diffusion that could cause an artificial broadening of the wave spectrum in
shallow water (not related to physical scattering processes). The Eulerian model grid,
shown in figure 10 is unstructured and much coarser than the bathymetry grid. It
consists of 329 points distributed over a large portion of the shelf between latitudes
35◦ and 37◦N. Wave rays are traced backwards from the Eulerian grid points to the
model boundary, using a smoothed (2 km scale) bathymetry grid that resolves wave
refraction over the large-scale shelf topography. Along each ray, the energy balance
(equation (2.47)) is integrated in time. At the grid points, the full wave spectrum E(k)
is evaluated using ensemble averages of rays within finite wavenumber bands kq,i
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corresponding to 19 frequency bands fq spaced exponentially with a 5% increment
from 0.05 Hz to 0.12 Hz, and 120 direction bands θi spaced linearly over a full circle
with a 3◦ resolution. The spectral source terms Sfric(k), representing bottom friction
(Ardhuin et al. 2001, equation 13), and SBragg(k), given by (2.48), are evaluated at
the grid points based on the local spectrum E(k) and other parameters. Sfric(k) and
SBragg(k) are interpolated onto the ray trajectories to account for the energy losses
(bottom friction), and exchanges with other wave components (scattering), of compo-
nent k during propagation. Details of the time integration and interpolation schemes
can be found in Ardhuin et al. (2001).

The model was run here with constant offshore boundary conditions and a fixed
integration time step ∆t = 10 min, until a steady state was reached. To determine
accurately the contribution of SBragg over the time step ∆t, an implicit integration
scheme was used. Omitting other source terms and propagation effects, (2.47) can
be written in discretized form and for a given wavenumber magnitude k, as a set of
linear equations

∂E(k, θi)

∂t
= 4πg1/2H9/2χ(kH)

∑
j

Li,j(k)E(k, θj) for all i, (4.1)

where θi are the discretized directions with ki = k(cos θi, sin θi) and the matrix L(k) is
given by

Li,j(k) =

[
cos2(θi − θj)FB(ki − kj)− δij

∑
n

cos2(θi − θn)FB(ki − kn)
]

∆θ, (4.2)

with δij = 1 for i = j, and 0 otherwise. As discussed in § 3.4, FB(l) is replaced by
zero in (4.2) for k/l greater than (k/l)max. Since L is real and symmetric, it can
be diagonalized and represented as the matrix product L = VDVT where D is a
diagonal matrix with the eigenvalues λi as diagonal elements, the columns of V are
the corresponding normalized eigenvectors, and VT is the transpose of V. Using this
decomposition the solution of (4.1) can be given in the form

E(k, θi, t+ ∆t) =
∑
j

∑
l

Vi,j(k) exp
[
4πg1/2H−9/2χ(kH)λj(k)∆t

]
Vl,j(k)E(k, θl , t). (4.3)

The source term SBragg (R in (12) of Ardhuin et al. 2001) is given by the average
change in E(k, θi, t) over a time step ∆t

SBragg(k, θi) = [E(k, θi, t+ ∆t)− E(k, θi, t)]/∆t. (4.4)

The matrices V(k) and eigenvalues λi(k) are precomputed using Jacobi’s algorithm
(see for example Press et al. 1992) for 500 values of k covering the entire range of
wavenumbers in the model, and the resulting matrices V and D are interpolated on
the spectral model grid. The high accuracy of the implicit numerical scheme was
confirmed through comparisons with an explicit fifth-order Cash–Karp Runge–Kutta
method.

4.4. Hindcast

The model hindcast was performed both with and without the Bragg scattering source
term to isolate the scattering effects from other processes (refraction, shoaling and
bottom friction), using two different measured bottom elevation spectra (FB1 (l) and
FB2 (l), figure 9) to estimate the possible variability of the scattering effects. Bottom
components with wavelengths larger than 5 times the surface wavelength (k/l > 5)
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are excluded in the evaluation of SBragg because, as discussed in § 3.4, the theory
is not expected to be accurate for near-grazing angle interactions. Figure 11 shows
an example wave spectrum predicted in region S1 (20 m depth, figure 8), and the
corresponding Bragg scattering source term. The source term has a 3-lobe shape
with negative values near the peak θp of the directional wave spectrum, and positive
maxima on both sides of the peak, at about θp ± 30◦. The interactions broaden the
peak of the directional wave spectrum (forward-scattering) and cause weak, almost
isotropic back-scattering. Sign reversals of SBragg within the main lobe (figure 11b) are
caused by irregularities in the wave spectrum (figure 11a). Bragg scattering tends to
smooth the directional wave spectrum, with an evolution time scale E/SBragg of the
order of 103 and 104 s in 20 and 50 m depth, respectively.

The combined effect of Bragg scattering and refraction is shown in figure 12 with
the predicted cross-shore evolution of the mean wave direction (from) at the peak
frequency, θ̄, taken as the direction of the first-order moment vector

(a1, b1) =

∫ π

0

(cos θ, sin θ)E(fp, θ) dθ, (4.5)

and the directional spread, in radians,

σθ = {2[1− (a1 cos θ̄ + b1 sin θ̄)/E(fp)]}1/2. (4.6)

σθ ranges from 0◦ for unidirectional waves, to 81◦ for isotropic waves. Offshore
propagating waves (π < θ < 2π) are excluded in the analysis because the predicted
back-scattering is weak, and reflection from the beach (Elgar, Herbers & Guza 1994),
not represented in the model, is apparent in the 8 m data (figure 12b).

The model without Bragg scattering predicts the expected turning of θ̄ towards
the shore-normal direction, caused by refraction (figure 12a). The introduction of
Bragg scattering shifts the mean wave direction by an additional 1◦ to 10◦ to the
north, because the bottom spectrum is not isotropic (figure 9). This effect is strongest
for the hindcast which uses the bottom spectrum FB1 with a larger variance. This
small shift is not evident in the observations, suggesting that either the orientation
of the bathymetric features in figure 9(a) may not be representative of other parts of
the shelf, or other processes, not represented in the model, may be important. The
detailed directional spectra, shown in figure 13, demonstrate that rather than shifting
the entire spectrum, Bragg scattering skews the directional spectrum to the north
(figure 13c, d) by preferentially scattering waves that propagate in directions parallel
to the crests of the larger bedforms (i.e. waves from the north-east, figures 8 and 9).

Bragg scattering strongly affects the directional spread, causing a gradual increase
of σθ across the shelf (figure 12a), that partly balances the reduction of the directional
spread of the incident waves caused by refraction. Results based on bottom elevation
spectra FB1 and FB2 are qualitatively similar, but the increase in directional spread is
much larger for the more ‘energetic’ bottom spectrum FB1 (a factor of about 2.5) than
predicted for FB2 (a factor 1.6). On the inner shelf, in 8 m depth, the observed σθ value
of 14◦ is a factor 2 larger than the model prediction without Bragg scattering (7◦,
figure 12b), but falls in the range of model results with the source term SBragg based
on bottom spectra FB1 (18◦) and FB2 (12◦).

The cutoff value (k/l)max of the ratio between surface and bottom wavenumbers was
varied from 0.5 (no scattering) to 5, in order to examine the importance of different
bottom topography scales in the scattering process (figure 14). Increasing (k/l)max

from 0.5 (no scattering) to 1 (maximum scattering angle θmax = 60◦) does not change
significantly the directional properties of the waves. These interactions, involving
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Figure 12. Measured (•) and predicted (—, with Bragg scattering using FB1 (l); - - -, with Bragg

scattering using FB2 (l); · · ·, without Bragg scattering) variations of (a) θ̄ and (b) σθ at the peak
frequency fp. Results are shown for 20 October 2000, at 21:00 GMT, along a cross-shelf transect
(c) extending from the 8 m depth array to deep water offshore of NDBC buoy 44014. A maximum
value of k/l = 5 was used in the scattering calculations.

bottom components with wavelengths smaller than the surface wavelength, are weak
because of the sharp roll-off of the bottom spectral levels at high wavenumbers. At the
other end of the spectrum, results for (k/l)max values of 4 and 5 are nearly identical,
indicating that larger bottom features also do not significantly affect directional
properties. Although the bottom spectral levels are relatively high at these small
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(a) (b)

(d )(c)

0 10 20 30 40 50 60 70 80 90 100
E( f, h ) (m2 s rad–1)

Figure 13. Observed wave spectra in (a) 49 and (b) 8 m depth, and predicted wave spectra in 8 m
depth, (c) without Bragg scattering and (d ) with Bragg scattering, based on the bottom spectrum
FB1 (figure 9a). Note that waves coming from the west in (b) are probably reflections from shore
(within 1 km of the 8 m site). (a) Hs = 1.50 m; fp = 0.0855 Hz; mean direction at fp = 72.23◦;
spread at fp = 16.93◦. (b) Hs = 1.01 m; fp = 0.0805 Hz; mean direction at fp = 78.73◦; spread at
fp = 13.81◦. (c) Hs = 0.93 m; fp = 0.078 Hz; mean direction at fp = 71.8◦; spread at fp = 7.49◦. (d )
Hs = 0.91 m; fp = 0.078 Hz; mean direction at fp = 66.8◦; spread at fp = 18.45◦.

values of l, the angular separation of the interacting wave components is small (11.5◦
for k/l = 5) and thus the energy transfers do not strongly modify a directional
spectrum that is already broad. A range of interactions involving intermediate scale
bottom components (k/l = 1 to 4) appears to dominate the scattering process (i.e. note
the gradual shift of θ̄ and increase of σθ as (k/l)max increases from 1 to 4 in figure 14).
Predictions of σθ are weakly sensitive to the bathymetry smoothing scale used in
ray computations, with a typical 2◦ difference between model runs using the original
150 m resolution grid, and the predictions presented here using a 2 km smoothed grid.
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Figure 14. Predicted variations of (a) θ̄ and (b) σθ across the shelf for six values of the cutoff
parameter (k/l)max: —, 5; �, 4; ×, 3; 4, 2; +, 1; · · ·, 0.5 (i.e. no Bragg scattering).

5. Conclusion
The energy balance equation for random surface gravity waves, including Bragg

scattering (the lowest-order resonant interactions between waves and bottom undu-
lations), was rederived for non-stationary conditions and multiple-scale bottom
topography, combining Hasselmann’s (1962) perturbation expansion of the wave
energy, with a ray approximation for medium variations. The bottom topogra-
phy is decomposed in a large-scale topography, responsible for wave refraction
and shoaling, and random undulations with smaller wavelengths (of the order of
the surface wavelength), that cause Bragg scattering. The effects of the large-scale
and small-scale bottom slopes, surface nonlinearity, wave non-stationarity and non-
uniformity are represented by five small parameters, β, η, ε, α and γ, respectively.
Using α ≈ β ≈ γ ≈ η2 ≈ ε2, a closure of the fourth-order energy yields a spectral
energy balance equation in which refraction, shoaling, and Bragg scattering processes
are all of the same order ε4.

The stochastic scattering theory was reconciled with a spectral application of deter-
ministic theories for waves propagating over sinusoidal bars (Davies & Heathershaw
1984; Mei 1985; Dalrymple & Kirby 1986), with agreement found in the asymptotic
limit of a large number of bars. These comparisons support the present derivation
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of the Bragg scattering source term (2.48) which is a factor 8 and 4 smaller than
expressions given by Hasselmann (1966) and Long (1973), respectively. Analysis of
the detuning of wave–bottom interactions by the large–scale bottom slope β shows
that the present theory is valid only for small values of β/ cos3 θ, where θ is the
wave incidence direction relative to the bedform-normal. In the present application,
wave–bottom interactions corresponding to θ larger than a cutoff value θmax were
neglected.

The effect of bottom scattering on swell propagation was illustrated with a hindcast
for the North Carolina continental shelf using the numerical wave model CREST
with high-resolution bathymetry and an efficient semi-implicit scheme to evaluate
the bottom scattering source term and integrate the energy balance equation. Back-
scattering of waves towards the open ocean was found to be negligible in this
region. However, forward-scattering causes a diffusion of wave energy about the
mean direction that results in a dramatic increase of the directional spread of the
wave spectrum on the inner shelf. This weak back-scattering and strong forward-
scattering is caused by the sharp roll-off of the bottom elevation spectrum at high
wavenumbers. The predicted directional broadening of the swell spectrum in shallow
water is qualitatively consistent with field measurements.
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as part of the Bedford Institute of Oceanography contribution to SHOWEX, with
the participation of F. Dobson, M. Donelan and H. Graber. T. Stanton instigated
the surveys, and his involvement in, and support of the present work are greatly
appreciated.

Appendix A. Derivation of E2,2(k)

The governing equation (2.34) for Φs2,k(t) is an undamped forced harmonic oscillator
with a resonant frequency ω given by the dispersion relation (2.28). Applying a Fourier
decomposition to the right-hand side forcing terms, (2.34) can be written as a linear
superposition of equations of the type

d2f1

dt2
+ ω2f1 = eiω′t. (A 1)

In order to specify a unique solution to (A 1), initial conditions must be prescribed. In
the limit of large propagation distances, the initial conditions contribute a negligible
bounded term to the solution. Following Hasselmann (1962), we chose f1(0) = 0 and
df1/dt(0) = 0, giving the solution

f1(ω, ω
′; t) =

eiω′t − eiωt + i(ω − ω′) sin(ωt)

ω2 − ω′2 for ω′2 6= ω2, (A 2)

f1(ω, ω
′; t) =

teiω′t

2iω′
− sin(ωt)

2iω′ω
for ω′ = ±ω. (A 3)
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28 F. Ardhuin and T. H. C. Herbers

Φs2,k(t) is given by

Φs2,k(t) =
∑
k′
A(k, k′)Bk−k′Φ̂s1,k′f1(ω,−sω′; t), (A 4)

where

A(k, k′) = [k − ω′2 tanh(kH)]
k · k′
k

. (A 5)

The third-order energies E1,2 and E2,1 that result from the correlations between
Φs1,sk and Φ−s2,−sk (equation (A 4)) are found to be bounded, but the fourth-order energy
E2,2 grows with time. Substituting (A 4) in (2.16) and taking the limit (2.17) to a
continuous spectrum yields the solution for E2,2(t, k) as defined by (2.25):

E2,2(t, k) =

∫ ∞
0

∫ 2π

0

A(k, k′)FB(k − k′)E2(t̃, k
′)|f1(ω,−ω′; t)|2 dk′dθ′ + . . . , (A 6)

where k′ = k′(cos θ′, sin θ′), and the omitted terms (. . .) include bounded terms forced
by surface nonlinearity. Assuming that the frequency spectrum is continuous, the
contribution of exact resonant interactions (k′ = k) to (A 6) is negligible compared
to contributions of near-resonant interactions (k′ ≈ k) that span a finite range of
wavenumbers, and thus (A 2) can be substituted in (A 6). Changing the integration
variable k′ to ω′, given by the dispersion relation (2.28), and removing the singularity
at ω′ = ω using contour integration on the complex plane, we obtain

E2,2(t, k) = t

∫ 2π

0

4πωk4 cos2(θ − θ′)
sinh(2kH)[2kH + sinh(2kH)]

FB(k − k′)E2(t̃, k
′) dθ′

+bounded terms, (A 7)

For large t, the derivative of E2,2(t, k) with respect to t yields equation (2.35).

Appendix B. Derivation of Esc
3,1(k)+Esc

1,3(k)

The particular solution φsc
3 to (2.37)–(2.39) in the vicinity of x = 0 can be written

as

φsc
3 (x, z, t) =

∑
k,s

[
Φs3,k(t)

cosh(kz + kH)

cosh(kH)
+ Φ

si,s
3,k(t)

sinh(kz + kH)

cosh(kH)

]
eik·x. (B 1)

The solution for the bound component Φsi,s
3,k follows from substituting the second-order

velocity potential (2.32) in the bottom boundary condition ((2.38) with term V set to
zero)

Φ
si,s
3,k(t) = −∑

k′

k · k′
k

Bk−k′Φs2,k(t). (B 2)

Substitution of (B 2) in the surface boundary condition ((2.39) with the right-hand
side set to zero) yields the forced harmonic oscillator equation(

d2

dt2
+ ω2

)
Φs3,k = −∑

k′

k · k′
k

Bk−k′
[(
k + tanh(kH)

d2

dt2

)
Φs2,k′(t)

]
. (B 3)
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Using (2.34) and (A 4) we have(
d2

dt2
+ ω2

)
Φs3,k = −∑

k′
A(k, k′)Bk−k′

∑
k′′
A(k′, k′′)Bk′−k′′Φ̂s1,k′′f1(ω

′,−sω′′; t)

−∑
k′

k · k′
k

tanh(kH)Bk−k′
∑
k′′
A(k′, k′′)Bk′−k′′Φs1,k′′(t), (B 4)

where A is defined by (A 5). The only terms of (B 4) that force growing correlations
with φ1 are those that have a product of two factors A and equal wavenumbers
k′′ = k, other terms force bounded correlations and can be neglected. Therefore (B 4)
can be regarded as a linear combination of forced oscillator equations of the form

d2f2

dt2
+ ω2f2 = f1(ω

′,−sω, t). (B 5)

The solution of (B 5) for ω′2 6= ω2 and initial conditions f2(0) = df2/dt(0) = 0 is

f2(ω,ω
′, s; t) = − te

isωt − sin(ωt)/ω

2isω(ω′2 − ω2)
− (ω′ + ω)eiω′t + (ω′ − ω)e−iω′t − 2ω′eiωt

2ω′(ω′2 − ω2)2
. (B 6)

Following the steps in Appendix A, we obtain

Esc
3,1(t, k) + Esc

1,3(t, k) = −t
∫ 2π

0

4πωk4 cos2(θ − θ′)FB(k − k′)
sinh(2kH)[2kH + sinh(2kH)]

E2(t̃, k) dθ′

+ bounded terms. (B 7)

Taking the derivative of (B 7) with respect to t yields equation (2.41).

Appendix C. Derivation of Ens
3,1(k)+Ens

1,3(k)

In the vicinity of x = 0, φns
3 can be written in the form

φns
3 =

∑
k,s

cosh(kz + kH)

cosh(kH)
Φs3,k(t)e

ik·x,

where Φs3,k satisfies (
d2

dt2
+ ω2

)
Φs3,k = 2isω

∂Φ̂s1,k

∂t
e−isωt, (C 1)

With the solution given by equation (A 3):

Φs3,k(t) = −t∂Φ̂
s
1,k

∂t
e−isωt. (C 2)

This solution is correlated with the first-order velocity potential, giving the energy
contribution at x̃ = 0

Ens
3,1(t, k) + Ens

1,3(t, k) = −t∂E2(t̃, k)

∂t
+ bounded term. (C 3)

Taking the derivative of (C 3) with respect to t yields (2.42).
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Appendix D. Derivation of Ehe
3,1(k)+Ehe

1,3(k)

Terms I and II in (2.37) can be written as

I + II =
∑
k,s

eik·x

cosh(kH)
{cosh(kz + kH)(∇ · kr + 2k · ∇)

+2[(z +H) sinh(kz + kH)−H tanh(kH) cosh(kz + kH)]k · ∇kr
+2[k sinh(kz + kH)− k tanh(kH) cosh(kz + kH)]k · ∇H}Φs1,k(t). (D 1)

In the vicinity of x = 0, we can write the solution to (2.37) as

φhe
3 =

∑
k,s

cosh(kz + kH)

cosh(kH)

[
(z +H)2Φ

coz2,s
3,k (t) + (z +H)Φcoz,s

3,k (t) + Φs3,k(t)
]

eik·x

+
sinh(kz + kH)

cosh(kH)

[
(z +H)Φsiz,s

3,k (t) + Φ
si,s
3,k(t)

]
eik·x, (D 2)

where

Φ
siz,s
3,k (t) =

−i

2k
(Φs1,k(t)∇ · kr + 2k · ∇Φs1,k(t))

+i
Φs1,k(t)

k
k ·
{[
H tanh(krH) +

1

2k

]
∇kr + k tanh(kH)∇H

}
, (D 3)

Φ
coz2,s
3,k (t) = −iΦs1,k(t)

k · ∇kr
2k

, (D 4)

Φ
coz,s
3,k (t) = −iΦs1,k(t)k · ∇H, (D 5)

and the remaining two terms follow from the bottom and surface boundary conditions.
Substituting (D 2)–(D 5) in the bottom boundary condition ((2.38), with III and IV
set to zero) gives

Φ
si,s
3,k(t) = 0. (D 6)

Substituting (D 2)–(D 6) in the surface boundary condition ((2.39) with VI set to zero)
yields a forced harmonic oscillator equation for Φs3,k(t):(

d2

dt2
+ ω2

)
Φs3,k(t) = ie−isωt

{[
tanh(kH) + kH

[
1− tanh2(kH)

]
k

]

×
[
∇ · kr + kr · ∇− 2k ·

[(
H tanh(kH) +

1

2k

)
∇kr + k tanh(kH)∇H

]]
+
H

k
k · ∇kr + k · ∇H

}
Φ̂s1,k. (D 7)

(D 7) is of the same form as (A 1) with only resonant forcing terms (ω′ = ±ω) and a
solution given by (A 3). The covariance of Φ±3,±k and the first-order potential, defined
by (2.16), is given by

F
Φ,he
3,1,k = −tCg

2k
∇ · (krFΦ1,1,k)

+t
Cg

k
k ·
[(
H tanh(kH) +

1

2k

)
∇kr + k tanh(kH)∇H

]
FΦ1,1,k

− tω

k2 tanh(kH)
k · (H∇kr + k∇H)FΦ1,1,k + bounded term, (D 8)
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where Cg is the group speed

Cg =
ω

kr

[
1

2
+

krH

sinh(2krH)

]
, (D 9)

and the bounded term is given by the initial conditions (the second right-hand side
term in A 3). From the dispersion relation (2.28) we find

∇H = −2kH + sinh(2kH)

2k2
∇kr, (D 10)

and

∇ [Cg tanh(krH)
]

k tanh(kH)
= − ω

2k3

{
3 +

2kH

sinh(2kH)
− 2kH tanh(kH)

}
∇kr. (D 11)

Using (D 10), (D 11) and the definition of the Lagrangian energy spectrum E2(kr)
(2.45), (D 8) reduces to[

Ehe
3,1(k) + Ehe

1,3(k)
]

∆kr,x∆kr,y = −t∇ · (CgE2(kr)∆kr,x∆kr,y) + bounded terms. (D 12)

Writing C g as (Cg cos θ, Cg sin θ), where θ is the local ray direction, the divergence
term in (D 12) can be expressed in terms of intrinsic coordinates:

∇ · [CgE2(kr)∆kr,x∆kr,y
]

=
∂
[
CgE2(kr)∆kr,x∆kr,y

]
∂r

+ CgE2(kr)∆kr,x∆kr,y
∂θ

∂n
, (D 13)

where r and n are the local along-ray and ray-normal coordinates. Longuet-Higgins
(1957, equations 6, 10 and 21) showed that (D 13) can be simplified using ray theory.
Defining the small separation p of two rays that are parallel in the vicinity of x̃ = 0,
we have

∂θ

∂n
=

1

p

∂p

∂r
(D 14)

and
∂(pCg∆kr,x∆kr,y)

∂r
= 0. (D 15)

Substituting (D 14) and (D 15) in (D 13), and taking the limit |∆kr| → 0, we have

Ehe
3,1(k) + Ehe

1,3(k) = −tCg ∂E2(kr)

∂r
+ bounded term. (D 16)

Finally the derivative of (D 16) with respect to t yields (2.43).
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