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Physics-informed neural networks (PINNs) were recently proposed in [18] as an alternative way to
solve partial differential equations (PDEs). A neural network (NN) represents the solution, while a
PDE-induced NN is coupled to the solution NN, and all differential operators are treated using auto-
matic differentiation. Here, we first employ the standard PINN and a stochastic version, sPINN, to
solve forward and inverse problems governed by a non-linear advection–diffusion–reaction (ADR)
equation, assuming we have some sparse measurements of the concentration field at random or pre-
selected locations. Subsequently, we attempt to optimise the hyper-parameters of sPINN by using the
Bayesian optimisation method (meta-learning) and compare the results with the empirically selected
hyper-parameters of sPINN. In particular, for the first part in solving the inverse deterministic ADR,
we assume that we only have a few high-fidelity measurements, whereas the rest of the data is of
lower fidelity. Hence, the PINN is trained using a composite multi-fidelity network, first introduced
in [12], that learns the correlations between the multi-fidelity data and predicts the unknown values
of diffusivity, transport velocity and two reaction constants as well as the concentration field. For
the stochastic ADR, we employ a Karhunen–Loève (KL) expansion to represent the stochastic dif-
fusivity, and arbitrary polynomial chaos (aPC) to represent the stochastic solution. Correspondingly,
we design multiple NNs to represent the mean of the solution and learn each aPC mode separately,
whereas we employ a separate NN to represent the mean of diffusivity and another NN to learn all
modes of the KL expansion. For the inverse problem, in addition to stochastic diffusivity and con-
centration fields, we also aim to obtain the (unknown) deterministic values of transport velocity and
reaction constants. The available data correspond to 7 spatial points for the diffusivity and 20 space–
time points for the solution, both sampled 2000 times. We obtain good accuracy for the deterministic
parameters of the order of 1–2% and excellent accuracy for the mean and variance of the stochastic
fields, better than three digits of accuracy. In the second part, we consider the previous stochastic
inverse problem, and we use Bayesian optimisation to find five hyper-parameters of sPINN, namely
the width, depth and learning rate of two NNs for learning the modes. We obtain much deeper
and wider optimal NNs compared to the manual tuning, leading to even better accuracy, i.e., errors
less than 1% for the deterministic values, and about an order of magnitude less for the stochastic
fields.
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1 Introduction

In classical inverse problems, we assume that we have a lot of measurements for the state
variables, and we aim to obtain some unknown parameters or space/time-dependent material
properties by formulating appropriate objective functions and employing the necessary regular-
isation techniques. However, in many practical problems, e.g., in sub-surface transport [23, 1],
we have to deal with a mixed problem, as we typically have some measurements on the material
properties and some measurements on the state variables. Here, we consider such ‘mixed’ prob-
lems for a non-linear advection–diffusion–reaction (ADR) describing a concentration field, and
we formulate new algorithms inspired by recent developments in machine learning. In particu-
lar, we will assume that we have a stochastic diffusivity field, which is partially known only at a
few points, and hence we aim to determine the entire stochastic field from only sparse measure-
ments of the concentration field. Moreover, we will assume that the constant transport velocity
in the advection term is unknown and that the reaction term is parameterised by two unknown
parameters. Hence, the problem set-up we consider is as follows: determine the entire stochastic
diffusivity and stochastic concentration fields as well as three (deterministic) parameters from a
few multi-fidelity measurements of the concentration field at random points in space time. For
simplicity, we will refer to this ‘mixed’ problem as ‘inverse’ problem in the following.

The aforementioned problem set-up could be tackled by using Bayesian optimisation (BO)
methods as we have done in previous work for other problems, e.g., see [19, 15], but to overcome
open issues related to strong nonlinearity and scalability, here we will employ neural networks
(NNs) following the works of [7, 3, 4, 20, 17], and in particular the physics-informed neural
network (PINN) approach introduced in [18]. In addition, we have to model stochastic fields
and in order to avoid optimising expensive Bayesian NNs, we will instead model stochasticity
using polynomial chaos expansions following the work of [25]. Another important consideration
is how to fuse data of variable fidelity, as some data may be collected by a few high-resolution
sensors, whereas the majority of the data may be collected by lower fidelity sensors. This, in turn,
implies that we have to train the NN or the PINN with multi-fidelity data, and to this end, we will
employ a new composite network recently proposed by [12]. Finally, because of the complexity
of the proposed NNs, we also introduce an automated method to optimise the hyper-parameters
of PINN using a simple version of meta-learning. Meta-learning is a methodology considered
with ‘learning to learn’ machine learning algorithms and is model-agnostic and compatible with
any model trained with gradient descent [6]. In this paper, we use the BO, e.g., see [2, 21, 22].

In order to make progress towards the final goal and to evaluate each of the algorithmic steps
separately, we will use a hierarchical approach by introducing complexity incrementally. We
will start with multi-fidelity deterministic problems using PINNs, and subsequently, we will
introduce randomness in the data and present the stochastic formulation. This will require us to
design multiple NNs that learn in modal space. Subsequently, we will formulate an additional
optimisation problem for five of the most important hyper-parameters of the multi-NN design
and compare its performance with the performance obtained previously by manual tuning.

https://doi.org/10.1017/S0956792520000169 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000169


Learning and meta-learning of stochastic advection–diffusion–reaction systems 399

The organisation of this paper is as follows. In Section 2, we introduce the PINN to solve
the deterministic partial differential equation (PDE) and the sPINN to solve the stochastic PDE
(SPDE). In Section 3, we present the results of PINN for solving the inverse problem of the
deterministic ADR equation. In Section 4, we provide the results of the sPINN method for both
the forward and inverse problem. Finally, we employ meta-learning for the last stochastic inverse
problem, and we conclude with a short summary.

2 Methodology

2.1 PINNs for deterministic PDEs

First, we briefly review the type of deep neural networks (DNNs) to solve deterministic PDEs
and the corresponding inverse problem [18, 14]. The PDE can have the general form:

ut + N [u(x, t); η] = 0, x ∈D, t ∈ [0, T], (2.1)

with the initial and boundary conditions:

u(x, 0) = u0(x), x ∈D,

BX [u(x, t)] = ũ(x, t), x ∈ ∂D, t ∈ (0, T], (2.2)

where u(x, t) denotes the solution, u0(x) is the initial condition, ũ(x, t) is the boundary condition,
N [·] is a non-linear differential operator, η is the parameter in the PDE, D is a subset of R and
∂D is the boundary of D.

The solution, denoted by uNN (x, t; w, b), is constructed as a NN approximation of u(x, t); DNN
has the weights (w) and biases (b). We can couple it to another DNN induced by the PDE residual
fNN computed based on the NN solution uNN (x, t; w, b) and corresponding to equation (2.1); also,
the residual f (x, t) is given by equation (2.1), i.e.,

f = ut + N [u(x, t); η]. (2.3)

The inputs of the DNN are the spatial coordinates and time (x, t), while the output is uNN , which
has the same dimension as the input. For the output of uNN , we use automatic differentiation
techniques to compute all derivatives of the non-linear differential operator (physics part). There
are two restrictions on uNN . First, the solution of uNN should be close to the observations u at the
training points. Second, every uNN should comply with the physics imposed by equation (2.1).
The second part is achieved by defining a residual network:

fNN (x, t; w, b, η) = (uNN )t + N [uNN (x, t; w, b); η], (2.4)

which is computed from uNN straightforwardly with automatic differentiation. This residual
network network fNN shares the same parameters (w, b) with the network for uNN and should
output a value close to 0 for any input (x, t) ∈D × [0, T]. During training, the shared parame-
ters (w, b) are adjusted by back-propagating the error obtained by minimising a loss function
that is the weighted sum of the above two constraints. A sketch of the PINN, consisted of the
physics-uninformed and physics-informed DNNs, is shown in Figure 1.
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FIGURE 1. Schematic of the PINN for solving deterministic PDEs.

The PINN loss function is defined as

MSE = MSEu + MSEf , (2.5)

where

MSEu = 1

Nu

Nu∑
i=1

(uNN (xi, ti; w, b) − u(xi, ti))
2,

MSEf = 1

Nf

Nf∑
j=1

( fNN (xj, tj; w, b, η))2. (2.6)

Here, (xi, ti, uNN (xi, ti; w, b))Nu
i=1 denotes the initial and boundary conditions of u for the forward

problem as well as the training data of u for the inverse problem. The data u(xi, ti) are the

observation data of u, while {(xj, tj)}Nf
j=1 denotes the residual points for penalising f (x, t).

2.2 sPINNs: PINNs for SPDEs

Next, we briefly review a stochastic version, based on the arbitrary polynomial chaos (aPC) [24,
16] to represent stochasticity, and combine it with a PINN, following the method first introduced
in [25]. We consider the following SPDE:

ut + N [u(x, t;ω); k(x;ω)] = 0, x ∈D, t ∈ (0, T], ω ∈�, (2.7)

with the initial and boundary conditions:

u(x, 0;ω) = u0(x), x ∈D,

BX [u(x, t;ω)] = 0, x ∈ ∂D, t ∈ (0, T]. (2.8)

Here,� is the random space. In the following, we describe how to use sPINN to solve stochas-
tic inverse problems since for the forward problem the method is straightforward. We assume
that we have Nk sensors for k(x;ω) placed at {x(i)

k }Nk
i=1 and Nu sensors for u(x, t;ω) placed at

{(x(i)
u , t(i)

u )}Nu
i=1. We also choose at random Nf locations {(x(i)

f , t(i)
f )}Nf

i=1 that are used to compute
the residual of equation (2.7). We assume that the observation data of k are {k(xi;ωs)} (denoted
by {ki

s} ), where i = 1, 2, ..., Nk , and s = 1, 2, ..., N . The observation data of u are {u(xj, tj;ωs)}
(denoted by {uj

s} ), where j = 1, 2, ..., Nu, and s = 1, 2, ..., N . Here, N denotes the number of sam-
ples available for a specific location, and for simplicity we take that to be the same both for
k(x;ω) and for u(x, t;ω) for all locations.
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One of the key questions for the inverse stochastic problem is what type of randomness we
encounter in the data and how we represent the stochastic fields. We consider a general setting,
i.e., instead of the classical inverse problem where we are given data on u(x, t;ω) but not on
k(x;ω), here we assume that we have some data on u and some data on k. Hence, in order to
choose the type of the distribution required to represent our random variables so that we employ
aPC, we use the data samples of either u or k. Here, we assume that we have Nk = 7 sensors for k
so we can determine the random variables ξ from the k data, as we explain below, see equations
(2.11)–(2.12).

We choose M sensors of k to compute the random variables ξ , where M ≤ Nk . Denote the
observations of k as k1 = (k1(i, j)), where the element of k1(i, j) is the value of k(xi;ωj), and the
size of k1 is M × N , where N is the number of samples. K be the M × M covariance matrix for
the observation data of k1, i.e.,

Ki,j = Cov(k(i)
1 , k(j)

1 ). (2.9)

Let λi and υi be the ith eigenvalue and its corresponding normalised eigenvector of K. Using
principal component analysis, we obtain

K = V T	V , (2.10)

where V = [υ1, υ2, ..., υM ] is an orthonormal matrix and 	= diag(λ1, λ2, ..., λM ) is a diagonal
matrix. The random variable ξ satisfies the following equation:

k1 = k̄1 + V
√
	ξ , (2.11)

where k̄1 is the mean of k1.
Hence,

ξ = √
	

−1
V T (k1 − k̄1), (2.12)

where each row of ξ is an uncorrelated random vector, and the size of ξ is M × N .
In the continuous case, the diffusion term k(x;ω) can be approximated by

kNN (x;ωj) = k0(x) +
M∑

i=1

ki(x)
√
λiξi,j, j = 1, ..., N . (2.13)

Correspondingly, the solution u at the jth snapshot can be approximated by

uNN (x, t;ωj) ≈
P∑
α=0

uα(x, t)ψα(ξj), (2.14)

where {ψα}P
α=1 are the set of multivariate orthonormal polynomial basis and the highest

polynomial order is r. The parameter P, r and M satisfy the following formula:

P + 1 = (r + M)!
r!M ! . (2.15)

Similar to the PINN method, we construct the residual network via automatic differentiation
and by substituting u(t, x;ω) and k(x,ω) in equation (2.7) with uNN (x, t;ω) and kNN (x;ω). A
sketch of the stochastic PINN (sPINN) is shown in Figure 2.
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FIGURE 2. Schematic of the sPINN for solving SPDEs. Top left: A composite NN consisting of multiple
NNs for computing the mean and modes of the stochastic diffusivity and the solution. The random variable
ξ is obtained by the observation data on k, (see equation (2.12)). Top right: Two separate NNs for the mean
and all the modes of diffusivity. Middle left: NN to compute the mean of the solution. Middle right and
bottom row: Separate NN to compute the modes of the solution. Adopted from reference [25].

The loss function or mean square error (MSE) is defined as

MSE = MSEu + MSEk + MSEf , (2.16)

where

MSEu = 1

N ∗ Nu

N∑
j=1

Nu∑
i=1

[uNN (x(i)
u , t(i)

u ;ωj) − u(x(i)
u , t(i)

u ;ωj)]
2,

MSEk = 1

N ∗ Nk

N∑
j=1

Nk∑
i=1

[kNN (x(i)
k ;ωj) − k(x(i)

k ;ωj)]
2,

MSEf = 1

N ∗ Nf

N∑
j=1

Nf∑
i=1

[ fNN (x(i)
f , t(i)

f ;ωj)]
2.

Here, (x(i)
u , t(i)

u , uNN (x(i)
u , t(i)

u ;ωj))
Nu,N
i,j=1 denotes the training data of u, while the data

(x(i)
u , t(i)

u , u(x(i)
u , t(i)

u ;ωj))
Nu,N
i,j=1 are the observation data of u; also, (x(i)

k , kNN (x(i)
k ;ωj))

Nk ,N
i,j=1 denote

the training data of k. The data (x(i)
k , k(x(i)

k ;ωj))
Nk ,N
i,j=1 are the observation data of k, while

{(x(i)
f , t(i)

f ;ωj)}Nf ,N
i,j=1 denote the residual points for evaluating f (x, t).
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3 Results for the deterministic PDE

We start with a deterministic PDE to demonstrate how can we infer some of the unknown param-
eters using PINNs. We will assume that we have different types of data of variable fidelity,
and we will also demonstrate how we can make use of data of lower fidelity as well using the
composite NN first introduced in [12]. We consider the following non-linear ADR equation:⎧⎨

⎩
ut = ν1uxx − ν2ux + g(u), (x, t) ∈ (0, π ) × (0, 1],
u(x, 0) = u0(x), x ∈ (0, π ),
u(0, t) = 1, ux(π , t) = 0, t ∈ (0, 1].

(3.1)

We define the residual f = ut − ν1uxx + ν2ux − g(u). The L2 error of a function h is defined as
Eh = ||hNN − htrue||L2, and the relative L2 error is defined as Eh = ||hNN −htrue||L2

||htrue||L2
.

3.1 Single-fidelity data

First, we will use single-fidelity data to infer different parameters and at the same time obtain
the solution u. We consider the initial condition u0(x) = exp(−10x) and the reaction term g(u) =
λ1uλ2 . We aim to infer the parameters ν1, ν2, λ1, λ2 given some sparse measurements of u in
addition to initial and boundary conditions. The correct values for the ‘unknown’ parameters are
ν1 = 1, ν2 = 1, λ1 = −1, λ2 = 2.

We employ the following loss function in the PINN:

MSE = MSEu + w∇u ∗ MSE∇u + MSEf , (3.2)

where

MSEu = 1

Nu

Nu∑
i=1

|uNN (ti
u, xi

u) − ui|2,

MSE∇u = 1

Nu

Nu∑
i=1

|∇uNN (ti
u, xi

u) − ∇ui|2,

MSEf = 1

Nf

Nf∑
i=1

|fNN (ti
f , xi

f )|2.

The points {ti
u, xi

u, uNN (ti
u, xi

u)}Nu
i=1 denote the training data for u(t, x), and Nu = 64, Nf = 1089, and

ui is the ‘reference solution’, which is computed by the second-order finite difference method
(�x = π

1024 and �t = 1
1600 ); also ∇u is computed with the finite difference method. We use four

hidden layers and 20 neurons per layer for the DNN. The error of the parameters is defined as
Eν1 = ν1train−ν1

ν1
, Eν2 = ν2train−ν2

ν2
, Eλ1 = λ1train−λ1

λ1
and Eλ2 = λ2train−λ2

λ2
.

In the following, we will investigate four different ways to choose the training points as shown
in Figure 3. For case I, the training data come from two snapshots at t = 0.1 and t = 0.9. For case
II, the training data come from three snapshots at t = 0.1, t = 0.9 and x = π

2 . For case III, we
choose the training data randomly. For case IV, we assume that we have the training data on a
regular lattice in the x − t domain. In all cases, we have 64 training points, and for the weights
in the loss function, we investigate both the case with w∇u = 0 and also the case with w∇u = 1.
In the latter case, we assume that we also have available the gradients of the field u. We present
the parameter evolution predictions as the iteration of the optimiser progresses in Figure 4. The
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Table 1. Single-fidelity case: Errors of the solution and of the parameters

Eu Eν1 (%) Eν2 (%) Eλ1 (%) Eλ2 (%)

Case I (w∇u = 0) 1.9514e − 03 1.1098 0.9010 0.2240 0.2370

Case I (w∇u = 1) 1.6405e − 03 0.8004 0.9780 0.0522 0.7355

Case II (w∇u = 0) 2.7517e − 03 1.4970 2.8120 0.4920 2.2725

Case II (w∇u = 1) 2.5277e − 03 0.1130 1.0973 0.1630 1.7915

Case III (w∇u = 0) 1.6881e − 03 0.3170 1.6801 0.2430 3.3520

Case III (w∇u = 1) 1.4899e − 03 0.7740 1.2520 0.0730 1.2185

Case IV (w∇u = 0) 1.5556e − 03 0.5308 1.1720 0.1896 1.2275

Case IV (w∇u = 1) 1.3695e − 03 0.6666 1.4820 0.4230 1.2555

FIGURE 3. Single-fidelity case: The position of training data used in the loss function.

convergence is faster if we include the gradient penalty term (w∇u = 1). The convergence with
respect to the number of iterations and in actual wall clock time is faster. In both cases, we
use the same Adam optimiser. Since we know the target values explicitly, we do not need to
specify a convergence criterion. However, in general, this convergence criterion will be problem-
dependent, and it is important to search for robust metrics. We summarise the results in terms of
the error of the solution u(x, t) and of the parameters in Table 1.

Taken together, the results indicate that even with very few sensors very accurate inference of
the parameters as well as the field u is obtained using PINN. Moreover, penalising the gradient
of the measurements when possible leads to better accuracy for u although the improvement in
the inference of the parameters is mixed.

3.2 Multi-fidelity data

In many real-world applications, the training data are small and possibly inadequate to obtain
even a rough estimation of the parameters. Here, we demonstrate how we can resolve this issue
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FIGURE 4. Single-fidelity case. Parameter evolution as the iteration of optimiser progresses for four differ-
ent training data sets. The solid line corresponds to a loss without penalising the gradient term, while the
dash line corresponds to a loss that includes the gradient term.

by resorting to supplementary data of lower fidelity that may come from cheaper instruments
of lower resolution or from some computational models. We will refer to such data as ‘low-
fidelity’ (LF), and we will assume that we have a large number of such data points unlike the
high-fidelity (HF) data. Here, we will employ a composite network inspired by the recent work
on multi-fidelity NNs in [12].

The estimator of the HF model using the correlation structure to correct the LF model can be
expressed as

uHF(x, t) = h(uLF(x, t), x, t), (3.3)

where h is a correlation map to be learned, which is based on the correlation between the HF and
LF data. Similarly, we have two NNs for LF and HF, respectively, as follows:

uLF =NN LF(xLF , tLF , wLF , bLF),

uHF =NNHF(xHF , tHF , uLF , wHF , bHF). (3.4)
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FIGURE 5. Multi-fidelity case: (a) 12 HF training data (NHF = 12). (b) 6 HF training data (NHF = 6).

We use four hidden layers and 20 neurons per layer for NN LF and two hidden layers with
10 neurons for NNHL. The learning rate is 5 × 10−5. We infer the same parameters as in the
single-fidelity case and the field u by minimising the mean-squared-error loss function:

MSE = MSEuLF + MSEuHF + MSEfHF , (3.5)

where

MSEuLF = 1

NLF

NLF∑
i=1

|uLF(ti
uLH

, xi
uLF

) − ui
LH |2,

MSEuHF = 1

NHF

NHF∑
i=1

|uHF(ti
uHF

, xi
uHF

) − ui
HF |2,

MSEfHF = 1

Nf

Nf∑
i=1

|fHF(ti
fHF

, xi
fHF

)|2,

and {(ti
uLH

, xi
uLH

)}NLF
i=1 are the point of LF, {(ti

uHF
, xuHF )}NHF

i=1 are the point of HF and {(ti
fHF

, xi
fHF

)}Nf
i=1

are the residual points where we penalise the residual f . We choose Nf = 1024 for the tests here.
We choose the reaction term g(u) = λ1uλ2 and set the true parameters ν1 = 1, ν2 = 1, λ1 = −1

and λ2 = 2. Here, the LF training data are obtained by the second-order finite difference solution
of (3.1) with erroneous parameter values, i.e., ν1 = 1.25, ν2 = 1.25, λ1 = −0.75 and λ2 = 2.5,
where �x = π

32 and �t = 1
32 ; we choose 64 points of LF of u, i.e., NLF = 64. The positions of LF

are denoted by the red point in Figure 5. The HF data are obtained by the numerical solution of
(3.1) when ν1 = 1, ν2 = 1, λ1 = −1, and λ2 = 2, where �x = π

1024 and �t = 1
1024 . The positions

of HF data are shown by the green points in Figure 5. We choose 12 HF training data (NHF = 12)
in Figure 5(a) and 6 data as the HF training data (NHF = 6) in Figure 5(b).

To test the effect of the LF data, we compare the PINN and multi-fidelity PINN results in Table
2. As we can see, the parameter inference using the multi-fidelity PINN is much better than the
single-fidelity predictions. Moreover, if we have a small number of HF data, e.g. NHF = 6, the
results of the multi-fidelity PINN are still quite accurate.
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Table 2. Multi-fidelity case: Errors of the solution and of the parameters.
(mPINN refers to the multi-fidelity PINN)

Eu Eν1 (%) Eν2 (%) Eλ1 (%) Eλ2 (%)

12 points+PINN 2.3558e − 03 3.4000 9.0891 1.6330 13.445

12 points+mPINN 1.1214e − 03 0.6380 1.2772 2.4939 0.8975

6 points+PINN 6.5386e − 03 9.3640 24.455 14.707 49.445

6 points+mPINN 1.2425e − 03 1.6190 3.6775 2.1220 2.0635

4 Results for the stochastic case

Next, we test the effectiveness of sPINN for solving forward and inverse problems by considering
the following stochastic non-linear ADR equation:

⎧⎨
⎩

ut = (k(x;ω)ux)x − ν2ux + g(u) + f (x, t), (x, t,ω) ∈ (x0, x1) × (0, T] ×�,
u(x, 0) = 1 − x2, x ∈ (x0, x1),
u(x0, t) = 0, u(x1, t) = 0, t ∈ (0, T].

(4.1)

Here, x0 = 0, x1 = 1, � is the random space, and the stochastic diffusivity is modelled as
log(k(x;ω)) ∈ GP(k0(x), Cov(x, x′)), hence, it is a non-Gaussian random process with mean

k0(x) = sin(π (x + 1)/2)/5, and covariance function Cov(x, x′) = σ 2 ∗ exp
( − (x−x′)2

l2c

)
with lc =

1 (GP stands for Gaussian Process here); σ = 0.1. We also define the residual f = ut −
(k(x;ω)ux)x + ν2ux − g(u). We consider the reaction term g(u) = λ1uλ2 and f (x, t) = 2. The true
parameter values are ν2 = 1, λ1 = 1 and λ2 = 3.

4.1 Forward problem

We use a sPINN with four hidden layers and 20 neurons per layer for the modes of u, i.e.,
ul, 0 ≤ l ≤ P. The learning rate is 5 × 10−4.

We minimise the following mean-squared-error loss function:

MSE = MSEu + MSEf , (4.2)

where MSEu is the loss function for the initial and boundary conditions of u, MSEf is the loss
function for the PDE, and they are computed as follows:

MSEu = 1

N ∗ Nu

N∑
s=1

NI∑
i=1

[uNN (x(i)
u , 0;ωs) − u(x(i)

u , 0;ωs)]
2

+ 1

N ∗ NB

N∑
s=1

NB∑
i=1

[uNN (x0, t(i)
u ;ωs) − u(x0, t(i)

u ;ωs)]
2
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Table 3. Forward problem: The L2 error and the relative L2

error for different values of the order r of aPC

L2 error Relative L2 error

r = 1 E[u] 2.5090e − 03 3.0862e − 03
Var[u] 7.5067e − 05 3.0841e − 02

r = 2 E[u] 1.0230e − 03 1.2583e − 03
Var[u] 4.4646e − 06 1.8343e − 03

r = 3 E[u] 6.1008e − 04 7.5045e − 04
Var[u] 7.4720e − 07 3.0699e − 04

FIGURE 6. Forward problem: predicted mean and standard deviation at t = 0.5 when r = 1, 2, 3. The
reference solution is obtained by QMC (see Appendix).

+ 1

N ∗ NB

N∑
s=1

NB∑
i=1

[uNN (x1, t(i)
u ;ωs) − u(x1, t(i)

u ;ωs)]
2,

MSEf = 1

N ∗ Nf

N∑
s=1

Nf∑
i=1

[ fNN (x(i)
f , t(i)

f ;ωs) − f (x(i)
f , t(i)

f ;ωs)]
2.

We set M = 4, N = 1000, NI = 101, NB = 101 and Nf = 441 in the loss function.
We use the first-order (r = 1, P = 4), second-order (r = 2, P = 14) and third-order (r = 3, P =

34) aPC expansion for u in this sub-section. In Table 3, we present the L2 and relative L2 errors
of the mean and variance of u at t = 0.5; using the higher order aPC expansion, we obtain better
results. We present in Figure 6 the DNN predictions of the u mean and variance at t = 0.5, where
the reference solutions are calculated by the Quasi-Monte Carlo (QMC) method (more details
are shown in Appendix). We also present in Figure 7 the sPINN prediction of a few modes of
u at t = 0.5. Taken together, the results show that sPINN can solve forward stochastic problems
accurately for more complex (non-linear and time-dependent) SPDEs than the ones considered
in the original paper of [25].
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FIGURE 7. Forward problem: some predicted modes of u with aPC expansions versus the reference
solutions at t = 0.5 for polynomial order r = 1, 2, 3.
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4.2 Inverse problem

Next, we will infer the stochastic process k(x,ω) as well as the parameters ν2, λ1, λ2 and the solu-
tion u(x, t,ω). We use two hidden layers and 4 neurons per layer for the k mean and ki(x), (i =
1, ...M) NNs, and four hidden layers and 20 neurons per layer for the uα(x, t), (α= 0, 1, ...P)
NNs, and the learning rate is 5 × 10−4; we choose N = 2000, Nu = 20, Nk = 7, Nf = 441,
wu = 100 and wk = 16. These values of weights were chosen based on experimentation and also
taken into account the order of magnitude of the various quantities, e.g., mean versus standard
deviation.

We minimise the following mean-squared-error loss function:

MSE = 10 ∗ (MSEu + MSEk) + MSEf , (4.3)

where

MSEu = 1

Nu

Nu∑
i=1

[
1

N

N∑
s=1

uNN (x(i)
u , t(i)

u ;ωs) − 1

N

N∑
s=1

u(x(i)
u , t(i)

u ;ωs)

]2

+ wu
1

N ∗ Nu

Nu∑
i=1

N∑
s=1

[uNN (x(i)
u , t(i)

u ;ωs) − 1

N

N∑
s=1

uNN (x(i)
u , t(i)

u ;ωs)

+ u(x(i)
u , t(i)

u ;ωs) − 1

N

N∑
s=1

u(x(i)
u , t(i)

u ;ωs)]
2,

MSEk = 1

Nk

Nk∑
i=1

[
1

N

N∑
s=1

kNN (x(i)
k ;ωs) − 1

N

N∑
s=1

k(x(i)
k ;ωs)

]2

+ wk
1

N ∗ Nu

Nk∑
i=1

N∑
s=1

[kNN (x(i)
k ;ωs) − 1

N

N∑
s=1

kNN (x(i)
k ;ωs) + k(x(i)

k ;ωs) − 1

N

N∑
s=1

k(x(i)
k ;ωs)]

2,

MSEf = 1

N ∗ Nf

N∑
s=1

Nf∑
i=1

[ fNN (x(i)
f , t(i)

f ;ωs) − f (x(i)
f , t(i)

f ;ωs)]
2.

We assume that we have measurements of u at the positions indicated in Figure 8; the positions
where k is known are shown directly in the inference plots.

We use the first-order (r = 1 and P = 4), second-order (r = 2 and P = 14) and third-order
(r = 3 and P = 34) aPC expansions. The errors of the mean and variance of u and k are shown in
Table 4. The errors of the parameters are shown in Table 5. Overall, the results improve by using
a higher order aPC expansion.

The predicted mean, standard deviation and the modal functions of k are shown in Figure 9.
The predicted mean, standard deviation and the modal functions of u are shown in Figure 10. The
results for the solution u are good, but the inaccuracy of the first mode of k affects the accuracy of
the standard deviation. We have used a very small NN for k as we observed problems with over-
fitting; hence, in order to improve the overall learning of k in modal space, we will introduce the
meta-learning method next to search for better NN architectures for k but also for u.
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Table 4. L2 and relative L2 errors of u and k. BO refers to the meta-learning results

E[u] Var[u] E[k] Var[k]

r = 1 L2 error 2.0058e − 03 6.0891e − 07 2.0721e − 03 1.1191e − 06
Relative L2 error 2.4673e − 03 2.5017e − 04 1.8106e − 03 8.5212e − 05

r = 2 L2 error 1.8472e − 03 8.2031e − 07 1.3080e − 03 2.3888e − 06
Relative L2 error 2.2722e − 03 3.3702e − 04 1.1429e − 03 1.8189e − 04

r = 3 L2 error 1.7582e − 03 5.9305e − 07 2.1860e − 03 7.8451e − 07
Relative L2 error 2.1628e − 03 2.4365e − 04 1.9102e − 03 5.9735e − 05

BO L2 error 5.9512e − 04 9.7195e − 09 3.9250e − 04 1.5484e − 07
Relative L2 error 7.3204e − 04 3.9933e − 06 3.4297e − 04 1.1790e − 05

Table 5. The error and the relative error of the parameters

Eν2 Eλ1 Eλ2

r = 1 Error 1.8855e − 02 1.2252e − 02 1.1636e − 01
Relative error 1.8855 % 1.2252 % 3.8787 %

r = 2 Error 2.3376e − 02 4.2319e − 04 6.3868e − 02
Relative error 2.3376 % 0.0423 % 2.1289 %

r = 3 Error 1.9281e − 02 2.306e − 03 3.9592e − 02
Relative error 1.9281 % 0.2306 % 1.3197 %

BO Error 2.2605e − 03 9.2113e − 04 2.1623e − 02
Relative error 0.2261 % 0.0921 % 0.7207 %

FIGURE 8. Stochastic inverse problem: Space–time positions of the training data for u.
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FIGURE 9. Stochastic inverse problem: predicted mean, standard deviation and modes of k versus the
reference solutions when r = 1, 2, 3. The locations of the k sensors are denoted by red points.

4.3 Meta-learning

There are many types of meta-learning methods. To reduce the empiricism of selecting the sPINN
architecture, in this section, we employ BO to learn the optimum structure of the NNs. We use
dK hidden layers and wK neurons per layer for k mean NN, and dU hidden layers and wU neurons
per layer for ki(x), (i = 1, ...M) and uα(x, t), (α = 0, 1, ...P) NN. The learning rate is lr. The
target is

Target = 10 ∗ (MSEu + MSEk) + Eν2 + Eλ1 + Eλ2 . (4.4)
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FIGURE 10. Stochastic inverse problem: predicted mean, standard deviation and modes of u at t = 0.25 and
t = 0.5 when r = 1, 2, 3.
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Table 6. The hyper-parameters and architecture
choices for the fully connected NNs

Hyper-parameter Range Log-transform

Hidden layers (dK) [1, 10] No
Units per layer (wK) [1, 64] Yes
Hidden layers (dU ) [1, 30] No
Units per layer (wU ) [1, 128] Yes
Learning rate (log(lr)) [−5, −2] Yes

Table 7. Top 10 results of meta-learning using BO

Number Target dK wK dU wU log(lr)

1 0.03898 3 23 10 113 −3.5670
2 0.04678 3 21 9 107 −2.3724
3 0.04704 3 23 10 113 −3.6665
4 0.04915 2 2 6 7 −2.3740
5 0.04962 3 21 9 127 −3.4890
6 0.05007 3 25 9 118 −3.7266
7 0.05429 3 22 9 110 −3.6487
8 0.05451 3 22 9 118 −3.6606
9 0.05691 3 20 9 107 −3.7656
10 0.05735 2 2 6 7 −3.1180
* 0.04704 3 4 15 80 −3.4890

So the target is a function: χ →R, and χ = {dK , wK , dU , wU , lr}. The acquisition function is
upper confidence bound and the tradeoff parameter is 2.576.

Table 6 gives the range of the hyper-parameters we choose. We use the log-transform for the
width of the NN and the learning rare. We compute 80 times to optimize the target function and
get the optimization hyper-parameters. The result is show in Figure 11. The top 10 good results
are shown in Table 7; the ∗ result denotes that we do not use the log-transform. These results
suggest that we need a larger NN for both k and u.

Next, we use the best structure of the NN and learning rate to re-compute the previous stochas-
tic inverse problem, i.e. the depth of k mean NN is 3, and the width is 23. For the NN of the k
modal functions, the u mean and the u modal functions, the depth is 10 and the width is 113. The
learning rate is 10−3.5670. The results are shown in Figures 12–13.

5 Summary

We addressed here a special inverse problem governed by a stochastic non-linear ADR equation,
where given some samples of the solution u(x, t;ω) at a relatively few locations (here four spatial
locations and five time instants) but also given some samples of the stochastic diffusivity k(x;ω)
at seven locations, we aim to obtain the full stochastic fields for u and k as well as three other
unknown parameters. We designed composite NNs, including NNs induced by the stochastic
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FIGURE 11. Convergence of the target for the BO (meta-learning) as a function of the number of iteration.

ADR equation, and relied on spectral expansions to represent stochasticity in order to deal with
the sparsity in data. We also presented a BO method for learning the hyper-parameters of this
composite NN as it is time-consuming to find the proper NNs by trial and error. We followed
a hierarchical approach in testing the various components of the NNs, including training from
multi-fidelity data, investigating possible good locations in space–time for collecting the training
data, and evaluating different weights in the loss functions for the multiple terms representing
data and physics. To the best of our knowledge, this is the first time that such a study is under-
taken with the purpose of evaluating the potential of NNs to learn from sparse data of variable
fidelity and with uncertainty.

An important component missing in our study is quantifying the uncertainty of the NN approx-
imation as was first done in related work in [25] addressing the total uncertainty. This is a serious
but complex issue requiring the use of multiple methods to interpret this uncertainty in an objec-
tive way, and we will pursue this line of research in future work. The present work is also the first
study that uses meta-learning for PINNs, i.e., to optimise the composite NN, which in our case
consists of multiple NNs, as would be the case in simulating multi-physics dynamics. In addition
to the BO employed here, one could also consider using several other methods, including genetic
algorithms [13], the greedy method [11], hyperband [10, 5] as well as blended versions of the
aforementioned methods or even another NN, like an Recurrent neural network in conjunction
with reinforcement learning [9], to search for the best architecture. This has already been done
for classification work, and it is part of AutoML [8] but not for regression tasks.
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FIGURE 12. Stochastic inverse problem: Predicted results of sPINN for k against the reference solution
using the optimum hyper-parameters obtained via BO (meta-learning).
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FIGURE 13. Stochastic inverse problem: predicted results of sPINN for u against the reference solutions at
t = 0.25 and t = 0.5 using the optimum hyper-parameters obtained via BO (meta-learning).
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Appendix

In Section 4, we use the finite difference method with the QMC method to obtain the reference
modes of k and u. In order to estimate how many samples we need for a converged solution, we

FIGURE A.1. The mean, standard deviation and mode functions of k: MC vs. QMC.
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FIGURE A.2. The mean, standard deviation and mode functions of u: MC vs. QMC.

compare the results with different samples using the Monte Carlo (MC) and the QMC methods.
In Figures A.1 and A.2, we present the corresponding results using the MC and QMC methods.
We can see that the QMC method converges much faster than the MC method. For our examples,
we use 2000 QMC samples for training data, and to obtain the reference solutions, we use 10,000
samples.
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