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Abstract

Ontology matching aims at discovering mappings between the entities of two ontologies. It plays
an important role in the integration of heterogeneous data sources that are described by ontologies.
Interactive ontology matching involves domain experts in the matching process. In some approaches,
the expert provides feedback about mappings between ontology entities, that is, these approaches select
mappings to present to the expert who replies which of them should be accepted or rejected, so taking
advantage of the knowledge of domain experts towards finding an alignment. In this paper, we present
ALIN, an interactive ontology matching approach which uses expert feedback not only to approve or
reject selected mappings but also to dynamically improve the set of selected mappings, that is, to interac-
tively include and to exclude mappings from it. This additional use for expert answers aims at increasing
in the benefit brought by each expert answer. For this purpose, ALIN uses four techniques. Two tech-
niques were used in the previous versions of ALIN to dynamically select concept and attribute mappings.
Two new techniques are introduced in this paper: one to dynamically select relationship mappings and
another one to dynamically reject inconsistent selected mappings using anti-patterns. We compared ALIN

with state-of-the-art tools, showing that it generates alignment of comparable quality.

1 Introduction

An ontology is a formal and explicit artifact that represents a shared conceptualization on a particular
domain, structurally consisting of a collection of interconnected entities (concepts, attributes of concepts
and relationships between concepts). One advantage of the use of ontologies is to improve communica-
tion, not only among humans but also among application systems using these ontologies. This, in turn,
fosters interoperability. However, due to the recent and steeply increasing advancements of the semantic
technologies and the web, there are scenarios in which several ontologies exist for the same domain, each
using different entities to refer to the same real-world object. These scenarios raise communication issues
among people or application systems that use these different ontologies.

Ontology matching has successfully addressed these problems by discovering correspondences (map-
pings) between entities of different ontologies (Euzenat and Shvaiko, 2013). One of the possible
approaches to the ontology matching process is the interactive one that involves domain experts in the
matching process. This involvement can be used to improve the results over fully automatic approaches
(Paulheim et al., 2013).

In some interactive approaches, the domain expert provides feedback about mappings between ontol-
ogy entities. These approaches select mappings to present to the expert who assesses which of them
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Figure 1 Ontology matching process – based on Euzenat & Shvaiko (2013)

should be accepted or rejected. They take advantage of the domain expert knowledge to generate an
alignment, and have, as their two main steps, the selection of the mappings to receive expert feedback
and the propagation of this feedback. These approaches vary in techniques for these two steps.

Current approaches select mappings before beginning the propagation step, that is, they do not select
new mappings during the propagation step. The problem with these approaches is that they do not take
advantage of the expert’s knowledge to select new mappings.

We focused on this problem, the first time, with ALINSyn (Da Silva et al., 2017), which interactively
selected concept mappings. In a second time, we developed a new technique, which interactively selected
attribute mappings, which gave rise to the other approach, ALINAttr (Da Silva et al., 2018). ALIN uses the
two techniques implemented in ALINSyn and ALINAttr.

The contributions of this research are the definition of a new structural technique to interactively
select new relationship mappings and the interactive use of anti-patterns, so using the expert feedback to
improve the set of selected mappings.

The Ontology Alignment Evaluation Initiative (OAEI) is a coordinated international initiative whose
one of the goals is to assess the strengths and weaknesses of ontology matching systems. ALIN has
participated in OAEI 2018 and was evaluated in the interactive matching track, with the Conference and
Anatomy data sets. When compared with the other tools, ALIN got the highest precision in both data sets
(Algergawy et al., 2018). In the Conference track, ALIN achieved the highest recall among all tools. On
the Anatomy track, ALIN has not reached a prominent recall, for reasons this paper will explain.

The rest of this paper is organized as follows. Section 2 reviews interactive ontology matching. In
Section 3, we present the related works. Section 4 fully details ALIN algorithms. Section 5 describes our
evaluation methodology and discusses experimental results. Finally, Section 6 concludes the paper.

2 Interactive ontology matching

The ontology matching process starts with two ontologies, O and O′, and returns an alignment Afinal

between the input ontologies. An alignment is a set of mappings between entities e and e′ from O and
O′, respectively, defining pairs of entities. The ontology matching process can receive as input an initial
alignment Ainit. Besides, it can get input parameters and can access external resources, such as a dictionary
(Figure 1).

A mapping asserts a semantic relationship between its entities, such as disjunction, subsumption or
equivalence. In this paper, we only consider the equivalence relationship. The ontology matching system
is responsible to find, among all the possible mappings, the ones to be included in the alignment.

Given that two ontologies representing the same domain may present different types of heterogene-
ity (terminological, structural or semantic, among others), we need a combination of distinct techniques
to correctly discover mappings between their entities. We can see an ontology matching tool as a col-
lection of several matching components, each implementing a specific technique dealing with a specific
heterogeneity type (Ngo et al., 2013).

Interactive ontology matching processes involve domain experts. The type of expert involvement used
in this paper is through feedback on selected mappings. This type takes benefit from the domain expert
knowledge by submitting selected mappings to the expert who assesses which of them should be accepted
or rejected (Figure 2).
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Figure 2 Interactive ontology matching process – based on Paulheim et al. (2013)

One common type of approach for this type of expert involvement is to divide the process into two
main steps: the selection of mappings and the propagation of expert feedback. The current tools that
follow this type of approach only select mappings in the selection step. They do not select any new
mappings in the propagation step, thus not taking advantage of the expert feedback to select mappings.

This paper presents an approach where various techniques are used to use the expert feedback to
improve the set of selected mappings, including a new technique for interactively select relationship
mappings and also including the interactive use of mapping anti-patterns.

This paper shows that the new technique causes an increase in F-measure, and, if the approach uses
expert feedback as the input of the technique, then the approach requires fewer interactions with the
expert to do so. It also shows that the interactive use of mapping anti-patterns decreases the number of
interactions with the expert.

3 Related work

There are at least three areas in which users may be involved in a matching solution (Euzenat and Shvaiko,
2013):

• by providing initial alignments to the system (before matching),
• by configuring (which includes strategy and parameter selection) and tuning the system and
• by providing feedback to matchers (during or after the automatic matching process) in order for

them to adapt their results.

The type of user, a domain expert, involvement used in this paper is through feedback to matchers.
They benefit from the domain expert knowledge by submitting selected mappings to the expert who
assesses which of the mappings should be accepted or rejected. One common type of approach for this
type of expert involvement is to divide the process into two main steps: the selection of mappings and
the propagation of expert feedback.

In the propagation step, different approaches can use expert feedback in different ways. Some of these
approaches automatically classify selected mappings using a threshold. The threshold is a value that
indicates whether a mapping should be automatically accepted (or rejected) when its similarity values are
greater (or smaller) than the threshold. Expert feedback is used to calculate this threshold (Shi et al., 2009;
Duan et al., 2010; Hertling, 2012; Paulheim & Hertling, 2013; Chunhua et al., 2015). Some approaches
automatically classify some selected mappings using a classifier. These approaches use expert feedback
to create the training data set for learning the classifiers (To H. & Le, 2009; Lopes et al., 2015). Others
approaches use expert feedback to modify the weight of similarity metrics (Shi et al., 2009; Duan et al.,
2010; Balasubramani et al., 2015) or to change the value of similarity metrics (Cruz et al., 2012, 2014).

ALIN and its previous versions use the expert feedback to improve the set of selected mappings. Others
approaches also use expert feedback to improve the set of selected mappings (Jiménez-Ruiz et al., 2012;
Faria et al., 2013; Lambrix & Kaliyaperumal, 2016).
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ALINSyn (Da Silva et al., 2017), an earlier version of ALIN, in the mapping selection phase, selects
concept mappings through semantic and lexical similarity metrics. Afterward, it automatically accepts
the selected concept mappings with the same names. Then, it suspends some of these mappings using a
semantic technique. In the propagation phase, ALINSyn uses expert feedback to unsuspend some of these
suspended mappings, returning them to the set of selected mappings, thus improving it. ALIN uses all the
techniques used in ALINSyn.
ALINAttr (Da Silva et al., 2018), another earlier version of ALIN, has the same mapping selection phase

as ALINSyn, but without suspending selected concept mappings. In the programming phase, ALINAttr uses
expert feedback to select attribute mappings. ALIN uses the attribute mapping selection technique used
in ALINAttr.

System for Aligning and Marging Biomedical Ontologies (SAMBO) (Lambrix & Kaliyaperumal,
2016) takes advantage of the expert feedback to improve the set of selected mappings, removing the
selected mappings that conflict with the accepted mappings, according to a reasoner.

Logmap (Jiménez-Ruiz & Grau, 2011; Jiménez-Ruiz et al., 2012), in the selection step, selects map-
pings based on similarity metrics seeking to achieve a high recall. Still, in this step, the approach also
uses automatic, non-interactive, techniques for improving the precision of the set of selected mappings.
In the propagation step, the approach takes advantage of the expert feedback by identifying mappings
that are inconsistent with the accepted mappings, according to a reasoner, and removes them from the set
of selected mappings.

AML (Faria et al., 2013) initially selects mappings based on lexical, semantic and structural similari-
ties. AML places, in automatic mode, mappings that are above a given threshold in the alignment, which
then goes through a repair process.

In the interactive mode, AML uses two thresholds. Those selected mappings that are below the
lower threshold are automatically rejected. Selected mappings above the higher threshold are automat-
ically accepted unless they generate an inconsistency. In such a case, they are submitted to the expert.
Concerning the selected mappings between the two thresholds, those which generate inconsistency are
automatically rejected; the others are submitted to the expert.

AML uses the expert feedback to remove mappings from the set of selected mappings. If a selected
mapping is accepted, all selected mappings that have an entity in common with it are rejected, as well as
all those that are inconsistent with it.

In the current approaches, the impact of expert feedback on the set of selected mappings is the removal
of mappings from it, to increase the precision and decrease the number of interactions. ALIN and its
previous versions also focus on using the expert feedback to select mappings to improve the set of selected
mappings.

ALIN uses, besides the techniques of the earlier versions, another that selects relationships mappings
associated with accepted concept mappings, and mapping anti-patterns.

In the approach of Chunhua et al. (2015), there are formulas that associate relationships mappings
to the concept mappings of the concepts associated with these relationships. The formulas serve to
increase the weight of these concept mappings, which increases the likelihood of the approach automat-
ically include them into the final alignment. ALIN selects relationships mappings, to receive the expert
feedback, associated with accepted concept mappings.

ALIN uses mapping anti-patterns to remove mappings from the set of selected mappings. Automated
Semantic Mapping of Ontologies with Validation (ASMOV) (Jean-Mary et al., 2009) uses concepts
similar to mapping anti-patterns, which it calls semantic verification inferences. ASMOV chooses from
the mappings found in one of these semantic verification inferences to take out of the alignment. ASMOV
is an automatic matching tool, so unlike ALIN, it does not use expert feedback to identify which mappings
to exclude from alignment.

Section 4 further explains the ALIN approach.
Several areas use user knowledge to improve their performance. In information search and retrieval

area, for example, feedback data based on direct interaction (e.g., clicks, scrolling) as well as on user
profiles/preferences have been proven valuable for personalizing the search process, for example, from
how queries are understood to how relevance is assessed (Buscher et al., 2009). However, in such cases,
the feedback is provided by users and is used for answering the query of the same user (in a single session
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for relevance feedback, or across session for personalization). Ontology matching could take advantage
of user feedback to improve alignments. However, interactive ontology matching is usually disconnected
from the use of the resulting alignments, which may be used in different contexts. It relies on expert
feedback, as opposed to user feedback, in order to find the correct alignment, not one that suits the need
of a particular user. In addition, relevance feedback in information retrieval is rather used to give more
or less weight to characteristics of the instances. Here, it is used to revise the mappings based on more
logical constraint propagation, for example, anti-patterns.

4 The Alin approach

In this section, we describe our approach for interactively matching two ontologies. The next subsection
presents the overall ALIN procedure. Section 4.2 presents the terminology used to explain our approach.
Section 4.3 describes the ALIN algorithms.

4.1 General principles

ALIN handles three sets of mappings:

Accepted definitely to be retained in the alignment
Selected to be decided
Suspended selected but filtered out.

The procedure of ALIN is:

1. Select mappings: select the first mappings
2. Filter mappings: suspend some selected mappings, using semantic criteria for that
3. Ask expert: accepts or rejects selected mappings
4. Propagate: select new mappings, reject some selected mappings or unsuspend some suspended

mappings (depending on newly accepted mappings)
5. Go back to 3 as long as there are undecided selected mappings.

All versions of ALIN follow this general scheme. They mainly differ on the way they implement the
propagation step.

There were two previous versions of ALIN: ALINSyn and ALINAttr. The problem addressed by these
versions was to improve the set of selected mappings using expert feedback to select better mappings
to present to the expert. These versions differ from the type of mappings that is presented to the expert:
ALINSyn, uses concept mappings only, and ALINAttr, uses attribute mappings in addition.

One contribution of this paper, concerning the previous ALIN versions, is a new structural technique to
select relationship mappings, implemented by the SelectRelationshipMappings algorithm (Algorithm 9)
used in the propagate phase. The goal of the new technique is to increase the F-measure, and if the expert
feedback is used to assist it, do it more efficiently (more increase per provided feedback).

In order to show the benefits of exploiting expert feedback to choose questions, we have developed
two new versions of ALIN: ALINNoRel and ALINAut.

Another contribution is the use of mapping anti-patterns to reject the selected mappings that are incon-
sistent with the mappings accepted by the expert. ALIN uses various algorithms to avoid and undo these
anti-patterns (Algorithms 10, 11, 12 and 13).

To identify the benefits of the interactive use of anti-patterns, we have developed another version of
ALIN: ALINNoAP.

4.2 Terminology

In an ontology O, its entities e can be concepts (c), which are concepts in a domain, organized
in a subconcept–superconcept hierarchy, or properties, which describe attributes (a) of concepts and
relationships (r) between concepts. Table 1 provides predicates that can be used to model an ontology.
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Table 1 Predicates for ontology description (based on Chunhua et al. (2015)).

Predicate Description

concept(c,O) c is a concept of ontology O
attr(a,O) a is an attribute of ontology O
relat(r,O) r is a relationship of ontology O
entity(e,O) e is an entity of ontology O
sub(c1,c2) c1 is subconcept of c2
sub(c1,c2,n) c1 is subconcept of c2 with a maximum of n depth levels
dis(c1,c2) c1 is disjoint of c2
rconcept(r,c1,c2) r is a relationship between c1 and c2
aconcept(a,c) a is an attribute of concept c

Given two ontologies O and O′, an ontology matching approach will search for mappings between the
entities of these two ontologies. In this paper, all entities from O have no prime (′); all entities from O′

have a prime (′). We use the notation 〈e, e′〉 to represent a mapping between two entities, 〈c, c′〉 between
two concepts, and 〈r, r′〉 and 〈a, a′〉 between two relationships and two attributes.

4.3 Algorithms

The ALIN algorithms (Algorithms 1 to 14) use the variables described below:

• Selected – Set of selected mappings;
• Suspended – Set of suspended mappings;
• Accepted – Set of accepted mappings;
• SetofSimMet – Set of similarity metrics;
• SetofSemSim – Set of semantic similarity metrics, it is a subset of the set of similarity metrics;
• SimMet – one similarity metric.

ALIN uses the functions defined in Table 2 in its algorithms.
ALIN (Algorithm 1) has two main steps: the selection step and the propagation step. The selection step

is responsible for defining the initial selected, accepted and suspended mappings. The propagation step
is where the expert provides feedback to the selected mappings and this feedback is propagated.

The following subsections detail these two steps.

4.3.1 Selection step
The ALIN selection step (from line 1 to line 3 of Algorithm 1) describes the activities for defining the
initial set of selected mappings, the initial set of suspended mappings and the initial alignment (accepted
mappings). The algorithm has as input the two ontologies to be matched and, as parameters, a set of
similarity metrics chosen by the user. The chosen similarity metrics can be semantic or lexical.

The algorithm starts selecting concept mappings (line 1 of Algorithm 1) using the SelectConcept
Mappings algorithm (Algorithm 2). Inside this algorithm, the SelectMappingsPerMetric algorithm
(Algorithm 3) selects mappings for each similarity metric. The SelectMappingsPerMetric algorithm
treats the matching problem as a stable marriage problem with size list limited to 1 (Gale & Shapley,
1962; Irving et al., 2009), that is, the algorithm only selects one mapping if similarity value between
the two entities of the mapping is the highest considering all the mappings with at least one of these
entities.

The SelectMappingsPerMetric algorithm is executed once for each chosen metric, where it generates
a set of mappings for each metric (lines 4 and 5 of Algorithm 2). The union of these sets defines the initial
set of selected mappings (from line 6 to line 10 of Algorithm 2).
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Table 2 Functions used in the ALIN algorithms.

Function Description

ename(e1, e2) Returns true if the name of entity e1 is equal to the name of
entity e2, else return false

highsum(A) Returns the mapping from the set of mappings A with the
highest sum of similarity metrics

concepts(O) Returns the set of all concepts of the ontology O
attributes(c) Returns the set of all attributes of the concept c
multent(〈e1, e′1〉, 〈e2, e′2〉) Returns true if 〈e1, e′1〉 and 〈e2, e′2〉 are in a multiple-entity

anti-pattern, else it returns false. See Definition 4.2
antipat(〈e1, e′1〉, 〈e2, e′2〉) Returns true if 〈e1, e′1〉 and 〈e2, e′2〉 are in any of the three

anti-patterns, else it returns false. See Definitions 4.2– 4.4
simvalue(〈e, e′〉, SimMet) Returns the value of the metric SimMet between the entities e

and e’
isconcmap(〈e, e′〉) Returns true if e and e’ are concepts, else it returns false
isattrmap(〈e, e′〉) Returns true if e and e’ are attributes, else it returns false
isrelatmap(〈e, e′〉) Returns true if e and e’ are relationships, else it returns false
isaccepted(〈e, e′〉) Returns true if the expert accepts the mapping 〈e, e′〉, else it

returns false
trigger(〈c1, c′1〉, 〈c2, c′2〉, 〈r, r′〉) Returns true if there is a trigger, between 〈c1, c′1〉 and

〈c2, c′2〉, for the selection of 〈r, r′〉, else it returns false. See
Definition 4.1

Algorithm 1 ALIN TopLevel

Input: O, O′, SetofSimMet
Output: Accepted

/∗Selection step∗/
1: Selected← SelectConceptMappings (O, O′, SetofSimMet);
2: Accepted, Selected← AcceptConceptMappings (Selected);
3: Suspended, Selected← SuspendConceptMappings (Selected,SetofSemSim);

/∗Propagation step∗/
4: for each 〈e, e′〉 ∈ Accepted do
5: Selected, Suspended← PropagateAcceptedMapping (〈e, e′〉, Accepted, Selected,

Suspended, SetofSimMet);
6: end for
7: while Selected �= ∅ do
8: 〈e, e′〉 = highsum(Selected);
9: receive expert feedback on 〈e, e′〉;
10: remove 〈e, e′〉 from Selected;
11: if isaccepted(〈e, e′〉) then
12: add 〈e, e′〉 to Accepted;
13: Selected, Suspended← PropagateAcceptedMapping (〈e, e′〉, Accepted, Selected,

Suspended, SetofSimMet);
14: end if
15: end while
16: return Accepted
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Algorithm 2 SelectConceptMappings

Input: O, O′, SetofSimMet
Output: Selected
1: Selected = ∅;
2: SCO← concepts(O);
3: SCO’← concepts(O′);
4: for each SimMet ∈ SetofSimMet do
5: M← SelectMappingsPerMetric (SCO,SCO′,SimMet);
6: for each 〈e, e′〉 ∈M do
7: if 〈e, e′〉 �∈ Selected then
8: add 〈e, e′〉 to Selected;
9: end if
10: end for
11: end for
12: return Selected

Algorithm 3 SelectMappingsPerMetric

Input: SE, SE′, SimMet
Output: M
1: M = ∅;
2: for each e ∈ SE do
3: bestmatch← arg max

e′∈SE′
simvalue(〈e, e′〉, SimMet);

4: if e= arg max
e′′∈SE

simvalue(〈e′′, bestmatch〉, SimMet) then
5: add 〈e, bestmatch〉 to M;
6: end if
7: end for
8: return M;

Algorithm 4 AcceptConceptMappings

Input: Selected
Output: Accepted, Selected
1: Accepted = ∅;
2: for each 〈e, e′〉 ∈ Selected do
3: if ename(e, e′) then
4: move 〈e, e′〉 from Selected to Accepted;
5: end if
6: end for
7: Accepted,Selected← UndoConceptAntiPatterns(Accepted,Selected);
8: return Accepted, Selected

After defining an initial set of selected mappings, ALIN evaluates each of them to verify if some of
them can already be automatically accepted (line 2 of Algorithm 1) using the AcceptConceptMappings
algorithm (Algorithm 4). At first, ALIN automatically accepts concept mappings whose entity names are
the same and moves them from the set of selected mappings to the accepted ones (from line 1 to line
6 of Algorithm 4). After that, ALIN identifies all automatically accepted concept mappings that are in
an anti-pattern with other automatically accepted concept mappings (line 7 of Algorithm 4) using the
UndoConceptAntiPatterns algorithm (Algorithm 10) and moves them from the accepted mappings to the
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Algorithm 5 SuspendConceptMappings

Input: Selected, SetofSemSim
Output: Suspended, Selected
1: Suspended=∅;
2: for each 〈e, e′〉 ∈ Selected do
3: if ∀ SimMet ∈ SetofSemSim, simvalue(〈e, e′〉, SimMet) ≤ 0.9 then
4: move 〈e, e′〉 from Selected to Suspended;
5: end if
6: end for
7: return Suspended, Selected

Algorithm 6 PropagateAcceptedMapping

Input: 〈e, e′〉, Accepted, Selected, Suspended, SetofSimMet
Output: Selected, Suspended
1: if isconcmap(〈e, e′〉) then
2: Selected← SelectAttributeMappings (〈e, e′〉, SetofSimMet, Selected);
3: Selected← SelectRelationshipMappings (〈e, e′〉, Accepted, Selected);
4: Suspended, Selected← UnsuspendConceptMappings (〈e, e′〉, Suspended, Selected);
5: Selected← AvoidConceptAntiPatterns (〈e, e′〉, Selected);
6: end if
7: if isattrmap(〈e, e′〉) then
8: Selected← AvoidAttributeMultipleEntityAntiPattern (〈e, e′〉, Selected);
9: end if
10: if isrelatmap(〈e, e′〉) then
11: Selected← AvoidRelationshipMultipleEntityAntiPattern (〈e, e′〉, Selected);
12: end if
13: Return Selected, Suspended

set of selected mappings. This use of anti-patterns is done to minimize the precision decrease that can
occur because of the automatic acceptation of mappings. Subsection 4.3.3 explains anti-patterns.

In the selection step, selected mappings less likely to be correct are suspended (line 3 of Algorithm 1),
using the SuspendConceptMappings algorithm (Algorithm 5). The SuspendConceptMappings algorithm
identifies all selected mappings in which the two concepts have all semantic similarity metric values under
a threshold (here 0.9, see Section 5.2) and suspends them. The similarity metrics used in this technique
are chosen by the user, for example, Resnick, Jiang-Conrath or Lin. The suspended mappings can become
selected again after interaction with the expert, during the propagation step (Subsection 4.3.2), by the use
of the UnsuspendConceptMappings algorithm (Algorithm 7).

Subsection 4.3.2 describes the propagation of the accepted mappings.

4.3.2 Propagation step
The ALIN propagation step (from line 4 to line 15 of Algorithm 1) describes the activities to choose the
selected mapping to receive expert feedback, the feedback itself and the feedback propagation.

At the beginning, ALIN propagates the automatically accepted mappings (line 5 of the Algorithm 1)
in the same way as it does with the mappings accepted by the expert.

At each iteration in the propagation step (from line 7 to line 15 of the Algorithm 1), ALIN chooses
among all the selected mappings, the one that has the highest sum of their similarities (line 8 of
Algorithm 1). After that, this mapping receives the expert feedback (line 9 of Algorithm 1), where the
expert can accept or reject the selected mapping. If the expert accepts the mapping, ALIN moves it to
the set of accepted mappings (line 12 of Algorithm 1) and propagates its effects (line 13 of Algorithm 1)
through the PropagateAcceptedMapping algorithm (Algorithm 6).

https://doi.org/10.1017/S0269888919000249 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888919000249


10 J. DA SILVA ET AL.

Algorithm 7 UnsuspendConceptMappings

Input: 〈cx, c′x〉, Suspended, Selected
Output: Suspended, Selected
1: for each 〈cy, c′y〉 ∈ Suspended do
2: if sub(cy, cx) ∧ sub(c′y, c′x) then
3: move 〈cy, c′y〉 from Suspended to Selected;
4: end if
5: end for
6: return Suspended, Selected

Algorithm 8 SelectAttributeMappings

Input: 〈c, c′〉, SetofSimMet, Selected
Output: Selected
1: SA← attributes(c);
2: SA’← attributes(c′);
3: for each SimMet ∈ SetofSimMet do
4: M← SelectMappingsPerMetric(SA,SA’,SimMet);
5: for each 〈a, a′〉 ∈M do
6: if 〈a, a′〉 �∈ Selected then
7: add 〈a, a′〉 to Selected;
8: end if
9: end for
10: end for
11: return Selected

In the propagation step, ALIN only accepts mappings that have received positive feedback from the
expert. So, if the expert does not make mistakes, the monotonic growth of the recall and the precision in
the propagation step is guaranteed.

The techniques used to propagate the effects of the expert feedback are described in this subsection.
The first three techniques described are structural ones that select new mappings. A structural technique
takes, as input, one or more mappings, and it generates, as output, mappings structurally related to them.

The UnsuspendConceptMappings algorithm (Algorithm 7) implements the first structural technique.
This algorithm assumes that concept mappings are more prone to be true if the superconcepts of both con-
cepts in the mapping are in an accepted mapping. This algorithm, at each iteration, identifies all suspended
mappings that are formed by subconcepts of the concepts of the accepted mappings and unsuspend them,
that is, they become again selected mappings. We implemented this technique in a prior version of ALIN:
ALINSyn (Da Silva et al., 2017).

So far, the ALIN approach has only taken into account concept mappings. With the second structural
technique, implemented by the SelectAttributeMappings algorithm (Algorithm 8), attribute mappings of
the accepted mappings were selected, that is, once the expert accepts a concept mapping, ALIN selects
some mappings between the attributes of its concepts.

To develop the SelectAttributeMappings algorithm, we have assumed that attribute mappings are more
prone to be a mapping between attributes of concepts if their concepts are in an accepted mapping. To
reduce the search space to the SelectAttributeMappings algorithm, ALIN (line 4 of the Algorithm 8) used
the SelectMappingsPerMetric algorithm (Algorithm 3). We implemented this technique in a prior version
of ALIN: ALINAttr (Da Silva et al., 2018).

To develop the third structural technique, implemented by the SelectRelationshipMappings algorithm
(Algorithm 9), we have assumed that relationships are more prone to be in a mapping if they are relation-
ships between the concepts of two accepted concept mappings. We have also assumed that relationships
between subconcepts of these concepts are more prone to be in a mapping too. These situations in
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Algorithm 9 SelectRelationshipMappings

Input: 〈cx, cx′〉, Accepted, Selected
Output: Selected
1: for each 〈cy, cy′〉 ∈ Accepted such that 〈cy, cy′〉 �= 〈cx, cx′〉 do
2: if trigger(〈cx, cx′〉,〈cy, cy′〉,〈r, r′〉) then
3: add 〈r, r′〉 to Selected;
4: end if
5: end for
6: return Selected

Figure 3 The three mapping anti-pattern used in ALIN: (a) multiple-entity anti-pattern; (b) cross-mapping anti-
pattern; (c) disjunction and generalization anti-pattern. Based on Jean-Mary et al. (2009)

which the SelectRelationshipMappings algorithm selects relationship mappings are called triggers for
the selection of relationship mappings (Definition 4.1).

DEFINITION 4.1 (Triggers). Given 〈c1, c ′1〉 and 〈c2, c ′2〉, the following conditions:
• rconcept(r, c1, c2) ∧ rconcept(r′, c′1, c′2)
• sub(c3, c1, 2) ∧ rconcept(r, c3, c1) ∧ rconcept(r′, c′1, c′2)
• sub(c′3, c′1, 2) ∧ sub(c3, c1, 2) ∧ rconcept(r′, c′3, c′1) ∧ rconcept(r, c3, c1)
are called triggers between 〈c1, c ′1〉 and 〈c2, c ′2〉 for the selection of the relationship mapping 〈r, r′〉.

4.3.3 Mapping Anti-patterns
An ontology may have construction constraints, such as a concept cannot be equivalent to its supercon-
cept. An alignment may have other constraints, for example, an entity of ontology O cannot be equivalent
to two entities of the ontology O′. A mapping anti-pattern is a combination of mappings that generates a
problematic alignment, that is, a logical inconsistency or a violated constraint.

ALIN uses three mapping anti-patterns empirically identified by Guedes et al. (2014b) (Definitions 4.2
to 4.4), extracted from the results of ontology matching tools evaluated by OAEI (Guedes et al. 2014a).

The multiple-entity anti-pattern (Definition 4.2) applies when a single entity does not participate in two
mappings (Figure 3(a)). The cross-mapping anti-pattern (Definition 4.3) applies when no subconcept can
be equivalent to its superconcept. This mapping anti-pattern applies when a concept c1 is a subconcept
of the concept c2 and c′1 is subconcept of the concept c′2 and c1 is in a mapping with c′2 and c2 is in
a mapping with c′1 (see Figure 3(b)). The disjunction and generalization anti-pattern (Definition 4.4)
applies when a pair of concepts of an ontology that are subconcept and superconcept are in mappings
with two disjoint concepts of the other ontology (Figure 3(c)).

DEFINITION 4.2 (Multiple-entity anti-pattern). If the entities e1, e′1 and e′2 of mappings 〈e1, e′1〉 and
〈e1, e′2〉 occur in the situation described by the formula entity(e1,O)∧ entity(e′1,O′)∧ entity(e′2,O′),
then 〈e1, e′1〉 and 〈e1, e′2〉 are said to be in a multiple-entity anti-pattern.

DEFINITION 4.3 (Cross-mapping anti-pattern). If the concepts c1, c2, c′1 and c′2 of mappings 〈c2, c′1〉
and 〈c1, c′2〉 occur in the situation described by the formula concept(c1,O)∧ concept(c′1,O′)∧
concept(c2,O)∧ concept(c′2,O′)∧ sub(c1, c2)∧ sub(c′1, c′2), then 〈c2, c′1〉 and 〈c1, c′2〉 are said to be
in a cross-mapping anti-pattern.
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Algorithm 10 UndoConceptAntiPatterns

Input: Accepted, Selected
Output: Accepted, Selected
1: for each 〈cx, c′x〉 ∈ Accepted do
2: for each 〈cy, c′y〉 ∈ Accepted do
3: if antipat(〈cx, c′x〉,〈cy, c′y〉) then
4: move 〈cx, c′x〉 from Accepted to Selected;
5: move 〈cy, c′y〉 from Accepted to Selected;
6: end if
7: end for
8: end for
9: return Accepted, Selected

Algorithm 11 AvoidConceptAntiPatterns

Input: 〈cx, c′x〉, Selected
Output: Selected
1: for each 〈cy, c′y〉 ∈ Selected do
2: if antipat(〈cx, c′x〉,〈cy, c′y〉) then
3: remove 〈cy, c′y〉 from Selected;
4: end if
5: end for
6: return Selected

Algorithm 12 AvoidAttributeMultipleEntityAntiPattern

Input: 〈ax, a′x〉, Selected
Output: Selected
1: for each 〈ay, a′y〉 ∈ Selected do
2: if multent(〈ax, a′x〉,〈ay, a′y〉) then
3: remove 〈ay, a′y〉 from Selected;
4: end if
5: end for
6: return Selected

DEFINITION 4.4 (Disjunction and Generalization anti-pattern). If the concepts c1, c2, c′1 and c′2
of mappings 〈c1, c′1〉 and 〈c2, c′2〉 occur in the situation described by the formula concept(c1,O)∧
concept(c′1,O′)∧ concept(c2,O)∧ concept(c′2,O′)∧ sub(c1, c2)∧ dis(c′1, c′2), then 〈c1, c′1〉 and
〈c2, c′2〉 are said to be in a disjunction and generalization mapping anti-pattern.

ALIN takes advantage of the fact that if a correct mapping is in a mapping anti-pattern with another
mapping, the other mapping is wrong. It uses (line 7 of Algorithm 4) the UndoConceptAntiPatterns
algorithm (Algorithm 10) to identify automatically accepted concept mappings that are in mapping
anti-patterns with others automatically accepted concept mappings and moves these mappings from
the set of accepted mappings to the set of selected mappings. ALIN (line 5 of Algorithm 6) uses the
AvoidConceptAntiPatterns algorithm (Algorithm 11) to identify those selected concept mappings that are
in a mapping anti-patterns with an accepted concept mapping and removes them from the set of selected
mappings. ALIN (lines 8 and 11 of Algorithm 6) uses the AvoidAttributeMultipleEntityAntiPattern algo-
rithm (Algorithm 12) and the AvoidRelationshipMultipleEntityAntiPattern algorithm (Algorithm 13) to
identify selected attribute and relationship mappings that are in the multiple-entity anti-pattern with an
accepted mapping and removes them from the set of selected mappings.
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Algorithm 13 AvoidRelationshipMultipleEntityAntiPattern

Input: 〈rx, r′x〉, Selected
Output: Selected
1: for each 〈ry, r′y〉 ∈ Selected do
2: if multent(〈rx, r′x〉,〈ry, r′y〉) then
3: remove 〈ry, r′y〉 from Selected;
4: end if
5: end for
6: return Selected

5 Evaluation overview

ALIN is implemented in Java using the following Application Programming Interfaces (APIs): Stanford
CoreNLP API (Manning et al., 2014) to put a word in canonical form; Simmetrics API (Surhone
et al., 2010), for string-based similarity metrics; HESML API (Lastra-Díaz et al., 2017), for Wordnet
(Fellbaum, 1998) based linguistic metrics; the OWL API for handling ontologies written in OWL and the
Alignment API (David et al., 2011) to deal with alignments.

In the executions described in this section, ALIN receives as input parameters six similarity metrics.
We based the process of choosing the similarity metrics used by ALIN on the result of these metrics
in assessments (Petrakis et al., 2006; Cheatham & Hitzler, 2013). We chose Jaccard, Jaro-Winkler and
n-gram lexical metrics and the Resnick, Jiang-Conrath and Lin semantic metrics. Resnick, Jiang-Conrath
and Lin are metrics that require a taxonomy to be computed, this taxonomy is provided by Wordnet
(Fellbaum, 1998).

The OAEI is a coordinated international initiative, which organizes the evaluation of ontology match-
ing systems. Its main goal is to compare systems and algorithms openly and on the same basis, to allow
anyone to draw conclusions about the best matching strategies. OAEI provides ontologies for various
domains (data sets). The ontologies of data sets can have three types of entities: concepts (classes), data
properties (attributes) and object properties (relationships). OAEI provides reference alignments, which
are alignments that contain the mappings that are believed to be correct, for each ontology pair in a
data set.

To evaluate ALIN, we followed the same protocol as the OAEI 2018 interactive matching track
(Algergawy et al., 2018) in which ALIN participated (Da Silva et al., 2018). An interactive matcher
is run and the reference alignment is used to simulate the expert answering. At each interaction, up to
three selected mappings can be submitted to the expert, as long as each selected mapping has one entity
in common with another selected mapping in the interaction (Faria, 2016). The quality of an alignment
generated by a matching approach is generally measured by the F-measure, which is the harmonic mean
between recall and precision. When the ontology matching process is interactive another quality metric
occurs, it is the number of interactions with the expert. In Tables 4, 5, 6, 7, 8, 9, 10 and 11 hereafter,
‘Total Requests’ is the number of interactions with the expert.

The OAEI 2018 interactive matching track (Algergawy et al., 2018) is based on two data sets:
Conference and Anatomy.

The Conference data set consists of 7 ontologies, resulting in a total of 21 ontology pairs. There are
125,860 possible mappings when we take into account only the mappings of the same entity type among
all 21 ontology pairs. ALIN takes into account only the mappings of the same entity type. Among the 21
ontology pairs of the Conference data set, there are 305 mappings in the reference alignments.

The Anatomy data set contains two ontologies, one with the mouse anatomy and another with the
human anatomy. The number of possible mappings between the two ontologies is 9,066,176. There are
1516 mappings in the reference alignment.

5.1 Evaluation criteria

We measure efficiency in the use of expert feedback as the ratio between the F-measure gain over the
baseline (ALINNoRel) and the additional number of expert answers.
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Algorithm 14 AutomaticallySelectRelationshipMappings

Input: Selected
Output: Selected
1: for each 〈c, c′〉 ∈ Selected do
2: Selected← SelectRelationshipMappings (〈c, c′〉,Selected,Selected);
3: end for
4: Return Selected

We raise the following research questions to evaluate if the techniques used in ALIN help to achieve
the objective to generate a better alignment:

RQ1: Does the SelectRelationshipMappings algorithm increase the F-measure of the generated align-
ment?

RQ2: Is the expert feedback more efficiently used when it assists the SelectRelationshipMappings
algorithm?

RQ3: Does the interactive use of mapping anti-patterns decrease the number of interactions with the
expert?

RQ4: Does the use of the techniques described in this paper generate a final alignment with quality and
number of interactions compatible with the state-of-the-art proposals?

In order to evaluate the benefit of the proposed solutions, we developed several versions of ALIN:

Alin is the full version of ALIN. It uses only the accepted mappings as input of the
SelectRelationshipMappings algorithm, that is, it uses the expert feedback to assist the
SelectRelationshipMappings algorithm.

ALINNoAP is the full ALIN without using anti-patterns. Comparing its results with the results of full ALIN

allows answering to RQ3.
ALINAut uses all the automatically selected concept mappings as input to the Select

RelationshipMappings algorithm, that is, the line 3 of the PropagateAcceptedMapping
algorithm (Algorithm 6) is removed and the AutomaticallySelectRelationshipMappings
algorithm (Algorithm 14) is called between the lines 1 and 2 of Algorithm 1. Since it uses
the automatically selected concept mappings as input, it does not use the expert feedback to
the SelectRelationshipMappings algorithm. Comparing the results of its execution with the
results of ALINNoRel allows answering to RQ1. Comparing the results of its execution with
the results of ALINNoRel and the results of full Alin allows answering to RQ2.

ALINNoRel does not use the SelectRelationshipMappings algorithm, that is, line 3 and lines from 10 to 12
are removed from the PropagateAcceptedMapping algorithm (Algorithm 6). Comparing the
results of its execution with the results of ALINAut allows answering to RQ1. Comparing the
results of its execution with the results of ALINAut and the results of full Alin allows answering
to RQ2.

Table 3 shows the characteristics of ALIN versions.

5.2 Parameter tuning

In the SelectRelationshipMappings algorithm, we searched for the relationship mappings of the subcon-
cepts of the concepts of two accepted concept mappings. During the creation of this algorithm, we found
out that if we fixed a maximum depth of the subconcepts that we searched, the number of relationship
mappings that the algorithm would select decreased. As a consequence, the number of interactions with
the expert also decreases. The depth of 2 was where we found the maximum recall, and we set this value
for ALIN. From this value, we found only relationships mappings that were not accepted by the expert
(Table 4).
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Table 3 Alin versions.

Use the Use the expert feedback to assist the
ALin SelectRelationshipMappings SelectRelationshipMappings Use
version algorithm algorithm anti-patterns

ALINNoRel No – Yes
ALINAut Yes No Yes
ALINNoAP Yes Yes No
ALIN Yes Yes Yes

Table 4 Comparison between ALIN executions with different maximum depths of the subconcepts using
Conference data set.

Maximum depth of the subconcepts Total requests Precision F-measure Recall

With no relationships mappings 246 0.918 0.793 0.698
0 251 0.919 0.798 0.705
1 254 0.919 0.802 0.711
2 276 0.921 0.809 0.721
3 295 0.921 0.809 0.721
4 310 0.921 0.809 0.721
5 321 0.921 0.809 0.721

Table 5 Comparison between ALIN executions with different minimum semantic similarity values
of the entities using the Conference data set.

Minimum semantic similarity
between the entities Total requests Precision F-measure Recall

1.0 257 0.917 0.789 0.692
0.9 276 0.921 0.809 0.721
0.8 300 0.921 0.809 0.721
0.7 310 0.920 0.805 0.715

We modified the SuspendConceptMapping algorithm in ALIN. We removed, in ALINSyn (Da Silva
et al., 2017), all mappings from the set of selected mappings in which the two mapping concepts were
not semantically equivalent, that is, if all of the semantic similarity metrics were less than 1. In ALIN,
using the Conference data set, we did several executions changing the minimum value of similarity, and
we found that the value of 0.9 reached the best result, so in ALIN, we fixed the value in 0.9 (Table 5).
Although we have found the value by running ALIN with the Conference data set, we used the same value
with the Anatomy data set.

Since the parameter values were empirically set, further study would be required to make them more
general.

5.3 Analysis of the results

We made executions with the three versions of ALIN for both the Conference data set and the Anatomy
data set. The execution of ALINAut, for the Conference data set, using the SelectRelationshipMappings
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Table 6 Comparison between different ontology matching executions with Conference data set.

Increase in total Increase in Efficiency
requests relative F-measure relative relative to

Total req Prec F Rec to ALINNoRel to ALINNoRel ALINNoRel

ALINNoRel 246 0.918 0.793 0.698 – – –
ALINAut 318 0.921 0.811 0.725 29.26 1.02 0.011
ALIN 276 0.921 0.809 0.721 12.19 1.02 0.027

Table 7 Comparison between different ontology matching executions with Anatomy data set.

Increase in total Increase in Efficiency
requests relative F-measure relative relative to

Total req Prec F Rec to ALINNoRel to ALINNoRel ALINNoRel

ALINNoRel 602 0.994 0.902 0.826 – – –
ALINAut 602 0.994 0.902 0.826 – – –
ALIN 602 0.994 0.902 0.826 – – –

Table 8 Comparison between ALIN executions with and without mapping anti-patterns
using the Conference data set.

Total requests Precision F-measure Recall

ALINNoAP 329 0.921 0.809 0.721
ALIN 276 0.921 0.809 0.721

algorithm generates an alignment with higher F-measure relatively to ALINNoRel. Thus, this execution
responds positively to RQ1.

With all the selected mappings as input to the SelectRelationshipMappings algorithm in ALINAut,
there is an increase of 1.02% in F-measure, but with 29.26% more interactions with the expert relative
to ALINNoRel. With the use of accepted mappings as input to the SelectRelationshipMappings algorithm
in Full ALIN, we got almost the same increase in F-measure, but with only 12.19% more interactions
relative to ALINNoRel. So, concerning ALINNoRel, the Full ALIN allows more efficiency in the use of the
expert feedback than ALINAut. Thus, this execution responds positively to RQ2.

With the use of the Anatomy data set, all versions achieved the same alignment, and thus the same
F-measure (Table 7). This is because there are no relationships in the ontologies of the Anatomy data set,
hence the SelectRelationshipMappings algorithm brings no benefit.

Thus, the executions show that we can only respond positively to both RQ1 and RQ2 if that involved
ontologies have relationships.

The interactive use of mapping anti-patterns by the ALIN approach decreases the number of interac-
tions with the expert without decreasing the F-measure (Tables 8 and 9), which respond positively to
the RQ3.
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Table 9 Comparison between ALIN executions with and without mapping anti-patterns
using the Anatomy data set.

Total requests Precision F-measure Recall

ALINNoAP 679 0.993 0.903 0.828
ALIN 602 0.994 0.902 0.826

Table 10 Comparison between OAEI 2018 interactive matching track tools using Conference data set
with 100% hit rate (Algergawy et al., 2018).

Total requests Precision F-measure Recall

ALIN 276 0.921 0.809 0.721
AML 270 0.912 0.799 0.711
LogMap 82 0.886 0.723 0.61
XMap 16 0.719 0.666 0.62

Table 11 Comparison between OAEI 2018 interactive matching track tools using Anatomy data set
with 100% hit rate (Algergawy et al., 2018).

Total requests Precision F-measure Recall

ALIN 602 0.994 0.902 0.826
AML 240 0.964 0.956 0.948
LogMap 388 0.982 0.909 0.846
XMap 35 0.929 0.897 0.867

5.4 Comparison between tools that participated in the OAEI 2018 interactive matching track

ALIN participated in the OAEI 2018 interactive matching track. OAEI provides a comparison between
tool performance in the interactive matching track each year, and it uses the Conference and the Anatomy
data sets (Algergawy et al., 2018), as we can see in Tables 10 and 11.

The tools AML, LogMap and XMAP (Tables 10 and 11) are interactive ontology matching tools
which select attribute and relationship mappings, but in a non-interactive way, not taking into account
the expert feedback.

In relation to the F-measure, the results show that ALIN generated a high-level result when running
the Conference data set (Table 10) and ALIN got a result close to other tools when running the Anatomy
data set (Table 11) when the expert hit 100% of the answers, which answers positively to RQ4.

In relation to the number of interactions with the expert, ALIN, when running with the Conference
data set, has a number of interactions more compatible with the other tools than with the Anatomy
data set. That is because the ontologies of the Conference data set, contrary to those of Anatomy,
contain attributes and relationships, which allows the use of the SelectRelationshipMappings and the
SelectAttributeMappings algorithms to improve the set of selected mappings.

When the expert makes mistakes, ALIN suffers a sharp fall, relative to other tools (Figures 4 and 5),
of the F-measure. This fall is because ALIN uses expert feedback as input to the used techniques, which
causes these techniques to generate erroneous results when the expert fails. Besides, these outputs of the
techniques serve to modify the set of selected mappings, which causes the set of selected mappings to get
worse, that is, correct mappings can come out, and wrong mappings can enter.
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Figure 4 Comparison of execution of several interactive tools with different hit rates – Conference data set

Figure 5 Comparison of execution of several interactive tools with different hit rates – Anatomy data set

6 Conclusions and future works

Ontology matching plays an important role in the integration of heterogeneous data sources that are
described by ontologies. Its purpose is to discover mappings between the entities of at least two
ontologies.

ALIN contributes to interactive ontology matching techniques through the use of expert feedback for
the improvement of the set of selected mappings. It does this using expert feedback to select relationship
mappings and to reject selected mappings through the use of anti-patterns.

We evaluated the various new features of the ALIN approach by comparing different versions of the
system. The evaluation performed showed that the use of the expert feedback to improve the set of
selected mappings increased the F-measure gain per interaction.

ALIN participated in the interactive ontology matching track of OAEI 2018. The results showed that
ALIN generates an alignment with good quality in comparison to other tools, in precision, recall and
F-measure when the expert never makes mistakes. Hence, in spite of good quality results, the proposed
technique is no silver bullet for ontology matching.

The ALIN approach had good results when the expert does not make mistake, but as the approach
uses expert feedback to select and reject mappings, expert mistakes generate noise for the structural
techniques and for the use of mapping anti-patterns. As future work, one interesting direction is to explore
how to reduce the negative effects of expert mistakes. In this case, the question of using several experts
simultaneously can occur and require specific treatments.

A more informative evaluation to assess the benefits of using the expert feedback to assist the selection
of mappings would consist of applying it to the mappings generated by other systems participating in
OAEI.
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