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Abstract

The ecological ubiquity of parasites and their potential impacts on host behaviour have led to
the suggestion that parasites can act as ecosystem engineers, structuring their environment
and physical habitats. Potential modification of the relationship between parasites and their
hosts by climate change has important implications for how hosts interact with both their
biotic and abiotic environment. Here, we show that warming and parasitic infection inde-
pendently increase rates of bioturbation by a key detritivore in aquatic ecosystems
(Gammarus). These findings have important implications for ecosystem structure and func-
tioning in a warming world, as alterations to rates of bioturbation could significantly modify
oxygenation penetration and nutrient cycling in benthic sediments of rivers and lakes. Our
results demonstrate a need for future ecosystem management strategies to account for parasitic
infection when predicting the impacts of a warming climate.

Introduction

Parasites are found in all ecosystems throughout the globe (Jorge and Poulin, 2018). They
comprise up to 40% of all described species (Dobson et al., 2008), feature in up to 70% of
the links within food webs (Dunne et al., 2013), and contribute significantly to the biomass
of many ecosystems (Kuris et al., 2008). Their presence has important – though still remark-
ably underappreciated – implications for the structure, functioning and dynamics of entire
ecosystems (Amundsen et al., 2009; Dunne et al., 2013). The influence of parasites on how
ecosystems respond to environmental change, however, particularly a warming climate
(Kutz et al., 2005; Hoberg and Brooks, 2007), remains largely unknown. Climate warming
will likely modify rates of parasite transmission (Mouritsen and Jensen, 1997), as temperature
is known to influence both parasite infectivity (Studer et al., 2010) and host immunocompe-
tence in invertebrates (Mydlarz et al., 2006). Moreover, by moderating host behaviour (Issartel
et al., 2005; Abram et al., 2017), warming influences the susceptibility of organisms to parasites
(Morley and Lewis, 2014) and overall host functioning (O’Gorman et al., 2012).

Bioturbation – the mixing of sediment by mobile organisms – is an important ecosystem
function that occurs in both terrestrial and aquatic environments. It comprises a key non-
trophic mechanism through which organisms physically, chemically, and biologically structure
ecosystems (Grant and Daborn, 1994; Jones et al., 1996; Baranov et al., 2016; Wohlgemuth
et al., 2017). In aquatic ecosystems, bioturbation influences the flow of nutrients
(Mermillod‐Blondin et al., 2004), oxygenation of sediments (Baranov et al., 2016), turbidity
of the water (Croel and Kneitel, 2011) and sediment erosion rates (Grant and Daborn,
1994). Moreover, the rate of bioturbation has been shown, in a limited number of studies,
to increase with warming (Baranov et al., 2016). There is, however, little information about
the influence of parasites on rates of bioturbation (Vannatta and Minchella, 2018) and whether
this effect is, in turn, modified by warming. Though parasitism has been shown to modify bur-
rowing behaviour in intertidal cockles (Mouritsen and Poulin, 2005), and reduce their digging
into the sediments, there have been no studies of which we are aware that found that parasites
increase bioturbation rates of their hosts.

Gammarid amphipods contribute significantly to bioturbation in aquatic ecosystems glo-
bally (Mermillod‐Blondin et al., 2004; Hunting et al., 2012; De Nadaï-Monoury et al., 2013;
Vadher et al., 2015), primarily by reworking the uppermost layer (i.e. 2–3 cm) of sediment.
In freshwaters, gammarids are also frequently infected with an acanthocephalan parasite,
Polymorphus minutus, which modifies both the movement of their hosts in the water column
and the rates at which they shred detritus (Bauer et al., 2005; Labaude et al., 2016). Two life-
stages of the acanthocephalan – the acanthella and the cystacanth – utilize the amphipod inter-
mediate host. The cystacanth is the life-stage associated most strongly with behavioural
changes (Bailly et al., 2018), as it is the stage at which the parasite is infective to its definitive
(that is, final) host, in this case water fowl.

We explored whether (1) parasitic infection and warming, individually or in combination,
modify rates of sediment surface reworking (our measure of bioturbation) by host organisms
and, if so, (2) the combined effects of parasitic infection and temperature on host bioturbation
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are additive, antagonistic, or synergistic. To address these ques-
tions, we quantified the bioturbation activity of Gammarus due-
beni experimentally in the laboratory across the broad range of
temperatures encountered in their native range. Gammarus are
used frequently as a model system to examine the impacts of para-
sites on intermediate host behaviour (Bakker et al., 1997; Agatz
and Brown, 2014; Perrot-Minnot et al., 2014; Perrot‐Minnot
et al., 2016) and G. duebeni comprise important components of
the benthos throughout their native range (Reid, 1938;
Donohue et al., 2009; MacNeil and Briffa, 2009), playing a crucial
role in ecosystem functioning by processing detritus (Kelly et al.,
2002). As the amphipods are ectothermic (Baranov et al., 2016),
we expect warming to increase rates of bioturbation by increasing
movement capacity (Dell et al., 2011). We also predict that para-
sitic infection will reduce rates of bioturbation due to reduced
interaction between the gammarids and the benthos, as gammarid
hosts infected with P. minutus display enhanced phototaxis and
are more likely to move upward in the water column (Perrot‐
Minnot et al., 2016). As temperature and parasitic infection
have been shown to additively impact similar gammarid beha-
viours (Labaude et al., 2016), we expect warming and parasites
to additively impact bioturbation.

Methods

Experimental design

We quantified the rate of sediment surface re-working by adult
Gammarus duebeni var. celticus at two levels of infection (i.e
infected or uninfected by P. minutus cystacanths) and at four tem-
peratures (4 °C, 9 °C, 14 °C, and 19 °C), encompassing the major-
ity of the temperature range experienced by G. duebeni in their
native range in Ireland, in a full-factorial experiment. Each experi-
mental treatment combination was replicated 20 times.

Amphipods, benthic lake sediments and lake water used in the
experiment were collected from Lough Lene, Co. Westmeath,
Ireland (53.6625°N, 7.2340°W) on 22 January 2018. Surficial
(i.e. less than 3 cm depth) benthic lake sediments were collected,
homogenized, passed through a 1 mm sieve to remove macro-
fauna and rocks, and allowed to settle in lake water for one day
before use.

Bioturbation was quantified based upon methods developed by
De Nadaï-Monoury et al. (2013) and Wohlgemuth et al. (2017).
Eight 10 L buckets (28.5 cm diameter, 20 cm in height) were filled
with lake sediments to a depth of 5 cm. Sterile centrifuge tubes
(8.5 cm long with an internal diameter of 2.7 cm) with their
tops and bottoms removed were placed into the buckets (25
pipes per bucket). Tracer sand (pink luminophores <125 µm;
Brianclegg Ltd., UK) was then added to a depth of 0.2 cm within
each tube. Filtered aerated lake water was then added slowly to the
bucket to a depth of 13 cm above the sediment. A single G. due-
beni adult (>0.02 g fresh weight) was added to individual tubes,
which were then covered with mesh (1 mm aperture) to retain
the organisms within the tubes whilst allowing the circulation
of aerated water. Presence of the mesh also enabled clinging
behaviour by Gammarus, thus allowing them to mimic their pro-
pensity to cling to floating debris in the water column. Each 10 L
bucket contained ten tubes containing infected G. duebeni, ten
tubes with uninfected G. duebeni, and five tubes containing no
G. duebeni. The latter acted as procedural controls. Fresh mass
of G. duebeni individuals at the commencement of the experiment
was similar across all experimental treatment combinations
(ANOVA; F7,135 = 1.7, P = 0.12). Sediment disturbance in the pro-
cedural controls was negligible (Fig. S1), and did not vary with
temperature (ANOVA, F3,36 = 0.73, P = 0.54). Two 10 L buckets
were kept at each of the four temperatures analysed. The buckets

were aerated continually and kept in a 12 h:12 h light:dark cycle.
After 28 days, G. duebeni individuals were removed and dissected
to ensure infection status. Only organisms with single, cystacanth-
stage infections were designated as infected – any hosts with
multiple-infections or acanthellae-stage infections were omitted
from analyses. Parasites were then examined microscopically to
confirm their identity morphologically (following McDonald,
1988) after cystacanths were first placed in a 0.25 mM solution
of sodium taurocholate, a type of bile salt which encourages
extension of the proboscis, and left overnight at 37 °C.

Data analyses

Photographs of the sediment surface of each experimental tube
were taken with a Canon EOS 550D (Aperature: f/4.5; Pixels:
5184 × 3456) and saved as RGB-coloured JPEGs. Images were
captured under UV light (395 nm wavelength, UV LED flashlight,
LightingEVER, Las Vegas, USA) to optimise fluorophore detec-
tion. Images were then processed using ImageJ (version 1.43u;
US National Institutes of Health, https://imagej.nih.gov/ij/).
Images were cropped, then split into red, green and blue colour
channels. The red channel was selected for analyses, as it allowed
for clearest distinction between the pink fluorophores and the
black lake sediments. Images were then thresholded in order to
colour the fluorescent particles white and the sediment particles
black. The photo was then analysed and the proportion of black
pixels, representing the lake sediments brought up from below
the fluorophores, recorded. The total area of surface sediment
reworked was then quantified in cm2.

Data were analysed in R (version 3.4.1; R Core Team, 2017).
The extent of sediment surface reworking was log10-transformed
prior to analyses to meet assumptions of normality and homosce-
dasticity. A linear mixed-effects model was constructed using
lme4::lmer (Bates et al., 2015), with the log10-transformed area
reworked as the response variable, bucket as a random effect,
and temperature and infection status as fixed effects. Model selec-
tion was done with model.sel:MuMIn (Barton, 2016). We report
the results of fixed effects on the model with the lowest AIC of
the candidate models. To determine the magnitude of the effect
of infection across the range of temperatures examined, we calcu-
lated the Cohen’s d effect size with 95% confidence intervals using
effsize:cohen.d (Torchiano, 2018).

Results

Infected individuals of G. duebeni reworked significantly more
sediment surface area than uninfected individuals (linear
mixed-effects model, F1,137 = 7.38, P < 0.01; Fig. 1A). Rates of
sediment reworking also increased significantly with warming
(F 8,137 = 5.3, P = 0.05; Fig. 1A). Combined effects of parasitic
infection and warming were, however, additive, as temperature
did not interact with parasitic infection in moderating bioturb-
ation, and the magnitude of the effect of parasitism was consistent
across the range of temperatures examined (Fig. 1B).

Discussion

We found that both parasitic infection and warming increased
bioturbation by G. duebeni in our experimental microcosms.
Moreover, infection and temperature moderated bioturbation
additively and did not interact. This comprises the first evidence
of which we are aware of parasites enhancing the bioturbation
activity of their hosts. Given the importance of gammarid amphi-
pods as key drivers of detritivory and bioturbation in freshwater
ecosystems (Hunting et al., 2012), coupled with predicted
increases in the prevalence of parasites in a warmer world
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(Galaktionov, 2017), our findings have important implications for
the structure and functioning of freshwater ecosystems under glo-
bal change.

The observed enhanced bioturbation caused by infection with
P. minutus contrasts with our a priori predictions. As infection
with P. minutus increases movement upwards in the water col-
umn (Jacquin et al., 2014; Perrot‐Minnot et al., 2016; Bailly
et al., 2018), we anticipated that infected hosts would interact
less with the benthos, leading to a decrease in the rates of surface
sediment reworking. However, parasites often do not have
fine-scale control when manipulating their hosts. The manipula-
tion of crickets by nematomorph worms provides a clear example.
The worms alter the behaviour of crickets to increase their
chances of entering the water. However, the manipulation is not
a specific push towards the water, but rather results in an increase
in erratic jumping (Thomas et al., 2002). It has been suggested
previously that the behavioural manipulation of our model para-
site, P. minutus, is non-specific and does not drive the intermedi-
ate host directly to the exact, preferred definitive host (Jacquin
et al., 2014). The mechanism of manipulation by the parasite is
possibly related to hypoxia in the water column and anaerobic
metabolism within the host (Perrot-Minnot et al., 2016). The
mechanisms underlying the manipulation are not yet fully under-
stood, though it is possible that an accumulation of lactate in the
brain of the amphipods may drive the reversal in geotaxis seen
with P. minutus infection (Perrot-Minnot et al., 2016). The
increased digging we observed in infected G. duebeni may there-
fore reflect an additional impact of lactate accumulation in the
brain and a consequential increase in movement, rather than a
mechanism for directly increasing transmission of the parasite
to its definitive host. However, further work is needed to deter-
mine whether or not enhanced bioturbation activity is adaptive
for the parasite.

A wide range of animal behaviours exhibit thermal depend-
ence, many of which can be explained by metabolic theory

(Kordas et al., 2011; Dell et al., 2014). Higher temperatures
have been linked previously to enhanced bioturbation rates in
non-amphipod aquatic species (Ouellette et al., 2004), though
the extent to which temperature enhances or supresses bioturb-
ation likely varies across species (Maire et al., 2010). Our results
are consistent with those from previous studies (Labaude et al.,
2016) that found additive, rather than interactive, effects of tem-
perature and parasitic infection on a range of behaviours in
Gammarus. As the climate continues to warm, alterations in the
prevalence of parasites and associated shifts in the behaviour
and functioning of Gammarus have the potential to moderate
the impact of many of the stressors of aquatic systems associated
with global environmental change (Baranov et al., 2016).

Our results demonstrate a significant influence of parasites on
the key ecosystem function that is bioturbation (Vannatta and
Minchella, 2018). Bioturbation has, for example, been linked to
rates of community respiration, sediment transport, nutrient
availability and overall community structure (Grant and
Daborn, 1994; Ouellette et al., 2004; Donohue and Garcia
Molinos, 2009; Croel and Kneitel, 2011; Baranov et al., 2016;
Wohlgemuth et al., 2017). Therefore, irrespective of whether or
not the altered behaviour we found is adaptive in terms of the
parasite’s fitness, our findings have important implications for
our understanding of the roles played by parasites in the structure
and functioning of aquatic systems.
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