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Abstract

We survey the use and effect of decomposition-based techniques in qualitative spatial and temporal
constraint-based reasoning, and clarify the notions of a tree decomposition, a chordal graph, and a
partitioning graph, and their implication with a particular constraint property that has been extensively
used in the literature, namely, patchwork. As a consequence, we prove that a recently proposed
decomposition-based approach that was presented in the study by Nikolaou and Koubarakis for
checking the satisfiability of qualitative spatial constraint networks lacks soundness. Therefore, the approach
becomes quite controversial as it does not seem to offer any technical advance at all, while results of an
experimental evaluation of it in a following work presented in the study by Sioutis become questionable.
Finally, we present a particular tree decomposition that is based on the biconnected components of the
constraint graph of a given large network, and show that it allows for cost-free utilization of parallelism for a
qualitative constraint language that has patchwork for satisfiable atomic networks.

1 Introduction

Qualitative spatial and temporal reasoning (QSTR) is a major field of study in artificial intelligence and,
particularly, in knowledge representation. This field studies representations of space and time that abstract
from numerical quantities. The concise expressiveness of the representational languages used in the
qualitative approach provides a promising framework that boosts research and applications in a plethora
of areas and domains, such as ambient intelligence, dynamic Geographic Information System (GIS),
cognitive robotics, and spatiotemporal design (Bhatt et al., 2011; Hazarika, 2012).

The Interval Algebra (IA) (Allen, 1981) and a fragment of the Region Connection Calculus (RCC)
(Randell et al., 1992), namely RCC-8, are the dominant artificial intelligence approaches for representing
and reasoning about qualitative temporal and topological relations, respectively. These qualitative calculi
use constraints to encode knowledge about the spatial or temporal relationships between entities in an
abstract manner. Thus, the problem of reasoning about qualitative information can be modeled as an
infinite-domain variant of a constraint satisfaction problem (CSP) (Montanari, 1974), for which we use the
term qualitative constraint network (QCN). For instance, there are infinitely many time points or temporal
intervals in the timeline and infinitely many regions in a two- or three-dimensional space. One way of
dealing with infinite domains is using constraints over a finite set of binary relations, called base relations
(or atoms), by employing a relation algebra (Ladkin & Maddux, 1994), which is the approach we
follow here.

Given a QCN over a set of variables corresponding to a set of spatial or temporal entities, we are
particularly interested in its satisfiability problem, that is, deciding whether there exists an interpretation of
all the variables of the QCN such that all of its constraints are satisfied by this interpretation; such an
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interpretation being called a solution. The satisfiability problem is closely related to the minimal labeling
problem (MLP) (Liu & Li, 2012; Amaneddine et al., 2013) and the redundancy problem (Duckham et al.,
2014; Li et al., 2015), in the sense that the latter two problems exhibit functions that build on the core
algorithms used to obtain a solution of a QCN. In particular, the MLP is the problem of determining all the
base relations for each of the constraints of a QCN that participate in at least one solution of the QCN,
whilst the redundancy problem is the problem of obtaining all the constraints of a QCN that do not contain
at least one base relation participating in a solution of the modified QCN that results by removing these
constraints (these constraints being referred to as non-redundant constraints, since their removal changes
the solution set of the QCN). As such, we will emphasize on the satisfiability problem throughout the
paper, and make the link whenever there is a work related to the MLP or the redundancy problem whose
results are affected by the notions and techniques that we will survey here. The satisfiability problem in IA
and RCC-8 is NP-complete in general (Nebel & Bürckert, 1995; Renz & Nebel, 1999). However, there
exist large maximal tractable subclasses of relations of IA and RCC-8, which can be used to make
reasoning much more efficient even in the generalNP-complete case (Nebel, 1997; Renz & Nebel, 2001).
In recent years, many works surfaced that use graph decomposition to significantly improve the efficiency
and scalability of practical reasoning (Li et al., 2009; Chmeiss & Condotta, 2011; Condotta & D’Almeida,
2011; Sioutis & Koubarakis, 2012; Amaneddine et al., 2013; Huang et al., 2013; Westphal et al., 2013;
Nikolaou &Koubarakis, 2014; Sioutis & Condotta, 2014; Westphal & Hué, 2014; Sioutis et al., 2016). All
these works make use of a particular constraint property, namely, patchwork (Lutz & Milicic, 2007;
Huang, 2012). Intuitively, patchwork ensures that the combination of two satisfiable QCNs that com-
pletely agree on the constraints between their common variables continues to be satisfiable.

The contribution of this paper is threefold:

1. We recall the notions of a tree decomposition, a chordal graph, and a partitioning graph that have been
used in the literature, and clarify the relationship between one another, and also their implication with
patchwork.

2. Consequently, we show that the approach proposed in Nikolaou and Koubarakis (2014) for efficiently
checking the satisfiability of qualitative spatial constraint networks violates patchwork in two ways,
namely, both in the complete agreement between two satisfiable QCNs and in the graph decomposition
that is obtained, and, therefore, lacks soundness.

3. Finally, we present a particular tree decomposition that is based on the biconnected components of the
constraint graph of a given large QCN, and show that it allows for sound and cost-free utilization of
parallelism for a qualitative constraint language that has patchwork for satisfiable atomic QCNs and
that it can significantly decongest search when using it for solving intractable QCNs1.

As such, our paper can be viewed as a survey on the use and effect of graph decomposition in
QSTR, as a response paper to Nikolaou and Koubarakis (2014), and partially to Sioutis (2014), and
also as a report of an original decomposition approach that paves the way for efficient utilization of
parallelism.

The paper is organized as follows. In Section 2, we recall the definition of a QCN, along with
the definition of the property of patchwork. Section 3 introduces the notions of a tree decomposition
and a chordal graph, and the way they are interrelated and used in the literature. In Section 4, we
present the definition of a partitioning graph (Nikolaou & Koubarakis, 2014), and prove that it yields
non-soundness when used solely with patchwork. In Section 5, we introduce a particular tree
decomposition that allows for cost-free utilization of parallelism for a qualitative constraint
language that has patchwork for satisfiable atomic QCNs. In Section 6, we briefly describe QCNs in
the context of CSPs, and review some related work in the constraint programming community that
could inspire future research in the QSTR community. Finally, in Section 7 we make a discussion and
conclude our work.

1 In what follows, a tractable (resp. intractable) QCN will be a QCN whose satisfiability problem is tractable
(resp. intractable).
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2 Preliminaries

A (binary) qualitative temporal or spatial constraint language is based on a finite set B of jointly exhaustive
and pairwise-disjoint relations defined on a domain D (Ladkin & Maddux, 1994), called the set of base
relations. The base relations of the set B of a particular qualitative constraint language can be used to
represent the definite knowledge between any two entities with respect to the given level of granularity.
B contains the identity relation Id, and is closed under the converse operation (−1). Indefinite knowledge
can be specified by a union of possible base relations, and is represented by the set containing them. Hence,
2B represents the total set of relations. 2B is equipped with the usual set-theoretic operations (union and
intersection), the converse operation, and the weak composition operation denoted by ◊ (Renz & Ligozat,
2005). The converse of a relation is the union of the converses of its base relations, in particular, for every
r ∈ 2B, we have that r−1 = {b−1 | b ∈ r}. The weak composition (◊) of two base relations b, b′ ∈ B
is defined as the strongest relation r ∈ 2B that contains b ○ b′, or, formally, b ◊ b′ = {b′′ ∈ B | b′′ ∩
(b ○ b′) ≠ ∅}, where b ○ b′ = {(x, y) ∈ D×D | ∃ z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′} is the
relational composition of b and b′. For every r, r′ ∈ 2B, we have that r ◊ r′ = {b ◊ b′ | b ∈ r, b′ ∈ r′}.

The set of base relations of RCC-8 (Randell et al., 1992) is the set {dc, ec, po, tpp, ntpp, tppi, ntppi, eq}.
These eight relations represent the binary topological relations between regions that are non-empty regular
closed subsets of some topological space, that is, for any spatial region X we have that X = c(i(X)), where
i(·) specifies the topological interior of a spatial region and c(·) the topological closure (Renz, 2002a). The
eight base relations of RCC-8 are depicted in Figure 1 (for the two-dimensional case). The set of base
relations of IA (Allen 1981) is the set {eq, p, pi, m, mi, o, oi, s, si, d, di, f, fi}. These 13 relations represent
the possible relations between time intervals, as depicted in Figure 2.

The weak composition operation ◊ along with the converse operation −1, and the total set of relations
2B along with the identity relation Id of a qualitative constraint language, form an algebraic structure
(2B, Id, ◊, −1) that can correspond to a relation algebra in the sense of Tarski (1941). This topic has been
extensively discussed in Dylla et al. (2013). In fact, Dylla et al. (2013) summarizes findings on the
relationship between relation algebras and some well-known qualitative constraint languages into the
following result:

PROPERTY 1 (Dylla et al., 2013) Each of the qualitative constraint languages of Point Algebra (Vilain
et al., 1990), Cardinal Direction Calculus (Frank, 1991; Ligozat, 1998), IA (Allen, 1981),
Block Algebra (Balbiani et al., 2002), and RCC-8 (Randell et al., 1992) is a relation algebra
with the algebraic structure (2B, Id, ◊, −1).

Networks of IA and RCC-8 can be modeled as particular instances of QCNs, with relation eq being the
identity relation Id in both cases. A QCN is formally defined as follows:

DEFINITION 1 A QCN is a tuple (V, C) where:

∙ V = {v1,… , vn} is a non-empty finite set of variables corresponding to a set of spatial or temporal
entities.

∙ C is a mapping that associates a relation r ∈ 2B with each pair (v, v′) of V ×V, that relation being
denoted by C(v, v′). Further, mapping C is such that C(v, v) = {Id} and C(v, v′) = (C(v′, v))−1 for every
v, v′ ∈ V.

Note that we always regard a QCN as a complete network. In what follows, given a QCN N=ðV ; CÞ
and v, v′ ∈ V, the relation C(v, v′) will sometimes be denoted by Cvv′ for simplicity. The constraint
graph of a QCN N=ðV ; CÞ is the graph (V, E), denoted by GðN Þ, for which we have that (v, v′) ∈ E iff
C(v, v′) ≠ B and v ≠ v′. (B corresponds to the universal relation, that is, the non-restrictive2 relation that
contains all base relations, thus, it does not really pose a constraint.) Given a QCNN=ðV ;CÞ; N is said to
be trivially inconsistent iff ∃ v, v′ ∈ V with C(v, v′) = ∅. Further, N #v0, with V′ ⊆ V, is the QCN N
restricted to V′. A solution of N is a mapping σ defined from V to the domain D, yielding a valid

2 The result of the weak composition between any relation and the universal relation is the universal relation.
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configuration, such that ∀ v, v′ ∈ V we have that (σ(v), σ(v′)) can be described by C(v, v′), that is, there
exists a base relation b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b, viz. (σ(v), σ(v′)) satisfies base relation b.

DEFINITION 2 A QCN N is satisfiable iff it admits a solution. The satisfiability problem is the problem of
determining if N is satisfiable.

A sub-QCN3 N 0 of N=ðV ; CÞ, denoted by N 0 � N , is a QCN (V, C′) such that C′(v, v′) ⊆ C(v, v′)
∀ v, v′ ∈ V. If b is a base relation, {b} is a singleton relation. An atomic QCN is a QCN where
each constraint is a singleton relation. A scenario S of N is a satisfiable atomic sub-QCN of N . Given a
QCN N=ðV ; CÞ, a base relation b ∈ C(v, v′), with v, v′ ∈ V, is feasible (resp. infeasible) iff there exists
(resp. there does not exist) a scenario S=ðV ; C0Þ of N such that C′(v, v′) = {b}.

DEFINITION 3 AQCNN=ðV ; CÞ isminimal iff ∀ v, v′ ∈ V and ∀ b ∈ C(v, v′), b is a feasible base relation
of N . The MLP is the problem of determining all the feasible base relations for each of the
constraints of N .

Given a QCN N=ðV ; CÞ, we say that a relation C(v, v′), with v, v′ ∈ V, is non-redundant in N , if
there exists a base relation b ∉ C(v, v′) and a solution σ of the QCN N 0=ðV ; C0Þ defined by C′(v, v′) =
B \ C(v, v′), C′(v′, v) = B \ (C(v, v′))−1, and C′(u, w) = C(u, w) ∀ (u, w) ∈ (V ×V) \ {(v, v′), (v′, v)} such
that (σ(v), σ(v′)) ∈ b. The relation is called non-redundant, because if we were to remove it and effectively
replace it with relation B, the solution set ofN would be changed. Note that by definition every universal
relation B in a QCN is redundant.

DEFINITION 4 A QCN N=ðV ; CÞ is reducible iff it contains a redundant relation other than relation B,
and irreducible otherwise. The redundancy problem is the problem of obtaining all the
non-redundant relations in N and, hence, determining if N is reducible.

Checking the satisfiability of a QCN is NP-complete in the general case for the most well known and
interesting calculi, such as RCC-8 (Renz & Nebel, 1999) and IA (Nebel & Bürckert, 1995). As a direct
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Figure 2 The base relations of the Interval Algebra constraint language

Figure 1 The base relations of the Region Connection Calculus (RCC)-8 constraint language

3 This term is also found by the name ‘refined QCN’ throughout the literature.
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consequence, checking if a base relation of a QCN is feasible, or if a constraint of a QCN is non-redundant,
is also NP-complete in the general case. However, there exist maximal tractable subclasses A � 2B

of the considered calculi, for which the satisfiability problem becomes tractable through the use of a
path-consistency4 algorithm.

With respect to subclasses of relations we have the following definition:

DEFINITION 5 A subclass of relations is a subset A � 2B that contains the singleton relations of 2B

and is closed under converse, intersection, and weak composition. A subclass A � 2B

is tractable iff a QCN defined overA is tractable (i.e. its satisfiability problem is tractable).
A tractable subclass A � 2B is maximal iff there exists no tractable subclass A0 � 2B

with A � A0.

Further, the notion of path consistency for QCNs is defined as follows:

DEFINITION 6 A QCN N=ðV ; CÞ is path consistent iff ∀ v, v′, v′′ ∈ V we have that C(v, v′) ⊆ C(v, v′′) ◊
C(v′′, v′).

Given a QCN N=ðV ; CÞ, path consistency can be applied on N in O(|V|3) time (Vilain et al., 1990).
For the calculi in this paper, we have that not trivially inconsistent and path-consistent QCNs defined over
a maximal tractable subclassA � 2B are satisfiable (Nebel & Bürckert, 1995; Renz & Nebel, 1999)5. The
maximal tractable subclasses of relations of RCC-8 and IA are the classes Ĥ8; C8; andQ8 (Renz & Nebel,
2001) and HIA (Nebel, 1997), respectively. Classes Ĥ8 and HIA contain exactly those relations that are
transformed to propositional Horn formulas when using the propositional encodings of RCC-8 and IA,
respectively. Further, and for RCC-8 in particular, if we denote by P8 the set of relations that belong to
either one of the classes Ĥ8; C8; and Q8, then all relations of P8 not contained in C8 contain EC and all
relations of P8 not contained in Q8 contain EQ (Renz, 1999). The propositional encoding of either C8 or
Q8 is neither a Horn formula nor a Krom formula, but classes C8 andQ8 themselves are directly related to
class Ĥ8 in the sense that any QCN defined over either C8 or Q8 can be polynomially refined to a QCN
defined over Ĥ8 (Renz, 1999).

Given two QCNs N= V ; Cð Þ and N 0= V 0; C0ð Þ, we have that N ∪N 0 yields the QCN N 00= V 00; C00ð Þ,
where V′′ = V ∪ V′, C′′(u, v) = C′′(v, u) = B for all (u, v) ∈ (V \ V′) × (V′ \ V), C′′(u, v) = C(u, v) ∩
C′(u, v) for every u, v ∈ V ∩ V′, C′′(u, v) = C(u, v) for all (u, v) ∈ (V ×V) \ (V′×V′), and C′′(u, v) =
C′(u, v) for all (u, v) ∈ (V′×V′) \ (V ×V).

We now recall the definition of the patchwork property that was originally introduced in Lutz and
Milicic (2007) and was shown to be satisfied by IA and RCC-8 for satisfiable atomic QCNs of their
relations.

DEFINITION 7 A constraint language has patchwork, iff for any finite satisfiable constraint networks
N=ðV ; CÞ and N 0=ðV 0; C0Þ defined on this language where ∀ u, v ∈ V∩V′ we have that
C(u, v) = C′(u, v), the constraint network N ∪N 0 is satisfiable.

Huang showed that IA and RCC-8 have patchwork for certain satisfiable non-atomic QCNs of their
relations as well (Huang, 2012). In particular, we have the following proposition:

PROPOSITION 1 (Huang, 2012) The qualitative constraint languages of IA and RCC-8 have patchwork for
not trivially inconsistent and path-consistent QCNs defined over one of the maximal
tractable subclasses HIA and Ĥ8; C8; or Q8, respectively.

Other qualitative constraint languages known to have patchwork for some subclass of their relations are
listed in Huang (2012). Notably, those languages include the languages listed in Property 1.

4 The literature suggests the term algebraic closure (Renz & Ligozat, 2005) instead, which is equivalent to a
path-consistency algorithm where the weak composition operator ◊ is used instead of the relational composition
operator ○ (Renz & Ligozat, 2005), so we will use this more traditional term throughout the paper.
5 Some of the cited works are based on encodings of QCNs into Boolean formulas. However, the Boolean formulas
are constructed in such a way that each solution of a formula corresponds to a not trivially inconsistent and path-
consistent QCN defined over some maximal tractable subclass of relations, and vice versa.
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Intuitively, patchwork ensures that the combination of two satisfiable constraint networks that agree on
their common part, that is, on the constraints between their common variables, continues to be satisfiable.
As an example, we can view the two QCNs of RCC-8 in Figure 3. (Self-loops corresponding to singleton
relation {EQ} and converses of constraints are not shown for simplicity.) The QCNs of RCC-8 are atomic,
as they comprise singleton relations, and are also path consistent, therefore, by Proposition 1 and appli-
cation of the patchwork property, their union is satisfiable, since they agree on the constraints between
their common variables, namely, on C02 = {DC}. (The universal relation that exists by definition between
variables 1 and 3 in the unified QCNwould result to relationC13 = {EC} if we were to calculate it, but it is
not necessary to do so unless required by the specifics of the use case at hand.)

Patchwork is closely related to the global consistency property (Renz & Ligozat, 2005), which is
defined as follows in Dechter (2003):

DEFINITION 8 AQCNN=ðV ; CÞ is globally consistent if and only if, for any V′ ⊂ V, every partial solution
on V′ can be extended to a partial solution on V′ ∪ {v} ⊆ V, for any v ∈ V \ V′.

In particular, global consistency implies patchwork, but the opposite is not true. For example, even
though RCC-8 has patchwork (Huang, 2012), it does not have global consistency (Renz & Ligozat, 2005).
For instance, let us consider the spatial configuration shown in Figure 4(a). Region y is a doughnut, and
region x is externally connected to it, by occupying its hole. Further, region z is externally connected to
region y. With respect to RCC-8, we know that the constraint network defined by the set of constraints
{EC(x, y), EC(y, z), EC(x, z)} is satisfiable, as it is path consistent and atomic. However, the valuation of
region variables x and y is such that it is impossible to extend it with a valuation of region variable z so that
EC(x, z) may hold. Patchwork allows us to disregard any partial valuations and focus on the satisfiability of
the network. Then, we can consider a valuation that satisfies the constraint network. Such a valuation is, for
example, the one presented in Figure 4(b) along with its corresponding scenario.

3 Tree decomposition and chordal graph

The utility of taking advantage of the structure of QCNs has already been addressed in the context of
heuristics for the path-consistency algorithms in Beek and Manchak (1996) and Renz (2002b). In parti-
cular, the heuristics proposed in Renz (2002b) target the denser parts of the underlying constraint graph of
a given QCN, that is, the qualitative relations that consist of few base relations, as an effort to propagate
constraints more efficiently and also possibly resolve any local inconsistencies faster. Pruning infeasible
base relations off a qualitative relation that already comprises very few base relations can almost imme-
diately unveil an inconsistency. However, these heuristics always consider a complete underlying con-
straint graph of a given network. As such, they fail to completely isolate parts of the underlying constraint
graph of a given QCN that are irrelevant to the process of satisfiability checking; such parts being universal
relations that do not belong to the clusters of a tree decomposition corresponding to the constraint graph of
the QCN at hand.

Figure 3 Patching two qualitative constraint networks of Region Connection Calculus (RCC)-8 that agree on
their common part
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In this section, we recall the notions of a tree decomposition and a chordal graph, and review their use
and effect in QSTR in combination with patchwork6. We will show that it is possible to omit satisfiability
checks across clusters of a tree decomposition corresponding to the constraint graph of a QCN.

In what follows, we consult the book of Diestel on Graph Theory for related definitions and properties
(Diestel, 2012). A tree decomposition is formally defined as follows:

DEFINITION 9 A tree decomposition of a graph G = (V, E) is a tuple (T, X) where T = (I, F) is a tree and
X = {Xi ⊆ V | i ∈ I} a collection of clusters (subsets of V) that satisfy the following
properties:

∙ For every v ∈ V there is at least one node i ∈ I such that v ∈ Xi.
∙ For every (u, v) ∈ E there exists a node i ∈ I such that both u, v ∈ Xi.
∙ Let i1, i2, i3 be three nodes in I such that i2 lies on the path between i1 and i3 in T. Then, if v ∈ V belongs
to both Xi1 and Xi3 , v must also belong to Xi2 .

Let us view the example presented in Figure 5. In the upper part of the figure we can view a graph
G = (V, E), which can correspond to the structure of a constraint graph of a QCN. For the moment, we
consider only the solid edges to be part of G and we disregard the dashed edges (3, 4) and (4, 5). A tree
decomposition ofG comprises a tree T = (I, F) and a cluster Xi for every node i ∈ I of that tree as shown in
the lower part of the figure, for example, Xa = {0, 1, 2}.

Tree decompositions have been explicitly introduced in qualitative reasoning by Condotta and
D’Almeida (2011), and implicitly by Li et al. (2009) and Huang et al. (2013). (The work presented in
Huang et al. (2013) properly contains the work presented in Li et al. (2009), thus, we will stick to the
former reference in what follows.)

In Condotta and D’Almeida (2011), the authors apply path consistency on the clusters of a tree decom-
position of the constraint graph of a QCN. The graphs induced by the clusters of the tree decomposition are
completed with the introduction of a new set of edges, called fill edges, that correspond to the universal
relation for a QCN. These fill edges for the example graph of Figure 5 are edges (3, 4) and (4, 5). As such, the
clusters of the tree decomposition are considered to be cliques, namely, sets of vertices such that every two
vertices in a set are connected by an edge. This is done for two reasons: (i) by definition path consistency
considers all triples of variables of a given constraint network and, hence, involves a complete graph, and
(ii) the common vertices between any two complete graphs induce a complete graph, thus, the corresponding
constraint networks will completely agree on the constraints between their common variables and the
patchwork property can be used. The patchwork property is then considered to patch together the not trivially
inconsistent and path-consistent pre-convex QCNs of IA (Ligozat, 2011) that correspond to the graphs
induced by the clusters of the tree decomposition in a tree-like manner and construct a satisfiable network.

In Huang et al. (2013), the authors enlist a structure known as a dtree (decomposition tree), which, as the
name suggests, is very close to a tree decomposition. Without going further into detail, a dtree is a full binary
treewhere the root represents a given graph and for each non-leaf node its two children represent a partitioning
of the parent graph into two subgraphs. Thus, although a dtree is not a tree decomposition, it provides a way to
construct a tree decomposition out of a given graph. A dtree and a tree decomposition are therefore equivalent

(a) (b)

Figure 4 Region Connection Calculus (RCC)-8 configurations. (a) a configuration where EC(x,z) does not hold;
(b) a configuration where EC(x,z) holds, along with its corresponding scenario

6 Some of the cited works use a property called amalgamation, which is equivalent to patchwork for satisfiable
atomic networks when the satisfiability of atomic networks can be decided by path consistency.
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in the context of qualitative reasoning, since omitting path consistency checks across children of dtree nodes
(as described in Huang et al. (2013)) corresponds to omitting those checks across clusters of the tree
decomposition into which the dtree is converted, as has been specifically pointed out in Condotta and
D’Almeida (2011). Similar to what is done in Condotta and D’Almeida (2011), children of dtree nodes are
treated as cliques, and the patchwork property is considered to patch together the path-consistent atomic
QCNs of either IA or RCC-8 in a tree-like recursive manner and construct a satisfiable network.

The observant reader will note that it would be convenient to operate directly on a tree decomposition
(T, X) of a given graph Gwhere X would be a collection of cliques. In this context, chordal graphs become
relevant. Formally, a chordal graph is defined as follows:

DEFINITION 10 A graph G is said to be chordal (or triangulated) iff every cycle of length > 3 has a chord,
viz., an edge of G which is not in the edge set of the cycle and whose endpoints lie in the
vertex set of the cycle.

We then have the following proposition:

PROPOSITION 2 (Diestel, 2012) A graph G is chordal if and only if it has a tree decomposition
(T, {X1,… , Xn}) where cluster Xi is a clique of G for every i ∈ {1,… , n}.

For example, the graph presented in Figure 5, with the dashed edges included, is chordal. Chordality
checking can be done in (linear) O(|V|+ |E|) time for a given graph G = (V, E) with the maximum
cardinality search algorithm, which also constructs an elimination ordering ω as a by-product (Tarjan &
Yannakakis, 1984). If a graph is not chordal, it can be made so through the addition of fill edges. This
process is usually called triangulation of a given graph G = (V, E) and can run as fast as in O(|V|+ (|E ∪
F(ω)|)) time, where F(ω) is the set of fill edges that results by following the elimination ordering ω,
eliminating the nodes one by one, and connecting all nodes in the neighborhood of each eliminated node,
thus, making it simplicial in the resulting subgraph. If the graph is already chordal, following the elim-
ination ordering ω produced by the maximum cardinality search algorithm guarantees that no fill edges are
added, that is, ω is actually a perfect elimination ordering (Diestel, 2012). For example, a perfect elim-
ination ordering for the chordal graph shown in Figure 5 would be the ordering 0 → 1 → 2 → 3 → 4 →
7 → 5 → 6 → 9 → 8 → 10 of its set of nodes. In general, it is desirable to achieve chordality with as few
fill edges as possible. However, triangulating a graph with the minimum number of fill edges is known to

Figure 5 A graph (upper part) and its tree decomposition (lower part)
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beNP-complete (Yannakakis, 1981). As noted earlier, fill edges correspond to the universal relation for a
QCN. As such, the chordal constraint graph of a given QCN is exactly its constraint graph augmented
with constraints corresponding to the universal relation to make it chordal.

In light of Propositions 1 and 2, research efforts focused on making the constraint graph of a given QCN
chordal and restricting path consistency to that chordal graph, while fully utilizingmaximal tractable subclasses
of relations and not just base relations that are typically used to describe only atomic networks. Toward this
direction, we have the works of Chmeiss and Condotta (2011) for IA and Sioutis and Koubarakis (2012) for
RCC-8. These works were later combined in Amaneddine et al. (2013) to give the following result, which is the
strongest yet concerning path consistency, patchwork, and subclasses of relations:

PROPOSITION 3 (Amaneddine et al., 2013) For a given QCN N=ðV ; CÞ defined over a subclass of
relations of a QCN that has patchwork for not trivially inconsistent and path-consistent
QCNs defined over that subclass of relations, and for G = (V, E) a triangulation of its
constraint graph, if ∀ (i, j), (i, k), (j, k) ∈ E we have that Ø ≠ Cij ⊆ Cik ◊ Ckj, thenN is
satisfiable.

Consequently, by Propositions 1 and 3 we have the following result:

COROLLARY 1 For a given QCN N=ðV ; CÞ of RCC-8 or IA, defined over one of the maximal tractable
subclasses Ĥ8; C8; and Q8, or HIA, respectively, and for G = (V, E) a triangulation of its
constraint graph, if ∀ (i, j), (i, k), (j, k) ∈ E we have that Ø ≠ Cij ⊆ Cik ◊ Ckj, thenN is
satisfiable.

Proposition 3 generalizes the results of all the works that were discussed earlier in this section and make
use of path consistency as the main tool for checking the satisfiability of a given QCN, and has a great
effect in the efficiency and scalability of practical reasoning. In particular, regarding native search, an
algorithm based on the work of Bliek and Sam-Haroud (1999) was devised, called partial path consistency
(Chmeiss & Condotta, 2011), that enforces partial path consistency on a given QCN N=ðV ; CÞ with
respect to a triangulation G = (V, E) of its constraint graph in O(δ|E|) time, where δ is the maximum vertex
degree of G.

DEFINITION 11 Given a QCN N=ðV ; CÞ and a graph G = (V, E), N is partially path consistent (w.r.t.
graph G) iff for ∀ (v, v′), (v, v′′), (v′′, v′) ∈ E we have that C(v, v′) ⊆ C(v, v′′) ◊ C(v′′, v′).
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The partial path-consistency algorithm of Chmeiss and Condotta is presented in Algorithm 1. As it is
suggested in Proposition 3, the partial path-consistency algorithm is able to decide the satisfiability of a
QCN defined over some subclass of relations, when path consistency can yield patchwork with respect to
that subclass of relations, and when a triangulation of its constraint graph is used as the input graph in the
algorithm.

The search space for intractable Gs was also reduced to O(α|E| from Oðα Vj j2Þ for a backtracking
algorithm (Renz & Nebel, 2001), where α is the branching factor provided by some subclass of relations
(e.g. α = 1.4375 for class Ĥ8 of RCC-8 (Renz & Nebel, 2001)). Such a backtracking algorithm
is presented in Algorithm 2. Note that if a QCN N along with a triangulation G of its constraint graph
and a subclass A are given as input to the backtracking algorithm, then the algorithm is able to decide
the satisfiability of the given network N provided that path consistency can yield patchwork with
respect to A.

Regarding approaches based on encodings of QCNs into Boolean formulas, that is, Boolean
Satisfiability Problem (SAT)-based approaches, the implication of Proposition 3 led to significant memory
and speed improvements both for IA- (Westphal et al., 2013) and for RCC-8 (Westphal & Hué, 2014)
targeted implementations. Further, regarding works that consider the MLP and the redundancy problem of
a QCN, partial path consistency has been used as the core local consistency condition to build algorithms
both for the MLP as described in Amaneddine et al. (2013) and for the redundancy problem as described in
Sioutis et al. (2015b).

Before closing this section with some strong theoretical results that concern tree decompositions and
patchwork, let us introduce the treewidth of a graph. The width of a tree decomposition (T, {X1,… , Xn}
is max

1⩽ i⩽ n
jXi j �1. The treewidth of a graph G is the minimum width possible among all tree decompositions

of G. We also recall the following result regarding the treewidth of a graph G that is augmented with a
new edge:

THEOREM 1 (Elidan & Gould, 2008) Let G = (V, E) be a graph of treewidth k. Then, the treewidth of
graph G′ = (V, E ∪ {e}), where e is a new edge, is at most k+ 1.

In the context of QCNs, the treewidth of a QCNN is simply the treewidth of its constraint graph GðN Þ.
THEOREM 2 (Bodirsky & Wölfl, 2011; Huang et al., 2013) For any k, the satisfiability problem

for QCNs of treewidth at most k that are defined on a language that has patchwork for
path-consistent atomic QCNs can be solved in polynomial time.

Consequently, by Proposition 1 and Theorem 2 we have the following result:

COROLLARY 2 For any k, the satisfiability problem for QCNs of IA and RCC-8 of treewidth at most k can
be solved in polynomial time.
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A detailed algorithm for Theorem 2 that offers an alternative to the proof sketch of Bodirsky and
Wölfl (2011) is provided in Huang et al. (2013). (The proof sketch in Bodirsky & Wölfl (2011) is
particular to RCC-8, but it can be generalized to IA and other languages satisfying certain common
properties, such as patchwork.)

Further, regarding the MLP we can have the following result:

THEOREM 3 For any k, the MLP for QNC of treewidth at most k that is defined on a language
that has patchwork for path-consistent atomic QCNs can be solved in polynomial
time.

Proof. LetN=ðV ; CÞ be a QCN of treewidth at most k that is defined on a language that has patchwork
for path-consistent atomic QCNs. To check if a base relation b ∈ C(u, v), with ðu; vÞ 2 GðN Þ, participates
in at least one solution of N , we must check if the QCN N 0=ðV ; C0Þ defined by C′(u, v) = {b},
C′(v, u) = {b}−1, and C′(y, w) = C(y,w) ∀ (y, w) ∈ (V ×V) \ {(u, v), (v, u)} is satisfiable, so that a scenario
S = (V, C′′) with C′′(u, v) = {b} can be constructed out of the admitted solution. This satisfiability check
can be done in polynomial time by Theorem 2. Note that if ðu; vÞ =2GðN Þ, we must augment the constraint
graph GðN Þ with (u, v) to take into account the constraint C(u, v). As such, the satisfiability check will be
performed on a QCN of treewidth at most k+ 1 due to Theorem 1. (After the check, (u, v) can again be
removed from GðN Þ.) As we can have at most O(|B||V|2) base relations in any given QCN, it follows that
we can solve the MLP in polynomial time. □

Consequently, by Proposition 1 and Theorem 3 we have the following result:

COROLLARY 3 For any k, the MLP for QCNs of IA and RCC-8 of treewidth at most k can be solved in
polynomial time.

Regarding the redundancy problem, we can have the following result:

THEOREM 4 For any k, the redundancy problem for QCNs of treewidth at most k that are defined on a
language that has patchwork for path-consistent atomic QCNs can be solved in polynomial
time.

Proof. LetN=ðV ; CÞ be a QCN of treewidth at most k that is defined on a language that has patchwork
for path-consistent atomic QCNs. To check if a constraint C(u, v), with ðu; vÞ 2 GðN Þ, is non-redundant
inN , we must check if there exists a base relation b∉ C(u, v) that participates in a solution of the modified
N that results by removing C(u, v). This is equivalent to checking if the QCN N 0=ðV ; C0Þ defined by
C′(u, v) = B \ C(u, v), C′(v, u) = B \ (C(u, v))−1, and C′(y, w) = C(y, w) ∀ (y, w) ∈ (V ×V) \ {(u, v), (v, u)}
is satisfiable. This satisfiability check can be done in polynomial time by Theorem 2. (Note that if
ðu; vÞ =2GðN Þ, C(u, v) is by definition redundant.) Since we can have at most O(|V|2) constraints in any
given QCN, it follows that we can solve the redundancy problem in polynomial time. □

Consequently, by Proposition 1 and Theorem 4 we have the following result:

COROLLARY 4 For any k, the redundancy problem for QCNs of IA and RCC-8 of treewidth at most k can
be solved in polynomial time.

4 Partitioning graph

In this section, we prove that the decomposition-based approach presented in Nikolaou and Koubarakis
(2014) for checking the satisfiability of QCNs of RCC-8 lacks soundness, as the notion of a partitioning
graph defined in that work is not coherent with the use of patchwork upon which it solely relies, in two
ways, which we enumerate and analyze in the form of issues.

Let G = (V, E) be a graph and k a positive integer. If U ⊆ V, then G(U) will denote the subgraph

of G that is induced by the set of vertices U. A set {Vi ⊆ V | 1⩽ i⩽ k} with k pairwise-disjoint

elements such that ∪
k

i=1
Vi=V , is called a k-way partitioning of G. Finally, let Ø denote the empty,

edgeless, graph. We recall the following definition of a partitioning graph from Nikolaou and
Koubarakis (2014):
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DEFINITION 12 Let G = (V, E) be a graph and {V1,… , Vk} a k-way partitioning of G for some positive
integer k. A partitioning graph P of G is a graph (VP, EP, λP, GP), where VP = {v1,… , vk}
is the set of its nodes, Ep the set of its edges, λP : VP → 2V a function that maps each node of
P to a subset of the set of vertices V of G, and GP a set of k subgraphs (parts) of G.
The following conditions must be satisfied:

∙ If Gi ∈ GP then the set of vertices of Gi is a superset U of λP(vi) and the set of its edges is E(G(U)).
∙ Any edge in G should be present in at least one subgraph Gi ∈ GP.
∙ An edge (vi, vj) belongs to EP if and only if Gi ∩ Gj ≠ ∅ (i.e. if and only if the subgraphs Gi and Gj

corresponding to nodes vi and vj, respectively, share a common edge).

LetG be a graph and P = (VP, EP, λP,GP) one of its partitioning graphs. Then, an edge e ofG present in
more than one subgraph Gi ∈ GP is called a global edge. An edge e of G present in exactly one subgraph
Gi ∈ GP is called a local edge.

We will now enumerate the issues that lead to non-soundness and provide counter-examples for each
case. The reader is kindly asked to refer to Nikolaou and Koubarakis (2014) and check that the flaws
pointed out here are actually present in Nikolaou and Koubarakis (2014).

The issues that we will enumerate will allow us to infer the following fact:

PROPOSITION 4 The approach presented in Nikolaou and Koubarakis (2014) for checking the satisfiability
of a QCN of RCC-8 lacks soundness. In particular, Propositions 2 and 3 in Nikolaou and
Koubarakis (2014) do not hold.

We begin with the first issue.
Issue 1. The first issue has to do with the fact that a complete agreement on the constraints between the

common variables of two networks is not achieved in order to allow the applicability of patchwork. Let us
consider the example of Figure 6. Graph G is partitioned into two parts, namely, G1 and G2. The parti-
tioning graph is shown in the lower part of the figure, and it comprises the set of nodes {a, b} and an empty
set of edges. Node a corresponds to subgraphG1 and node b to subgraphG2. Its set of edges EP is empty as
subgraphs G1 and G2 do not share a common edge (that would otherwise be the global edge (0, 2)), thus,
the only possible edge (a, b) does not exist. In Nikolaou and Koubarakis (2014), the authors perform path
consistency on the subgraphs of a graph separately, in a parallel fashion, and then rely on the set of edges
EP to identify the subgraphs among which a complete agreement has to be ensured (the reader is kindly
asked to refer to line 7 in the function of Algorithm 2 in Nikolaou & Koubarakis (2014)). If, as in this
example, such an edge does not exist, a complete agreement is never achieved. This can be the cause of
failing to identify inconsistencies. Let us assume that graph G, as depicted in Figure 8, is the constraint
graph of a given QCN comprising constraints C01 = C12 = C23 = C30 = {TPP}. This yields an

Figure 6 A graph and its partitioning graph with the parts comprising it (also contained in dashed circles in the
initial graph)
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unsatisfiable network, as it basically infers that region 0 is properly contained in region 2, and vice versa.
Applying path consistency on that network would result in the empty relation assignment for
constraint C02 (inconsistency). However, that constraint is never checked in our example. Although
the authors implicitly complete subgraphs G1 and G2 in order to apply path consistency, they do not
complete these subgraphs when computing their intersection, as clearly specified in the last bullet of
Definition 12. Even if they did implicitly consider complete subgraphs for that part of the definition,
and the edge (a, b) indeed existed, line 7 in the function of Algorithm 2 in Nikolaou and Koubarakis (2014)
still requires that an agreement should only be achieved for every common edge of G1 and G2

(the initial non-complete subgraphs), which is none. If they implicitly considered complete subgraphs
for that part of the algorithm too, then this particular issue for a two-way partitioning would be
resolved. We have also verified this issue experimentally with the implementation used in Nikolaou and
Koubarakis (2014)7.

Before proceeding to the next issue, let us assume that the first issue is fixed with everything
that we propose, and a two-way partitioning is actually valid for applying patchwork. We mean to
show that the concept of a partitioning graph is beyond repair, unless it is structured in a way that it
defines a tree decomposition, which defeats the purpose of having to define a partitioning graph in the
first place.

The second issue follows.
Issue 2. This issue has to do with the fact that even if the first issue is resolved, the partitioning graph

can suffer from the existence of cycles that are created by subgraphs of a given graph. Let us consider
the example of Figure 7. Graph G is partitioned into four parts, namely, G1, G2, G3, and G4. The
partitioning graph is shown in the lower part of the figure, and the correspondence between its sets of
nodes and edges with the different subgraphs should be clear up to this point. Note that all subgraphs
are complete, thus, they completely overlap with each other on the common vertices. For example,
graph G1 completely overlaps with graph G2 on the edges of the graph defined on the single common
vertex 0, as their intersection yields the complete graph on single vertex 0. Although such an overlap
is trivial, as a complete graph on a single vertex (singleton graph) does not have any edges, it is sufficient
to ensure the applicability of patchwork for the corresponding constraint networks. (Our example

Figure 7 A graph and its partitioning graph with the parts comprising it (also contained in dashed circles in the
initial graph)

7 https://www.dropbox.com/sh/h61edhshw5p8ne2/AAAuO0WyYB5r8cLmoRBLV8xla?dl=0
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can be easily extended to non-trivial overlaps.) However, due to the last bullet of Definition 12,
the partitioning graph is unable to obtain any edges, as there can exist no global edges. In fact, even if
some edges existed in EP, in any possible combination and amount, the partitioning graph would still fail
to detect the cycle that is constructed by the complete subgraphs G1, G2, G3, and G4, namely, the
cycle defined by vertices 0, 1, 2, and 3. This cycle, as shown in the example of Figure 6, can harbor an
inconsistency. Such a cycle exists also in Nikolaou and Koubarakis (2014, figure 1) between vertices
3, 4, 5, and 7 there. Patchwork alone is only valid for tree decompositions, as tree decompositions
guarantee acyclicity of cliques and, thus, do not harbor cycles with potential inconsistencies that cannot
be detected by the application of path consistency on the different cliques. This issue was again
verified experimentally.

Essentially, the approach defines a partial algorithm; a given satisfiable QCN will be shown to be
satisfiable, as the approach in Nikolaou and Koubarakis (2014) because disregarding constraints operates
on a less restrictive constraint graph of the input network where constraint propagation and consistency
checks are limited, whilst an unsatisfiable QCN may be shown to be satisfiable.

4.1 Impact on performance

The main contribution of Nikolaou and Koubarakis (2014) lies in the performance of its offered imple-
mentation, as it promises efficiency that goes well beyond the state-of-the-art. Computing a good k-way
partitioning8 alone is among the graph partitioning problems that fall under the category of NP�hard
problems (Garey et al., 1976), and solutions to these problems are generally derived using heuristics and
approximation algorithms, such as the ones offered by the METIS9 software employed in Nikolaou and
Koubarakis (2014). We leave aside any extra computational complexity that would result from needing to
restrict a partitioning graph to being a tree decomposition (e.g. by identifying cycles or using some
recursion as in Huang et al. (2013)) and focus on native search. As explained in Section 3, native search in
QSTR is bound to the number of constraints of a given QCN, and not to its number of variables as in
‘traditional’ constraint programming. This is because, in a sense, the constraints of a given QCN are the
true variables for which we have to assign some relation. Indeed, the search space defined in Nikolaou and
Koubarakis (2014) relies mainly on the number of constraints of a given QCN. In particular, we can recall
the following proposition from Nikolaou and Koubarakis (2014):

PROPOSITION 5 (Nikolaou & Koubarakis, 2014) Let G = (V, E) be the constraint graph of a QCN of
RCC-8 and P a partitioning graph of G with k parts. The search space of algorithm
DConsistency (Nikolaou & Koubarakis, 2014) is O(|B|g(|B|gkm3+ kαlm3)), where g is the
number of global edges, l and m the maximum number of local edges and vertices,
respectively, among all parts of P, and α the branching factor of the subclass of relations
employed. IfΠ denotes the aforementioned search space, then given p processing units and
assuming a balanced partitioning among the k parts (i.e. m = |V|/k), the elapsed running
time of algorithm DConsistency is O Π

p

� �
.

We showed earlier that some global edges can be disregarded, thus, parameter g as defined in
Proposition 5 leads to a significantly reduced search space for the implementation of Nikolaou and
Koubarakis (2014) with respect to the one that should normally be considered, as g has an exponential
contribution. However, even in that case, a re-evaluation of the implementation used in Nikolaou and
Koubarakis (2014) against state-of-the-art solvers, showed that it performs very poorly with respect to the
state-of-the-art (Sioutis, 2014). The work in Sioutis (2014) does not deal with any of the issues that we
dealt with in this paper as it assumes a partitioning graph to implicitly define a tree decomposition, thus,
Sioutis (2014) presents mostly lower bounds on the performance of the implementation used in Nikolaou
and Koubarakis (2014).

8 Good in terms of obtaining smaller components that meet specific properties, for example, a good partitioning can
be defined as a partitioning in which the number of edges running between separated components is relatively small.
9 http://glaros.dtc.umn.edu/gkhome/views/metis
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4.2 Fixing the issues

We noted earlier in this section that the concept of a partitioning graph is beyond repair, unless it is
structured in a way that it defines a tree decomposition. It may seem tempting as a quick hack to triangulate
the constraint graph of a given QCN of RCC-8 and, thus, obtain a chordal constraint graph of that QCN,
and feed it directly to the partitioning algorithm described in Nikolaou and Koubarakis (2014). However,
this may still yield non-soundness. We explain as follows.

Consider the example shown in Figure 8 where the chordal graph G is partitioned into three subgraphs.
The partitioning graph P is such that it is unable to capture/break the cycle defined by vertices 1, 3, and 4.
This cycle may harbor an inconsistency, which will not be detected by the application of path consistency
on the different parts of the partitioning graph. One way to force a partitioning graph into defining a tree
decomposition is usingMETIS in a recursive manner, as it is done in Huang et al. (2013). In particular, one
has to initially partition a given graph G into two parts, and then recursively apply the same procedure on
the obtained parts, until no further partitioning can occur. However, this can be a costly operation. A faster
way is to rely on chordal graphs (tree decompositions into cliques), which can both be constructed and also
yield a natural tree decomposition of their cliques in linear time (Diestel, 2012). The graphs induced by the
cliques can then be collected at no extra cost and serve as the parts of the partitioning graph; consequently,
the approach described in Nikolaou and Koubarakis (2014) can then be carried out with soundness and
completeness.

5 Toward efficient utilization of parallelism

As noted in Nikolaou and Koubarakis (2014), the authors provided a parallel implementation for checking the
satisfiability of a QCN of RCC-8, which however lacks soundness (Proposition 4). In this section, we present a
simple decomposition scheme that exploits the sparse and loosely connected structure of the constraint graphs
of very large real-world QCNs, which have been of notable interest in the recent literature (Nikolaou &
Koubarakis, 2014; Sioutis, 2014; Sioutis & Condotta, 2014), and paves the way for efficient utilization of
parallelism. Our approach is based on extracting the smaller QCNs that correspond to the biconnected com-
ponents of the constraint graph of a given large QCN and reasoning with these smaller biconnected QCNs
completely separately, in a parallel or serial fashion, which, as our experimentation suggests, significantly
decongests search when solving intractable QCNs.

First, we recall a definition from Dechter (2003) regarding biconnected graphs and components.

Figure 8 A chordal graph and its partitioning graph with the parts comprising it (also contained in dashed circles
in the initial graph)
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DEFINITION 13 A connected graph G is said to have an articulation vertex u iff there exist vertices v and v′
such that all paths connecting v and v′ pass through u. A graph that has an articulation
vertex is called separable, and one that has none is called biconnected. A maximal
subgraph with no articulation vertices is called a biconnected component.

Intuitively, an articulation vertex is any vertex whose removal increases the number of connected
components in a given graph. From Dechter (2003), we also have the following property:

PROPERTY 2 (Dechter, 2003) Let G be a graph and {G1,… , Gn} its biconnected components. Then, there
exists a tree decomposition (T, {X1,… , Xn}) of G, where cluster Xi ⊆ V (G) induces the
biconnected component Gi of G, for every i ∈ {1,… , n}.

Let us now view the discussed notions in an example. Figure 9 depicts a graph G, along with its
biconnected components, and its tree decomposition. Vertices in gray color are the articulation vertices ofG.
The tree decomposition comprises a tree T = (I, F) and a cluster Xi for every node i ∈ I of that tree, for
example, Xa = {v0, v1, v4, v5}. We remind the reader thatN #V is the QCNN restricted to a set of variables
V. We can obtain the following proposition:

PROPOSITION 6 Let N be a QCN defined on a language that has patchwork for satisfiable atomic QCNs,
and let {G1,… , Gk} be the biconnected components of its constraint graph GðN Þ. Then,
N is satisfiable iff N i is satisfiable for every i ∈ {1,… , k}, where N i is N #VðGiÞ.

Proof. By Property 2, the constraint graph GðN Þ has a tree decomposition (T, {X1,… , Xk}), where
cluster Xi induces Gi, for every i ∈ {1,… , k}. We can also infer by Definition 13 that ∀ i, j ∈ {1,… , k}
with i ≠ j, V (Gi) ∩ V (Gj) contains at most one vertex u. If N i is satisfiable for every i, j ∈ {1,… , k},
we can obtain a satisfiable atomic sub-QCN of N i, that is, a scenario Si of N i, for every i ∈ {1,… , k}.
For any possible scenarios and any i, j ∈ {1,… , k} with i ≠ j, we will have that Si=ðV ðGiÞ; CiÞ and
Sj=ðV ðGjÞ; CjÞ will always agree on the single unary constraint that is defined by a single vertex u ∈ V

Figure 9 A graph G (top) with its biconnected components (middle) and its tree decomposition (bottom)
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(Gi) ∩ V (Gj) whenever we have that V (Gi) ∩ V (Gj) ≠ ∅, that is, Ci(u, u) = Cj(u, u) = {Id}, as by
Definition 1 we have that for any QCN M=ðV ; CÞ, C(v, v) = {Id} ∀ v ∈ V. By Definition 7, we can
apply patchwork to patch together all the satisfiable atomic QCNs Si with i ∈ {1,… , k} in a tree-like
manner and, thus, derive the satisfiability of N . If N is satisfiable, then, clearly,N i will be satisfiable for
every i ∈ {1,… , k}. □

Consequently, by Proposition 6 and the fact that IA and RCC-8 have patchwork for satisfiable atomic
QCNs of their relations (Lutz & Milicic, 2007), we have the following result:

COROLLARY 5 LetN be a QCN of IA or RCC-8, and let {G1,… , Gk} be the biconnected components of its
constraint graph GðN Þ. Then,N is satisfiable iffN i is satisfiable for every i ∈ {1,… , k},
where N i is N #VðGiÞ.

It is important to note that the proof of Proposition 6 is based on tree decompositions whose nodes
correspond to clusters where any two clusters share at most one vertex with each other. In case two clusters
share more than one vertex with each other, the involved QCNs should be, for instance (and among other
conditions), not trivially inconsistent, path consistent, and defined over a subclass of relations of a qua-
litative constraint language that has patchwork for not trivially inconsistent and path-consistent QCN
defined over that subclass of relations, as it is specified in Proposition 3 and considered in Sioutis and
Koubarakis (2012) and Chmeiss and Condotta (2011) for RCC-8 and IA, respectively. A simple algorithm
for obtaining a collection of QCNs that correspond to the biconnected components of the constraint graph
of a given QCN is presented in Algorithm 3. Note that in lines 2–3 we immediately return the input QCN if
it is trivially inconsistent, as it would not make any sense to continue with the decomposition procedure.
Function BCSubgraphs(G) in line 4 returns the biconnected components of a graph G = (V, E) and has a
runtime ofO(|E|) (Dechter, 2003). Note that in line 4 we keep only the components of order > 2, as any not
trivially inconsistent QCN of <3 variables is trivially satisfiable (by definition of a base relation). In what
follows, we always consider components of order >2. Based on Decomposer, we can obtain an algorithm
to increase the performance of any given state-of-the-art solver that is sound and complete for checking the
satisfiability of a given QCNN defined on a language that has patchwork for satisfiable atomic QCNs; that
algorithm is presented in Algorithm 4. Let us denote any such given state-of-the-art solver by Solver.
Then, Algorithm 4 will use Solver to decide the satisfiability of the QCNs that correspond to the
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biconnected components of the constraint graph ofN . The enclosure with symbol ‖ for Solver denotes the
fact that Solver can be used in a parallel or serial fashion.

Regarding the MLP, we can have the following result:

PROPOSITION 7 LetN=ðV ; CÞ be a satisfiableQCN defined on a language that has patchwork for satisfiable
atomic QCNs, and let {G1,… , Gk} be the biconnected components of its constraint graph
GðN Þ. Then, a base relation b ∈ C(u,v), with u,v ∈ V(Gi), is feasible iff there exists a
scenario Si=ðVi; C′

iÞ of N i=ðVi; CiÞ such that C′
iðu; vÞ=fbg, where N i is N #V ðGiÞ, for

some i ∈ {1,… , k}.

Proof. Let N 0=ðV ; C0Þ be the QCN defined by C′(u, v) = {b}, C′(v, u) = {b}−1, and C'(y, w) = C(y,
w) ∀ (y, w) ∈ (V ×V) \ {(u, v), (v, u)}. Further, let N ′

i=ðVi; C′
iÞ be the restriction of N 0 to V (Gi), viz.,

N 0 #V ðGiÞ. Then, by Proposition 6 and as Gi is a biconnected component of GðN Þ, we know that N 0

is satisfiable iff N ′
i is satisfiable; in addition, any scenario Si=ðVi; C′′

i Þ of N ′
i is the restriction of

some scenario S = (V, C′′) of N 0 to Vi, and any scenario S = (V, C′′) of N 0 is the extension of
some scenario Si=ðVi; C′′

i Þ of N ′
i to V. As such, the feasibility of b can be characterized by considering

N i instead of N . □
Given a satisfiable QCN N=ðV ; CÞ, Proposition 7 allows one to quickly characterize the feasibility

of a base relation b ∈ C(u, v), with u, v ∈ V (G′), where G′ is a biconnected component of the
constraint graph GðN Þ. If u, v ∉ V (G') for any biconnected component G′ of GðN Þ, then b belongs
to a constraint that is labeled with the universal relation B and its feasibility can still be efficiently
characterized under certain conditions by a function similar to extractFeasible as described in Amaneddine
et al. (2013).

Consequently, by Proposition 7 and the fact that IA and RCC-8 have patchwork for satisfiable atomic
QCNs of their relations (Lutz & Milicic, 2007), we have the following result:

COROLLARY 6 Let N=ðV ; CÞ be a satisfiable QCN of IA or RCC-8, and let {G1,… , Gk} be the
biconnected components of its constraint graph GðN Þ. Then, a base relation b ∈ C(u, v),
with u, v ∈ V (Gi), is feasible iff there exists a scenario Si=ðVi; C′

iÞ of N i=ðVi; CiÞ such
that C′

iðu; vÞ=fbg , where N i is N #V ðGiÞ, for some i ∈ {1,… , k}.

Regarding the redundancy problem, we can have the following result:

PROPOSITION 8 Let N=ðV ; CÞ be a satisfiable QCN defined on a language that has patchwork for
satisfiable atomic QCNs, and let {G1,… , Gk} be the biconnected components of its
constraint graph GðN Þ. Then, a relation C(u,v), with u,v ∈ V, is non-redundant in N iff
(u, v) ∈ E(Gi) and C(u, v) is non-redundant in N i=ðVi; CiÞ, where N i is N #V ðGiÞ, for
some i ∈ {1,… , k}.

Proof. Clearly, a relation C(u,v) is redundant in N if (u, v) ∉ E(Gi) for any i ∈ {1,… , k}, as it will
correspond to the universal relation B. Let us consider a relation C(u, v) where (u, v) ∈ E(Gi) for some i ∈
{1,… , k}. LetN 0=ðV ; C0Þ be the QCN defined byC′(u, v) = B \C(u, v),C′(v, u) = B \ (C(u, v))−1, andC′
(y, w) = C(y, w) ∀ (y, w) ∈ (V ×V) \ {(u, v), (v, u)}. Further, let N ′

i=ðVi; C′
iÞ be the restriction of N 0 toV

(Gi), viz.,N 0 #V ðGiÞ. Then, by Proposition 6 and asGi is a biconnected component of GðN Þ, we know that
N 0 is satisfiable iffN ′

i is satisfiable; in addition, any scenario Si=ðVi; C′′
i Þ ofN ′

i is the restriction of some
scenario S = (V, C′′) of N 0 to Vi, and any scenario S = (V, C′′) of N 0 is the extension of some scenario
Si=ðVi; C′′

i Þ of N ′
i to Vi. Finally, since for any scenario there exists a solution that satisfies all of its base

relations, the redundancy of C(u, v) can be characterized by considering N i instead of N . □
Consequently, by Proposition 8 and the fact that IA and RCC-8 have patchwork for satisfiable atomic

QCNs of their relations (Lutz & Milicic, 2007), we have the following result:

COROLLARY 7 Let N=ðV ; CÞ be a satisfiable QCN of IA or RCC-8, and let {G1,… , Gk} be the
biconnected components of its constraint graph GðN Þ. Then, a relation C(u, v), with
u, v ∈ V, is non-redundant in N iff (u, v) ∈ E(Gi) and C(u, v) is non-redundant in
N i=ðVi; CiÞ, where N i is N #V ðGiÞ, for some i ∈ {1,… , k}.
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5.1 Data set

We review the data set of real RCC-8 network instances that was originally introduced in Nikolaou and
Koubarakis (2014), and which we describe here as follows:

∙ nuts: a nomenclature of territorial units10.
∙ adm1: a network that describes the administrative geography of Great Britain (Goodwin et al., 2008).
∙ gadm1: a network that describes the German administrative units (see footnote 10).
∙ gadm2: a network that describes the world’s (global) administrative areas11.
∙ adm2: a network that describes the Greek administrative geography (see footnote 10).

The aforementioned network instances are tractable and contain at most two base RCC-8 relations per
edge. The characteristics of the constraint graphs of these networks are presented in Table 1.

As it can be seen, the constraint graphs of the networks vary in order, but they are all relatively sparse.
This comes as no surprise, as real-world graphs often present a scale-free structure (Barabasi & Bonabeau,
2003), which results in them being sparse (Del Genio et al., 2011). Thus, we expect these constraint graphs
to be loosely connected and yield a high number of biconnected components. We can view information
regarding the biconnected components of the constraint graphs of our networks in Table 2 (whereby max
order, median order, and min order we refer to the maximum, median, and minimum number of vertices,
respectively, met among the biconnected components).

The findings are quite impressive, in the sense that the maximum order among the biconnected
components of a constraint graph is significantly smaller than the order of that graph. For example, the
constraint graph of the biggest real RCC-8 network, namely, adm2, has an order of value 1 733 000, but
the maximum order among its biconnected components is only of value 22 808. Note also that, as the
median metric suggests, most of the biconnected components of a graph have an order much closer to the
minimum order than the maximum order among the biconnected components of that graph.

Instances for evaluating the satisfiability checking performance of the reasoners for intractable QCNs,
which are of our interest in this paper, were constructed in Nikolaou and Koubarakis (2014) with the
introduction of NP8 relations (Renz & Nebel, 2001) in the networks’ edges. These instances will
be denoted byhard-nuts,hard-adm1, andhard-gadm1 in the evaluation to follow, and
are structurally identical to networks nuts, adm1, and gadm1, respectively, that is, their constraint
graphs have the same characteristics as those presented in Tables 1 and 2.

As Nikolaou and Koubarakis (2014) suggests, some state-of-the-art reasoners, such as GQR (Gantner
et al., 2008), use a matrix to represent a QCN N=ðV ; CÞ, which has a O(|V|2) memory requirement. It
would be impossible to store a graph of the order of adm2 in a matrix as we would need ~3 TB of
memory. Even if memory was not the issue, the time complexity alone of a path-consistency algorithm
would explode, while the backtracking algorithm that is typically used for tackling intractable QCNs and
makes use of path consistency as a forward checking step, could suffer from an increased search space.
Heuristics for the backtracking algorithm could also have a hard time distinguishing between biconnected
components. Consider, for example, a situation where the backtracking algorithm backtracks from an
instatiation of a constraint in a biconnected component to an instantiation of a constraint in a different
biconnected component. Since the constraints belong to different biconnected components, we have
already shown that they are completely unrelated to each other (i.e. satisfying one constraint does not
affect the other in any way); nevertheless, they might still define a huge branch in the search tree that is
spawned by the backtracking algorithm. Such a situation is depicted in Figure 10, which presents two
QCNs N i=ðVi; CiÞ and N j=ðVj; CjÞ such that Vi ∩ Vj = {v}. Let us assume that their constraint graphs
are biconnected. Then, the constraint graph of N i ∪N j has GðN iÞ and GðN jÞ as its biconnected com-
ponents. It is clear that the valuation of constraint Ci(ui, v) with any of the values r1 or r2 does not affect the
satisifiability or unsatisfiability of the valuation of constraint Cj(v, uj) with any of the values l1, l2, or l3, and
vice versa. However, if we choose not to treat the biconnected components separately, a huge branch

10 Retrieved from http://www.linkedopendata.gr/
11 http://gadm.geovocab.org/
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might be defined, as viewed in Figure 10, that could otherwise be entirely avoided. Proposition 6 allows us
to treat the QCNs that correspond to biconnected components completely separately, in a parallel or serial
fashion, and avoid the aforementioned bothersome issues.

5.2 Evaluation

We consider the hard network instanceshard-nuts,hard-adm1, andhard-gadm1 from
Nikolaou and Koubarakis (2014) that comprise NP8 relations (Renz & Nebel, 2001) to utilize the whole
reasoning engine of a reasoner. If Solver is the name of a reasoner, Solver+ denotes the use of Algorithm 4
with that reasoner. The experiments were carried out on a computer with an Intel Core 2 Quad Q9400
processor with a CPU frequency of 2.66GHz per core, 8GB RAM, and the Precise Pangolin x86_64 OS.
GQR (under version 1500) was compiled with gcc/g ++ 4.6.3 and Sarissa, Phalanx, and

Table 1 Characteristics of real Region Connection Calculus (RCC)-8 networks

Network Number of nodes Number of edges Average degree

nuts 2236 3176 2.84
adm1 11 762 44 833 7.62
gadm1 42 750 159 600 7.47
gadm2 276 728 590 443 4.27
adm2 1 733 000 5 236 270 6.04

Table 2 Biconnected components of real Region Connection Calculus (RCC)-8 networks

Network Number of components Maximum order Median order Minimum order

nuts 64 52 8 3
adm1 5 11 666 30 3
gadm1 166 19 864 6 3
gadm2 2285 2371 18 3
adm2 2889 22 808 579 4

Figure 10 A separable constraint graph with an articulation vertex v
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Phalanx∇ (Sioutis & Condotta, 2014) (all under version 0.2) were run with PyPy 2.4.012, which fully
implements Python 2.7.8. For all reasoners, the best performing heuristics were enabled. (Obviously, we
did not consider the implementation of Nikolaou &Koubarakis (2014) in our evaluation as it is not sound.)
We chose to reason in a serial fashion, from smaller to bigger QCN, so as to stress how much more path
consistency and the backtracking algorithm that utilizes it along with the heuristics in each reasoner benefit
from reasoning with the smaller biconnected QCNs than reasoning with the initial large and loosely
connected QCN, when both approaches are offered the same computational power. Thus, only one CPU
core was used in our experiments.

The results are shown in Table 3 and make clear that our simple decomposition scheme aids the
performance of each reasoner substantially, with the more apparent case being that of hard-gadm1,
which is unsatisfiable. Networkshard-nuts andhard-adm1 are satisfiable. In particular, GQR
decides gadm1 in ~4 hours, while GQR+ in 1.2 seconds, and similar results are obtained for the other
reasoners too. When an inconsistency is detected in a QCN n that corresponds to some biconnected
component of the constraint graph of an input QCN N , each reasoner backtracks only within the search
space defined by n, and considers a very small search tree to either verify or dispute that inconsistency with
respect to the search tree that would have been obtained by the input QCN N . Obviously, the time
obtained for reasoner Solver+ is the time that it took it to serially reason with every QCN n, until it reached
an unsatisfiable QCN (thus, assuring that the input QCN N is also unsatisfiable by Corollary 5).

It is worth commenting on the performance of the reasoners with respect to network hard-adm1.
Reasoners Sarissa+ and Phalanx∇+ present a performance that is slightly better than that of
reasoners Sarissa and Phalanx∇, respectively. On the other hand, reasoners GQR+ and Pha-
lanx+ present a performance that is slightly worse than that of reasoners GQR and Phalanx, respec-
tively. This is due to the fact that the maximum order among the biconnected components of the constraint
graph ofadm1 is very close to the order of the entire graph itself (see Table 2). Thus, in such cases, the use of
Algorithm 4 may not lead to drastically improved performance, while sometimes due to the randomness of the
heuristics in a reasoner, even slightly worse performance may be observed, as in this particular case.

Finally, we note that the results presented in Table 3 do not take into account the time needed for
decomposing the networks with Algorithm 4, but only the time needed for performing satisfiability checks
on the networks. However, the time needed for decomposing hard-nuts, hard-adm1, and
hard-gadm1 was negligible, and does not change the results qualitatively. In particular, a simple
Python script that makes use of the networkx13 library was able to decomposehard-nuts,hard-
adm1, and hard-gadm1 in 0.2, 1.4, and 7.6 seconds, respectively.

6 Decomposition techniques in the constraint satisfaction problem framework

As noted in our introduction, a QCN is most efficiently modeled as an infinite-domain variant of a
CSP through the use of a relation algebra (Ladkin & Maddux, 1994), which is also the approach we
followed in our work. However, a QCN can also be encoded as a finite CSP instance (Renz & Nebel, 2001;
Brand, 2004; Condotta et al., 2006). In particular, given a QCN (V, C), where |V| = n we can obtain a CSP

Table 3 Performance comparison based on elapsed time

Solver
GQR
(seconds)

GQR+
(seconds)

Pha.
(seconds)

Pha.+
(seconds)

Sar.
(seconds)

Sar.+
(seconds)

Pha.∇
(seconds)

Pha.∇+
(seconds)

hard-nuts 2.0 0.1 4.0 0.6 0.8 0.6 0.9 0.6
hard-adm1 4.7E3 5.2E3 3.4E3 3.7E3 161.5 137.7 98.3 97.4
hard-gadm1 1.4E4 1.2 1.0E5 3.5 2.0E3 3.4 1.1E3 3.0

Pha. = Phalanx; Sar. = Sarissa.

12 http://pypy.org
13 https://networkx.github.io/
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instance as follows. Let X denote the set of variables containing a variable xij for each pair of variables
vi, vj ∈ Vwith 1⩽ i< j⩽ n. Then, our instance has the form (X, B,DCon ∪ TCon), whereDCon is the set of
domain constraints {(xij, Cij) | 1⩽ i< j⩽ n} and TCon the set of ternary constraints {((xij, xik, xkj), R◊) |
1⩽ i< j< k⩽ n} with R◊ = {(b, b′, b′′) ∈ B3 | b ∈ b′ ◊ b′′}. Namely, DCon restricts the values of a
variable xij to the base relations of the corresponding qualitative constraint Cij and TCon encodes all the

consistent paths of length 2 in the network. The resulting finite network has nðn�1Þ
2 variables and

n
3

� �
ternary

constraints. A solution of this finite instance corresponds to a path-consistent atomic refinement of a given
QCN, and vice versa (Condotta et al., 2006). The main disadvantage of this approach is that we are not able
to make use of tractable subclasses of relations. This can seriously impact the performance of satisfiability
checking for calculi that heavily rely upon those subclasses, such as RCC-8 and IA. However, for large-sized
qualitative calculi (viz., comprising hundreds of base relations) for which no tractable subclasses are known,
a finite CSP encoding can provide a considerable performance gain (Westphal & Wölfl, 2009).

In light of the strong relation that exists between qualitative and ‘traditional’ constraint programming, it
is worth mentioning some works in the latter paradigm that exploit the structure of constraint graphs in a
similar manner to what we presented in our paper. The interested reader may review the cited works and
obtain a deeper understanding on the analogy that exists between structural characteristics of QCNs and
finite CSP instances. What is more important, the cited works may drive future research by enabling the
reader to identify theoretical properties in the context of QSTR that can be used to adopt certain techniques
for exploiting the structure of constraint graphs that exist in constraint programming.

Walsh (2001) measures the impact that the structure of a constraint graph can have on the performance
of solving the graph coloring problem, which is the problem of coloring the vertices of a graph in such a
way that no two adjacent vertices share the same color.

Baget and Tognetti (2001) propose a backtracking algorithm for solving CSP instances that exploits the
biconnected components of a given constraint graph to reduce search space, permanently removing values
and compiling partial solutions during exploitation.

Dechter and Pearl (1989) propose a constraint graph restructuring technique, based on tree decom-
positions, that guarantees that a large variety of queries could be answered swiftly either by sequential
backtrack-free procedures, or by distributed constraint propagation methods.

Based on the work of Dechter and Pearl (1989), Jégou and Terrioux (2003) propose a framework for
solving CSP instances that relies both on backtracking techniques and on the notion of tree decomposition
of the constraint graphs. Notably, this mixed approach has been implemented and used successfully for
practical CSP solving (Jégou & Terrioux, 2003).

Jegou et al. (2005) study several methods for computing a rough optimal tree decomposition and assess
their relevance for solving CSP instances; the same authors also proposed dynamic heuristics for efficient
backtrack search on tree decompositions of constraint graphs in Jegou et al. (2006, 2007).

Recently, Jégou and Terrioux (2014a, 2014b) introduced and exploited a new graph parameter, called
bag-connected treewidth, which considers tree decompositions for which each cluster induces a connected
graph. It is experimentally shown in Jégou and Terrioux (2014b) that such bag-connected tree decom-
positions significantly improve the solving of CSP instances by decomposition methods.

Finally, a presentation of the major structural constraint network decomposition methods discussed
here is given in Gottlob et al. (2000).

7 Conclusion

To conclude, we surveyed the use and effect of decomposition-based techniques in qualitative constraint-based
reasoning and showed that the decomposition-based approach presented in Nikolaou and Koubarakis (2014)
for checking the satisfiability of QCNs of RCC-8 lacks soundness, as the notion of a partitioning graph defined
in that work is not coherent with the use of patchwork upon which it solely relies. Further, we showed how that
notion is beyond repair, unless it is reformulated to define a tree decomposition, implicitly or explicitly, and
discussed the impact of these observations on the performance of the offered implementation in Nikolaou and
Koubarakis (2014), which was already found to be poor in Sioutis (2014).
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We think that future efforts regarding decomposition-based approaches utilizing parallelism, such as
the approach attempted in Nikolaou and Koubarakis (2014), should rely on chordal graphs (tree decom-
positions into cliques), which can both be constructed and also yield a natural tree decomposition of their
cliques in linear time (Diestel, 2012). The cliques can then be collected at no extra cost and parallelism
might be efficiently utilized. It is an issue that looks promising and calls for further research. Toward that
direction, we offered an approach that relies on a particular tree decomposition that is based on the
biconnected components of the constraint graph of a given large QCN, and showed that it allows for cost-
free utilization of parallelism for a qualitative constraint language that has patchwork for satisfiable
atomic QCNs.
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