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Stable isotopic analysis of carbon and nitrogen in human and faunal remains has been widely used to reconstruct
prehistoric diets and environmental changes. Isotopic analysis of plant remains allows for a more extensive consid-
eration of paleodiets and can potentially provide information about the environment in which the crops were
grown. This paper reports the results of δ13C and δ15N analyses performed on modern and charred archaeological
foxtail millet samples collected from the western part of the Chinese Loess Plateau. The δ13C mean value of modern
samples is lower than that of ancient samples. There is a significant difference between grain and leaf δ15N values.
These results challenge the standard assumption in isotope studies that the nitrogen isotope signals of the different
part of plants consumed by humans and animals are the same. The 3–5‰ difference between human and animal
δ15N values is always regarded as an indicator of whether human diets contained considerable animal protein.
The difference between grain and leaf δ15N values makes this assumption problematic in a foxtail millet-
dominated society.

© 2015 University of Washington. Published by Elsevier Inc. All rights reserved.
Introduction

Stable isotopic analysis of carbon and nitrogen in human and faunal
remains has been widely used to reconstruct prehistoric diets and envi-
ronmental changes in the Chinese Loess Plateau (e.g., Liu et al., 2005;
Pechenkina et al., 2005; Barton et al., 2009; Atahan et al., 2011). To date,
the majority of isotopic environmental archaeological analyses have fo-
cused on the study of bone collagen. Despite its importance as a crop in
areas such as China, there have not been any systematic isotopic studies
of archaeological charred foxtail millet samples. However, a proper inter-
pretation of collagen isotopic values must be founded on an appreciation
of the significance of spatial and temporal differences in the isotopic
values of plants (Tieszen, 1991; Heaton, 1999;Warinner et al., 2013). Car-
bon and nitrogen isotope analysis of plant remains allows for a more nu-
anced consideration of the contribution of plants to the human diet, and
can potentially provide information about the environment in which
the crops were grown (e.g., Araus et al., 1999; Bateman et al., 2005;
Bogaard et al., 2007; Riehl et al., 2008; Lightfoot and Stevens, 2012;
Szpak et al., 2013).

North China is one of the major regions where agriculture developed,
with millets being both the major and the earliest domesticated crops
y Elsevier Inc. All rights reserved.
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(e.g., Lu et al., 2009; Yang et al., 2012; Zhao, 2011, 2014). Millets as an im-
portant protein source played an irreplaceable role in the rain-fed, agri-
cultural societies of northern China (An, 1988; Lee et al., 2007; Barton
et al., 2009; An et al., 2010). The isotopic signal of this cropmust therefore
be known with certainty because this forms the basis for estimates of di-
etary consumption.

In the last decade, we undertook extensive field investigations to
study the evolution of agriculture in the western part of the Chinese
Loess Plateau (WLP) (An et al., 2005, 2010; Jia et al., 2013). The charred
foxtail millet collected from WLP makes their isotopic analysis viable,
desirable and essential for a comprehensive understanding of paleodiet
and subsistence strategy in this area.

This study aims to test whether there are changes in the carbon and
nitrogen isotopic composition of millet in WLP over time, as well as
whether different parts of themillet plant have different carbon and ni-
trogen signals. Its implications for environmental archaeological recon-
struction are then discussed.

Study area

Today on the WLP, the mean annual temperature ranges from 6 to
10°C and the mean annual precipitation from 300 and 500 mm. The
area is hilly with dispersed and sporadic woodlands. However, the veg-
etation is generally temperate steppe (Geography Department and the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.yqres.2015.04.004&domain=pdf
http://dx.doi.org/10.1016/j.yqres.2015.04.004
mailto:cban@lzu.edu.cn
http://dx.doi.org/10.1016/j.yqres.2015.04.004
http://www.sciencedirect.com/science/journal/00335894
https://doi.org/10.1016/j.yqres.2015.04.004


Table 1
Detail of archaeological samples. The age of these sites is determined by cited references.

Site Culture Context Numbers of samples References

Qin'an 1a Late Yangshao Pit 3 An et al. (2010)
Qin'an 2a Late Yangshao Pit 3 An et al. (2010)
Shuzhaa Majiayao Pit 5 Bureau of National Cultural Relics (2010)
Wenjiab Qijia Pit 1 Bureau of National Cultural Relics (2010)
Wanjiayuanb Qijia Pit 1 Bureau of National Cultural Relics (2010)
Laohuzuib Qijia Pit 1 Bureau of National Cultural Relics (2010)
Jiangjiazuib Qijia Pit 1 Bureau of National Cultural Relics (2010)
Caomaidianb Qijia Cellar 2 Bureau of National Cultural Relics (2010)
Buzipingb Qijia Pit 1 Jia et al. (2013)

a Samples collected in excavation.
b Samples collected in our field survey.
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Map Press, 1984). Isotopic studies show that C3 plants have dominated
the Holocene vegetation on the WLP (Liu et al., 2005, 2011; Rao et al.,
2005). Pollen records revealed that during the past 6 millennia this re-
gion went through a humid-warm mid-Holocene, then changed to dry
and cold at ca. 3 ka after a few fluctuations. It has not subsequently
changed much up until the present (e.g., An et al., 2003; Shen et al.,
2005; Cheng et al., 2010; L. Zhao et al., 2010; Y. Zhao et al., 2010).

In northern China, millets include two cereals with the same geo-
graphical distribution: Panicummiliaceum (broomcorn or commonmil-
let) and Setaria italica (foxtail millet). Archaeological studies indicate
that rain-fed agriculture began in the early-mid Holocene, and foxtail
millet agriculture was the backbone of early complex societies on the
WLP (Li et al., 2007; An et al., 2010; Jia et al., 2013). The cultural se-
quence for theWLP is: Dadiwan 1 Culture (8–7.3 ka)→ Early Yangshao
Culture (6.3–6.0 ka) → Middle Yangshao Culture (5.7–5.5 ka) → Late
Yangshao Culture (5.5–5.0 ka) → Majiaoyao Culture (5–4.5 ka)→ Qijia
Culture (4.3–3.8 ka) (Shui, 2001).

Material and methods

The palaeodietary study is based on the fact that the stable isotopes of
carbon and nitrogen are fractionated during many biochemical reactions
due to differences in atomic mass. This results in different isotope ratios,
depending on the type of ecosystem (e.g., marine versus terrestrial), posi-
tion in the food chain, and climatic conditions (Ambrose, 1993; Sealy,
2001).

The largest variations in the stable isotope ratios of carbon (δ13C) in
terrestrial ecosystems are a result of different photosynthetic carbon
Figure 1.Map showing the study
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reduction pathways in plants (C3, C4 or CAM plants). The variation in
δ13C values between each type is significant, with C3 plants having
the lowest values (~−26.5‰) and C4 plants having the highest values
(~−12.5‰), and CAM plants having varied isotopic ratios (van der
Merwe, 1982; Marino and McElroy, 1991). Controlled diet experiments
(Ambrose and Norr, 1993; Tieszen and Fagre, 1993; Froehle, et al.,
2010) show that the δ13C value of bone collagen is enriched by ca. 4 to
5.1‰ over that of the diet.

The stable isotope of nitrogen (δ15N) enters the biosphere from
the atmosphere mainly via N-fixing soil bacteria and is then utilized
by plants. It is generally believed that in temperate terrestrial eco-
systems, the fractionation of δ15N is dominated by a trophic-level
effect. This leads to an enrichment in δ15N from diet to body tissue
of 2–5‰, on average 3‰, for each step in the food chain (DeNiro and
Epstein, 1981; DeNiro and Hastorf, 1985; Ambrose, 1991; Hedges and
Reynard, 2007). As bone collagen is a protein and therefore consists
of amino acids, which are the source of nitrogen when collagen
extract is analyzed, measures of bone collagen mainly reflect the iso-
topic composition of dietary protein intake (Ambrose, 1993). The signal
of δ15N is widely used to distinguish between human diets based on a
large amount of animal protein and those based on amixed subsistence
strategy (Schoeninger et al., 1983; Richards et al., 2001; Hedges and
Reynard, 2007).

In this study, our collection of environmental archaeological samples
followed twoprinciples:firstly, pits, cellar andother archaeological sites
selected should have clear stratigraphies; secondly, in the absence of a
clear stratigraphic unit, a single cultural layer should be selected for
sampling. Following these principles, samples were recovered from
area and sample locations.

https://doi.org/10.1016/j.yqres.2015.04.004


Table 2
The results of δ13C and δ15N analyses of modern and charred foxtail millet.

δ13C δ15N

Mean Range SD n Mean Range SD n

Late Yangshao (grains) −10.4 1.5 0.6 6 3.8 7.2 5.1 3
Majiayao (grains) −10.1 1.2 0.7 3 6.0 1.6 0.8 3
Qijia (grains) −9.4 1.1 0.4 6 4.7 5.9 2.9 6
Modern (grains) −12.3 1.9 0.5 14 2.1 6.5 3.7 14
Modern (leaves) −12.6 1.4 0.5 7 0.0 7.0 2.1 7
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the selected units or layers using 10–20 l of sediment per sampling ho-
rizon. Details of the archaeological samples are shown in Table 1 and
Figure 1.

From each sample, plant seeds were collected by flotation using
0.315-mm aperture sieves to collect the small fraction and 1.25-
mm aperture sieves to collect heavy objects. After drying and sorting
through 0.315-mm, 0.63-mm and 1.25-mm mesh sieves, all seeds
were identified using a 40× stereo microscope. Foxtail millet and
common millet were separated on the basis of comparative mor-
phology using a microscope together with measurements of individ-
ual grains (Liu and Kong, 2004; Zhao, 2004). Separationwas based on
the principles that foxtail millet is smaller in length and width than
common millet, the length of foxtail millet grains is usually similar
to the width, and the embryo shape differs from the common millet
(Liu and Kong, 2004). Other small differences were also used to help
distinguish the two species (Liu and Kong, 2004), such as the propor-
tion of embryo length in the whole length of the grain and the shape
of their husks.

Modern sampleswere collected inWLP in the fall of 2011 (Fig. 1). All
samples were selected from crops grown under uniform field condi-
tions, such as in flat fields with uniform fertility. Neither irrigation
nor routine rotation was involved. When the plants were mature and
naturally dried, the whole plant was wrapped with aluminum foil. All
information, including sampling sites, species (if possible) and environ-
mental conditions, was recorded in detail. The samples were brought
back unopened to the laboratory where they were stored in a cold
room until analysis. Simulated-carbonization of the modern grains
was conducted under 200°C in a muffle furnace for 8 h. Other modern
grains are not charred.

The modern samples were first washed in an ultrasonic bath with
distilled water, then air-dried, then oven-dried at 70°C for at least 48 h
to a constant weight. All samples were ground with a plant sample
mill into uniformly fine powder and finally sieved through a 1-mm
screen. Lastly, samples were homogenized by mixing and then sealed
in tin bags until examination. For the archaeological samples, the meth-
od of DeNiro and Hastorf (1985) and Aguilera et al. (2008) was used.
Each sample included at least 10 grains. The δ13C and δ15N values of
Figure 2. The relationship between modern foxtail millet and precipitation in WLP. (a)
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all samples were measured in the Key Laboratory of Western China's
Environmental Systems (Ministry of Education), Lanzhou University.
The samples were combusted to CO2 in a Thermo Finnigan Flash EA
1112 and the isotope ratios were measured in a Thermo Finnigan
DELTA plus XL isotope ratio mass spectrometer. The amounts of carbon
in the combusted sample were determined from the major ion beam
voltage. The carbon isotope was measured relative to V-PDB standards.
All samples were measured in duplicate. The analytical precision for
both carbon and nitrogen isotopes was 0.1‰.

The burning of fossil fuels, which are mainly composed of C3 plants,
beginning with the Industrial Revolution has made the modern atmo-
spheric δ13C value 1.5‰ more negative than in pre-industrial times
(van der Merwe, 1989; Marino and McElroy, 1991; Tieszen and Fagre,
1993). This atmospheric variationmeans that the δ13C values ofmodern
plants are generally 1.5‰ lower than plants before the Industrial Revo-
lution. The δ13C values of modern samples were therefore corrected be-
fore comparison with the values of charred archaeological samples.

The δ13C and δ15N value of the Late Yangshao culture human and pig
sampleswere studied in Dadiwan site (Barton et al., 2009); and the δ13C
and δ15N value of Qijia culture human and pig were based on the study
of Qijiaping site (Ma et al., 2013).

Results and discussion

Comparison between charred and modern samples

The results are given in Table 2. Temperature, latitude, altitude, the
distance to the river systems, etc, have no apparent correlation with
the spatial variation of modern foxtail millet isotopic values (r2 ≈ 0,
p N 0.05). Combining precipitation values with the δ13C results of mod-
ern foxtailmillet revealed a correlation between precipitation and isoto-
pic variation to a moderate degree (r2 = 0.43, p b 0.01) (Fig. 2a).
Generally, higher foxtail millet δ13C values appear in areas with higher
precipitation, but this correlation needs further testing because we
have limited sample numbers and are in a small area. In the case of
δ15N, no such linear relationship with precipitation was detected
(r2 = 0.05, p N 0.05) (Fig. 2b).

Simulated carbonization of the grains revealed that neither the δ13C
nor δ15N value changedmuch,withΔ=0.2‰, r2=0.93, p b 0.01 for the
former and Δ = −0.02‰, r2 = 0.98, p b 0.01 for the latter. It is well
known that the chemical composition of Chinese loess is homogeneous,
so the potential diagenetic alteration of archaeological samples is min-
ute, considering that all the parts of the study area experienced similar
environment changes during the Holocene (An et al., 2003, 2004; Rao
et al., 2005; Shen et al., 2005; Cheng et al., 2010). This finding indicates
that no significant isotopic fractionation occurred during cooking or
other low-temperature carbonization and makes the direct comparison
between modern samples and archaeological ones reasonable.
δ13C value versus annual precipitation; (b) δ15N value versus annual precipitation.

https://doi.org/10.1016/j.yqres.2015.04.004


Figure 3. Boxplot of carbon isotopic results of foxtail millet, separated by different periods
from Late Yangshao to modern.
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The δ13C mean value of modern samples is lower than that of ancient
samples. If we correct the δ13C value of modern samples to eliminate the
effect of fossil fuels since the Industrial Revolution, the δ13Cmean value of
modern grain samples is −10.8‰. Slight differences can be detected
among different periods (Fig. 3). The Late Yangshao samples have a
mean value that is slightly higher than that of modern samples, with
Majiayao and Qijia samples having mean values that are also higher
than that of modern samples. This difference is reflected in mean, maxi-
mum and minimum values, consistent with our previous study (An
et al., 2015). This result is possibly caused bydifferent environmental con-
ditions and climate changes, but the exact interpretation still needs more
tests.

With regard to δ15N, there are differences among different periods
(Table 2). This difference is reflected in both themean values and over-
all ranges. However, thedifference does not pass theKruskal–Wallis test
(Chi-square = 5.848, p N 0.05). It is suggested here that this may be at-
tributed to a limited number of archaeological samples.

Our results show a significant difference between grain and leaf δ15N
values in the modern foxtail millet samples (2‰) (Table 2, Kruskal–
Wallis test, Chi-square=12.17, p b 0.01), just as studies on other plants
(L. Zhao et al., 2010; Y. Zhao et al., 2010; Golluscio et al., 2014). The
leaves have lower and more variable δ15N values than the grains. This
means that if livestock diets were supplemented with fodder consisting
of leaves rather than grains, the difference in δ15N between leaf and
Figure 4.Mean and standard deviation of isotope results for human, pig and foxtail millet in differ
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grain would reduce the apparent trophic level distinction between
these livestock and human consumers of grain.

Comparison with bone collagen results

Compared to the previous paleo-diet reconstructions of this region
(Barton et al., 2009; Ma et al., 2013), the range of foxtail millet δ15N
values is much larger than the range in human and pig values, while
variation in foxtail millet δ13C value is considerably lower than the var-
iation in human and pig isotopic values, especially pigs, with a wide
range of isotopic distribution as large as 9‰ in δ13C values during the
Late Yangshao period; moreover, the variation range of human δ13C
value apparently narrowed from the Late Yangshao to the Qijia period
(Fig. 4). This finding suggests that during the Qijia period, humans did
have high and less varied δ13C values, indicating a higher proportion
of C4 plants in their diets compared with Late Yangshao period. This re-
sult supports the archaeobotanical data, which shows that foxtail millet
dominated agriculture in the Qijia period (An et al., 2010, 2013).

It should also be noted that there is a significant difference between
grain and leaf δ15N values. This finding complicates the use of ideal δ15N
trophic step models in a foxtail millet-based society. The leaves have
lower and more variable δ15N values than the grains. This means that if
livestock dietswere supplementedwith fodder consisting of leaves rather
than grains, the difference in δ15N between leaf and grain would reduce
the apparent trophic-level distinction between these livestock and
human consumers of grain. Thus, itwill be difficult to distinguish between
humans eating foxtail millet grain and humans eating pigs fed on foxtail
millet leaves. For example, humans with a diet based on modern foxtail
millet grains should have a δ15N value signal around ~5‰, whereas pigs
fed on foxtail millet leaves should have δ15N value around ~2.9‰. There-
fore, humans eating suchpigs should have a δ15N signal of ~5.9‰.Wefind
that there is a varied trophic level between foxtail millet and pigs or
humans from the Late Yangshao period to the Qijia period (Fig. 4).

Most dietary studies based on isotope analyses assume that the ni-
trogen isotope signals of the different part of plants consumed by
humans and animals are the same and that the plants have values 2–5
‰ lower than the herbivores. It then follows that a 3–5‰ difference be-
tween human and animal δ15N values is always regarded as an indicator
ofwhether human diets contained considerable amounts of animal pro-
tein (Richards and Trinkaus, 2009; Price et al., 2010). The difference be-
tween leaves and grains of foxtail millet δ15N value makes this
assumption problematic in a foxtail millet-based society. It is therefore
not surprising that in most paleodietary reconstruction in northern
China, there is no clear 3–5‰ difference among foxtail millet, pig and
ent periods. (a) Late Yangshao period (Barton et al., 2009); (b) Qijia period (Ma et al., 2013).
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human δ15N values (e.g., Liu et al., 2005; Pechenkina et al., 2005; Barton
et al., 2009; Atahan et al., 2011).

More work is needed to address what underlies the temporal and
spatial variation in millet δ15N over time. Many social and environmen-
tal factors, such as fertilization and climate change, must be included in
future studies.

Conclusions

1) The δ13C mean value of modern samples is slightly lower than or
similar to that of ancient samples, even after correcting the δ13C
value of modern samples to eliminate the effect of fossil fuels since
the Industrial Revolution. Simulated carbonization of the foxtail mil-
let grains revealed that no significant isotopic fractionation occurred
during low-temperature carbonization.

2) There is a significant difference between grain and leaf δ15N values.
This result challenges the standard assumption in isotope studies
that the nitrogen isotope signals of the different part of plants con-
sumed by humans and animals are the same and that the plants
have values 2–5‰ lower than the herbivores.

3) Furthermore, the 3–5‰ difference between human and animal δ15N
values has always been regarded as an indicator of whether human
diets contained considerable animal protein. The great difference be-
tween grain and leaf δ15N valuesmakes this assumption problematic
in a foxtail millet-dominated society.
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