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An innovative algorithm to determine the inverse solution of a geodesic with the vertex
or Clairaut constant located between two points on a spheroid is presented. This solution
to the inverse problem will be useful for solving problems in navigation as well as geodesy.
The algorithm to be described derives from a series expansion that replaces integrals for
distance and longitude, while avoiding reliance on trigonometric functions. In addition, these
series expansions are economical in terms of computational cost. For end points located at
each side of a vertex, certain numerical difficulties arise. A finite difference method together
with an innovative method of iteration that approximates Newton’s method is presented
which overcomes these shortcomings encountered for nearly antipodal regions. The method
provided here, which does not involve an auxiliary sphere, was aided by the Computer
Algebra System (CAS) that can yield arbitrarily truncated series suitable to the users accuracy
objectives and which are limited only by machine precisions.
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1. INTRODUCTION. The definition of the connecting edge or line between
two vertices is a minor great elliptic arc in Microsoft SQL Server (2014), whereas the
more sophisticated definitions are the geodesics in the main geography databases
(Oracle® Spatial Developer’s Guide, 2013; ArcGIS Resource, 2014; Hipparchus®
Tutorial and Programmer’s Guide, 2004; IBM DB2 Universal Database 9.1., 2012).
Great ellipse sailing has been studied in our previous work (Tseng et al., 2012a;
2013) and considering that the producers of Geographic Information Systems
(GIS) and Electronic Chart Display and Information Systems (ECDIS) may adopt
those databases in their systems, the geodesic algorithms need to be reviewed and
studied.
The geodesic is of interest because it is the shortest path between two points

on the Earth. In most terrestrial applications, the Earth is treated as a spheroid
by adopting the World Geodetic System (WGS) 84 datum. Geodesics can also be
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used in the application of the United Nations Convention on maritime boun-
daries at sea; other uses involve distance measuring in GIS and ECDIS and govern-
ing rules of the Federal Aviation Administration bounding areas (Sjöberg, 2007;
2012).
Usual algorithms for the geodesic can be roughly divided into two groups:

(a) numerical integration schemes and (b) series expansion of elliptic integrals.
Group (a) can be further divided into integration schemes based on simple differential
relationships of the spheroid (Kivioja, 1971; Jank and Kivioja, 1980; Thomas and
Featherstone, 2005), or by numerical integration of elliptic integrals that are usually
functions of elements in the spheroid and its corresponding auxiliary sphere (Saito,
1970; 1979; Sjöberg, 2007; 2012). Group (b) includes the original method of Bessel
(1826) that uses functions of elements in the spheroid related to a corresponding
auxiliary sphere and various modifications to his method (Rainsford, 1955; Vincenty,
1975a; Bowring, 1983; 1984; Karney, 2013).
The inverse geodetic problem on the spheroid is to determine the geodesic arc

length between two endpoints and the azimuths of the arc. The more complete sol-
ution for the Clairaut constant (or the vertex latitude) which is compared with
the solution provided by Sjöberg (2007; 2012) is presented in this paper. If the two
given points are not nearly antipodal, each azimuth and location of the geodesic
is unique, while for the fixed points in the “nearly antipodal regions” and when
the sum of the latitudes of two are equal to zero, there are two geodesics mirrored in
the Equator and with complementary azimuths at each point. In the special case when
the endpoints are located at the poles of the spheroid, all meridians are geodesics
(Sjöberg, 2012). The special role played by the change of variable, the series
integration in terms of CAS, finite difference method to obtain the vertices’ latitude of
a geodesic and an innovative iterative method proposed to replace Newton’s method
implemented by Karney (2013) makes this method different from others currently
available.
The article is organised as follows: In Section 2, the basic equations needed and

series solution for longitude in terms of latitude on a geodesic with specific phases to
determine the actual geodesic are presented; Section 3 derives the series for the
geodesic’s arc length. Section 4 treats the inverse problem in the general cases and
discusses some special issues relevant to the special cases, and at the end of Section 4,
the flow chart of the algorithm is provided for the reader’s convenience. Section 5 gives
numerical examples with various conditions including the general case, the special
case of geodesics passing two endpoints on nearly antipodal regions. The conclusions
are summarised in Section 6.

2. FORMULA FOR LONGITUDE DIFFERENCE IN TERMS OF
REDUCED LATITUDE ON A GEODESIC. Geodesic calculations all
involve the Clairaut constant or latitude of the vertex along a geodesic, the relation-
ship between the azimuth α and the reduced latitude β can be expressed by the relation
(Clairaut, 1735).

c = cos βV = cos β sin α (1)
where e is the first eccentricity, a, b is the semi-major and semi-minor axes, c is the
Clairaut constant of a geodesic, βV is the latitude of vertex along the geodesic, and β is
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given by the relation shown below:

tan(β) =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

√
tan(φ), (2)

where φ is geodetic latitude.
As mentioned, it is desirable to have a succinct theoretical statement of the solutions

to the geodesic, covering all cases in hand before developing these problems’
numerical solutions. Referring to Figure 1, it can be seen that the inverse problem is
equivalent to solving the geodesic triangle ΔNP1P2 given two sides and their longitude
difference (Δλ). This can be done in more than one way. By using the reduced latitude
as the variable of integration such as those presented in Jank and Kivioja (1980) give
the longitude and distance integrals as shown in Equations (3) and (4). If the Clairaut
constant or latitude of the vertex and one point are given, then the latitude and
longitude of any point P of the geodesic are related by Equation (3).

λ(β) = c
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− e2 cos2 β
cos2 β − c2

s
dβ
cos β

(3)

The latitude and distance are related by Equation (4)

S(β) = a
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− e2 cos2 β
cos2 β − c2

s
cos βdβ (4)

where the semi-major axis a is 6378137 and eccentricity e is 0·0818191908426215 as
adopted in the current WGS-84 ellipsoid model for the Earth.
Applying binomial theorem, Equation (1) and integral techniques expands

Equation (3) to the expansion:

λ(β) = ω+ c
X1
k=1

C1/2
k (−e2)k

ð
cos2k−1 βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 β − c2

p dβ (5)

where

ω = arcsin
tan β
tan βV

� �
=
ð

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 β − c2

p
cos β

dβ, and tan βV =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2/c

p
.

0 ?α =

1 ?α =

2 ?α =

λ∆
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Figure 1. Inverse problem of finding the shortest path between two end points.
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The vertex latitude βV is always positive here. Equation (5) gives the longitude formula
for the geodesic, and when the eccentricity equals zero, this longitude formula
Equation (5) is the same as Napier’s rules. Further using the change of variable gives
the simplified integral as:

λ(β1, β2) = ω12 + c
X1
k=1

C1/2
k (−e2)k

ðsin β2
sin β1

(1− x2)k−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2 − x2

√ dx (6)

where

x = sin β, ω12 = arcsin
xcffiffiffiffiffiffiffiffiffiffiffiffiffi

1− x2
√ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1− c2
√

� �
sin β2

sin β1

���� , and − βV 4 β 4 βV .

By applying the binomial theorem again this expands the numerator in the right-hand
side integrand of Equation (6) and this result can be exactly integrated as the
following:

λ(β1, β2) = ω12 + c ·
X1
k=1

(Mk,1 · σ +Mk,2 · μ)e2k
sin β2

sin β1

���� (7)

where u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2 − x2

√
and σ = arctan(xu).

The expansion of Equation (6) can be conveniently integrated to arbitrarily order
by CAS such as Maple® etc. which yields the two coefficient matrices by truncating
the expansion at order e10 up to M4, as shown below:

M†,1 =

− 1
2

− 1
16

− 1
16

c2

− 3
128

− 1
64

c2 − 3
128

c4

− 25
2048

− 15
2048

c2 − 15
2048

c4 − 25
2048

c6

2
666666666664

3
777777777775

(8)

and

M†,2 =

0

− 1
16

x

− 5
128

x− 3
128

xc2 + 1
64

x3

− 55
2048

x− 5
256

xc2 − 25
2048

xc4 + 65
3072

x3 + 25
3072

x3c2 − 5
768

x5

2
6666666664

3
7777777775

(9)

where M.,i=[M1,i . . . M4,i ]
T and i=1, 2.

The latitudes between interval [−βV, βV] cannot sketch all the geodesic segments
of arbitrary length, so to overcome this disadvantage, one must introduce another
variable t with interval [−∞ ∞] and also imply the following properties of
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Equation (10) which is related to latitudes.

β(t) = (−1)pΔt+ (−1) p+1βV (10)
where p=FIX (t+βV, 2βV) is the number of phase (2βV) [FIX(..) rounds the element
of (..) to the nearest integer] and Δt=REM (t+βV, 2βV) is the fraction of variable t in
regard to the phase (REM computes the remainder after division).
As the relationship between variables t and latitude is many-to-one, Equation (10)

is a periodical function that oscillates between two opposite vertices as shown
in Figure 2.
The integral must be transformed into the following conditional function modified

to accommodate variable t. But because although the range of variable t is [−∞ ∞],
when integrating Equation (7) it will only give one corresponding value in
the range of [−βV, βV], thus to solve this problem, one must first determine how
many phases (βV) does the variable t have in regard to Equation (7). If even phases,
then use the conditional function Equation (11) (top left rectangle in Figure 2),
whereas if it equals odd phases, then use the other conditional (bottom left rectangle
in Figure 2).

λ(0, t) = 2pΔλV + λ(0, (−1)pβ(t))
i.e.

λ(0, t) =
2pΔλV + λ(0, β(t)), p [ 2n

2pΔλV + λ(β(t), 0), p [ 2n+ 1

(
(11)

where the longitude difference ΔλV=λ(0, βV) of one phase equals one quarter cycle
wrapping the Equator and the latitude β(t) defined in Equation (10).
Again when variable t is applied to Equation (1), it will only give one corresponding

value in the range of [−βv βv]. We solve this problem by first determining how many
phases (2βV) does variable t have in regard to 2βV. If the phases of variable t are even
phases, then use the first condition of Equation (12) (top right rectangle in Figure 2),
whereas then otherwise use the second condition of Equation (12) (bottom right

Figure 2. The relationship of the oscillating reduced latitude between two vertices and variable t.
Two different conditional integrals depend on the phase number.
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rectangle in Figure 2), using Equation (1) gives the course function below on
waypoints along the geodesic.

α(t) = + MOD( p, 2)·π + (−1)p sin−1(cos βV/ cos β(t))
� �

i.e.

α(t) = +
sin−1(cos βV/ cos β(t)), p = 2n

π − sin−1(cos βV/ cos β(t)), p = 2n+ 1

(
(12)

If the geodesic is westbound, the positive sign (+) is adopted, otherwise the negative
sign (−) is adopted.
The two conditions of Equation (12) mean that the courses are northeast bound or

southeast bound as shown in Figure 2, because the default travel direction in the
canonical configurations is eastbound.
Apply Equation (11) to calculate the longitudes of the path departing from the first

node to the fifth node (passing 2 cycles) where t has the interval [0°, 720°].
Figure 3 shows the oscillations of a geodesic on the spheroid and a great circle on

the sphere. Point F on the geodesic crosses the Equator at longitude 0, heading in a
northeast direction reaching a maximum northern latitude, then descends in a
southeast direction crossing the Equator at a certain longitude, reaching a maximum
southern latitude, then ascends in a north-eastern direction crossing the Equator again
at point F1 (the red line). This is one cycle of the geodesic, but the longitude difference
of the end of one cycle does not equal 360° due to the eccentricity of the spheroid
and is not a closed curve, hence the geodesic does not repeat after a complete cycle,
unlike its great circle counterpart which repeats after a complete cycle at point F2
(the brown line).
The geodesic curve will lag a certain longitude compared to a great circle after a

complete cycle. Therefore after passing many circuits, it will wrap a band on the
spheroid between two opposite vertices shown in Figure 4.

Figure 3. The oscillation of a geodesic on a spheroid. Note: The eccentricity has been increased to
0·5 in order to accentuate the spheroidal effects.
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Applying Equation (11) gives the longitude difference between the south and north
vertices:

2ΔλV =2λ(0, βV ) = π 1+ c
X1
k=1

M2k,1·e2k
 !

≈ π

�
1− 1

2
e2c− 1

16
c+ 1

16
c3

� �
e4 − 3

128
c+ 1

64
c3 + 3

128
c5

� �
e6

− 25
2048

c+ 15
2048

c3 + 15
2048

c5 + 25
2048

c7
� �

e8 +O(e10)
�

(13)

where x = sin(βV ) =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2

√
.

The nearly antipodal regions are located within the interval [ΔλV, π]; there are two
geodesics mirrored in the Equator and with complementary azimuths at each point
(Figure 5). As stated before, in the special case when the given points are located at the
poles of the spheroid, all meridians are geodesics (Sjöberg, 2012).

Figure 4. A geodesic curve wraps a band on a spheroid after many circuits.

Figure 5. The variation of geodesic as a function of Clairaut constant c for starting point
β1=−30°. Note: the eccentricity exaggeratedly is set to 0·5.
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The track of the two mirrored geodesics for various starting latitudes can be
described by the definition of variable t shown below:

t1 =
β1, α1 4

π

2

sign(β1)2βV − β1, α1 .
π

2

,

8><
>: βV 5 β1, (14)

and the longitudes and latitudes can be obtained by Equation (15):

Δλ = λ(t) − λ(t1), t = t1, t1 + 2βV
� � (15)

Using Equation (13) gives the nearly antipodal regions for various vertices shown
in Figure 6.
Figure 6 shows that the longitude difference between the two opposite vertices

depends on the vertex. It equals π only when the constant c=0 and is slightly shorter
than π. The geodesic is not closed around the spheroid for c≠0, and its period is
somewhat shorter than 2π. Applying integration by parts gives a different integral for
Equation (3):

λ(β) = ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 cos2 β

p
−
ð
ω

e2 sin β cos βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 cos2 β

p dβ (16)

The longitude difference between the two opposite vertices has a minimum value when
c equals one. As the latitude of the vertex approaches to zero, the LHS of integral
Equation (16) vanishes. The exact formula of the longitude difference between two
opposite vertices can be given or setting c=1 in Equation (13) also gives the
approximate series Equation (17).

2ΔλV = λ(β1 = 0, β2 � 0, 1) = π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

√
≈ π 1− 1

2
e2 − 1

8
e4

1
16

e6 − 5
128

e8 − . . .

� �
(17)
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Figure 6. Nearly antipodal regions at various vertices.
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The binominal series of the second last term of Equation (17) with respect to e2 is
approximately the last term of the above. This is the so-called “lift-off longitude”
(Rapp, 1993). The antipodal region (Schmidt, 2006) is located roughly within 36′.2
from the antipode at the Equator adopting the WGS-84 Earth datum.

3. ARC LENGTH IN TERMS OF REDUCED LATITUDE ON A
GEODESIC. Geodesic distances are very important as they are the shortest
distances. Applying the binomial theorem, Equation (1), and integral techniques
expands Equation (4) to the series Equation (18):

S(β) = a · σ + a
X1
k=1

C1/2
k (−e2)k

ð
cos2k+1 βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 β − c2

p dβ (18)

where

σ = arctan
sin βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 β − c2
p

 !
=
ð

cos βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 β − c2

p dβ.

Setting x=sin β, thus using the change of variable transforms Equation (18) to
Equation (19).

S(β1, β2) = a · σ + a
X1
k=1

C1/2
k (−e2)k

ðsin β1
sin β1

(1− x2)kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2 − x2

√ dx (19)

Again, by using the binomial theorem, the numerator in the right-hand side integrand
of Equation (19) may be expanded, and this result can be exactly integrated as
Equation (20):

S(β1, β2) = a · σ + a
X1
k=1

(Nk,1 · σ +Nk,2 · μ)e2k
sin β2

sin β1

���� (20)

where u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2 − x2

√
and σ = arctan(xu), and βV 4 β 4−βV.

Integrating Equation (19) in terms of CAS or handwork gives the two matrixes of
coefficients by truncating the expansion at order e10 and N5 up to e8 and N4.

N†,1 =

− 1
4
− 1

4
c2

− 3
64

− 1
32

c2 − 3
64

c4

− 5
256

− 3
256

c2 − 3
256

c4 − 5
256

c6

− 175
16384

− 25
4096

c2 − 45
8192

c4 − 25
4096

c6 − 175
16384

c8

2
666666666664

3
777777777775

(21)
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and

N†,2 =

− 1
4
x

− 5
64

x− 3
64

xc2 + 1
32

x3

− 11
256

x− 1
32

xc2 − 5
256

xc4 + 13
384

x3 + 5
384

x3c2 − 1
96

x5

− 465
16384

x− 365
16384

xc2 − 275
16384

xc4 − 175
16384

xc6 + 815
24576

x3 + . . .

75
4096

x3c2 + 175
24576

x3c4 − 125
6144

x5 − 35
6144

x5c2 + 5
1024

x7

0
BB@

1
CCA

2
66666666666666664

3
77777777777777775
(22)

where N.,i=[N1,i . . . N4,i ]
T and i=1, 2.

Again, since the latitudes between the interval [−βV βV] cannot sketch all the
geodesic segments of arbitrarily length, one must introduce the variable t as presented
in Equation (10). The integral Equation (20) must be transformed into the following
conditional function modified to accommodate variable t.

S(0, t) = 2pΔSV + S(0, (−1)pβ(t)) (23)
where ΔSV=S(0, βV) is the distance from node to vertex as Equation (24) and the p as
defined by Equation (11).

ΔSV =S(0, βV )

= a
2
π 1+

X1
k=1

N2i,1 · e2k
 !

≈ aπ 1− 1
4
+ 1

4
c2

� �� �
e2− 3

64
+ 1

32
c2 + 3

64
c4

� �
e4 . . .

(24)
The arc length of a geodesic is the meridian when the vertex is at the pole(s). This
shows that the arc length between the two opposite vertices or two nodes depends on
the Clairaut constant, and it shall equal the meridional distance when the constant
c=0. Applying integration by parts gives a different integral Equation (25) for
Equation (3).

S(β) = aσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 cos β

p
− a

ð
σ

e2 sin β cos βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 cos2 β

p dβ (25)

The geodesic arc length between the two opposite vertices has a minimum value when
c=1. As before, as the latitude of vertex approaches zero, the LSH integral of
Equation (25) vanishes, thus the exact formula of the curve length can be given or the
setting c=1 of Equation (24) gives the series approximately.

2S(0, β2 � 0, c = 1) = aπ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

√
= aπ(1− f )

≈ πa 1− 1
2
e2 − 1

8
e4 − 1

16
e6 − 5

128
e8 − . . .

� �
(26)

In the case of when c=1, the geodesic runs along the equator, Equation (26) is
consistent with Equation (17). Applying Equations (17) or (26) gives the solution of
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antipodal region at the Equator.

ε = π 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

√� �
= πf . (27)

We apply the parameters according to WGS 84 to obtain the maximum distance
aε=67·18197165 km along the geodesic on the Equator which is less than one half
circle of the Equator. The great ellipse or the normal section passing antipodes located
on the Equator cannot be determined, so the track along the Equator may be chosen
for convenience. This means that the maximum distance difference between a geodesic
and a great ellipse (or normal section) is the distance of one half circle of the
Equator minus the length of one half elliptic arc length of the meridian as shown
in Equation (28).

aπ − 2S(0, π/2, c = 0) = 20037508·343− 20003931·435
=− 33576·908 m = 18·1300799 nautical miles.

(28)

In our previous work (Tseng et al., 2013), the maximum error for a longitude differ-
ence of 90° from the Equator to a certain latitude is about 7 metres at approximately
45° latitude. The results mean that nearly antipodal points at lower latitudes will
generate bigger errors between the great ellipse and geodesic.

4. INVERSE PROBLEM OF GEODESIC SAILING. The inverse prob-
lem is intrinsically more complicated than the direct problem because the given
longitude λ12 is related to the corresponding unknown equatorial azimuth α0 or
latitude βV of the geodesic vertex. Thus, the inverse problem inevitably becomes a
root-finding exercise. This problem can be tackled as follows.
Assume that βV is known. Solve the hybrid geodesic problem: given β1, β2, and βV,

find the calculated λ12 corresponding to the first intersection of the geodesic with the
parallel of latitude β2 which is the resulting longitude difference of given initial λ12 in
general cases; so adjust βV using Newton’s method, secant method, or other root-
finding methods until the correct λ12 is obtained. The two endpoints can be put in a
canonical configuration,

β1 4 0, β1 4 β2 4 −β1, 0 4 β12 4 π. (29)
This may be accomplished by swapping the end points and the signs of the coordinates
if necessary, and the solution may similarly be transformed to apply to the original
points. All geodesics with βV= [|β1|, π/2] and α1=[0, π] intersect the parallel of
latitude β2 with λ12=[0, π]. Meridional (λ12=0 or π) and equatorial (β1=β2=0, and
λ12<=(1− f )π) geodesics are treated as special cases. The general case is solved by the
analog of Newton’s method as outlined below. The longitude difference of a geodesic
depends on its initial azimuth as northeast or southeast shown as the conditional
Equation (30) that is constrained by Condition (29). If the course is southeast bound,
then the reference initial point is near the destination and the geodesic passes the
vertex and the variable t1 is set to −2βV−β1). Otherwise, the geodesic does not pass
the vertex; the variable t1 is set to β1.

λ(t1, t2), t2 = β2, t1 = −2NS·βV + (−1)NSβ1 (30)
where the direction logical variable NS is given in Equation (32).
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The geodesic with vertex latitude β1 departing from latitude β1 intersects the parallel
of the latitude β2 at the longitude difference λNS as shown in Equation (31):

λNS = λ(β1, β2, c = cos(β1)) (31)

The following conditions give the azimuth of a geodesic. If longitude difference λ12
is greater than the longitude difference λNS of the intersection, the initial course of the
geodesic is southeast bound, otherwise it is northeast bound as shown in Figure 5. The
logical variable NS is decided by Equation (32):

NS = 1, (λ12 − ΔλNS) . 0

0, (λ12 − ΔλNS) , 0

	
(32)

Vincenty (1975a) used the iterative method of Helmert (1880) to solve the inverse
problem and was aware of its failure to converge for nearly antipodal regions. In an
unpublished report (Vincenty, 1975b) gives a modification of his method which deals
with this case. Unfortunately, this method sometimes requires many thousands
of iterations to converge, whereas the approach shown below is used to approximate
Newton’s method and the innovative iterative method proposed here for nearly
antipodal regions only requires a few iterations.
Karney (2013) uses Newton’s method, requires a good starting guess and uses more

complex procedures which even involves firstly calculating the reduced length of the
geodesic and solving a fourth-order polynomial merely to find a good starting point,
and may involve a high computational cost. Using Newton’s Method solves the
inverse problem by the derivative of longitude difference with respect to c or βV as
shown:

c = c− λ(t1, t2) − λ12
∂λ(t1, t2)

∂c

, βV = βV − λ(t1, t2, c = cos(βV )) − λ12
∂λ(t1, t2)
∂βV

(33)

Differentiating the longitude difference function with respect to c gives

∂λ12
∂c

=
∂λ(β1, β2)

∂c
, NS = 0

∂λ(−βV , βV )
∂c

+ ∂λ(−β1, β2)
∂c

, NS = 1

8>><
>>: (34)

where the derivative of the function with respect to c in-between the two opposite
vertices is

∂λ(β ′
1, β ′

2)
∂c

=
ðβ ′

2

β ′
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 cos2

√
βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 β − c2
p

cos β
+ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 cos2 β

p
(cos2 β − c2)3/2 cos β

 !
dβ (35)

If the segment of the geodesic passes the vertex, the derivative of longitude difference
function with respect to c or βV involves the segment of geodesic from the south vertex
to the north vertex, which is non-differentiable as shown below.

∂λ(−βV , βV , c)
∂c

= 1 (36)
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By using the finite difference method, the derivative can be completely replaced in
all situations to avoid the non-differentiable condition as the following Equation (37).

∂λ

∂βV
� Δh[λ](βV )

h
=lim

h�0
λ(βV + h) − λ(βV )

h
(37)

In the general case, the Clairaut constant and the reduced latitude of the vertex
can be represented in terms of longitude difference and latitudes of the two given
endpoints.
The starting point for Newton’s method can be approximately obtained by the

spherical model. In rectangular coordinates, any point on the unitary sphere can be
represented as coordinates of

P
⇀ = (cos β cosω, cos β sinω, sin β) (38)

where ω can be replaced with λ approximately for the first iteration.
The normal to the plane of a great circle is the cross product of the two vectors as

shown:

N
⇀ = [xN yN zN] = P

⇀

1×P
⇀

2 (39)
The latitude of the vertex equals to the angle between the Z-axis and the normal to

the plane spanned by the two vectors.

tan βV =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2N + y2N

q
/zN (40)

Using the algebra symbolic system and the trigonometric identities expands the last
expression as Equation (41)). Sjöberg (2007; 2012) has also proven Equation (41) by
spherical trigonometric methods.

tan βV =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 β1 + tan2 β2 − 2 tan β1 tan β2 cos λ12/ sin λ12

q
(41)

Using trigonometric identity rewrites the formula for the Clairaut constant c as
Equation (42).

c = cos βV = sin λ12/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 β1 + tan2 β2 − 2 tan β1 tan β2 cos λ12 + sin λ12

q
(42)

If the two endpoints are located on the equator (β1=β2=0), then by applying
Equations (13) and (17), the various cases for the Clairaut constant c can be
determined by the following conditional Equation (43):

c =
1, λ12 4 π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

√

0, λ12 = π

cos(βV ), π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 , λ12 4 π

p
8>><
>>: (43)

If the two endpoints are located in the nearly antipodal regions (β1+β2=0) and
2ΔλV<λ12), then applying Equations (13) and (17), the various cases for the Clairaut
constant c can be determined by the following conditional Equation (44):

c = 0, λ12 = π
cos(βV ), 2ΔλV , λ12

	
(44)
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where the vertex reduced latitude (βV) is subject to Equation (13) as the following
repetitively:

1− λ12
π

= −c
X1
k=1

M2k,1 · e2k (45)

Truncating the series toward the first order gives the approximate Clairaut constant
c as shown in Equation (46):

ck = 2(π − λ12)
e2π

(46)

The accurate value can be re-approached several times by the following iterative
computation Equation (47) or Newton’s method:

ck+1 =
1− Δλ

π

−P1
k=1

M2k,1·e2k
(c = ck) (47)

Equation (47) shows that the solution to the Clairaut constant has unique values for
the two ends in the nearly antipodal regions.
Applying the method of the asteroid plane provided by Karney (2013) can

accelerate the speed of convergence. But the faster method implies a higher com-
putational cost to solve the quartic equation before starting the iteration. Once
the Clairaut constant and the coordinates of the end points of the geodesic are
known, the azimuths of the geodesic at the end points may be determined from
Equation (48)

α1 = NS·π + (−1)NS sin−1(cos βV/ cos β1) (48)
and

α2 = cos βV/ cos β2 (49)
Procedures for solving the geodesic inverse problem are summarised in Figure 7,

which gives all the required algorithms clearly for the readers’ convenience.

5. NUMERICAL RESULTS FOR DISTANCE AND LONGITUDE
EQUATIONS. Three examples are represented in this section. The first two
samples are cited from Tables 4 and 5 of Karney (2013). Those data obtained from his
results are compared with the results computed by the methods proposed here, which
are also compared with the results obtained from the great ellipse (GE) provided in
our previous work (Tseng et al., 2012a). Analysis of the efficiency and accuracy
between such comparisons are shown in Tables 2 and 3. It can be seen that the inno-
vative iterative method proposed here for nearly antipodal regions or general cases
only requires a few iterations.
The first example is specified by φ1=−30·12345°, φ2=−30·12344°, and λ12=

0·00005° as shown in Figure 8 (left). Because the two points are not nearly antipodal,
an initial guess for the reduced latitude βV of the vertex is found from Equation (41).
However, in cases of when two points are very close to each other, the line is short
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enough that the error in βV is negligible; the solution of this inverse problem is
completed by using finite difference or Newton’s method as shown in Table 1.
As the two points are very close to each other, the line is very short and the

differences between the geodesic and GE are very small; both sailing methods may be
applied here, even using rhumbline or plane sailing (Tseng et al., 2012b) gives near
identical results (shown in Table 1).
A second example is specified by φ1=−30°, φ2=29·9°, and λ12=179·8° in Figure 8

(right). In this case, the points are nearly antipodal, an initial guess for the Clairaut
constant c is found by solving Equation (46), then the solution of this problem is

NO

No
Yes

Yes

NO

Yes

Output:

Yes

No

Figure 7. The flow chart of algorithm for solving the geodesic inverse problem.
* eps and h is very small value; it is set to the value 10−10 here.
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completed by using finite difference or Newton’s method, the result is shown in
Table 2.
The function [dist,az]=distance(lat1,lon1,lat2,lon2,ellipsoid) provided in the

Mapping Toolbox® by MATLAB® computes the geodesic distance and azimuth
assuming that the points lie on the reference ellipsoid defined by the input ellipsoid.
This distance function of MATLAB adopts Vincenty’s algorithm which sometimes
requires many thousands of iterations or converges to a wrong answer in nearly
antipodal regions, whereas the approximated Newton’s method and innovative
iterative method for nearly antipodal regions as described here only requires a few
iterations. As shown in Table 2, Karney (2013) uses much more complex procedures
which even involve calculating the reduced length of the geodesic and solving a fourth-
order polynomial to merely find a good starting point for his method.
In the case of closely near antipodal regions, using the MATLAB® distance

function for this problem gives the incorrect result; the initial course and distance have
huge errors and cannot be accepted. The discrepancies between the results computed
by the proposed methods described here and of those provided by Karney (2013) are
negligible; the distance difference between the two is approximately 2·5 cm for this
very long geodesic. These results show that the new methods proposed here can be
accepted in practical sailing and geodesic calculations. The discrepancies have arisen
from truncating the expansion of Equations (7) and (10) both at order e10 leaving the
series up to e8, the truncated series generates errors in ae8 order which are centimetre-
level.
As shown in Table 3, the GE distance is 10812·32 m (5·9 nautical miles) further than

the distance of geodesic with the same input values. Fortunately in most cases of
navigation, the endpoints of practical sailing are seldom located closely in nearly
antipodal regions.
The third numerical example presented has a very long navigational route with

longitude differences between two endpoints of about 145°. The route is from
Valparaiso-Chile (32° 59·998′S, 71° 36·675′W) to Yokohama-Japan (34° 26·178′ N,
139° 51·39 E).
The results of Example 3 are shown in Table 3. The geodesic is slightly more curved

than the great ellipse (see Figure 9). The eccentricity is exaggerated and set to 0·5 to
show the difference between the GE and geodesic. In this example the discrepancy
between the two distances (GE: 9242·561583 nautical miles, geodesic: 9242·558019

S30.12345°,E0°

S30.12344°,E0.00005°

Figure 8. The track (left) of geodesic between very closely points. The tracks (right) of geodesic and
great ellipse from two nearly antipodal points.
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nautical miles) is approximately 6·6 metres, for which the GE can be accepted for the
practical purposes of navigation. As the track doesn’t pass through the vertex, the
differences of the two tracks are very small which can be negligible in practice. Also,
the geodesic distance obtained from the truncated series provided here generates tiny
discrepancies compared to those obtained from the different truncated series terms of
the in-built function “geodesicinv.m” in MATLAB™; both generate near consistent
results.

Table 1. Comparing the results of calculations with two very close endpoints.

φ1 −30·12345 β1 −30·03999084 λ12
φ2 −30·12344 β2 −30·03998085 0·00005
Type α1 α2 Distance (m) Vertex (βV)
Iteration.3 77·04355157491 77·04352648164 4·9442083 32·47383771905
Karny 77·04353354237 77·04350844913 4·9442080 N/A
Geo-K −0·0000180325 −0·0000180325 −0·0000002727 N/A
GE 77·04353347354 77·04350850622 4·9442083 32·463272635
Geo-GE 0·00001810137 0·00001797541 −0·00000001155 0·01056508420
Rhumb 77·04352097777 77·04352097777 4·9442083 N/A
Geo-Rh 0·00003059714 0·00000550387 −0·00000000975 N/A

Note: Geo-K=differences between the result calculated here and Karney’s result

Table 2. Comparing the results of calculations for Example 2.

φ1 −30 β1 −29·91674771 λ12
φ2 29·9 β2 29·81691642 179·8
Type α1 α2 Distance (m) Vertex (βV)
Iteration.4 161·89051809996 18·09074387477 19989832·80174 74·37052033
Iteration.5 161·89052473571 18·09073724635 19989832·79948 74·37051441
Iteration.6 161·89051780675 18·09074416765 19989832·79916 74·37051413
Iteration.7 161·89051748643 18·09074448761 19989832·80283 74·37052318
Iteration.8 161·89052806001 18·09073392574 19989832·80173 74·37052031
Iteration.9 161·89052470289 18·09073727914 19989832·80174 74·37052033
Karny 161·89052473633 18·09073724574 19989832·82761 N/A
Geo-K 0·00000003344 −0·00000003340 0·02587040 14 N/A
GE 119·81278909040 60·08786527687 20000645·13024 41·23006685
Geo-GE 42·07773561248 −41·99712799773 −10812·3285047 33·14045349
MATLAB 249·965610768079 19949421·17977 N/A
Geo-M −88·0750860652 40411·62

Table 3. Determining route from Yokohama to Valparaiso.

φ1 34·4363 β1 34·34660938 λ1 139·8565
φ2 −32·99996667 β2 −32·91213252 λ2 −71·61125
Type α1 α2 Distance (m) Vertex (βV) Δλ
Iteration.4 95·6463916608066 101·84339166742 17117217·4514763 34·75133588 −7·38E-09
Iteration.5 95·6463916578752 101·84339166604 17117217·4514763 34·75133588 0
GE 95·8009216264061 101·89601446318 17117224·0523846 34·74888819
Geo-Ge −0·1545300 −0·0526228 −6·6009083 0·0024477
MATLAB 95·6463916578635 101·84339166604 17117217·4823323
Geo-M 0·0000000000117 0·0000000000050 −0·0308560021222
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As one can see from Table 3, our method converges very quickly after the first
few iterations. The Δλ change of the calculated longitude difference and the given λ12
also converge very quickly. In the computer program designed by us, the tolerance is
set to 10−10 degree, the program designed for geodesic sailing here generates
50 linearly equally spaced points between the two latitudes β1 and β2, The behaviour
of change in longitude decreases as the latitude approaches to the Equator as shown
in Table 4.

6. CONCLUSIONS. This study presents algorithms for determining
the Clairaut constant or the vertex latitude from two given points on the spheroid. If
the given points are not in the antipodal regions (AR) governed by Equation (13), the
iterative formula of Equation (33) solves the vertex latitude. If the given points are
in the AR, the alternative iterative procedure described in Equation (47) solves the
Clairaut constant, in which in all cases the Clairaut constant and the vertex latitude
are unique. Once the Clairaut constant or the vertex latitude is determined, the length,
azimuths and waypoints along the geodesic are easily obtained. Outside the nearly AR
the geodesic is unique, while for the endpoints within the AR there are generally dual
geodesics mirrored in the equator, i.e. the azimuths are complementary at each point.

Figure 9. The track from Yokohama, Japan to Valparaiso, Chile.

Table 4. Waypoints on the geodesic from Yokohama to Valparaiso.

NO. Latitude Longitude Azimuth NO. Latitude Longitude Azimuth

1 34·43630 139·85650 95·64639 26 0·03103 −140·35266 124·75132
2 33·06190 150·64121 101·65066 27 −1·34621 −138·38003 124·72868
3 31·68730 157·39999 105·27294 28 −2·72345 −136·40288 124·65847
4 30·31250 162·73353 108·02157 29 −4·10066 −134·41649 124·54022
. . . . . . . . . . . . . . . . . . . . . . . .

22 5·53989 −148·29097 124·36448 47 −28·87555 −88·07172 110·35459
23 4·16271 −146·28977 124·53375 48 −30·25055 −83·56869 108·13184
24 2·78550 −144·30285 124·65418 49 −31·62536 −78·28040 105·41146
25 1·40827 −142·32538 124·72654 50 −32·99997 −71·61125 101·84339
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Our technique to solve the inverse geodetic problem is more accurate and complete
than solutions found in other literatures mainly from the central role played by the
initial course or Clairaut constant, where partial ideas of this were originally presented
by Sjöberg (2007; 2012). Once the constant or vertex latitude is given, the solution is
straightforward. In this way we avoid the difficulties of finding the iterative solutions
and the starting guess points in the AR which are as reported e.g. in Vincenty (1975a)
and Karney (2013). With aid of CAS and basic calculus knowledge, the mathematical
derivations presented here are more straightforward and understandable. The variable
t is introduced to replace reduced latitude which has the interval between [−∞ ∞],
using the conditional longitude and distance functions with the variable t can sketch
any point on the geodesic. The methods provided here do not involve any auxiliary
sphere and corresponding arguments which then need many spherical trigonometry
formulae; our methods can reach arbitrary truncated series as the user’s need is limited
only by ability of the computer used.
The expressions derived here are suitable to both the syntax of computer algorithms

and research purposes in the areas of sailing and cartographical computation in GIS
and ECDIS environments. The differences of distances between the great ellipse and
geodesic sailing passing two antipodal points will generate the greatest discrepancy
whereas on the Equator, it can reach a maximum of about 18·1300799 nautical miles.
This is not acceptable for practical purposes of navigation and ECDIS, and there may
be alternatives to solve this problem, such as a compromised solution with two sep-
arated great ellipses sailing, which may be worth studying in the future. The proposed
algorithm for geodesic sailing provides extremely high accuracies with efficiencies
comparable to those algorithms provided by previous literatures. Numerical tests
show that the algorithms of the geodesic provided here gives near identical results, yet
it is faster and more direct than previous literatures, and can also be used in nearly
antipodal regions where MATLAB®’s distance function often does not work
correctly. The aim of this paper is to facilitate navigators and designers of GIS or
electronic charts to design navigational software more efficiently, accurately, easily
and much more understandably.
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