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Abstract 

Weed infestations have been identified as a major cause of yield reductions in rapeseed (Brassica 

napus L.), a vital oil crop that has gained significant prominence in Iran, especially within Fars 

Province. Weed management using machine learning algorithms has become a crucial approach 

within the framework of precision agriculture for enhancing the efficacy and efficiency of weed 

control strategies. The evolution of habitat suitability models for weeds represents a significant 

advancement in agricultural technology, offering the capability to predict weed occurrence and 

proliferation accurately and reliably. This study focuses on the issue of dominant weed 

infestation in rapeseed cultivation, particularly emphasizing the prevalence and impact of wild 

oat (Avena fatua L.) as the dominant weed species in rapeseed farming in 2023. We collected 

data on 12 environmental variables related to topography, climate, and soil properties to develop 

habitat suitability models. Three "machine learning techniques", including "random forest (RF)", 

"support vector machine (SVM)", and "boosted regression tree (BRT)", were estimated based on 

the “receiver operating characteristic (ROC) and area under the curve (AUC)” to model the 

distribution of A. fatua. Model performance was quantified using the “ROC curve and AUC” 

metrics to identify the best predictive algorithm. The findings indicated that "Random Forest 

(RF), boosted regression tree (BRT), and support vector machine (SVM)" models exhibited 

accuracies of 99%, 97%, and 96% for the habitat suitability of A. fatua, respectively. The Boruta 

feature selection method identified the slope variable as significantly influential in wild oat 

habitat suitability modeling, followed by plan curvature, clay, temperature, and silt. This study 

serves as a case study that highlights the utility of machine learning for habitat suitability 

predictions when information on multiple environmental variables is available. This approach 

supports effective weed management strategies, potentially enhancing rapeseed productivity and 

mitigating the ecological impacts associated with weed infestation. 

Keywords: Weed management, Habitat suitability, Precision agriculture, Machine learning, 

Ecological modeling 
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Introduction 

Rapeseed (Brassica napus L.) has gained global significance as a valuable oilseed crop that is 

widely cultivated because of its high-quality oil and protein-rich by-products (Neik et al. 2020). 

Rapeseed is the second major oilseed crop globally with the increasing world demand and 

production, followed by soybean oil (Tu et al. 2024). Its versatility as a source of edible oil, 

animal feed, and biofuel contributes to its pivotal role in food security and renewable energy 

sectors (Tileuberdi et al. 2022). Rapeseed exports have increased in recent decades, and by 2025 

they are expected to expand by 40% (Tiwari et al. 2020). 

Since 1996, rapeseed production in Iran has grown consistently in the international oilseed 

marketplace (Spörl et al. 2022). The increasing demand for sustainable agriculture highlights the 

necessity of efficient rapeseed cultivation practices, promoting its resilience to environmental 

stressors, and optimizing yield (Majidian et al. 2024). A notable challenge in rapeseed 

production is weed management, which can significantly reduce crop yield and quality by 

competing for resources such as nutrients, water, and sunlight (Hassan et al. 2023). This 

significant threat not only affects grain production and yield but may also compromise the 

quality of rapeseed oil, showing the urgent need for the agricultural sector to explore innovative 

practices and technologies to mitigate this challenge (Walia and Kumar 2020). A critical 

component in the formulation of effective management plans is a comprehensive understanding 

of weed flora and its geographical distribution. Such knowledge facilitates the application of 

herbicides and development of other appropriate management techniques (Krähmer et al. 2020; 

Nath et al. 2024). 

Several weed species have been recognized for their significant effects on rapeseed yield 

and cultivation. The management and control of these weeds are crucial for maintaining the 

productivity and profitability of rapeseed crops (Asaduzzaman et al. 2020). Avena fatua (wild 

oats), belonging to the Gramineae family, is one of the most dominant weeds in rapeseed and is 

currently found in approximately 50 countries globally (Matsuhashi et al. 2021). Some studies 

have shown that wild oats can significantly reduce crop yield, highlighting their severe impact on 

agricultural productivity (Tang et al. 2024). Moreover, wild oats present a significant challenge 

because of their substantial resistance to herbicides, increasing control efforts, and causing an 

ongoing threat to rapeseed cultivation (Onkokesung et al. 2022).  
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GIS is one of the most effective and precise tools for producing weed distribution maps. 

These systems leverage advanced technologies to accurately identify areas infested by weeds, 

thereby facilitating targeted management approaches (Mohan and Giridhar 2022). Detailed 

species distribution and habitat suitability modeling enabled by geographic information system 

(GIS) technology play a critical role in environmental management by providing in-depth 

assessments of the interactions between different species and their environments.  

In recent years, machine learning algorithms have emerged as powerful tools for modeling 

the habitat suitability of weeds based on environmental variables (Rather et al. 2020). By 

analyzing data on soil composition, climate conditions, and other ecological factors, machine 

learning models can predict the likelihood of weed proliferation in specific areas (Bi et al. 2024). 

These insights can aid in preemptive weed management strategies tailored to environmental 

conditions, thereby enhancing the precision of crop management practices in rapeseed farming 

(Akhter et al. 2020). 

The integration of machine learning techniques (MLTs) into habitat suitability modeling 

(HSM) represents a cutting-edge approach that enhances the prediction and understanding of 

geographical distribution (Beery et al. 2021). By utilizing the power of algorithms and 

computational models, machine learning can analyze complex environmental and biological data 

to identify patterns and relationships that influence the presence or absence of species across 

different fields (Jeon et al. 2023). The use of habitat suitability as a measure for assessing the 

risk of weed infestation has increased globally (Hartl et al. 2024). HSM has been increasingly 

employed to identify areas that are potentially vulnerable to various weed species over extensive 

geographical areas (Qazi et al. 2023; Wang et al. 2023). Schartel et al. (2021) determined the 

habitat suitability of eight exotic species that were invasive in Baja California and assessed their 

distribution and invasion risk. Wan and Wang (2019) evaluated the compatibility of habitats for 

ten dangerous weed species and proposed a strategy for mitigating the risks posed by these weed 

species by modifying prevention and control methods. 

Several studies have used MLTs to predict species distribution and habitat suitability 

modeling, such as support vector machine (SVM), random forest (RF), boosted regression trees 

(BRT), classification and regression trees (CARTs), generalized additive models (GAMs), and 

generalized linear models (GLMs) (Gholami et al. 2021; Mondal and Bhat 2021). RF is a group-

learning method that uses multiple decision trees to improve prediction accuracy and is ideal for 
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assessing habitat suitability by evaluating diverse environmental variables (Renjana et al. 2024). 

Environmental research widely employs the support vector machine (SVM) framework, rooted 

in statistical learning theory. Although SVM demonstrates significant utility, its effectiveness in 

modeling habitats that favor the growth of specific plant species remains an area of ongoing 

investigation (Tazikeh et al. 2022). The BRT model combines the principles of boosting, a 

machine learning technique, with regression trees, and creates a powerful predictive model 

(Salditt et al. 2023). In predicting natural events and hazard backgrounds, models such as RF, 

SVM, and BRT have gained prominence because of their simplicity and efficacy (Berhane et al. 

2021; Hasannejadasl et al. 2023; Hasan et al. 2024). However, the utilization of these models to 

assess habitat suitability for weed species in rapeseed fields remains relatively underexplored in 

scientific literature. 

This study set forth two primary aims to address the key challenges in rapeseed farming 

within the Fars Province of Iran. First, it sought to identify and document the predominant weed 

species affecting rapeseed cultivation across the region, thereby contributing essential data to 

local agronomic research. Second, we implemented and compared three advanced modeling 

approaches, RF, SVM, and BRT, to predict habitat suitability for the identified dominant weed 

species. The assessment of influential environmental factors facilitated by the Boruta algorithm 

further enhances the model interpretability and ecological insight. Additionally, the selection of 

the optimal model based on the receiver operating characteristic (ROC) curve and area under the 

curve (AUC) maximizes predictive accuracy, pioneering the application of these machine 

learning techniques in weed habitat modeling. These aims collectively address a significant 

research gap, offering foundational knowledge that can improve precision in weed management 

strategies, reduce yield losses, and promote sustainable rapeseed production. 

 

Materials and Methods 

Study area 

This investigation was performed in the southwestern region of the Fars Province, Iran, in 2023 

(Fig. 1). The research region is situated between 27° 15′ 29′′ and 30° 24′ 36′′ N, and between 51° 

29′ 32′′ and 54° 28′ 49′′ E. According to the FAO (2024), Iran has expanded its rapeseed 

cultivation significantly, reaching a total of around 200,000 hectares. This growth is part of the 

country's efforts to boost self-sufficiency in oilseed production, with regions like Fars Province 
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playing a crucial role. Geographical analyses based on topographic maps show that Fars 

Province encompasses both mountainous terrain and plains. The province is also distinguished 

by its climatic diversity, with the four seasons exerting distinct effects on regional flora. This 

variation in climate is largely attributed to the varied elevation, ranging from 182 to 3,183 meters 

above sea level. The Fars Province has an "average annual rainfall" of 315 mm and an "average 

annual temperature" of 15 °C (Kheiri et al. 2024). The average slope of the Fars Province is 7 °, 

which is particularly favorable for rapeseed cultivation. 

 

Methodology 

This research followed a five-stage methodology: (1) data collection, (2) preparation of 

influential factors, (3) habitat suitability modeling using three models: RF, SVM, and BRT, (4) 

evaluation of models and selection of the best model, and (5) variable importance analysis, as 

illustrated in Fig. 2.  

 

Data collection and Sampling  

In the present study, sampling was conducted through 114 rapeseed fields in 28 different 

counties of the Fars Province, based on the cultivation area of this crop. Some studies have 

demonstrated that the presence of weeds at the 6–8 leaf growth stage significantly reduces 

rapeseed yield (Bečka et al. 2021). Chao et al. (2023) stated that the critical period for weeds in 

autumn rapeseed growth can reduce plant performance by more than 10%; therefore, rapeseed 

should be maintained without weeds. Therefore, sampling was carried out during the winter 

season in 2023, when rapeseed is in the 6-8 growing leaf stage. Sampling was conducted using a 

0.25-m² quadrat in the form of a W-shaped field based on the cultivation area (Fried et al. 2022) 

in each country (Table 1 and Fig. 3). 

In addition to weed sampling, the geographic coordinates of each farm (latitude and 

longitude) were determined by using a GPS device. After collecting weeds from various 

rapeseed fields, they were accurately identified and counted based on genus and species. Soil 

samples from each point were transferred to the laboratory to determine the chemical and 

physical properties of the soil in each rapeseed field. Based on the equations presented (1–5), the 

"frequency %, uniformity %, mean field density (plant/m
2
), and abundance index of different 

species" (Thomas 1985) were evaluated in Fars Province: 
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where n is the "number of fields visited,” Yi is the "presence or absence of species k in 

field i,” and Fk is the frequency of species k across all the quadrats. The following formula was 

used to obtain the uniformity index for species k (Uk). 

    
      

 
 
 

   
 

                                                                                                                             

where Xij indicates the "presence or absence of species k in the i-th quadrat" and "j-th 

field, with n fields and m quadrats". 

    
    

 

 
                                                                                                                                            

m is the number of thrown quadrats and "Zj is the number of plants in the quadrat.” "Dki is 

the density (number of plants per meter) of the k species at field number i. 

     
     

 

 
                                                                                                                                     

Equation (4) states that "n is the number of fields visited", "Dki is the density (number of 

plants per meter) of k species on field number i", and MDSK is the mean density of species k. 

                                                                                                                                             

Finally, Equation (5) was used to determine the dominance index of the weeds. Using this 

equation, the "frequency (Fk), field uniformity (Uk), and mean density of species k (MDSK)" 

were combined to determine the predominant weed species.  

 

Important factors 

In general, for habitat suitability modeling, it is necessary to identify the factors that affect weed 

growth and development. For example, some studies have demonstrated that environmental 

factors including topography, soil chemical and physical properties, road development, 

temperature, and rainfall can affect weed distribution (Jehangir et al. 2024). Twelve layers were 

used as influencing factors, including "elevation, slope degree, slope aspect, plan curvature, 

distance from rivers, mean annual precipitation, mean annual temperature, pH, EC, and soil clay, 

silt, and sand percentages," which were considered to affect the growth and development of 

weed species. These 12 study layers were then converted to 30-meter resolution for future 

analyses (Kabiri et al. 2022) in ArcGIS version 10.8.1 (https://www.esri.com/en-

us/arcgis/products/arcgis-desktop/overview). The annual mean rainfall and temperature data 
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were gathered from 29 meteorological organizations in the counties of the Fars Province. The 

data were then converted to a point map using ArcGIS version 10.8.1 software. The point map 

and study area were converted into temperature and rainfall maps using a 30-meter resolution by 

the IDW algorithm (Fig. 4 (A–B)).  

In total, 189 soil samples were collected at a depth of 30 cm. A hydrometer was used to 

determine the physical characteristics of the soil, such as the amounts of "sand, silt, and clay" 

(Feng et al. 2024). A pH meter and a "conductivity meter" were used to test the pH and EC of the 

soil, respectively. "Sand, silt, clay, pH, and EC" layers were also converted into a raster map 

with 30-m resolution (Fig.4 (C-G)). A "digital elevation model (DEM)" of Fars Province was 

applied to assess "elevation, slope degree, slope aspect, and plan curvature" with a 30-m 

resolution (Fig. 4 (H–K)). Using topographic maps at a resolution of 1:25,000, a raster map of 

the distance from the rivers was created to assess the impact of the rivers on habitat suitability 

(Fig. 4 L). 

Random forest (RF) 

Random Forest (RF) is a supervised learning method developed by Breiman (2001) and consists 

of an ensemble of decision trees used for both classification and regression tasks. The RF model 

operates by constructing multiple trees during training and outputting the mode of the classes or 

mean prediction for classification and regression, respectively. This approach, which enhances 

model robustness and accuracy, is particularly effective for complex data, making it highly 

suitable for habitat suitability modeling (Talhami et al. 2024). 

In this study, the key parameters for RF, such as n_estimators (number of trees in the 

forest), max_depth (maximum depth of each tree), and min_samples_split (minimum number of 

samples required to split a node), were optimized. We used grid search cross-validation to tune 

these parameters, with n_estimators ranging from 100 to 500, max_depth from 10 to 50, and 

min_samples_split set to identify the optimal values. The performance of the model was 

evaluated using accuracy, F1 score, and AUC/ROC metrics, providing a comprehensive 

assessment of model accuracy and threshold-specific performance. The RF model was 

implemented using the random forest package in R (https://cran.r-

project.org/web/packages/randomForest/index.htm(, which facilitates parameter tuning and 

cross-validation. 
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Support vector machine (SVM) 

The Support Vector Machine (SVM), introduced by Vapnik (1997), is a nonparametric statistical 

method that does not assume any particular distribution of the dataset. SVM is effective for high-

dimensional data with a relatively small number of samples, making it suitable for species 

distribution modeling (Kumar et al. 2024). 

For our SVM model, the key parameters included C (penalty parameter) and the kernel 

type (linear, polynomial, sinusoidal, or radial basis function). The C parameter was tuned from a 

range of 0.1 to 10 on a log scale to balance the margin and misclassification tolerance, while 

kernel selection was optimized based on model performance. Accuracy, F1 score, and 

AUC/ROC metrics were used for model evaluation, emphasizing precision and recall owing to 

potential class imbalance. The SVM model was implemented using the e1071 package in R 

(https://cran.r-project.org/web/packages/e1071/index.html(, which provides comprehensive 

support for parameter optimization and evaluation. 

 

Boosted regression trees (BRT) 

A BRT is an ensemble method that combines the predictions of several weak classifiers into a 

stronger overall model (Alnahit et al. 2022). It uses the CART framework to iteratively add trees 

that correct errors made by previous ones, optimizing both the learningrate (learning speed) and 

n_estimators. 

For this study, learning rate and estimators were optimized using a range of 0.01 to 0.1 for 

learning_rate and up to 500 trees for n_estimators. We also tuned max_depth to control tree 

complexity and prevent overfitting. The model was evaluated using accuracy, F1 score, and 

AUC/ROC metrics to provide a robust assessment of the predictive accuracy across thresholds. 

We implemented BRT using the gbm package in R (https://cran.r-

project.org/web/packages/gbm/index.html(, which facilitates parameter tuning and cross-

validation, including early stopping based on AUC/ROC performance. 

 

Boruta algorithm 

A critical component of this research involves evaluating the importance of variables in spatial 

modeling for habitat suitability to guide optimal management strategies (López-Torres et al. 

2023). The Boruta algorithm was chosen for this purpose because it effectively identifies 
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influential variables by leveraging the random forest model's capacity for variable selection (Li 

et al., 2023). The algorithm operates by iteratively comparing the importance of actual features 

to shadow features, which are randomized duplicates, thus distinguishing truly important 

predictors from noise (Xiao et al. 2024). 

For the implementation, we used the Boruta package in R (https://cran.r-

project.org/web/packages/Boruta/index.html(. The key parameters included maxRuns, set to 500 

to ensure sufficient iterations for stable results, and doTrace, set to 2 for detailed output during 

the execution of the algorithm. The maxRuns parameter influences the stability and reliability of 

the variable importance ranking. Higher values provide more robust assessments by allowing 

more comparisons across iterations. Additionally, we used a p-value threshold of 0.05 to 

statistically identify significant variables. 

The Boruta algorithm outputs three categories of variables: Confirmed, Tentative, and 

Rejected (Han et al. 2022). This categorization helps refine the selection process by confirming 

variables with a statistically meaningful impact on habitat suitability while excluding non-

informative features (Wang et al. 2022). The results of the Boruta algorithm provide a clear 

ranked list of predictor variables crucial for understanding and managing habitat suitability 

patterns across different regions (Prasad et al. 2022). The variable importance derived from 

Boruta was instrumental in identifying which factors were most relevant in weed habitat 

suitability modeling, thereby guiding targeted management strategies. 

Accuracy of models 

In habitat suitability modeling, where the goal is to forecast the "presence or absence" of a 

species in various locations, ROC and AUC metrics are essential tools for assessing model 

performance (Jamali et al. 2024). For this purpose, 70% of the presence data of the dominant 

weed were used in the modeling process, while the remaining 30% of the data were utilized for 

validation and to evaluate the model's projected accuracy.  

In this study, the 70:30 split between training and validation datasets was selected based on its 

established utility in predictive modeling and its practical alignment with the dataset size. This 

ratio is widely used in ecological and machine learning applications as a standard practice 

(Fielding and Bell 1997), balancing the competing requirements of sufficient data for model 

training and a reasonable subset for validation. The chosen split minimizes overfitting risk while 

allowing the evaluation of model performance on an independent dataset. 
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Given the dataset size, this split is particularly well-suited to maximize the reliability of model 

parameter estimation and predictive accuracy. Despite the relatively modest dataset size, 

ecological modeling often operates with limited datasets due to challenges such as field 

collection constraints and environmental variability (Elith et al. 2006). While larger datasets are 

ideal, the 70:30 split effectively uses the available data to produce statistically sound results, 

consistent with studies in similar contexts (Hameed and Alamgir 2022). 

The ROC curve and AUC are widely used metrics for assessing prediction models' accuracy. The 

ROC curve, a graphical representation, plots two parameters to show how well a classification 

model performs: the "True Positive Rate (TPR)" or sensitivity, and the "False Positive Rate 

(FPR)" or 1-specificity, across different threshold values (Muschelli 2020). The TPR, 

represented on the y-axis, indicates the proportion of real positives correctly identified by the 

model, while the FPR, shown on the x-axis, represents the proportion of real negatives that are 

incorrectly classified as positives (Carrington et al. 2022). A single aggregate performance 

metric across all potential classification thresholds is provided by the ROC curve and AUC 

(Verbakel et al. 2020; Saha et al. 2023). The AUC value ranges from 0 to 1 and is classified into 

four performance categories: "0.5-0.6 (poor), 0.6-0.7 (moderate), 0.7-0.8 (good), 0.8-0.9 (very 

good), and 0.9-1.0 (excellent)" (Table 2). In this study, the ROC-AUC was utilized to evaluate 

the RF, BRT, and SVM models using SPSS software version 26 (http://www.ibm.com). 

 

Collinearity Test of Effective Factors 

The Collinearity test of useful elements is a crucial technique of statistical analysis employed to 

diagnose the extent of “multi-collinearity” among independent variables within a regression 

model (Barman et al. 2024). To quantitatively assess “multi-collinearity,” the "variance inflation 

factor (VIF)" and tolerance indices were utilized. These metrics offer insights into the degree of 

linear association between an independent factor and the remaining independent variables in the 

model. A VIF value of 5 or 10 and above is generally regarded as demonstrating a problematic 

level of multi-collinearity, indicating an exaggerated variance in an "estimated regression 

coefficient" by a factor of 5 or 10 because of its linear relationship with other variables (Cheng et 

al. 2022). The percentage of volatility of an independent variable that cannot be accounted for by 

other independent variables is called the tolerance. Hence, a lower tolerance value indicates a 

higher overlap of explanatory information among variables, signifying a potential multi-
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collinearity issue. Typically, a tolerance value of less than 0.20 or 0.10 is considered indicative 

of significant multi-collinearity (Negash and Alelgn 2022). 

 

Results and Discussion 

Determine the dominant weed 

Frequency percentages of genera and species were used to assess the dominant weeds. The initial 

findings from the sampling process indicated that A. fatua emerged as the most prevalent weed 

species, signifying its significant presence and impact in the sampled areas. Notably, 32 

dominant weed species were identified, with wild oats being the primary dominant species, with 

a frequency of 58.48% (Table 3). This indicated the critical importance of A. fatua in terms of 

their abundance and ecological influence on the studied environments.  

 

Multi-collinearity test 

Table 4. shows the collinearity between the factors affecting the species distribution modeling of 

A. fatua in the study area. Thus, based on the findings obtained, the tolerance coefficient is not 

less than 0.1 in any of the indices, and the variance inflation factor was not five or greater in any 

of the indices; therefore, there was no collinearity between the indices used. Otherwise, there 

will be multi-collinearity between the independent parameters and parameter estimates, and 

statistical significance standards will be targeted (Rovetta et al., 2023). This leads to a lack of 

acceptable accuracy for spatial analysis, especially in RF, BRT, and SVM modeling.  

 

Machine-learning techniques (MLTs) 

The final maps of the RF, SVM, and BRT models were divided into four classes to determine the 

suitability of the wild oat habitats (Fig. 5A).  

 

RF Algorithm 

According to the RF model, the low (66.56%), moderate (16.35%), high (11.71%), and very high 

(5.38%) classes had the largest relative areas (Table 5). In addition, the RF model map showed 

that the northern, northwestern, central, eastern, western, southeastern, and southwestern regions 

of the study area had the highest "habitat suitability" for A. fatua (Fig. 5A). However, some 

https://doi.org/10.1017/wsc.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.5


centers had low "habitat suitability" for A. fatua (Fig. 5A). However, the northeast and parts of 

the center were not affected by this weed invasion. 

 

 BRT Algorithm 

The habitat suitability map of A. fatua by BRT showed that the low (56.65%), moderate 

(26.93%), high (11.71%), and very high (4.55%) classes had the largest relative areas (Table 5).  

The situation of the counties regarding the suitability of the habitat of A. fatua based on the BRT 

model, was the same as that of the RF model (Fig. 5B). This demonstrated that these models had 

the same performance in terms of predicting the habitat suitability of this weed. 

 

SVM Algorithm 

The SVM model had different classification conditions such that the moderate (37.89%), low 

(37.89%), high (19.81%), and very high (6.74%) classes had the highest relative areas (Table 5). 

The suitability map of the SVM model showed that parts of the " northern, northwestern, and 

southern study areas had a greater habitat suitability for A. fatua (Fig. 5C). In this model, small 

portions of the research area ("west, northwest, southeast, east, and north") had the highest 

habitat suitability. According to the findings of the SVM model, it can be emphasized that the 

east had the highest habitat suitability for A. fatua (Fig. 5C). In addition, counties in the 

"southwest, southeast, and a large portion of the center of the research area" had low habitat 

suitability.   

Evaluation of algorithms 

In this study, the models were evaluated using the “ROC curve” and “AUC.” The most accurate 

models were the "RF, BRT, and SVM" models according to the ROC curve (Fig. 6). Also, the 

"area under the curve" confirmed the accuracy of the RF (0.99%), BRT (0.97), and SVM (0.96) 

models (Table 6). Huang et al. (2021) have reported that the areas under the curve are 0.5–0.6 

(poor), 0.6–0.7 (moderate), 0.7–0.8 (good), 0.8–0.9 (very good), and 0.9–1 (excellent), 

respectively.  Therefore, the RF, BRT, and SVM models were excellent in this study. 
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Variables importance 

In this study, the relevance of these variables is evaluated through the application of the "Boruta 

algorithm." This method was used to determine the most influential factors in the analysis. The 

results of the “Boruta algorithm” demonstrated that the slope, plan curvature, clay, temperature, 

and silt factors had the greatest impact on the modeling of A. fatua habitat suitability (Table 7). 

Differences in the slope of the soil throughout the terrain may have affected the growth and 

expansion of A. fatua. This factor has a profound effect on vegetation dispersal patterns. One of 

the important effects of land slope is moisture absorption. For example, south-facing slopes 

subjected to higher solar irradiance typically exhibit reduced soil moisture levels, constraining 

plant growth. 

Practical Implications and Conclusion 

This study highlights the practical applications of machine learning algorithms, including 

Random Forest (RF), Support Vector Machine (SVM), and Boosted Regression Tree (BRT), for 

modeling the habitat suitability of A. fatua in rapeseed fields. Each algorithm brings unique 

advantages to understanding weed distribution, which is crucial for devising sustainable and site-

specific management strategies to mitigate the detrimental effects of A. fatua on crop 

productivity. By leveraging the strengths of these models, this research provides actionable 

insights that align with contemporary agricultural goals of improving efficiency while 

minimizing environmental impacts. 

The RF model emerged as the most effective algorithm, achieving the highest accuracy (99%) in 

predicting habitat suitability. This model was instrumental in identifying key environmental 

predictors, such as slope, soil texture, and plan curvature, that significantly influence A. fatua 

distribution. Its embedded feature selection capabilities not only enhanced interpretability but 

also allowed for the refinement of management practices in heterogeneous agricultural 

landscapes. Studies by Kang et al. (2022) and Melash et al. (2023) further validate the efficacy of 

RF in handling complex ecological datasets with numerous interacting variables. Additionally, 

RF’s ensemble approach ensures model stability and robustness to outliers, making it particularly 

suitable for field-based ecological studies characterized by high variability in environmental 

conditions. 

SVM also demonstrated its utility in analyzing high-dimensional datasets, with a classification 

accuracy of 96%. This algorithm excelled in differentiating between habitat suitability classes, 
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providing detailed ecological niche maps that are indispensable for spatially targeted weed 

management. The ability of SVM to handle complex interactions among environmental variables 

has been documented in recent works, including Akhtar et al. (2024) and O’Neill et al. (2023). 

These studies emphasize the importance of SVM in addressing challenges posed by diverse agro 

ecological conditions, where precision in habitat differentiation directly impacts the effectiveness 

of weed control measures. 

The BRT model, with an accuracy of 97%, effectively captured nonlinear relationships between 

A. fatua occurrence and predictor variables. This capacity for addressing nonlinearity is 

particularly significant in weed science, where ecological interactions are rarely linear. The 

ensemble-based nature of BRT enhances its prediction precision, a feature corroborated by 

studies such as Montoya-Jiménez et al. (2022) and Kumari et al. (2024). By integrating BRT into 

habitat suitability modeling, this study adds to the growing body of evidence supporting its 

applicability in managing invasive species in agricultural systems. 

Although the 70:30 training-validation split provides an efficient framework for ecological 

modeling, the dataset size remains a potential limitation of this study (Garcés et al. 2022). 

Smaller datasets inherently constrain the ability to capture rare patterns and subtle environmental 

interactions, which could impact model generalizability (Yu et al. 2024). However, this study 

operates within the boundaries of a case-study approach, where the primary goal is to explore 

and demonstrate a method's applicability rather than achieve universal generalizability. To 

address this limitation, the dataset size and split were carefully chosen to balance robustness in 

model training and reliable validation. Previous studies have demonstrated that even smaller 

datasets can yield valuable insights when the modeling methodology is rigorous (Wisz et al., 

2008). Additionally, the model's performance metrics, assessed using cross-validation, support 

the inference that the chosen split is sufficient for the study's aims. Future research could address 

this limitation by expanding the dataset through additional sampling or leveraging synthetic data 

generation techniques to augment the dataset size. Nevertheless, for a case-study framework, this 

approach aligns well with established methodologies, and the results provide meaningful insights 

into the ecological processes under investigation. 

The complementary strengths of RF, SVM, and BRT underscore their collective utility in 

ecological modeling. RF and BRT were particularly effective in assessing feature importance, 

while SVM provided the highest resolution in classification tasks. This integrated approach 
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offers a more comprehensive understanding of A. fatua habitat suitability and enables the 

creation of nuanced maps tailored to specific regional conditions. Such detailed mapping 

provides a critical basis for targeted interventions, ensuring that management resources are 

deployed efficiently and effectively in areas at high risk of weed invasion. 

The practical implications of this study extend beyond theoretical modeling. By generating 

habitat suitability maps, this research equips agricultural practitioners with precise tools for 

implementing site-specific weed management strategies. This targeted approach not only 

minimizes herbicide usage but also supports environmentally conscious practices that align with 

the principles of sustainable agriculture. Topographic factors, such as slope and aspect, emerged 

as pivotal predictors, corroborating findings from Yang et al. (2023) and Vykydalová et al. 

(2024) that highlight the role of microclimatic conditions in shaping weed distribution. Similarly, 

the influence of soil texture and temperature on habitat suitability aligns with broader ecological 

studies, such as those by Dastres et al. (2023) and Yao (2023), emphasizing the adaptive 

strategies of A. fatua in diverse agro ecological contexts. 

While the study showcases the effectiveness of RF, SVM, and BRT, it also acknowledges 

limitations inherent to these models. The accuracy of predictions is influenced by data quality 

and representativeness, as highlighted in recent works by Hasan et al. (2024) and Xu et al. 

(2024). Algorithmic biases, environmental variability, and scalability challenges further 

underscore the need for continuous refinement of these methods. For instance, temporal and 

spatial changes in environmental conditions may reduce the reliability of predictions over time, 

necessitating the development of more adaptive and scalable modeling frameworks. Future 

research should focus on addressing these limitations to enhance the robustness and 

generalizability of machine learning applications in weed science. 

In conclusion, this research advances the field of weed science by demonstrating the potential of 

machine learning models to improve habitat suitability predictions for dominant weeds like A. 

fatua. By integrating ecological, agronomic, and computational insights, the study lays a 

foundation for the development of sustainable, data-driven weed management strategies. The 

findings not only highlight the efficacy of RF, BRT, and SVM in ecological modeling but also 

provide a roadmap for their broader application in addressing challenges associated with 

agricultural sustainability and biodiversity conservation. 
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Table 1. Reviewing the fields of any county in Fars province 

Area under rapeseed cultivation (ha) in 

each county 

Number of fields measured 

< 500 2 

500 to 1,000 3 

1,000 to 5,000 4 

5,000 to 1,0000 6 

10,000 to 15,000 8 

15,000 to 30,000 11 

30,000 to 60,000 15 

> 60,000 one field added to 15 for each 10,000 ha 
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Table 2. The receiver operating characteristic (ROC) Curve Classification (Richardson et al., 

2024) 

Poor Moderate Good Very good Excellent 

0.5 – 0.6 0.6 – 0.7 0.7 – 0.8 0.8 – 0.9 0.9 - 1 
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Table 3. Frequency (%) of weeds in rapeseed fields 

Number Weed Family Frequency (%) 

1 Avena fatua L. Poaceae 58.48 

2 Sinapis arvensis L. Brassicaceae 45.68 

3 Malva neglecta Wallr. Malvaceae 36.62 

4 Chenopodium album L. Chenopodiaceae 34.46 

5 Convolvulus arvensis L. Convolvulaceae 31.64 

6 Sinapis arvensis L. Brassicaceae 29.61 

7 Centaurea depressa M. Bieb. Asteraceae 25.41 

8 Cerastium perfoliatum L. Caryophillaceae 24.46 

9 Triticum aestivum L. Gramineae 23.83 

10 Daucus carota L. Umbelferae 23.75 

11 Capsella bursa-pastoris Medik. Brassicaceae 23.81 

12 Descurainia sophia (L.) Webb ex Prantl.  Brassicaceae 23.28 

13 Carthamus glaucus M. Bieb. Compositae 23.19 

14 Spergula arvensis L. Caryophyllaceae 23.01 

15 Trifolium pratense L. Leguminosae 22.70 

16 Tragopogoh collinus Asteraceae 22.67 

17 Amaranthus retroflexus L. Amaranthaceae 22.57 

18 Cynodon dactylon (L.) Pers. Poaceae 22.33 

19 Cardaria draba (L.) Desv. Brassicaceae 22.32 

20 Hordeum spontaneum K. Koch poaceae 19.76 

21 Sonchus oleraceus L. Compositae 19.55 

22 Eruca sativa Lam. Brassicaceae 16.53 

23 Echinochloa crus-galli (L.) P. Beauv. poaceae 15.50 

24 Portulaca oleraceae L.  portulacaceae 15.44 

25 Eleusine indica (L.) Gaertn. Poaceae 14.24 

26 Suaeda aegyptiaca (Hasselq.) Zohary Amaranthaceae 14.23 

27 Eruca sativa Lam. Brassicaceae 14.19 

28 Centaurea depressa M. Bieb. Asteraceae 13.12 

29 Galium aparine L. Labiaceae 10.99 

30 Carduus nutans L. Compositae 10.96 

31 Tribulus terrestris L. Zigophalaceae 10.77 

32 Calendula arvensis L. Compositae 10.77 
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Table 4. Variance inflation factor 

Collinearity statistics 

Factors Variance inflation factor (VIF) Tolerance 

1.796 0.259 Slope aspect 

2.023 0.278 Clay (%) 

1.528 0.632 Elevation/DEM (m) 

3.000 0.566 Electrical conductivity (EC) (ds/m) 

1.747 0.323 pH 

1.842 0.199 Plan curvature (100/m) 

1.533 0.625 Mean annual rainfall (mm) 

1.531 0.627 Distance from rivers (m) 

2.002 0.289 Distance from roads (m) 

3.000 0.748 Sand (%) 

1.549 0.600 Silt (%) 

1.512 0.657 Mean annual temperature (°C) 

2.068 0.829 Slope degree 
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Table 5. Habitat suitability classes areas for all applied models 

Models Classes Relative area (%) 

Random forest (RF) 

Low 

Moderate 

High 

Very high 

66.56 

16.35 

11.71 

5.38 

Boosted regression tree (BRT) 

Low 

Moderate 

High 

Very high 

56.65 

26.93 

11.87 

4.55 

Support vector machine (SVM) 

Low 

Moderate 

High 

Very high 

35.57 

37.89 

19.81 

6.74 
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Table 6. Area under the curve 

Test Result Variable(s) Are

a 

Standar

d Error 

Asymptotic 

Significant 

Asymptotic 95% 

Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Boosted regression tree 

(BRT) 

0.9

7 

0.01 .00 0.96 0.99 

Random forest (RF) 0.9

9 

0.01 .00 0.98 1.000 

Support vector machine 

(SVM) 

0.9

6 

0.01 .00 0.94 0.98 
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Table 7. Examining the Significance of Variables using the Boruta Algorithm 

 Mean 

Importance 

Mean 

Importance 

Median 

Importance 

Maximum 

Importance 
Decision 

Elevation/DEM
* -0.77 -0.93 -2.52 1.27 Confiremed 

Aspect 13.28 13.20 11.79 14.60 Confiremed 

Clay percent 19.61 19.69 18.42 20.93 Confiremed 

EC
* 10.87 10.73 10.23 11.98 Confiremed 

pH 9.02 9.25 9.14 9.87 Confiremed 

Plan curvature 20.77 20.60 19.99 21.73 Confiremed 

Annual mean 

Rainfall 

10.07 10.61 8.42 11.34 Confiremed 

Distance from 

River 

11.12 11.17 10.19 12.56 Confiremed 

Sand percent 7.27 7.37 5.79 8.90 Confiremed 

Silt percent 14.41 13.97 12.39 16.52 Confiremed 

Slope degree 30.93 30.98 29.42 32.58 Confiremed 

Annual mean 

Temperature 

14.75 14.89 13.50 16.25 Confiremed 

*DEM (Digital elevation model); *EC (Electrical conductivity) 
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Figure 1. The research region is situated in Iran's Fars Province 
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Figure 2. An Avena fatua habitat suitability mapping flowchart (*DEM (Digital elevation 

model); *EC (Electrical conductivity) 
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Figure 3. Spatial distribution of rapeseed, and weed samp 
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Figure 4. Important layers, including: "mean annual temperature (A)", "mean annual precipitation (B)", " 

sand percent (C)", "silt percent (D)", "clay percent (E)", "electrical conductivity (EC) (F)", "pH (G)", 

"elevation/digital elevation model (H)", "slope degree (I)", "slope aspect (J)", "plan curvature (K)" and 

"distance from rivers (L)". 
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Figure 5. Habitat suitability maps of Avena fatua based on random forest (RF)(A), boosted 

regresion trees (BRT)(B), support vetor machine (SVM) (C) 
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Figure 6. The Receiver operating characteristic (ROC) curve for evaluating algorithms 
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