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SELF-REFERENTIAL THEORIES

SAMUEL A. ALEXANDER

Abstract. We study the structure of families of theories in the language of arithmetic extended to allow

these families to refer to one another and to themselves. If a theory contains schemata expressing its own

truth and expressing a specific Turing index for itself, and contains some other mild axioms, then that

theory is untrue. We exhibit some families of true self-referential theories that barely avoid this forbidden

pattern.

§1. Introduction. This is a paper about families of r.e. theories, each capable of
referring to itself and the others. Many of this paper’s results first appeared in the
author’s dissertation [1]. There, they were stated in terms of families of interacting
mechanical knowing agents. Here, wewill speak instead of families of self-referential
r.e. theories. We hope this will more directly expose the underlying mathematics.
In epistemology, it is well-known that a (suitably idealized) truthful knowing

machine capable of arithmetic, logic, and self-reflection, cannot know its own truth
and its own code. This is due, in various guises, to authors such as Lucas [8],
Benacerraf [3], Reinhardt [11], Penrose [9], and Putnam [10]. In terms of self-
referential theories, a true theory satisfying certain assumptions cannot contain
schemata stating its own truth and its own Gödel number (if such a theory did
exist, we could program a machine knower that knows precisely its consequences).
Reinhardt conjectured, andCarlson proved [5], a truthfulmachine knower can know
(in a local sense, i.e., expressed by infinite schemata rather than a single axiom) that
it is truthful and has some code, without knowing which. A true self-referential
theory can (in a local sense) state its own truth and recursive enumerability. We
showed [2] that, alternatively, a truthful machine can (in a local sense) exactly know
its own code, if not required to know its own truth. A true theory can state (in a
local sense) its own Gödel number.
Our goal is to generalize the above consistency results to multiple theories. The

paper contains four main findings. In the following list of promises, except where
otherwise stated,≺ is an r.e. well-founded partial-order onù, and expresses is meant
in the local (infinite schema) sense.

1. There are true theories (Ti)i∈ù such that Ti expresses a Gödel number of Tj
(all i,j) and Ti expresses the truth of Tj (all j ≺ i).

Received July 24, 2020.
2020Mathematics Subject Classification. 03F45.
Key words and phrases. quantified modal logic, strong mechanistic thesis.

© 2020, Association for Symbolic Logic

0022-4812/20/8504-0015

DOI:10.1017/jsl.2020.54

1687

https://doi.org/10.1017/jsl.2020.54 Published online by Cambridge University Press

www.doi.org/10.1017/jsl.2020.54
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2020.54&domain=pdf
https://doi.org/10.1017/jsl.2020.54


1688 SAMUEL A. ALEXANDER

2. There are true theories (Ti)i∈ù such that Ti expresses a Gödel number of Tj
(j ≺ i), the truth of Tj (j � i), and the fact that Tj has some Gödel number
(all i,j).

3. If ≺ is ill-founded, and if we extend the base language to include a predicate
for computable ordinals and require the theories to include rudimentary facts
about them, then 1 and 2 fail.

4. Finally, if we do not extend the base language as in 3, then there do exist
ill-founded r.e. partial orders ≺ such that 1 and 2 hold.

Our proofs of 1 and 2 are constructive, but the proof of 4 is nonconstructive. In
short, if 4 were false, either of 1 or 2 could be used to define the set WF of r.e.
well-founded partial orders of ù using nothing but arithmetic and a truth predicate
Tr for arithmetic. This is impossible sinceWF is Π11-complete and Tr is ∆

1
1.

§2. Preliminaries. To us, theory and schema mean set of sentences (a sentence is
a formula with no free variables).

Definition 1 (Standard Definitions).

1. When a first-order structure is clear from context, an assignment is a function
s mapping first-order variables into the universe of that structure. If x is a
variable and u is an element of the universe, s(x|u) is the assignment that
agrees with s except that it maps x to u.

2. We write M |= φ[s] to indicate that the first-order structure M satisfies the
formula φ relative to the assignment s. We writeM |= φ just in caseM |= φ[s]
for every assignment s. If T is a theory,M |= T means thatM |= φ for every
φ ∈ T .

3. We write FV(φ) for the set of free variables of φ.
4. We write φ(x|t) for the result of substituting term t for variable x in φ.
5. LPA is the language of Peano arithmetic, with constant symbol 0 and function
symbols S, +, · with the usual arities. If L extends LPA, an L-structure has
standard first-order part if it has universe N and interprets 0, S, + and · as
intended.

6. We define LPA-terms n (n ∈ N), called numerals, so that 0 ≡ 0 and n+1 ≡
S(n).

7. We fix a computable bijection 〈•, • ,•〉 : N3 → N. Being computable, this is
LPA-definable, so we may freely act as if LPA contained a function symbol
for this bijection. Similarly we may act as ifLPA contained a binary predicate
symbol • ∈W• for membership in the nth r.e. setWn.

8. Whenever a computable language is clear from context, φ 7→ pφq denotes
Gödel numbering.

9. A valid formula is one that is true in every structure.
10. A universal closure of φ is a sentence ∀x1 ···∀xnφ where FV(φ)⊆ {x1, ...,xn}.
We write ucl(φ) to denote a generic universal closure of φ.

Note that ifM is a structure and ø is a universal closure of φ, in order to prove
M |= ø it suffices to let s be an arbitrary assignment and showM |= φ[s].
To formalize self-referential theories, we employ an extension of first-order logic

where languages may contain new unary connective symbols. This logic is borrowed
from [5].

https://doi.org/10.1017/jsl.2020.54 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.54


SELF-REFERENTIAL THEORIES 1689

Definition 2 (The Base Logic). A language L of the base logic is a first-order
language L0 together with a class of symbols called operators. Formulas of L are
defined as usual, with the clause that Ti�φ is a formula whenever φ is a formula and
Ti� is an operator. Syntactic parts of Definition 1 extend to the base logic in obvious
ways (we define FV(Ti�φ) =FV(φ)). AnL-structureM is a first-orderL0-structure
M0 together with a function that takes one operator Ti�, oneL-formula φ, and one
assignment s, and outputs either True or False—in which case we writeM |=Ti�φ[s]
orM 6|= Ti�φ[s], respectively—satisfying the following three requirements.

1. Whether or notM |= Ti�φ[s] does not depend on s(x) if x 6∈ FV(φ).
2. If φ andø are alphabetic variants (meaning that one is obtained from the other
by renaming bound variables so as to respect the binding of the quantifiers),
thenM |= Ti�φ[s] if and only ifM |= Ti�ø[s].

3. For variables x and y such that y is substitutable for x in Ti�φ, M |=
Ti�φ(x|y)[s] if and only ifM |= Ti�φ[s(x|s(y))].

The definition of M |= φ[s] for arbitrary L-formulas is obtained from this by
induction. Semantic parts of Definition 1 extend to the base logic in obvious ways.

Traditionally the operator Ti� would be written Ki , and the formula Kiφ would
be read like “agent i knows φ”. For the present paper, the added intuition would
not be worth the philosophical distraction.

Theorem 3 (Completeness and compactness). Suppose L is an r.e. language in
the base logic.

1. The set of valid L-formulas is r.e.
2. For any r.e. L-theory Σ, {φ : Σ |= φ} is r.e.
3. There is an effective procedure, given (a Gödel number of ) an r.e.L-theory Σ, to
find (a Gödel number of ) {φ : Σ |= φ}.

4. IfΣ is anL-theory andΣ |=φ, there areó1, ...,ón ∈Σ such that
1 ó1→···→ ón→φ

is valid.

Proof. By interpreting the base logic within first-order logic (for details see [1]).
⊣

Definition 4. If L is a first-order language and I is an index set, let L(I ) be the
language (in the base logic) consisting of L along with operators Ti� for all i ∈ I .

In case I is a singleton, LPA(I ) is a form of Shapiro’s [12] language of Epistemic
Arithmetic.

Definition 5.

• For any LPA(I )-formula φ with FV(φ) = {x1, ...,xn}, and for assignment s
(into N), let φs be the sentence

φs ≡ φ(x1|s(x1)) ···(xn|s(xn))

obtained by replacing all free variables in φ by numerals for their s-values.
• For any language L extending LPA, if M is an L-structure, then M is said
to interpret formulas by substitution ifM has standard first-order part and the

1We write A→ B → C for A→ (B → C ), and likewise for longer chains.
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following property holds: for every L-formula φ and assignment s,M |= φ[s]
if and only ifM |= φs .

For example, if s(x)= 0 and s(y)= 2 then (∀z(x= y+z))s≡∀z(0=S(S(0))+z).

Definition 6. If T= (Ti)i∈I is an I-indexed family of LPA(I )-theories and N is
an LPA(I )-structure, we say N |= T if N |= Ti for all i ∈ I .

Definition 7. Suppose T = (Ti)i∈I is an I-indexed family of LPA(I )-theories.
The intended structure for T is the LPA(I )-structure MT with standard first-order
part, interpreting the operators Ti� (i ∈ I ) as follows:

MT |= Ti�φ[s] if and only if Ti |= φ
s .

IfMT |= T, we say T is true.

Lemma 8. For any family T= (Ti)i∈I of LPA(I )-theories,MT interprets formulas
by substitution.

Proof. In other words, we must show that for every LPA(I )-formula φ and
assignment s, MT |= φ[s] if and only if MT |= φ

s . The proof is a straightforward
induction. ⊣

Definition 9. By the axioms of Peano arithmetic forLPA(I ) we mean the axioms
of Peano arithmetic, with induction extended to LPA(I ).

Lemma 10. For anyLPA(I )-structureM, ifM interprets formulas by substitution,
thenM satisfies the axioms of Peano arithmetic for LPA(I ).

Proof. LetM be anyLPA(I )-structurewhich interprets formulas by substitution.
This meansM has standard-first order part and for every formula φ and assignment
s,M |= φ[s] if and only ifM |= φs .
Let ó be an axiom of Peano arithmetic for LPA(I ). If ó is not an instance of

induction, then M |= ó since M has standard first-order part. But suppose ó is
ucl(φ(x|0)→ ∀x(φ → φ(x|S(x)))→ ∀xφ). To see M |= ó, let s be an arbitrary
assignment and assume M |= φ(x|0)[s] and M |= ∀x(φ → φ(x|S(x)))[s]. By
assumption, M |= φs(x|0) and ∀m ∈ N, if M |= φs(x|m) then M |= φ(x|S(x))s(x|m).
Evidently φ(x|S(x))s(x|m) ≡ φs(x|m+1). By mathematical induction, ∀m ∈ N, M |=
φs(x|m). By assumption,M |= ∀xφ[s]. ⊣

Definition 11. SupposeT= (Ti)i∈I is a familyLPA(I )-theories. IfT
+= (T+i )i∈I

is another such family, we say T ⊆ T+ if Ti ⊆ T
+
i for every i ∈ I . If T is a single

LPA(I )-theory, we sayT ⊆T ifT ⊆Ti for all i ∈ I . IfT
1= (T 1i )i∈I andT

2= (T 2i )i∈I
are families of LPA(I )-theories, T

1∪T2 is the family T′ = (T ′
i )i∈I where each T

′
i =

T 1i ∪T
2
i . Arbitrary unions

⋃
n∈X T

n are defined similarly.

Definition 12. Suppose T = (Ti)i∈I is a family of LPA(I )-theories. For each
i ∈ I , we say Ti is Ti�-closed if Ti�φ ∈ Ti whenever φ ∈ Ti . We say T is closed if
each Ti is Ti�-closed.

Definition 13. If I is an r.e. index set, a family T = (Ti)i∈I is r.e. just in case
{(φ,i) : φ ∈ Ti} is r.e.
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§3. Generic axioms. If T is a family of theories whose truth was in doubt, and
if we state a theorem removing that doubt, we often state more: that T∪S is true,
whereS is some background theory of provability, including noncontroversial things
like Peano arithmetic or the schema ucl(Ti�(φ→ ø)→ Ti�φ→ Ti�ø). The choice
of S is somewhat arbitrary, or at best based on tradition. We will avoid this arbitrary
choice by stating results in the form: “T is true together with any background theory
of provability such that...”

Definition 14. A family T ofLPA(ù)-theories is closed-r.e.-generic if T is r.e. and
MU |= T for every closed r.e. family U⊇ T of LPA(ù)-theories.

Lemma 15. If T is a union of closed-r.e.-generic families and T is r.e., then T is
closed-r.e.-generic.

Proof. Straightforward. ⊣

Definition 16. For i ∈ I and forT anLPA(I )-theory, we write [T ]i for the family
T= (Tk)k∈I where Ti = T and Tk = ∅ for all k 6= i .

3.1. Closed-r.e.-generic building blocks. In this subsection, we will exhibit some
examples of closed-r.e.-generic families. They can be combined in diverse ways, via
Lemma 15, to form background theories of provability. This will allow us to state
Theorem 24 below in a generalized way, essentially saying that a certain doubted
theory is consistent with any background theory of provability made up of closed-
r.e.-generic building blocks. The alternative would be for us to arbitrarily choose one
such background theory and build it directly into Theorem 24, which would cause
the core details in the proof of Theorem 24 to get jumbled up with unimportant
distractions.
It is common for a theory to state its own closure under modus ponens. When

there are multiple theories, it is less clear whether each individual theory should only
state its own closure thereunder, or the closure of all the other theories, or of some
subset thereof. With the following lemma, we avoid arbitrarily imposing a decision
along these lines.

Lemma 17. For any i,j ∈ ù, the following family is closed-r.e.-generic:

• [S]i where S is: (j-Deduction) the schema ucl(Tj�(φ→ ø)→ Tj�φ→ Tj�ø).

Proof. Let U= (Uk)k∈ù be any closed r.e. family of LPA(ù)-theories such that
U ⊇ [S]i where S is j-Deduction. We must show MU |= [S]i . In other words we
must show MU |= ucl(Tj�(φ → ø)→ Tj�φ → Tj�ø) for any φ,ø. Let s be an
assignment and assume MU |= Tj�(φ→ ø)[s] and MU |= Tj�φ[s], we must show
MU |= Tj�ø[s]. By Definition ofMU, Uj |= (φ→ ø)s and Uj |= φ

s . Clearly (φ→
ø)s ≡ φs → øs so by modus ponens Uj |= ø

s , that is,MU |= Tj�ø[s]. ⊣

It might not be controversial to require that a theory express its own ability
to prove valid sentences, but in a multi-theory context, should we require each
theory to express that much about all its fellow theories? The following lemma
allows us to avoid arbitrarily declaring the right answer to that question. Part 2
of this lemma illustrates an interesting combinatorial property of closed-r.e.-generic
building blocks. Some schemas would not be suitable building blocks by themselves,
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butwhen pairedwith other schemas, the combination can become a suitable building
block.

Lemma 18. For any i,j ∈ ù, the following families are closed-r.e.-generic:

1. [S]i where S is: (Assigned Validity) the schema φ
s (φ valid, s an assignment).

2. [Assigned Validity]i ∪ [S]j where S is: (i-Validity) ucl(Ti�φ) for φ valid.

Proof. Both (1) and (2) are r.e. by Theorem 3.
(1) LetU= (Uk)k∈ù be a closed r.e. superset of [S]i where S is Assigned Validity.

We must show MU |= [S]i . If φ ∈ [S]i then φ is φ
s
0 for some valid φ0 and some

assignment s. Since φ0 is valid,MU |= φ0[s]. By Lemma 8,MU |= φs0 .
(2) Let U = (Uk)k∈ù be any closed r.e. family of LPA(ù)-theories such that

Ui contains Assigned Validity and Uj contains i-Validity. By (1), MU satisfies
Assigned Validity. It remains to show MU satisfies i-Validity. Let φ be valid and
s an assignment. Since Ui contains Assigned Validity, Ui |= φ

s , so by definition of
MU,MU |= Ti�φ[s]. ⊣

In modal logic, some papers treat the so-called positive introspection axiom (also
known as theKK axiom) as one of the fundamental axioms of knowledge, and some
do not. Rather than join either side, we prefer instead to study the combinatorial
structure of the axiom, asking: are there other schemas we can add to it to make the
combination closed-r.e.-generic?

Lemma 19. For any i,j ∈ ù, the following family is closed-r.e.-generic:

• [Assigned Validity]i ∪ [i-Validity]i ∪ [i-Deduction]i ∪ [S]j where S is:

(i-Introspection) the schema ucl(Ti�φ→ Ti�Ti�φ).

Proof. Recursive enumerability is by Theorem 3. LetU= (Uk)k∈ù be any closed
r.e. family of LPA(ù)-theories such that Ui contains Assigned Validity, i-Validity
and i-Deduction, and Uj contains i-Introspection. Then MU satisfies Assigned
Validity and i-Validity by Lemma 18. By Lemma 17, MU satisfies i-Deduction.
For i-Introspection, let s be an assignment and assume MU |= Ti�φ[s], we will
show MU |= Ti�Ti�φ[s]. Since MU |= Ti�φ[s], Ui |= φ

s . By Theorem 3, there are
ó1, ...,ón ∈ Ui such that ó1 → ··· → ón → φ

s is valid. Since Ui contains i-Validity,
Ui |= Ti�(ó1→ ··· → ón → φ

s). By repeated applications of i-Deduction contained
in Ui , Ui |= Ti�ó1→ ··· → Ti�ón → Ti�φ

s . Since U is closed, Ui is Ti�-closed and
so contains Ti�ó1, ...,Ti�ón. So Ui |= (Ti�φ)

s andMU |= Ti�Ti�φ[s]. ⊣

The following lemma shows that arithmetic is generic, which will enable us to
state a later result (Theorem 24) in such a way that it is clear that the result is neither
contingent on the presence, nor the absense, of arithmetic in the theories in question.

Lemma 20. For any i ∈ ù, [S]i is closed-r.e.-generic, where S is the set of axioms
of Peano arithmetic for LPA(ù).

Proof. By Lemmas 8 and 10. ⊣

Carlson proved [5] that it is consistent for an idealized knowing machine to know
“I am a machine” (without knowing which specific machine it is). The following
lemma sheds additional light: not only is it consistent for a knowing machine to
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know “I am amachine”, in fact that knowledge is generic: it does not depend heavily
on specific arbitrary decisions about the background theory of provability.

Lemma 21. For any i,j ∈ ù, the following family is closed-r.e.-generic.

• [S]i where S is: (j-SMT) (See [5] and [11]) ucl(∃e∀x(Tj�φ ↔ x ∈We)), e 6∈
FV(φ).

Proof. Suppose U= (Ui)i∈ù is a closed r.e. family of LPA(ù)-theories and U⊇
[S]i where S is j-SMT. We must showMU |= [S]i . That is, given φ with e 6∈ FV(φ),
we must show MU |= ucl(∃e∀x(Tj�φ↔ x ∈We)). Let s be an assignment and let
x1, ...,xk = FV(φ)\{x}. Since Uj is r.e., by the S-m-n theorem there is some n such

that Wn = {m : Uj |= φ(x|m)(x1|s(x1)) ···(xk |s(xk))}. Since e 6∈ FV(φ), and MU

has standard first-order part, it follows thatMU |= ∀x(Tj�φ↔ x ∈We)[s(e|n)]. ⊣

Finally, the following lemma offers a way to obtain new building blocks from old.
This can be combined with Lemma 21 to advance from “I am a machine” to “I
know I am a machine”.

Lemma22. For any i,j ∈ù and any closed-r.e.-generic familyT=(Tk)k∈ù ,T∪[S]i
is closed-r.e.-generic, where S is the schema: Tj�φ (φ ∈ Tj).

Proof. Suppose U = (Ui)i∈ù ⊇ T∪ [S]i is closed and r.e. Right away MU |= T
becauseT is closed-r.e.-generic. It remains to show thatMU |= [S]i , i.e., thatMU |=S.
Fixφ ∈Tj and let sbe anyassignment. Sinceφ is a sentence,φ≡φ

s and thusTj |=φ
s .

Since Uj ⊇ Tj , Uj |= φ
s . By definition ofMU,MU |= Tj�φ[s]. ⊣

We gather Lemmas 17–22 together into the following summary.

Corollary 23. For any i,j ∈ù, each of the following families is closed-r.e.-generic.

1. [j-Deduction]i .
2. [Assigned Validity]i .
3. [Assigned Validity]i ∪ [i-Validity]j .
4. [Assigned Validity]i ∪ [i-Validity]i ∪ [i-Deduction]i ∪ [i-Introspection]j .
5. [S]i where S is the set of axioms of Peano arithmetic for LPA(ù).
6. [j-SMT]i .
7. T∪ [S]i , for any closed-r.e.-generic T, where S is the schema: Tj�φ (φ ∈ Tj).

The above building blocks are not exhaustive. In choosing building blocks,
a primary concern was to facilitate creation of background provability theories
strong enough to make our consistency result (Theorem 24) generalize Carlson’s
consistency result [5]. If that were our lone motivation, we could restrict Corollary
23 to only those families where i = j, but a secondary motivation was to provide
inter-theory versions of those restricted building blocks. It would be interesting
to investigate questions about whether the above building-blocks are minimal. For
example, in Lemma 19, is it really necessary to bundle j-Introspection with all three
other schemas? For now, we will leave those questions open.

§4. First consistency result: prioritizing exact codes. The following theorem fulfills
the first promise from the introduction.
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Theorem 24. Suppose≺ is an r.e. well-founded partial order onù andT0= (T 0i )i∈ù
is closed-r.e.-generic. For each n ∈ N, let T(n) = (Ti(n))i∈ù where each Ti(n) is the
smallest Ti�-closed theory containing the following:

1. The axioms in T 0i .

2. ∀x(Tj�φ↔ 〈pφq,j,x〉 ∈Wn) whenever j ∈ ù, FV(φ)⊆ {x}.
3. ucl(Tj�φ→ φ) whenever j ≺ i .

There is some n ∈ N such that T(n) is true.

Proof. By the S-m-n Theorem, there is a total computable f : N→ N such that
∀n ∈ N,

Wf(n) = {〈pφq,i,m〉 : FV(φ)⊆ {x} and Ti(n) |= φ(x|m)}.

Using the Recursion Theorem, fix n ∈ N such thatWf(n) =Wn. For brevity write T
for T(n) and Ti for Ti(n). We will showMT |=T. This is a self-referential statement:
to show Ti is true includes showingMT |= ucl(Tj�φ→ φ), which is essentially the
statement that Tj is true. Hence the restriction j ≺ i , which allows induction since
≺ is well founded. We will show, by≺-induction on i, thatMT |= Ti for every i ∈ù.
Fix i ∈ù and assumeMT |= Tj for all j ≺ i . Suppose ó ∈ Ti , we will showMT |= ó.

Case 1. ó ∈ T 0i . Then MT |= ó because T
0 is closed-r.e.-generic and T ⊇ T0 is

closed r.e.
Case 2. ó is ∀x(Tj�φ↔ 〈pφq,j,x〉 ∈Wn) for some j ∈ù, FV(φ)⊆ {x}. Let s be

an assignment, m ∈ N. The following are equivalent.

MT |= Tj�φ[s(x|m)]

Tj |= φ
s(x|m) (Definition ofMT)

Tj |= φ(x|m) (Since FV(φ)⊆ {x})

〈pφq,j,m〉 ∈Wn (By definition of n)

MT |= 〈pφq,j,m〉 ∈Wn (MT has standard first-order part)

MT |= 〈pφq,j,x〉 ∈Wn[s(x|m)]. (Lemma 8)

Case 3. ó is ucl(Tj�φ→ φ) for some j ≺ i . Let s be an assignment and assume
MT |= Tj�φ[s]. This means Tj |= φ

s . By our ≺-induction hypothesis,MT |= Tj , so
MT |= φ

s . By Lemma 8,MT |= φ[s].
Case 4. ó is only present in Ti because of the clause that Ti is Ti�-closed. Then

ó is Ti�ó0 for some ó0 ∈ Ti . Being in Ti , ó0 is a sentence, so for any assignment s,
ó0 ≡ ó

s
0 , Ti |= ó

s
0 , and finallyMT |= Ti�ó0[s].

By ≺-induction,MT |= Ti for all i ∈ ù. This showsMT |= T, that is, T is true. ⊣

The first promise from the introduction is met: for any r.e. well-founded partial
order ≺ on ù, there are theories (Tn)n∈ù such that ∀i,j,k ∈ ù with j ≺ i , Ti
expresses the truth of Tj , and Ti expresses a Gödel number of Tk . In order to fulfill
the second promise we will extend Carlson’s notion of stratification to the case of
multiple operators, and introduce stratifiers, a tool used to deal with subtleties that
arise when multiple self-referential theories refer to one another.
In [2] the technique behind Theorem 24 was used to exhibit a machine that knows

its own code.
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§5. Stratification. For the second promise from the introduction, we need to
prove a result like Theorem 24 where Ti includes ucl(Tj�φ→ φ) for all j � i , not
just j ≺ i . This rules out the direct≺-induction of the type used above. Induction on
formula complexity will not work either: we would need to show all of Ti consistent
just to show MT |= Ti�(1 = 0)→ (1 = 0). Instead, we will use ordinal induction.
But there are no ordinals anywhere in sight. To obtain ordinals to induct on, we
will modify the theories we care about, in a process called stratification. We will
start with some informal motivational remarks. Readers who would like to advance
directly to the formal definitions can safely skip Subsection 5.1.

5.1. Motivation for stratification. As explained above, we would like to invoke
ordinal induction, but there are no ordinals in sight. In order to make ordinal
induction relevant, wewill do the following.Wewill extend the background language
to contain not only the operators Ti� (i ∈ ù), but also operators T

α
i � (i ∈ ù,

α ∈ å0 ·ù). And instead of focusing directly on Ti , we will focus on a theory Ui
such that the result U –i of erasing superscripts from Ui is U

–
i = Ti . The intended

interpretation of Tαi �φ[s] will be Ui ∩α |= φs , where Ui ∩α is the set of axioms
of Ui whose superscripts are < α. Thus, we may think of Ui as a version of Ti
with extra information about the structure of Ti . We will show (Theorem 50), for
certain formulas φ whose superscripts are positive multiples of å0, that φ holds (in
the intended interpretation) if and only if φ– holds. We will use this, after proving
that Ui holds, to conclude that Ti also holds.
Suppose we would like Ti to contain the axiom Ti�(1+1 = 2). Then, as we carry

out the procedure in the above paragraph, we would ensure that Ui contain all
sentences of the form Tαi �(1+1 = 2). This would have the side effect that for any

â > α,Ui ∩â |= T
α
i �(1+1 = 2), so that T

â
i �T

α
i �(1+1 = 2) would hold in structures

with the intended interpretation.
Next, suppose that for every arithmetical sentence φ, we would like Ti to include

Ti�φ→ Ti�Ti�φ.

Then we would arrange that Ui contain

Tαi �φ→ T
â
i �T

α
i �φ

(whenever â > α). The reason for the â is as follows. The intended interpretation
of Tαi �φ shall be Ui ∩α |= φ. Thus, it would make no sense to put the axiom
Tαi �φ→ Tαi �T

α
i �φ into Ui : the fact that Ui ∩α |= φ does not generally imply that

Ui ∩α |= Tαi �φ, sinceUi ∩α is limited to formulas in which all superscripts are<α.

At least Tαi �φ→ T
â
i �T

α
i �φ is plausible.

Again, suppose that for some j ≺ i , we would like for Ti to include

Ti�(Tj�(1 = 0)→ (1 = 0)).

We would arrange that Ui contain (for all α):

Tαi �(Tj�(1 = 0)→ (1 = 0)).

Note the lack of superscript on Tj�. The intuition is that Ui is a version of Ti with
extra information about the structure of Ti (namely, that said structure arises from
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an increasing family of theories), but without any additional information about the
structure of Tj .
Similarly, suppose we would like Ti to include

Tj�(Ti�(1 = 0))→ Ti�(1 = 0).

We would arrange that Ui contain (for each α):

Tj�(Ti�(1 = 0))→ T
α
i �(1 = 0).

Note the lack of superscript on the Ti� within the scope of Tj�. As above, the
intuition is that Ui is a version of Ti with extra information about the structure
of Ti . It does not have any extra information about the structure of Tj—not even
about what Tj says about Ti . This is important because, when j ≺ i , we would like
Ti to contain axioms declaring, essentially, the Gödel number of Tj . This Gödel
number would be hardcoded into such axioms, and thus there would be no hope of
such axioms remaining true if Tj were changed.

5.2. Stratification formal details. To get a foothold for induction, instead of
considering a particular theory Ti , we will be considering copies of Ti with ordinal-
number superscripts added. To recover information about the original Ti from
these modified theories, we will need to use sophisticated results from [4] about the
structure of the ordinals.

Definition 25. We define a binary relation≤1 on Ord by transfinite recursion so
that for all α,â ∈Ord, α ≤1 â if and only if α ≤ â and (α, ≤ , ≤1) is a Σ1-elementary
substructure of (â, ≤ , ≤1).

The following theorem is based on calculations from [4]. It was used by Carlson
to prove Reinhardt’s conjecture [5]. We state it here without proof.

Theorem 26.

1. The binary relation ≤1 is a recursive partial ordering on å0 ·ù.
2. For all positive integers m ≤ n, å0 ·m ≤1 å0 ·n.
3. For any α ≤ â ∈ Ord, α ≤1 â if and only if the following statement is true. For
every finite set X ⊆ α and every finite set Y ⊆ [α,â), there is a set X < Ỹ < α
such that X ∪ Ỹ ∼=(≤,≤1) X ∪Y .

The usefulness of Theorem 26 will appear in Theorem 38, but first we need some
machinery.

Definition 27. Let I = ((å0 ·ù)×ù)⊔ù. ThusLPA(I) contains operatorsT(α,i)�
for all α ∈ å0 ·ù, i ∈ ù, along with operators Ti� for all i ∈ ù. As abbreviation, we
write Tαi � for T(α,i)�, and refer to α as its superscript.

Definition 28. For any LPA(I)-formula φ, On(φ) ⊆ å0 ·ù denotes the set of
superscripts appearing in φ.

Definition 29. Suppose i ∈ ù. The i-stratified formulas of LPA(I) are defined
as follows (where φ ranges over LPA(I)-formulas).

1. If φ is Tj�φ0 for some j 6= i , then φ is i-stratified if and only if φ is anLPA(ù)-
formula.
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2. If φ is Tαj �φ0 for some j 6= i , then φ is not i-stratified.
3. If φ is Ti�φ0, then φ is not i-stratified.
4. Ifφ isTαi �φ0, thenφ is i-stratified if and only ifφ0 is i-stratified andα>On(φ0).
5. If φ is ¬φ0, φ1→ φ2, or ∀xφ0, then φ is i-stratified if and only if its immediate
subformula(s) are.

6. If φ is atomic, then φ is i-stratified.

An LPA(I)-theory T is i-stratified if φ is i-stratified whenever φ ∈ T . An LPA(I)-
formula φ is very i-stratified if φ is i-stratified and On(φ)⊆ {å0 ·1,å0 ·2, ...}.

For example:

• Tù7 �T
5
7�(1 = 0)→ T8�(1 = 0) is 7-stratified but not 6- or 8-stratified.

• T57�T
ù
7 �(1 = 0) is not 7-stratified, nor is T

5
7�T7�(1 = 0).

• T57�T8�T7�(1 = 0) is 7-stratified but T
5
7�T8�T

4
7�(1 = 0) is not.

We will not make use of the following lemma, but we state it to further illuminate
Definition 29.

Lemma 30. Suppose φ is an LPA(I)-formula, i ∈ ù. Then φ is i-stratified if and
only if all of the following conditions hold.

1. For all j ∈ ù and α ∈ å0 ·ù, if T
α
j � occurs in φ, then j = i .

2. Every occurrence of Ti� in φ is inside the scope of Tj� for some j 6= i .
3. Tαi � never occurs in φ inside the scope of Tj�, for any α ∈ å0 ·ù or any j ∈ ù.

4. For all α,â ∈ å0 ·ù, if T
α
i � occurs in φ inside the scope of T

â
i �, then â > α.

Proof. Straightforward. ⊣

Definition 31. Suppose X ⊆ å0 ·ù and h : X → å0 ·ù is order preserving. For
each LPA(I)-formula φ, define an LPA(I)-formula h(φ) inductively as follows:

1. If φ is ¬φ0, φ1→ φ2, or ∀xφ0, then h(φ) is ¬h(φ0), h(φ1)→ h(φ2), or ∀xh(φ0),
respectively.

2. If φ is atomic or Ti�φ0, then h(φ)≡ φ.

3. If φ is Tαi �φ0 where α ∈ X , then h(φ)≡ Th(α)i �h(φ0).
4. If φ is Tαi �φ0 where α 6∈ X , then h(φ)≡ Tαi �h(φ0).

In practice, we will mainly be interested in φ when φ is i-stratified for some i, in
which case Tαj � cannot occur within the scope of Tk� in φ for any k,j. For such φ,

h(φ) is simply the result of applying h to every superscript in φ that is in X.
For example if X = {1,ù}, h(1) = 0, and h(ù) = ù ·2+1, then

h
(
T0i �(1 = 0)→ T

1
i �(1 = 0)→ T

ù
i �(1 = 0)

)

≡ T0i �(1 = 0)→ T
0
i �(1 = 0)→ T

ù·2+1
i �(1 = 0).

In practice, we will primarily be interested in applying Definition 31 in the case
where On(φ)⊆ X .

Definition 32. Suppose X ⊆ å0 ·ù and h : X → å0 ·ù is order preserving. For
any LPA(I)-structure N , we define an LPA(I)-structure h(N ) that has the same
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universe as N , agrees with N on LPA(ù), and interprets LPA(I)\LPA(ù) so that

h(N ) |= Tαi �φ[s] if and only if N |= h(Tαi �φ)[s].

Lemma 33. Suppose X ⊆ å0 ·ù, h : X → å0 ·ù is order preserving, and N is an
LPA(I)-structure. For any LPA(I)-formula φ and assignment s, h(N ) |= φ[s] if and
only if N |= h(φ)[s].

Proof. By induction. ⊣

Corollary 34. Suppose X ⊆ å0 ·ù and h :X → å0 ·ù is order preserving. For any
valid LPA(I)-formula φ, h(φ) is valid.

Proof. For any LPA(I)-structure N and assignment s, h(N ) |= φ[s] by validity,
so N |= h(φ)[s] by Lemma 33. ⊣

Definition 35. If X ⊆ Ord and h : X → Ord, we call h a covering if h is order
preserving and whenever x,y ∈ X and x ≤1 y, h(x)≤1 h(y).

Definition 36. Suppose i ∈ ù. An LPA(I)-theory T is i-unistratified if the
following conditions hold:

1. T is i-stratified.
2. (Uniformity) Whenever φ ∈ T , X ⊆ å0 ·ù, On(φ)⊆ X , and h : X → å0 ·ù is a
covering, then h(φ) ∈ T .

Definition 37. If T is an LPA(I)-theory and α ∈ å0 ·ù, let T ∩α be the set
{φ ∈ T : On(φ)⊆ α} of sentences in T that do not contain any superscripts ≥ α.

Theorem 38 (The Collapse Theorem). Suppose T is an i-unistratified LPA(I)-
theory.

1. If n is a positive integer andOn(φ)⊆ å0 ·n, thenT |= φ if and only ifT ∩(å0 ·n) |=
φ.

2. If α ≤1 â and On(φ)⊆ α, then T ∩α |= φ if and only if T ∩â |= φ.

Proof. Note that since T is i-unistratified, in particular T is i-stratified. We will
prove (1), the proof of (2) is similar.
(⇐) Immediate since T ∩ (å0 ·n)⊆ T .
(⇒) Assume T |= φ. By Theorem 3 there are ó1, ...,ók ∈ T such that

Φ ≡ ó1→ ··· → ók → φ

is valid. Let X =On(Φ)∩ (å0 ·n), Y =On(Φ)∩ [å0 ·n,∞), note |X |,|Y |<∞.
Since Y is finite, there is some integer n′ > n such that Y ⊆ å0 ·n

′. By Theorem 26
part 2, å0 ·n ≤1 å0 ·n

′. By Theorem 26 part 3, there is some X< Ỹ < å0 ·n such that
X ∪ Ỹ ∼=(≤,≤1) X ∪Y .

Let h :X ∪Y →X ∪Ỹ be a (≤ , ≤1)-isomorphism. Since On(φ)⊆ å0 ·n, h(φ) = φ.
By Corollary 34,

h(Φ) ≡ h(ó1)→ ··· → h(ók)→ φ

is valid. SinceT is i-unistratified, h(ó1), ...,h(ók)∈T . Finally since range(h)< å0 ·n,
h(ó1), ...,h(ók) ∈ T ∩ (å0 ·n), showing T ∩ (å0 ·n) |= φ. ⊣
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Loosely speaking, what we have done in Theorem 38 is we have taken a proof of φ
and we have collapsed the proof, shrinking its ordinals by using Theorem 26 part 3.

Definition 39. For every i ∈ ù we define the following LPA(I)-schema:

• (i-Collapse) ucl(Tαi �φ↔ T
â
i �φ) whenever T

α
i �φ is i-stratified and α ≤1 â .

Definition 40. For any LPA(I)-formula φ, φ
– is the result of erasing all

superscripts from φ. If T is an LPA(I)-theory, T
– = {ó– : ó ∈ T}.

For example, if φ is Tù5 �(1 = 0)→ T
ù+1
5 �Tù5 �(1 = 0), then φ

– is T5�(1 = 0)→
T5�T5�(1 = 0).

Lemma 41. If T is i-unistratified then for every φ ∈ T there is some ø ∈ T such
that ø is very i-stratified and ø– ≡ φ–.

Proof. Let X = On(φ) = {α1 < ··· < αn}, Y = {å0 · 1, ...,å0 · n}, and define h :
X → Y by h(αj) = å0 ·j. Clearly h is order preserving; by Theorem 26 part 2, h is a
covering. SinceT is i-unistratified,T containsø≡ h(φ). Clearlyø is very i-stratified
and ø– ≡ φ–. ⊣

Definition 42. For any LPA(ù)-structure N , we define an LPA(I)-structure
N
– that has the same universe as N , agrees with N on LPA(ù), and interprets

LPA(I)\LPA(ù) as follows. For any LPA(I)-formula φ, α ∈ å0 ·ù, i ∈ N, and
assignment s,

N
– |= Tαi �φ[s] if and only if N |= (Tαi �φ)

–[s].

Lemma 43. Suppose N is an LPA(ù)-structure. For every LPA(I)-formula φ and
assignment s, N – |= φ[s] if and only if N |= φ–[s].

Proof. By induction. ⊣

Corollary 44. If φ is a validLPA(I)-formula, then φ
– is a validLPA(ù)-formula.

Proof. Similar to the proof of Corollary 34. ⊣

A converse-like statement holds for Corollary 44 as well.

Lemma 45. For any valid LPA(ù)-sentence φ and i ∈ ù, there is a valid very
i-stratified LPA(I)-sentence ø such that ø

– ≡ φ.

Proof. Letø 7→ø+ be the function takingLPA(ù)-formulas toLPA(I)-formulas
defined as follows.

1. If ø is atomic, or of the form Tj�ø0 with j 6= i , then ø
+ ≡ ø.

2. If ø is Ti�ø0, then ø
+ ≡ T

å0·n
i �ø+0 , where n =min{m ∈N : å0 ·m>On(ø

+
0 )}.

3. If ø is ¬ø0, ø0 → ø1, or ∀xø0, then ø
+ is ¬ø+0 , ø

+
1 → ø+2 , or ∀xø+0 ,

respectively.

It is straightforward to show φ+ is very i-stratified. We claim φ+ is valid. LetM be
anyLPA(I)-structure, we will showM |= φ+. LetM+ be theLPA(ù)-structure with
the same universe as M, which agrees with M on the interpretation of arithmetic
and of Tj� for j 6= i , and which interprets Ti� as follows:

M
+ |= Ti�ø[s] if and only ifM |= (Ti�ø)

+[s].
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Since φ is valid,M+ |= φ. It follows thatM |= φ+. ⊣

Definition 46. Let i ∈ ù. We define the following LPA(I)-schemas.

• (i-Strativalidity) ucl(Tαi �φ) whenever φ is a valid LPA(I)-formula and T
α
i �φ

is i-stratified.
• (i-Stratideduction) ucl(Tαi �(φ→ø)→ T

α
i �φ→ T

α
i �ø) whenever this formula

is i-stratified.

Definition 47. An LPA(I)-theory T is i-straticlosed if the following conditions
hold:

1. T is i-unistratified.
2. T includes i-Strativalidity, i-Stratideduction and i-Collapse.
3. For every φ ∈ T , if Tαi �φ is i-stratified then T

α
i �φ ∈ T .

A family T= (Ti)i∈ù is straticlosed if each Ti is i-straticlosed.

The following theorem serves as an omnibus of results from S5 of [5].

Theorem 48 (Proof Stratification). Suppose T is an i-straticlosed LPA(I)-theory.
Then:

1. Whenever T ∩α |= φ, Tαi �φ is an i-stratified sentence, and â > α, then T ∩â |=
Tαi �φ.

2. For any very i-stratified LPA(I)-sentences ñ and ó, if ñ
– ≡ ó– then T |= ñ↔ ó.

3. For any very i-stratified LPA(I)-sentence φ, T |= φ if and only if T – |= φ–.

Proof. Note that since T is i-straticlosed, in particular T is i-unistratified and
hence, i-stratified.
Claim 0. Any time T |= Tαi �(ñ↔ ó) and this is i-stratified, T |= Tαi �ñ↔ T

α
i �ó.

Assume the hypotheses. By i-Strativalidity, T |= Tαi �((ñ ↔ ó)→ (ñ → ó)). By
i-Stratideduction,

T |= Tαi �((ñ↔ ó)→ (ñ→ ó))→ T
α
i �(ñ↔ ó)→ T

α
i �(ñ→ ó)

and T |= Tαi �(ñ→ ó)→ T
α
i �ñ→ T

α
i �ó.

It follows that T |= Tαi �ñ→ T
α
i �ó. The reverse implication is similar.

Claim 1. If T ∩α |= φ, Tαi �φ is an i-stratified sentence, and â > α, then T ∩â |=
Tαi �φ.
Given T ∩α |= φ, there are ó1, ...,ón ∈ T ∩α such that ó1 → ··· → ón → φ is

valid. By instances of i-Strativalidity and i-Stratideduction contained in T ∩ â ,
T ∩â |= Tαi �φ.
Claim 2. If ñ and ó are very i-stratified LPA(I)-sentences and ñ

– ≡ ó–, then
T |= ñ↔ ó.
By induction on ñ. Note that ñ is not of the form Tαj �ñ0 (with j 6= i), as that is

not i-stratified. If ñ is Tj�ñ0 then ñ ≡ ñ
– ≡ ó– ≡ ó and the claim is immediate.

The only nontrivial remaining case is when ñ is Tαi �ñ0. Since ñ is very i-stratified,
this implies α = å0 · n (some positive integer n) and ñ0 is very i-stratified. Since
ó– ≡ ñ– and ó is very stratified, this implies ó ≡ T

å0·m
i �ó0 for some positive integer

m and very i-stratified ó0 with ó
–
0 ≡ ñ

–
0 . Assume m ≤ n, the other case is similar.

By induction, T |= ñ0↔ ó0. By compactness, there is a natural ℓ ≥ n such that

T ∩ (å0 · ℓ) |= ñ0 ↔ ó0. By Claim 1, T |= T
å0·ℓ
i �(ñ0 ↔ ó0); Claim 0 then gives T |=
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T
å0·ℓ
i �ñ0↔T

å0·ℓ
i �ó0. The claim now follows sinceT contains i-Collapse and å0 ·m≤1

å0 ·n ≤1 å0 · ℓ (Theorem 26 part 2).
Claim 3. If φ is an i-stratified LPA(I)-sentence and T |= φ, then T – |= φ–.
By compactness, find ó1, ...,ón ∈ T such that ó1 → ··· → ón → φ is valid. By

Corollary 44, so is ó–1 → ··· → ó–n → φ
–, witnessing T – |= φ–.

Claim 4. If φ is a very i-stratified LPA(I)-sentence and T
– |= φ–, then T |= φ.

By compactness, there is a valid sentence

Φ ≡ ó–1 → ··· → ó–n → φ
–

where each ój ∈ T . By Lemma 45, there is a valid very i-stratified LPA(I)-sentence
Ψ such that Ψ– ≡Φ. And because Ψ– ≡Φ, this implies

Ψ ≡ ó∗1 → ··· → ó∗n → φ
∗

where each (ó∗j )
– ≡ ó–j , (φ

∗)– ≡ φ–, and ó∗1 , ...,ó
∗
n ,φ

∗ are very i-stratified.

By Lemma 41, there are very i-stratified ó∗∗1 , ...,ó
∗∗
n ∈ T with each (ó∗∗j )

– ≡ ó–j ≡

(ó∗j )
–. By Claim 2, T |= φ∗ ↔ φ, and for j = 1, ...,n, T |= ó∗∗j ↔ ó∗j . Thus

T |= (ó∗∗1 → ··· → ó∗∗n → φ)↔Ψ,

and since Ψ is valid and the ó∗∗j ∈ T , this shows T |= φ. ⊣

Definition 49. If T = (Ti)i∈ù is a straticlosed family of LPA(I)-theories, its
stratification, written Str(T), is the family Str(T) = (Si)i∈I , where for every i ∈ ù,
Si = T

–
i and ∀α ∈ å0 ·ù, S(α,i) = Ti ∩α.

Theorem 50 (The Stratification Theorem). Suppose T= (Ti)i∈ù is a straticlosed
family ofLPA(I)-theories. For any i ∈ù, any very i-stratifiedLPA(I)-formula φ, and
any assignment s,MStr(T) |= φ[s] if and only ifMStr(T) |= φ

–[s].

Proof. By induction on φ. The only nontrivial case is when φ is Tαi �ø. Since φ
is very i-stratified, ø is very i-stratified and we may write α = å0 ·n for some positive
integer n, On(ø)⊆ å0 ·n. The following are equivalent.

MStr(T) |= T
å0·n
i �ø[s]

Ti ∩ (å0 ·n) |= ø
s (Definition ofMStr(T))

Ti |= ø
s (Theorem 38)

T –i |= (ø
s)– (Theorem 48)

T –i |= (ø
–)s (Clearly (øs)– ≡ (ø–)s)

MStr(T) |= Ti�ø
–[s]. (Definition ofMStr(T)) ⊣

§6. Stratifiers. In order to apply theorems from the previous section, it is
necessary to work with families T = (Ti)i∈ù where each Ti is i-stratified. If we
want T –i to (locally) express the truthfulness of T

–
j , we cannot simply add a schema

like ucl(Tj�φ → φ) to Ti , because this is not necessarily i-stratified: for example,
the particular instance Tj�Ti�(1 = 0)→ Ti�(1 = 0) is not i-stratified. But neither
is, say, Tj�T

α
i �(1 = 0)→ T

α
i �(1 = 0), where T

α
i � occurs within the scope of Tj�. We

will use a schema ucl(Tj�φ→ φ
+), where •+ varies over what we call i-stratifiers.
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Definition 51. Suppose X ⊆ å0 ·ù, |X |=∞, and i ∈ ù. The i-stratifier given by
X is the function φ 7→ φ+ taking LPA(ù)-formulas to LPA(I)-formulas as follows.

1. If φ is atomic or of the form Tj�φ0 with j 6= i , then φ
+ ≡ φ.

2. If φ is Ti�φ0 then φ
+ ≡ Tαi �φ

+
0 where α =min{x ∈ X : x >On(φ

+
0 )}.

3. If φ is ¬ø, ø→ ñ, or ∀xø, then φ+ is ¬ø+, ø+→ ñ+ or ∀xø+, respectively.

By an i-stratifier we mean an i-stratifier given by some X. By the i-veristratifier we
mean the i-stratifier given by X = {å0 ·1,å0 ·2, ...}.

For example, if •+ is the i-veristratifier and j 6= i then

(Tj�Ti�(1 = 0)→ Ti�Ti�(1 = 0))
+ ≡ Tj�Ti�(1 = 0)→ T

å0·2
i �T

å0
i �(1 = 0).

Lemma 52. Suppose Z ⊆ å0 ·ù, h : Z → å0 ·ù is order preserving, i ∈ ù, and •
+

is an i-stratifier. For any LPA(ù)-formula è with On(è
+)⊆ Z, there is a computable

i-stratifier •∗ with è∗ ≡ h(è+).

Proof. Let X0 = {h(α) : α ∈ On(è+)}, let X = X0∪{α ∈ å0 ·ù : α > X0}, and
let •∗ be the i-stratifier given by X. By induction, for every subformula è0 of è,
è∗0 ≡ h(è

+
0 ). ⊣

Definition 53. By a stratifier-set, we mean a finite set

I = {•+1, ...,•+k}

where each •+p is an ip-stratifier for some ip ∈ ù, and i1, ...,ik are distinct. With I
as above, we write Indices(I ) for {i1, ...,ik}. We say I is computable if each •

+p is
computable.

For example, if •+1 is a 1-stratifier, •+2 is a 5-stratifier, and •+3 is a 2-stratifier, then
I = {•+1, •+2 ,•+3} is a stratifier-set and Indices(I ) = {1,5,2}. For a non-example,
if •∗1 and •∗2 are distinct 1-stratifiers, then {•∗1,•∗2} is not a stratifier-set, because
it fails the distinctness condition.

Definition 54.

1. SupposeN is anLPA(I)-structure and I is a stratifier-set.We define anLPA(I)-
structure N

I as follows. The universe and interpretation of arithmetic of N I

agree with those ofN , as do the interpretations ofTi� (i 6∈ Indices(I )) andT
α
i �

(any α, i). For each i ∈ Indices(I ), let •+ ∈ I be the corresponding i-stratifier,
and letN I interpret Ti� as follows. For anyLPA(I)-formula φ and assignment
s, we consider two cases.
(a) If φ is an LPA(ù)-formula, then N

I |= Ti�φ[s] if and only if N |=
(Ti�φ)

+[s].
(b) If φ is not an LPA(ù)-formula, then N

I |= Ti�φ[s] if and only if N |=
Ti�φ[s].

2. For any i ∈ ù, any i-stratifier •+, and any LPA(I)-structure N , let N + =N
I

where I = {•+} is the stratifier-set containing only •+.

Case 1b in Definition 54 is somewhat arbitrary. We will only ever really care
about whether N

I |= Ti�φ[s] when Ti�φ is j-stratified for some j. If φ is not an
LPA(ù)-formula then Ti�φ is not j-stratified for any j.
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Lemma 55 (Compare Lemma 43). Suppose N is an LPA(I)-structure, i ∈ ù, and
•+ is an i-stratifier. For every LPA(ù)-formula φ and assignment s, N

+ |= φ[s] if and
only if N |= φ+[s].

Proof. By induction. ⊣

Lemma 56. For any LPA(ù)-formula φ, any i ∈ ù, and any i-stratifier •
+, φ is

valid if and only if φ+ is valid.

Proof. (⇒) Assume φ is valid. For any LPA(I)-structure N and assignment s,
N
+ |= φ[s] by validity, so N |= φ+[s] by Lemma 55.
(⇐) By Corollary 44. ⊣

Lemma 57. Suppose M is an LPA(I)-structure, I0 is a stratifier-set, i ∈ ù,
i 6∈ Indices(I0), and •+ is an i-stratifier. Let I = I0 ∪ {•+}. Then M

I = (MI0)+.
Furthermore,M+ andM

I agree on the interpretation of Ti�.

Proof. Straightforward. ⊣

Lemma 58. Suppose i ∈ù and supposeM is anLPA(I)-structure with the property
that for every very i-stratified LPA(I)-formula φ and assignment s,M |= φ[s] if and
only if M |= φ–[s]. Suppose I is a stratifier-set such that i 6∈ Indices(I ). Then for
every very i-stratified LPA(I)-formula φ and assignment s,M

I |= φ[s] if and only if
M
I |= φ–[s].

Proof. By induction on φ. Let s be an assignment. The only interesting cases are
the following.
Case 1. φ is Tj�ø for some j. Then φ

– ≡ φ and the claim is trivial.
Case 2. φ has the form Tαj �ø for some j 6= i . Impossible, this is not i-stratified.
Case 3. φ has the form Tαi �ø. The following are equivalent:

M
I |= Tαi �ø[s]

M |= Tαi �ø[s] (M andM
I agree on Tαi �)

M |= (Tαi �ø)
–[s] (By hypothesis)

M
I |= (Tαi �ø)

–[s]. (Since i 6∈ Indices(I ),M andM
I agree on Ti�) ⊣

Lemma 59. SupposeLPA(I)-structureM is an instance ofDefinition 7, and suppose
I is a stratifier-set. ThenM

I interprets formulas by substitution.

Proof. By induction on |I |. If |I |= 0, we are done by Lemma 8. Otherwise, we
may decompose I as I = I0 ∪{•+} where •+ is an i-stratifier. By induction, MI0

interprets formulas by substitution (∗). By Lemma 57,MI = (MI0)+.
By definition of interpreting formulas by substitution, for every LPA(I)-formula

φ and assignment s, MI0 |= φ[s] if and only if M
I0 |= φs . We must show that for

every such φ and s, (MI0)+ |= φ[s] if and only if (MI0)+ |= φs .
We induct on φ. By Definition 54, (MI0) and (MI0)+ agree on all symbols except

Ti�, and they agree onTi�φ0 ifφ0 is not anLPA(ù)-formula. Thus the only nontrivial
case is when φ is of the form Ti�φ0 for some LPA(ù)-formula φ0. Any such φ is
itself an LPA(ù)-formula and thus susceptible to Lemma 55. The following are
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equivalent.

(MI0)+ |= φ[s]

M
I0 |= φ+[s] (Lemma 55)

M
I0 |= (φ+)s (By (∗))

M
I0 |= (φs)+ (Clearly (φ+)s ≡ (φs)+)

(MI0)+ |= φs . (Lemma 55)
⊣

§7. Generic stratified axioms. We now have enough technical machinery to fulfill
the second promise from the Introduction. We will fulfill it in a general way,
essentially saying: “The theories in question, whose truth were in doubt, are true
together with any background theory of provability such that...” Just like in Section
3, we do this by introducing a notion of genericness. Throughout this section, ≺ is
an r.e. well-founded partial-order of ù.

Definition 60. If i ∈ù, we say that a stratifier-set I is above i if ∀j ∈ Indices(I ),
i ≺ j. We adopt the following convention: if I is above i then we will write I as I (i)
in order to remind ourselves that I is above i.

Definition 61 (Compare Definition 14). Suppose T = (Ti)i∈ù is an r.e. family
of LPA(I)-theories and each Ti is i-unistratified. We say T is ≺-straticlosed-r.e.-
generic (or straticlosed-r.e.-generic, if≺ is clear from context) if for every straticlosed
r.e. family U ⊇ T, every i ∈ ù, and every computable stratifier-set I (i) above i,

M
I (i)
Str(U)

|= Ti .

Lemma 62. If the family T = (Ti)i∈ù of LPA(I)-sets is r.e. and is a union of
straticlosed-r.e.-generic families, then T is straticlosed-r.e.-generic.

Proof. Straightforward. ⊣

7.1. Straticlosed-r.e.-generic building blocks. As in S3.1, we exhibit some exam-
ples of straticlosed-r.e.-generic families, which can be combined (via Lemma 62)
to form background theories of provability. This will allow us to state Theorem
72 below in a generalized way, essentially saying that certain doubted theories are
consistent with any background theory of provability built up from such blocks.
This saves us from having to arbitrarily impose any particular background theory
of provability.
In the following lemma, for part 3, the intuition is that for the purpose of

straticlosed-r.e.-genericness, what things Ti says about Tj need not merely be true,
but must even remain true when a j-stratifier is applied to them. Tj�(φ → ø)→
Tj�φ → Tj�ø lacks this property, because it could be that (Tj�φ)

+ ≡ Tαj �φ
+,

(Tj�ø)
+ ≡ Tâj �ø

+, where â < α. For parts 1–2, the reason we cannot merge these

parts into [j-Deduction]i (j � i) is because [i-Deduction]i is not i-stratified.

Lemma 63 (Compare Lemma 17). For any i,j ∈ ù, each of the following families
is straticlosed-r.e.-generic.
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1. [i-Stratideduction]i .
2. [j-Deduction]i (if j ≺ i).
3. [S]i (if i ≺ j) where S is the following schema (φ,ø range overLPA(ù)-formulas):

(Modified j-Deduction) ucl(Tj�(φ→ ø)→ Tj�φ→ Tj�(ø∧φ)).

Proof. Clearly these families are unistratified. Recursive enumerability follows
from the fact that ≺ is r.e. In each case below, let U= (Uk)k∈ù be a straticlosed r.e.
family extending the family in question. For brevity, letM =MStr(U).

(1) Let I (i) be any computable stratifier-set above i, we must show M
I (i) |=

ucl(Tαi �(φ→ø)→ T
α
i �φ→ T

α
i �ø) assuming this formula is i-stratified. Let s be an

assignment and assumeMI (i) |=Tαi �(φ→ø)[s] andM
I (i) |=Tαi �φ[s]. ByDefinition

54, M
I (i) and M agree on Tαi �, so M |= Tαi �(φ → ø)[s]. By definition of M =

MStr(U), this means Ui ∩α |= (φ→ ø)s . Clearly (φ→ ø)s ≡ φs → øs , so Ui ∩α |=
φs → øs . By similar reasoning, Ui ∩ α |= φs . By modus ponens, Ui ∩ α |= øs ,
which meansM |= Tαi �ø[s]. SinceM andM

I (i) agree on Tαi �,M
I (i) |= Tαi �ø[s], as

desired.
(2) Let I (i) be any computable stratifier-set above i, we must show M

I (i) |=
ucl(Tj�(φ→ ø)→ Tj�φ→ Tj�ø).

Let s be an assignment and assumeMI (i) |= Tj�(φ→ø)[s] andM
I (i) |= Tj�φ[s].

Since I (i) is above i and j ≺ i ,MI (i) andM agree on Tj�, soM |= Tj�(φ→ ø)[s]
andM |= Tj�φ[s]. By definition ofM,U

–
j |= φ

s →øs andU –j |= φ
s , thusU –j |=ø

s ,

soM |= Tj�ø[s] and thus so doesM
I (i).

(3) Let I (i) be any computable stratifier-set above i, we must show M
I (i) |=

ucl(Tj�(φ→ø)→Tj�φ→Tj�(ø∧φ)). Let sbe an assignment and assumeM
I (i) |=

Tj�(φ→ ø)[s] andM
I (i) |= Tj�φ[s]. If j 6∈ Indices(I (i)), thenM

I (i) andM agree
on Tj�, so reason as in (2) above. If not, we can write I (i) = I0 ∪ {•+} where

•+ is a computable j-stratifier, and Lemma 57 ensures that M
I (i) and M

+ agree
on Tj�. By definition of M

+, M |= (Tj�(φ → ø))+[s] and M |= (Tj�φ)
+[s]. Let

α,â ∈ å0 ·ù be such that (Tj�(φ→ ø))
+ ≡ Tαj �(φ

+→ ø+) and (Tj�φ)
+ ≡ Tâj �φ

+.

ThenM |=Tαj �(φ
+→ø+)[s] andM |=Tâj �φ

+[s]. ThismeansUj∩α |= (φ
+→ø+)s

and Uj ∩ â |= (φ+)s . Since φ is a subformula of φ → ø, it follows â ≤ α, thus
Uj ∩α |= (ø+∧φ+)s . SoM |= Tαj �(ø

+∧φ+)[s]. By Definition 51,

Tαj �(ø
+∧φ+) ≡ (Tj�(ø∧φ))+

(this is the reason for the ø∧φ clause) and finallyM
+ |= Tj�(ø∧φ)[s]. ⊣

In Lemma 18, we introduced Assigned Validity as a single schema for inclusion
in Ti for any i. In the following lemma, we need to break the stratified version of
Assigned Validity into different ù-indexed families because the stratified version
of Assigned Validity intended for inclusion in Ti (for any particular i) needs to be
i-stratified.

Lemma 64 (Compare Lemma 18). For any i,j ∈ ù, each of the following families
is straticlosed-r.e.-generic.
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1. [S]i where S is: (i-Assigned Strativalidity) the schema φ
s (φ valid and i-stratified,

s an assignment).
2. [i-Assigned Strativalidity]i ∪ [i-Strativalidity]i .
3. [i-Assigned Strativalidity]i ∪ [i-Validity]j (if j 6= i).

Proof. For unistratifiedness, use Corollary 34. Recursive enumerability follows
from the fact that ≺ is r.e. In each case below, let U= (Uk)k∈ù be a straticlosed r.e.
family extending the family in question. For brevity, letM =MStr(U).
(1) Let I (i) be any computable stratifier-set above i, let φ be any valid i-stratified

formula, and let s be any assignment. Since φ is valid,MI (i) |= φ[s]. By Lemma 59,
M
I (i) |= φs , as desired.
(2) Let I (i) be any computable stratifier-set above i. By (1), M

I (i) |=
i-Assigned Strativalidity. We must show M

I (i) |= ucl(Tαi �φ), where φ is any valid
LPA(I)-formula and α < å0 ·ù is any ordinal such that T

α
i �φ is i-stratified. Let

s be any assignment. Since Ui contains i-Assigned Strativalidity, in particular Ui
contains φs . Since Tαi �φ is i-stratified, α exceeds all the superscripts in φ (hence in
φs), so Ui ∩α |= φs . By definition of M, this means M |= Tαi �φ[s]. By Definition
54,M andM

I (i) agree on Tαi �, soM
I (i) |= Tαi �φ[s], as desired.

(3) By (1), MI (i) |= i-Assigned Strativalidity for every computable stratifier-set
I (i) above i. Let J (j) be a computable stratifier-set above j, we must showM

J (j) |=
i-Validity. Let φ be a valid LPA(ù)-formula, s an assignment.
Case 1. i 6∈ Indices(J (j)). Then M

J (j) and M agree on Ti�. Let •
+ be an

i-stratifier. Since φ is valid, so is φ+ (by Lemma 56), so (φ+)s ∈ Ui (since
[i-Assigned Strativalidity]i is part of line 3). Clearly ((φ

+)s)– ≡ φs , so φs ∈ U –i ,

thusM |= Ti�φ[s], and so doesM
J (j).

Case 2. i ∈ Indices(J (j)). Thus j ≺ i and we can write J (j) = J0∪{•+} for some
computable i-stratifier •+. By Lemma 57,MJ (j) andM

+ agree on Ti�. Let α ∈ å0 ·ù
be such that (Ti�φ)

+ ≡ Tαi �φ
+. As in Case 1, (φ+)s is an instance of i-Assigned

Strativalidity, so (φ+)s ∈ Ui (since [i-Assigned Strativalidity]i is part of line 3). In
fact by choice of α, (φ+)s ∈Ui ∩α, soM |= Tαi �φ

+[s], that is,M |= (Ti�φ)
+[s]. By

Lemma 55,M+ |= Ti�φ[s]. SinceM
J (j) andM

+ agree on Ti�,M
J (j) |= Ti�φ[s]. ⊣

In Lemma 63 above, we had to modify what Ti says about j-Deduction for i ≺ j.
No suchmodification is needed in the following lemma. This is interesting because in
modal logic, positive introspection is generally considered much more controversial
and demanding than basic deduction.

Lemma 65 (Compare Lemma 19). For any i,j ∈ ù, each of the following families
is straticlosed-r.e.-generic.

1. [i-Assigned Strativalidity]i ∪ [i-Strativalidity]i ∪ [i-Stratideduction]i ∪
[i-Introspection]j (j 6= i).

2. [i-Assigned Strativalidity]i ∪ [i-Strativalidity]i ∪ [i-Stratideduction]i ∪ [S]i
where S is:

(i-Stratrospection) ucl(Tαi �φ→ T
â
i �T

α
i �φ)whenever this is i-stratified.

Proof. For unistratifiedness, use Corollary 34. Recursive enumerability follows
from the fact that ≺ is r.e. In each case below, let U= (Uk)k∈ù be a straticlosed r.e.
family extending the family in question. For brevity, letM =MStr(U).
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(1) By Lemma 63 (part 1) and Lemma 64 (part 2), M
I (i) |= (i-Assigned

Strativalidity) ∪ (i-Strativalidity) ∪ (i-Stratideduction) for every computable
stratifier-set I (i) above i. Let J (j) be a computable stratifier-set above j, we
must show M

J (j) |= i-Introspection. In other words, we must show M
J (j) |=

ucl(Ti�φ → Ti�Ti�φ) for any LPA(ù)-formula φ. Let s be any assignment and
assumeM

J (j) |= Ti�φ[s].
Case 1. i 6∈ Indices(J (j)). ThenM

J (j) andM agree on Ti�. ThusM |= Ti�φ[s].
Let •+ be the i-veristratifier. By Theorem 50,M |= (Ti�φ)

+[s]. Let α be such that
(Ti�φ)

+ ≡Tαi �φ
+, soM |=Tαi �φ

+[s]. By definition, this meansUi ∩α |= (φ+)s . Let

â be such that (Ti�Ti�φ)
+≡Tâi �T

α
i �φ

+, soâ>α. ByPart 1 ofTheorem48,Ui ∩â |=

Tαi �(φ
+)s . ThusM |= Tâi �T

α
i �φ

+[s]. By Theorem 50,M |= (Tâi �T
α
i �φ

+)–[s], that is,

M |= Ti�Ti�φ[s]. SinceM andM
J (j) agree on Ti�,M

J (j) |= Ti�Ti�φ[s], as desired.
Case 2. i ∈ Indices(J (j)). Thus j ≺ i and we can write J (j) = J0∪{•+} for some

computable i-stratifier •+. By Lemma 57,MJ (j) andM
+ agree on Ti�. ThusM

+ |=
Ti�φ[s]. By Lemma 55,M |= (Ti�φ)

+[s]. Let α be such that (Ti�φ)
+ ≡ Tαi �φ

+, so
M |= Tαi �φ

+[s]. By definition ofM, this means Ui ∩α |= (φ+)s . Let â be such that

(Ti�Ti�φ)
+ ≡ Tâi �T

α
i �φ

+, so â > α. By Part 1 of Theorem 48, Ui ∩â |= T
α
i �(φ

+)s .

Thus M |= Tâi �T
α
i �φ

+[s]. In other words, M |= (Ti�Ti�φ)
+[s]. By Lemma 55,

M
+ |= Ti�Ti�φ[s]. Since M

+ and M
J (j) agree on Ti�, M

J (j) |= Ti�Ti�φ[s], as
desired.
(2) Let I (i) be any computable stratifier-set above i, we must show M

I (i) |=

ucl(Tαi �φ → Tâi �T
α
i �φ) assuming this is i-stratified (so â > α). Let s be any

assignment and assume M
I (i) |= Tαi �φ[s]. By Definition 54, M

I (i) and M agree
on Tαi �, so M |= Tαi �φ[s]. By definition of M, this means Ui ∩α |= φs . By Part 1

of Theorem 48, Ui ∩â |= Tαi �φ
s . Thus,M |= Tâi �T

α
i �φ[s], and thus so doesM

I (i)

since it agrees withM on Tâi �. ⊣

For the next lemma, note that the proof shows more than is necessary, namely
that the structures in question satisfy all the axioms of Peano arithmetic forLPA(I),
not just the i-stratified ones. But of course, the full set of Peano axioms for LPA(I)
is not i-stratified.

Lemma 66 (Compare Lemma 20). For any i ∈ ù, [S]i is straticlosed-r.e.-generic,
where S is the set of those axioms of Peano arithmetic forLPA(I) that are i-stratified.

Proof. Unistratifiedness and recursive enumerability are clear. LetU= (Uk)k∈ù
be a straticlosed r.e. family extending [S]i . By Lemma 59,M

I (i)
Str(U)

interprets formulas

by substitution. By Lemma 10,MI (i)
Str(U)

satisfies the axioms of Peano Arithmetic for

LPA(I), as desired. ⊣

Lemma 67 (Compare Lemma 21). For any i,j ∈ ù, each of the following families
is straticlosed-r.e.-generic.

1. [j-SMT]i (j 6= i).
2. [S]i , where S is: (i-Strati-SMT) ucl(∃e∀x(T

α
i �φ ↔ x ∈ We)) when this is

i-stratified, e 6∈ FV(φ).
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Proof. Unistratifiedness and recursive enumerability are clear. In each case
below, letU= (Uk)k∈ù be a straticlosed r.e. family extending the family in question.
For brevity, letM =MStr(U).

(1) Let I (i) be any computable stratifier-set above i. We must show M
I (i) |=

ucl(∃e∀x(Tj�φ↔ x ∈We)) for every LPA(ù)-formula φ with e 6∈ FV(φ). Let s be
an assignment and let {x1, ...,xk}= FV(φ)\{x}.
Case 1. j 6∈ Indices(I (i)). Then M

I (i) and M agree on Tj�. Since U
–
j

is r.e., by the S-m-n theorem there is some n such that Wn = {m : U –j |=

φ(x|m)(x1|s(x1)) ···(xk |s(xk))}. Since e 6∈ FV(φ) and M has standard first-order
part, it follows that M |= ∀x(Tj�φ ↔ x ∈We)[s(e|n)]. By first-order semantics,

M |= ∃e∀x(Tj�φ ↔ x ∈ We)[s]. Since M and M
I (i) agree on Tj�, M

I (i) |=
∃e∀x(Tj�φ↔ x ∈We)[s], as desired.
Case 2. j ∈ Indices(I (i)). Thus i ≺ j and we can write I (i) = I0∪{•+} for some

computable j-stratifier •+. By Lemma 57,MI (i) andM
+ agree onTj�. Let α be such

that (Tj�φ)
+ ≡ Tαj �φ

+. Since Uj ∩α is r.e., by the S-m-n theorem there is some n

such thatWn = {m : Uj ∩α |= φ+(x|m)(x1|s(x1)) ···(xk |s(xk))}. Since e 6∈ FV(φ)
(thus e 6∈ FV(φ+)), and sinceM has standard first-order part, it follows thatM |=
∀x(Tαj �φ

+↔ x ∈We)[s(e|n)]. By first-order semantics,M |= ∃e∀x(Tαj �φ
+↔ x ∈

We)[s]. In other words,M |= (∃e∀x(Tj�φ↔ x ∈We))
+[s]. By Lemma 55,M+ |=

∃e∀x(Tj�φ↔x ∈We)[s]. SinceM
+ andM

I (i) agree onTj�,M
I (i) |= ∃e∀x(Tj�φ↔

x ∈We)[s], as desired.
(2) Let I (i) be any computable stratifier-set above i, we must show M

I (i) |=
ucl(∃e∀x(Tαi �φ↔ x ∈We)) for everyLPA(I)-formula φ such that this is i-stratified
and e 6∈ FV(φ). Let s be any assignment and let {x1, ...,xk} = FV(φ)\{x}. Since
Ui ∩α is r.e., by the S-m-n theorem there is some n such thatWn = {m : Ui ∩α |=

φ(x|m)(x1|s(x1)) ···(xk |s(xk))}. Since e 6∈ FV(φ), and sinceM has standard first-
order part, it follows thatM |= ∃e∀x(Tαi �φ↔ x ∈We)[s]. By Definition 54,M and
M
I (i) agree on Tαi �, soM

I (i) |= ∃e∀x(Tαi �φ↔ x ∈We)[s], as desired. ⊣

IfT= (Tk)k∈ù is straticlosed-r.e.-generic, we cannot simply take an axiom φ from
Tj and insert Tj�φ into Ti without violating straticlosed-r.e.-genericness, because
such a φ is not necessarily i-stratified. Thus, the following lemma has a somewhat
more complicated structure than Lemma 22.

Lemma 68 (Compare Lemma 22). Let i,j ∈ ù and suppose T = (Tk)k∈ù is
straticlosed-r.e.-generic. Then each of the following families is straticlosed-r.e.-generic.

1. T∪ [S]i where S is the schema T
α
i �φ (φ ∈ Ti such that this is i-stratified ).

2. T∪ [S]i where S is the schema Tj�φ
– (φ ∈ Tj , j ≺ i).

Proof. Unistratifiedness and recursive enumerability are clear. In each case
below, letU= (Uk)k∈ù be a straticlosed r.e. family extending the family in question.
For brevity, letM =MStr(U).
(1) Since T is straticlosed-r.e.-generic and U ⊇ T is straticlosed and r.e.,

immediatelyMJ (j) |=T (byDefinition 61) for all j ∈ù andany computable stratifier-
set J (j) above j. Let I (i) be any computable stratifier-set above i. Suppose φ ∈ Ti
and α ∈ å0 ·ù are such that T

α
i �φ is i-stratified, and let s be any assignment. Since

Ui ⊇ Ti , φ ∈Ui , in fact since T
α
i �φ is i-stratified, it follows that φ ∈Ui ∩α. Since φ
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is a sentence, φ ≡ φs , and so Ui ∩α |= φs , and soM |= Tαi �φ[s]. By Definition 54,
M
I (i) agrees withM on Tαi �, soM

I (i) |= Tαi �φ[s], as desired.
(2) Since T is straticlosed-r.e.-generic and U ⊇ T is straticlosed and r.e.,

immediately M
K(k) |= T (by Definition 61) for all k ∈ ù and any computable

stratifier-setK(k) above k. Let I (i) be any computable stratifier-set above i. Suppose
φ ∈ Tj where j ≺ i . Let s be any assignment. SinceUj ⊇ Tj , φ ∈Uj . By Lemma 41,
there is some very j-stratifiedø ∈Uj such thatø

– ≡ φ–. Clearly since φ is a sentence,
so isø. By compactness, there is some positive integermultipleα of å0 such thatUj∩
α |=ø. Sinceø is a sentence,ø≡øs and thusUj ∩α |=øs . Thus,M |=Tαj �ø[s]. By

Theorem 50,M |= Tj�ø
–[s], so by choice of ø,M |= Tj�φ

–[s]. Since I (i) is above

i and j 6� i ,M andM
I (i) agree on Tj�, soM

I (i) |= Tj�φ
–[s], as desired. ⊣

7.2. Stratifiable-r.e.-generic building blocks. We have established some
straticlosed-r.e.-generic building blocks, but the goal of this paper is to better
understand the structure of non-stratified theories—stratification is only a means
to an end. Therefore, we introduce a corresponding nonstratified building-block
notion.

Definition 69. If T0 = (T 0i )i∈ù where each T
0
i is an LPA(ù)-theory, we say T

0

is ≺-stratifiable-r.e.-generic (or stratifiable-r.e.-generic if ≺ is clear from context) if
there is some≺-straticlosed-r.e.-generic family T= (Ti)i∈ù ofLPA(I)-theories such
that each T –i = T

0
i .

Lemma70. IfT=(Ti)i∈ù is any straticlosed-r.e.-generic family ofLPA(I)-theories,
then T– = (T –i )i∈ù is a stratifiable-r.e.-generic family of LPA(ù)-theories.

Proof. Straightforward. ⊣

Corollary 71 (Compare Corollary 23). For all i,j ∈ ù, each of the following
families of LPA(ù)-theories is stratifiable-r.e.-generic.

1. [j-Deduction]i (if j � i).
2. [Modified j-Deduction]i (if i ≺ j).
3. [Assigned Validity]i .
4. [Assigned Validity]i ∪ [i-Validity]j .
5. [Assigned Validity]i ∪ [i-Validity]i ∪ [i-Deduction]i ∪ [i-Introspection]j .
6. [S]i where S is the axioms of Peano Arithmetic for LPA(ù).
7. [j-SMT]i .
8. (If j � i) T∪ [S]i , for any stratifiable-r.e.-generic T = (Tk)k∈ù , where S is the
schema: Tj�φ (φ ∈ Tj).

Proof. By combining Lemma 70 with Lemmas 63–68. For parts involving
validity, Lemma 56 can be used to provide valid stratified counterparts of valid
nonstratified formulas. ⊣

Comparing the stratifiable-r.e.-generic families we exhibited (Corollary 71)
with the closed-r.e.-generic families we exhibited (Corollary 23), we see that the
stratifiable-r.e.-generic families are weaker in exactly two ways:

1. They do not allow Ti to state j-Deduction for Tj when i ≺ j, instead allowing
what we called Modified j-Deduction.
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2. Their closure property is more restricted: if T1 = (T 1k )k∈ù is closed-r.e.-generic

and T2 = (T 2k )k∈ù is stratifible-r.e.-generic, and if S1 is the schema Tj�φ (φ ∈

T 1j ), and if S2 is the schema Tj�φ (φ ∈ T 2j ), then Corollary 23 says T
1∪ [S1]i

is closed-r.e.-generic with no restrictions on j, whereas Corollary 71 only says
that T2∪ [S2]i is stratifiable-r.e.-generic if j ≺ i .

We leave it an open question to what extent Corollary 71 could be further
strengthened. Our primary motivation in choosing building blocks was to facilitate
creation of background provability theories at least strong enough to make our own
consistency result (Theorem 72 below) generalize Carlson’s consistency result [5]. If
that were our lone motivation, we could restrict Corollary 71 to only those families
where i = j, but a secondary motivation was to provide inter-theory versions of
those restricted building blocks.

§8. Second consistency result: prioritizing self-truth. In this section, we continue
to fix an r.e. well-founded partial-order ≺ of ù. The following theorem will satisfy
the second promise from the introduction: it will exhibit true theories (Ti)i∈ù such
that Ti expresses a Gödel number of Tj (j ≺ i) and the truth of Tj (j � i). These
theories can further be taken so that Ti expresses the fact that Tj has some Gödel
number (all i,j), by Lemma 67.

Theorem 72. Let T0 = (T 0i )i∈ù be any stratifiable-r.e.-generic family of LPA(ù)-
theories. For every i ∈ù and n ∈N, letTi(n) be the smallestTi�-closedLPA(ù)-theory
containing the following axioms.

1. The axioms contained in T 0i .
2. Assigned Validity, i-Validity and i-Deduction.
3. ucl(Tj�φ→ φ) whenever j � i .

4. ∀x(Tj�φ↔ 〈pφq,j,x〉 ∈Wn) whenever j ≺ i , FV(φ)⊆ {x}.

Let each T(n) = (Ti(n))i∈ù . There is some n ∈ N such that T(n) is true.

Proof. By the S-m-n Theorem, there is a total computable f : N→ N such that
∀n ∈ N,

Wf(n) = {〈pφq,j,m〉 ∈ N : φ is an LPA(ù)-formula, FV(φ)⊆ {x},

and Tj(n) |= φ(x|m)}.

By the Recursion Theorem, there is an n ∈N such thatWn =Wf(n). We will show
T(n) is true. For the rest of the proof, we write T for T(n), Ti for Ti(n).
The structure of the proof is as follows.

• (“Definition ofU” below) First, we will define a certain carefully-chosen family
U= (Ui )i∈ù ofLPA(I)-theories (with eachU

–
i =Ti ) and theLPA(I)-structure

M =MStr(U).

• (“Preliminary result” below) Next, we will show that ∀i ∈ ù,M |=Ui ∪Ti . In
order to deal with the difficulty mentioned at the beginning of S6, we will prove
more than necessary, to obtain a strong ≺-induction hypothesis. Namely, we
will prove, by≺-induction, that ∀i ∈ù, for every computable stratifier-set I (i)
above i,MI (i) |=Ui ∪Ti .
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– (Claim 1 below) In order to proveM
I (i) |=Ui , we will use induction on α to

show thatMI (i) |=Ui ∩α for all α ∈ å0 ·ù.

– (Case 3 below) Part of proving M
I (i) |= Ui ∩α will be proving M

I (i) |=
ucl(Tα0i �φ → φ) whenever this is i-stratified, α0 < α. This is where we will
use the α-induction hypothesis.
– (Case 4 below) Part of proving M

I (i) |= Ui ∩α will be proving M
I (i) |=

ucl(Tj�φ → φ+) whenever j ≺ i , φ is an LPA(ù)-formula, and •+ is an
i-stratifier. This is where we will take advantage of our strong ≺-induction
hypothesis.

• (Claims 2–3 below) Once we’ve establishedM
I (i) |= Ui , we will essentially be

able to concludeM
I (i) |= Ti using the Stratification Theorem (Theorem 50).

• At the very end of the proof, having established that ∀i ∈ ù,M |=Ui ∪Ti , we
will use that to prove thatMT |= T, i.e., that T is true.

Definition of U. Since T0 is stratifiable-r.e.-generic, there is a straticlosed-r.e-
generic family V = (Vi)i∈ù of LPA(I)-theories such that each V

–
i = T

0
i . For every

i ∈ N, let Ui be the smallest i-stratifiedLPA(I)-theory such that the following hold.

1. Ui contains Vi .
2. Ui contains i-Assigned Strativalidity, i-Strativalidity, i-Stratideduction, and
i-Collapse.

3. Ui contains ucl(T
α
i �φ→ φ) whenever T

α
i �φ is i-stratified.

4. Ui contains ucl(Tj�φ→ φ
+) for everyLPA(ù)-formula φ, j ≺ i , and i-stratifier

•+.
5. Ui contains ∀x(Tj�φ↔ 〈pφq,j,x〉 ∈Wn) whenever j ≺ i , FV(φ) ⊆ {x} and
φ is an LPA(ù)-formula.

6. Whenever φ ∈Ui and T
α
i �φ is i-stratified, T

α
i �φ ∈Ui .

Let U= (Ui)i∈ù . Observe that U is straticlosed and r.e. (to see Ui is i-unistratified,
use Lemma 52; to see U is r.e., use Theorem 26 part 1); U⊇ V; and for each i ∈ ù,
U –i = Ti .
Let M =MStr(U). Recall that Str(U) is the LPA(I)-family (Si)i∈I where ∀i ∈ ù

and α ∈ å0 ·ù, Si =U
–
i = Ti and S(α,i) =Ui ∩α. For the reader’s convenience, here

is how (by definition)M interprets Ti� and T
α
i � for all i ∈ ù, α ∈ å0 ·ù:

M |= Ti�φ[s] iff Ti |= φ
s,

M |= Tαi �φ[s] iff Ui ∩α |= φs .

Preliminary result.Wewould like to prove the following preliminary result: ∀i ∈ù,
M |= Ui ∪Ti . For the sake of a stronger induction hypothesis, we will prove that
∀i ∈ù, for every computable stratifier-set I (i) above i,MI (i) |=Ui ∪Ti . This is more
than enough becauseM

I (i) =M when I (i) = ∅.
Fix i ∈ ù. By ≺-induction, we have the following:

(∗) For every j ≺ i , for every computable stratifier-set J (j) above
j,MJ (j) |=Uj ∪Tj .

Let I (i) be any computable stratifier-set above i. We must showM
I (i) |=Ui ∪Ti .
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Claim 1. ∀α ∈ å0 ·ù,M
I (i) |=Ui ∩α.

By induction on α. Let ó ∈Ui ∩α.
Case 1. ó ∈ Vi . ThenM

I (i) |= ó because V is straticlosed-r.e.-generic and U ⊇ V
is straticlosed and r.e.
Case 2. ó is an instance of i-Assigned Strativalidity, i-Strativalidity, or i-

Stratideduction. ThenM
I (i) |= ó by Lemma 63 or Lemma 64.

Case 3. ó is ucl(T
α0
i �φ → φ) for some i-stratified LPA(I)-formula φ such that

T
α0
i �φ is i-stratified. Since ó ∈Ui ∩α, this forces α0 <α. Let s be an assignment and

assumeM
I (i) |= T

α0
i �φ[s], then:

M
I (i) |= T

α0
i �φ[s] (Assumption)

M |= T
α0
i �φ[s] (M andM

I (i) agree on T
α0
i � by Def. 54)

Ui ∩α0 |= φ
s (Definition ofM)

M
I (i) |= φs (By α-induction,MI (i) |=Ui ∩α0)

M
I (i) |= φ[s]. (Lemma 59)

Case 4. ó is ucl(Tj�φ→ φ+) for some LPA(ù)-formula φ, j ≺ i , and i-stratifier
•+. By Lemma 52 we may assume •+ is computable. Let J (j) be the computable
stratifier-set J (j) = I (i)∪{•+}, which is above j since I (i) is above i and j ≺ i . Let
s be an assignment and assumeM

I (i) |= Tj�φ[s], then:

M
I (i) |= Tj�φ[s] (Assumption)

M |= Tj�φ[s] (Since j ≺ i and I (i) is above i,M
I (i) andM agree on Tj�)

Tj |= φ
s (Definition ofM)

M
J (j) |= φs (SinceM

J (j) |= Tj by (∗))

(MI (i))+ |= φs (Lemma 57)

M
I (i) |= (φs)+ (Lemma 55)

M
I (i) |= (φ+)s (Clearly (φs)+ ≡ (φ+)s)

M
I (i) |= φ+[s]. (Lemma 59)

Case 5. ó is ∀x(Tj�φ ↔ 〈pφq,j,x〉 ∈ Wn) for some LPA(ù)-formula φ with
FV(φ) ⊆ {x} and j ≺ i . Let s be any assignment, say s(x) = m. The following
biconditionals are equivalent:

M
I (i) |= Tj�φ↔ 〈pφq,j,x〉 ∈Wn[s]

M |=Tj�φ↔〈pφq,j,x〉∈Wn[s] (M
I (i) andM agree on the symbols in question)

M |= Tj�φ[s] iffM |= 〈pφq,j,m〉 ∈Wn (Lemma 59)

M |= Tj�φ[s] iff 〈pφq,j,m〉 ∈Wn (M has standard first-order part)

Tj |= φ
s iff 〈pφq,j,m〉 ∈Wn (Definition ofM)

Tj |= φ(x|m) iff 〈pφq,j,m〉 ∈Wn. (Since FV(φ)⊆ {x})

The latter is true by definition of n.
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Case 6. ó is an instance Tâi �φ↔ T
ã
i �φ of i-Collapse (so â ≤1 ã and T

â
i �φ↔ T

ã
i �φ

is i-stratified). Let s be an assignment, sinceM
I (i) andM agree on Tâi � and T

ã
i �, we

need only showM |= Tâi �φ↔ T
ã
i �φ[s]. In other words we must showUi ∩â |= φ

s if
and only if Ui ∩ ã |= φ

s . This is by Theorem 38.
Case 7. ó is T

α0
i �φ for someLPA(I)-formula φ such that T

α0
i �φ is i-stratified and

φ ∈ Ui . Since T
α0
i �φ is i-stratified, On(φ) ⊆ α0, so φ ∈ Ui ∩α0. ThusM |= T

α0
i �φ,

soM
I (i) |= T

α0
i �φ sinceM

I (i) andM agree on T
α0
i �.

Cases 1–7 establishM
I (i) |=Ui ∩α. By arbitrariness of α, Claim 1 is proved.

Claim 2. For any assignment s and any very i-stratifiedLPA(I)-formulaφ,M
I (i) |=

φ[s] if and only ifMI (i) |= φ–[s].
By Theorem 50, for all such s and φ, M |= φ[s] if and only if M |= φ–[s]. The

claim now follows from Lemma 58 (i 6∈ Indices(I (i)) because I (i) is above i).
Claim 3.MI (i) |= Ti .
For any ó ∈Ti , there is some ô ∈Ui such that ô

– ≡ ó; sinceUi is i-unistratified, we
may take ô to be very i-stratified (Lemma 41). By Claim 1,MI (i) |=Ui , soM

I (i) |= ô.
By Claim 2,MI (i) |= ó.
For each i ∈ ù, letting I (i) = ∅, Claims 1–3 show that M |= Ui ∪Ti . It follows

thatM |= T. Now, for every i ∈ ù,MT interprets Ti� as follows:

MT |= Ti�φ[s] iff Ti |= φ
s .

This is exactly the same way thatM interprets Ti�. It follows thatM andMT agree
on LPA(ù)-formulas. Thus, sinceM |= T,MT |= T, i.e., T is true. ⊣

§9. Well-foundation and ill-foundation. The following is a variation on
Kleene’s O.

Definition 73. Simultaneously define O ⊆ N and | • | :O → Ord so that O ⊆ N

is the smallest set such that:

1. 0 ∈ O (it represents the ordinal |0|= 0).
2. ∀n ∈ O, 2n ∈ O (it represents the ordinal |2n|= |n|+1).
3. If ϕe (the eth partial recursive function) is total and range(ϕe) ⊆ O, then
3 ·5e ∈ O (it represents the ordinal |3 ·5e |= sup{|ϕe(0)|,|ϕe(1)|, ...}).

To avoid technical complications, we have differed from the usual Kleene’s O in
the following way: in the usual definition, in order for 3 · 5e to lie in O, it is also
required that |ϕe(0)|< |ϕe(1)|< ··· .

Definition 74. L
O
PA is the language of Peano arithmetic extended by a unary

predicate O. The following notions are defined by analogy with S2:

1. For any assignment s and L
O
PA(I )-formula φ with FV(φ)={x1, ...,xn}, φ

s ≡

φ(x1|s(x1)) ···(xn|s(xn)).
2. If T= (Ti)i∈I is an I-indexed family ofL

O
PA(I )-theories, the intended structure

for T is the L
O
PA(I )-structureMT with universe N, interpreting symbols of PA

as usual and interpreting O as O, and interpreting Ti� (i ∈ I ) as in Definition
7. For any L

O
PA(I )-structure N , we write N |= T if ∀i ∈ I , N |= Ti . We say T

is true ifMT |= T.
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Definition 75. If I is an index set and T= (Ti)i∈I is a family ofL
O
PA(I )-theories,

then for any i ∈ I such that MT |= Ti , we define the ordinal ‖Ti‖ = sup{|m|+1 :
Ti |=O(m)}.

The above definition makes sense: sinceMT |= Ti andO
MT =O, the supremands

are defined.

Definition 76. The basic axioms of O are the following L
O
PA-axioms.

1. O(0).
2. O(n)→O(2n), for every n ∈ N.
3. ∀x(ϕn(x)↓&O(ϕn(x)))→O(3 ·5n), for every n ∈ N.

We have written the last two lines using infinite schemata to strengthen the
following result.

Theorem 77. Let I be an index set, ≺ a binary relation on I. Suppose T= (Ti)i∈I
is a family of LO

PA(I )-theories with the following properties:

1. ∀i ∈ I , Ti contains the axioms of Peano arithmetic.
2. ∀i ∈ I , Ti contains the basic axioms of O.
3. ∀i ∈ I , ∀j ≺ i , ∃n ∈ N such that Ti |= ∀x(Tj�O(x)↔ x ∈Wn).
4. ∀i ∈ I , ∀j ≺ i , Ti |= ∀x(Tj�O(x)→O(x)).

IfMT |= Ti ∪Tj (in particular if T is true) and j ≺ i , then ‖Tj‖< ‖Ti‖.

Proof. AssumeMT |= Ti ∪Tj and j ≺ i . By hypothesis there is some n ∈N such
that Ti |= ∀x(Tj�O(x)↔ x ∈Wn) and Ti |= ∀x(Tj�O(x)→ O(x)). From these,
Ti |= ∀x(x ∈Wn→O(x)).
SinceMT |= Ti , in particularMT |= ∀x(Tj�O(x)↔ x ∈Wn). This meansWn =

{m ∈ N : Tj |=O(m)}. Since Tj includes the axiom O(0),Wn 6= ∅.
SinceWn 6= ∅, by computability theory there is some k ∈ N such that

PA |= (domain(ϕk) = N)∧ (range(ϕk) =Wn).

Since Ti includes PA, Ti also implies as much. Combined with Ti |= ∀x(x ∈Wn →
O(x)), it follows that Ti |= ∀x(ϕk(x)↓ & O(ϕk(x))). Since Ti contains the basic

axiom ∀x(ϕk(x)↓&O(ϕk(x)))→O(3 ·5k), Ti |=O(3 ·5k).
To finish the proof, calculate

‖Tj‖= sup{|m|+1 : Tj |=O(m)}

= sup{|m| : Tj |=O(m)} (Since Tj contains O(n)→O(2n) for all n ∈ N)

= sup{|m| : m ∈Wn} (SinceWn = {m ∈ N : Tj |=O(m)})

= sup{|ϕk(0)|,|ϕk(1)|, ...} (By choice of k)

= |3 ·5k | (Definition 73)

< sup{|m|+1 : Ti |=O(m)} (Since Ti |=O(3 ·5k))

= ‖Ti‖. ⊣

Corollary 78 (Well-Foundedness of True Self-Referential Theories). Let I, T,
≺ be as in Theorem 77. If T is true then ≺ is well founded, by which we mean there is
no infinite descending sequence i0 ≻ i1 ≻ ··· .
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In particular Corollary 78 says that if I, T, ≺ are as in Theorem 77 and T is true
then ≺ is strict: there is no i with i ≺ i . This gives a new form (under the additional
new assumption of containing/knowing basic rudiments of computable ordinals) of
the Lucas–Penrose–Reinhardt argument that a truthful theory (or machine) cannot
state (or know) its own truth and its own Gödel number.
We could remove Peano arithmetic from Theorem 77 if we further departed from

Kleene and changed line 3 of Definition 73 to read:

3. If We ⊆ O, then 3 · 5e ∈ O (and |3 · 5e | = sup{|n| : n ∈We}, or |3 · 5
e | = 0 if

We = ∅)

(and altered Definition 76 accordingly). The previous paragraph would still stand,
in fact giving a version of the Lucas–Penrose–Reinhardt argument in which the
theory (machine) is not required to contain (know) arithmetic.
We close the paper by showing that Corollary 78 fails without O. Let WF be

the set of all r.e. well-founded partial orders on ù and let Tr be the set of all true
LPA-sentences. It is well-known thatWF is computability theoretically Π

1
1-complete

and Tr is ∆11, so WF cannot be defined in LPA∪{Tr}.

Theorem 79. (Ill-Foundedness of True Self-Referential Theories)

1. There exists an r.e., ill-founded partial order ≺ on ù such that for every closed-
r.e.-generic T0 = (T 0i )i∈ù there is an n ∈ N such that T(n) is true, where T(n) is
as in Theorem 24.

2. There exists an r.e., ill-founded partial order ≺ on ù such that for every ≺-
stratifiable-r.e.-generic T0 = (T 0i )i∈ù there is an n ∈ N such that T(n) is true,
where T(n) is as in Theorem 72.

Proof. We prove (1), (2) is similar. Assume ¬(1). For each r.e. partial order ≺
on ù, let S(≺) be the statement of Theorem 24 for≺, minus the requirement that≺
be well founded. Combining ¬(1) with Theorem 24, ≺ is well founded if and only if
S(≺) is true. We will argue that S(≺) is expressible in LPA∪{Tr}, which is absurd
because that would mean it is possible to define WF in LPA∪{Tr}.
S(≺) is equivalent to the following:

• For any (Gödel number of an) r.e. family T0 = (T 0i )i∈ù of LPA(ù)-theories,

if T0 is closed-r.e.-generic (i.e., ifMU |= T0 for every closed r.e. family U⊇ T0

of LPA(ù)-theories), then there is some n ∈ N such that T(n) is true (i.e., such
thatMT(n) |=T(n)), where T(n) = (Ti (n))i∈ù , where each Ti (n) is the smallest
Ti�-closed theory containing the following:
1. The axioms in T 0i .

2. ∀x(Tj�φ↔ 〈pφq,j,x〉 ∈Wn) whenever j ∈ ù, FV(φ)⊆ {x}.
3. ucl(Tj�φ→ φ) whenever j ≺ i .

This is manifestly expressible in LPA except for the clausesMU |= T0 andMT(n) |=

T(n). We will show thatMU |= T0 is expressible in LPA∪{Tr}; the expressibility of
MT(n) |= T(n) is similar.
Define an operator FU which takes an LPA(ù)-formula φ and outputs an LPA-

formula FU(φ) as follows:

• If φ is atomic, let FU(φ)≡ φ.
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• If φ is ¬φ0, φ1 → φ2, or ∀xφ0, let FU(φ) be ¬FU(φ0), FU(φ1)→ FU(φ2), or
∀xFU(φ0), respectively.

• Suppose φ is Ti�ø and FV(ø) = {x1, ...,xk}. Let f : N
k → N be the

computable function such that for all m1, ...,mk ∈ N, f(m1, ...,mk) =
pø(x1|m1) ···(xk |mk)q. Let FU(φ) be: “ Ui proves the sentence with Gödel
number f(x1, ...,xk)” (so FV(FU(φ)) = {x1, ...,xk}).

It is easy to check that for every LPA(ù)-formula φ and assignment s,MU |= φ[s]
if and only if N |= FU(φ)[s]. In particular, for every LPA(ù)-sentence φ,MU |= φ if
and only if N |= FU(φ). Thus, the clauseMU |= T0 can be expressed in LPA∪{Tr}
as follows: ∀i∀x(x ∈ T 0i → Tr(pFU(x)q)). ⊣

The way we prove Theorem 79 by referring to the computability theoretical
complexity of WF is similar to a recent argument by Kripke [7].
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