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Abstract

New whole-rock geochemical analyses along with laser ablation multi-collector inductively
coupled plasma mass spectrometry U–Pb zircon ages of the granite–rhyolite from the
Karakoram Batholith, exposed along the Shyok Valley, NW India, have been performed
to understand the timing and geochemical evolution of these magmatic bodies and their
implications for the geodynamic evolution of the Karakoram Batholith. New geochronological
data on granites and rhyolites along with previously published geochronological data indicate
that the Karakoram Batholith evolved during Albian time (~110–100Ma) owing to the subduc-
tion of Tethys oceanic lithosphere along the Shyok Suture Zone. This region witnessed a
period of no magmatism during ~99–85Ma. Following this, the Kohistan–Ladakh arc and
Karakoram Batholith evolved as a single entity in Late Cretaceous and early Palaeogene times.
Late Cretaceous (~85Ma) rhyolite intrusions within the Karakoram Batholith show calc-alkaline
subduction-related signatures with a highly peraluminous nature (molar A/CNK= 1.42–1.81).
These intrusionsmay have resulted from c. ~13.8% to ~34.5% assimilation of pre-existing granites
accompanied by fractional crystallization during the ascent of the magma. The contamination of
mantle wedge-derived melts with crust of the active continental margin of the Karakoram most
likely enhanced the high peraluminous nature of the rhyolite magma, as has been constrained by
assimilation fractional crystallization modelling. Two granite samples from the contact of the
Shyok Metamorphic Complex and Karakoram Batholith indicate that the post-collisional
Miocene magmatism was not only confined along the Karakoram Fault zone but also extends
~30 km beyond the Shyok–Muglib strand.

1. Introduction

Active continental margins record the evolutionary history of subduction-related magmatic
events (Murphy, 2006; Xiao et al. 2016; Lallemand & Heuret, 2017) and can be considered
the central region of continental crustal growth (Franz et al. 2006; Vogt et al. 2012) in
continental collision zones. The Karakoram terrane forms the southern margin of the Asian
plate (Jain & Singh, 2008; Searle & Hacker, 2018), which has witnessed periodic episodes of
continental arc magmatism since Early Cretaceous time (Weinberg et al. 2000; Fraser et al.
2001; Heuberger et al. 2007; Upadhyay, 2008; Jain & Singh, 2009; Ravikant et al. 2009;
Kumar et al. 2017). The accretion of the Karakoram with Asia was the result of the separation
and northward drifting of the Karakoram from Gondwana that occurred during Permian time
(Boulin, 1981; Tapponnier et al. 1981). Further, the closure of the Tethys ocean between the
Indian and Asian plates along two suture zones, the Indus Tsangpo Suture Zone (ITSZ) in
the south and Shyok Suture Zone (SSZ)/Main Karakoram Thrust (MKT) in the north, led to
the formation of magmatic arcs during Mesozoic–early Tertiary times (Fig. 1a) (Windley,
1988; Jain & Singh, 2008).

A significant amount of data have been published to constrain the magmatic evolution of the
Ladakh and Karakoram regions, which has helped to understand the geodynamic evolution of
the India–Asia collision zone (e.g. Searle et al. 1987; Klootwijk et al. 1992; Rowley, 1996; Najman
et al. 2010; Hu et al. 2016). However, the timing of suturing along the SSZ is still not well con-
strained as the existing chronological data provide a wide bracket ranging from ~110Ma to
~75 Ma for the suturing event (Petterson & Windley, 1985; Treloar et al. 1996; Rolland et al.
2000; Heuberger et al. 2007; Ravikant et al. 2009; Borneman et al. 2015; Kumar et al. 2017).
In this paper, we present new whole-rock geochemical data along with laser ablation multi-
collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) zircon U–Pb ages
on the rhyolite and granites exposed in an unexplored remote region of the KarakoramBatholith
that crops out along the upper Shyok Valley. The present paper provides a viable model for the
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Fig. 1. (Colour online) Overview map of the
Himalayan–Tibetan orogenic belt and geologic
map across the Karakoram and Ladakh. (a) Map
showing the main tectonic structures and sutures
in the Himalaya, Tibet and the Karakoram region.
(b) Simplified map showing the regional geology
of the eastern Karakoram region (after Phillips,
2008) with the location of the study area in the
rectangle. (c) Geological map of the SE Karakoram
with the locations of collected samples from the
Karakoram Batholith. The Longmu–Ghoza Co fault
(LGF) and Angmong fault (AF) are from van Buer
et al. (2015) (modified after Phillips et al. 2004;
Jain & Singh 2008; Ravikant et al. 2009). (Sample
location SM 9 includes both SM 9A and SM 9B).
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timing and process of suturing along the SSZ. The fundamental
basis for our proposed model is the evolution of rhyolite as a result
of assimilation fractional crystallization (AFC), i.e. fractional crys-
tallization of calc-alkaline subduction-derived melt accompanying
the assimilation of thickened Asian continental margin in the
Karakoram basement owing to the collision of the Kohistan–
Ladakh arc (KLA) orogen (for example, Manikyamba et al. 2014).

2. Background

2.a. Geological setting

The Karakoram terrane juxtaposes the SSZ on its southernmargins
(Coward et al. 1982, 1986; Pudsey et al. 1985) and the Rushan–
Pshart Suture (RPS) zone to the north (Shvolman, 1978; Rex
et al. 1988) (Fig. 1a, b). This terrane can be divided from south
to north into four litho-domains, viz. (a) the Karakoram Fault
Zone (KFZ); (b) the Karakoram Metamorphic Complex (KMC),
which includes the Shyok Metamorphic Complex (SMC), Tangtse
Metamorphic Complex (TMC), Pangong Metamorphic Complex
(PMC) and Arganglas Metamorphics; (c) the Karakoram
Batholith (KB); and (d) the Karakoram Tethys Sequence (KTS)
(Rai, 1995; Searle et al. 1998; Jain & Singh, 2008) (Fig. 1b, c).

The KFZ is characterized by the presence of ductile deformed
rocks in the north of the SSZ that formed as a result of dextral
deformation along the Karakoram Fault (KF). In the eastern
Karakoram region, the KF passes through the Nubra Valley
(Fig. 1b, c) with a major restraining bend that splays into two
strands, viz. the Tangtse strand and Muglib strand, as shown in
Figure 1c. The Tangtse strand passes through Darbuk and
Tangtse villages, while the Muglib strand passes through Shyok
andMuglib villages (Fig. 1c). These two strands bound a transpres-
sional uplifted metamorphic complex that is mainly dominated by
high-grade metamorphic rocks intruded by foliation-parallel and
cross-cutting leucocratic dykes (Searle et al. 1998; Phillips et al.
2004; Rolland et al. 2009; Boutonnet et al. 2012). The KF exposes
well-deformed rocks in a ~1–8 kmwide zone that mainly comprise
mylonitic granite gneiss with steep vertical foliations, having nearly
horizontal stretching lineations (Figs 1c, 2a–c). The KFZ is pri-
marily composed of mylonitic granite gneiss, volcanic rocks, slate,
phyllite and amphibolite (e.g. Boutonnet et al. 2012; Sen et al.
2014). The ductile deformation along the KF in this region was
initiated at ~23Ma or probably during ~18–15Ma (Weinberg
et al. 2000; Phillips et al. 2004; Boutonnet et al. 2012). Tectono-
metamorphic studies (Rolland & Pêcher, 2001), teleseismic studies
using receiver functions (Hazarika et al. 2014; Hazarika et al. 2017)
and He-isotopic investigations in geothermal springs (Klemperer
et al. 2013) suggest the nature of the KF as lithospheric.

The KMC extends all along the southern margin of the Asian
plate and provides records of pre- to post India–Asia collisional
high-grade metamorphic rocks (e.g. ~108 Ma: Streule et al.
2009; ~32–8Ma: Rolland et al. 2009; Boutonnet et al. 2012).
Pre- to syn-collisional metamorphism has been reported from
the western Karakoram (e.g. from the Hunza region) (Fraser
et al. 2001) and the Pangong region of the eastern Karakoram
as well (Rolland et al. 2009; Streule et al. 2009; Wallis et al.
2014). This metamorphism has been attributed to pre-collisional
magmatism, the accretion of the KLA with the Asian plate, and
the subsequent collision of India and Asia (Fraser et al. 2001;
Rolland et al. 2009; Streule et al. 2009; Wallis et al. 2014).
However, the post-collisional metamorphism has been attributed
either to ductile deformation along the KF that has exposed

greenschist- to granulite-grade metamorphic rocks along the
KFZ (e.g. Weinberg et al. 2009; Rolland et al. 2009) or to compres-
sion and crustal thickening led by India–Asia continental collision
(Searle et al. 1998; Phillips et al. 2004; Phillips & Searle, 2007; Searle
& Phillips, 2007).

In the eastern Karakoram, the highly metamorphosed and mig-
matized rocks of the KMC are best exposed near the Darbuk, Shyok
and Tangtse regions of Ladakh, NW India (Fig. 1c). The Tangtse
and Muglib strands of the KF bound the TMC or Pangong
Injection Complex (PIC) (Figs 1c, 2d) (Weinberg & Searle,
1998; Jain & Singh, 2008). The TMCmainly consists of high-grade
metamorphic rocks such as amphibolites, orthogneisses and mig-
matites that are intruded by several foliation-parallel and cross-
cutting leucogranite-pegmatite dykes (Searle et al. 1998; Phillips
et al. 2004; Rolland et al. 2009; Boutonnet et al. 2012). The
age of metamorphism in this region has been reported to be
32–11Ma (Rolland et al. 2009). Similar high-grade metamorphic
rocks have also been observed in the present study even to the
north of the Shyok–Muglib strand of the KF, upstream along
the Shyok Valley, and referred to herein as the SMC (Figs 1c,
2e, f). The KF system forms a junction with the left-lateral
Longmu–Ghoza Co fault in the region of the SMC (Fig. 1c).
This intersection has resulted in the formation of an extensional
detachment system (Fig. 1c) (van Buer et al. 2015; Bohon et al.
2018). One can observe the extensional and strike-slip deformation-
related features of these fault systems in the field only within a
narrow zone of 5–10 km in the vicinity of the Muglib strand of
the KF (Figs 1c, 2g). Medium-to-low-grade metamorphic rocks that
mainly consist of schists, slates, marble and amphibolites are
exposed to the northeast of the Muglib strand and are locally
named the PMC, which forms part of the KMC (Fig. 1c).
These rocks are well exposed near the Pangong Tso region in
the Tangtse Valley (Figs 1c, 2h) and as thin patches in the
Shyok Valley upstream (Fig. 3a).

The KB that forms the litho-unit to the north of the KMC
(Fig. 1b) extends from northern Pakistan to southwestern Tibet
through the Ladakh region of the eastern Karakoram, India
(Rai, 1995). Two types of granites, metaluminous (I-type) and per-
aluminous (S-type) granites (Chappell & White, 1974), have been
reported from the KB, and intrude the Karakoram Tethyan Zone
(Srimal et al. 1987; Rai, 1995; Jain & Singh, 2008; Ravikant et al.
2009). The pre-collisional I-type suite comprises mainly quartz
monzonite, granodiorite and tonalite, while the post-collisional
S-type suite is composed mainly of two-mica leucogranites
(Phillips et al. 2004; Ravikant, 2006; Jain & Singh, 2008; Leloup
et al. 2011).

The unexplored undeformed region of the KB lying to the north
of the SMC and PMC forms the site of the present investigation
(Fig. 1c). The intrusive contact of the KB with the SMC
(Fig. 3b) and PMC is sharp (Fig. 3a). The KB is mainly composed
of massive porphyritic granites that are devoid of any foliation or
lineations (Figs 1c, 3c, d), unlike the rocks of the TMC and SMC,
which are strongly foliated (Fig. 2b, f). Field relationships indicate
that the northern (undeformed) domain of the KB did not expe-
rience metamorphism or deformation during the collisional or
post-collisional regimes (Fig. 3c, d). Modally, the granitoids range
in composition from granite to granodiorite. Texturally, the
porphyritic granites of the KB consist of randomly oriented
~2–5 cm long plagioclase and K-feldspar crystals embedded in a
fine-grained felsic matrix (Fig. 3c). The undeformed extrusive
felsic volcanic rocks (rhyolite), referred to herein as the Murgo
Volcanics (MV), can be observed exposed within the KB
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(Figs 1c, 3e, f). The contact of the rhyolite with the granite is poorly
exposed and not assessed owing to inaccessible topography and
debris cover. However, it appears that the rhyolite rests over the
regionally exposed KB (Fig. 3f). Texturally, the rhyolite is mainly

aphanitic and consists of tiny (up to 1 mm long) crystals of quartz
and K-feldspar.

The rocks of the KB are in juxtaposition with the KTS of Permo-
Carboniferous toMiddle Jurassic age to the north. This block of the

Fig. 2. (Colour online) Outcrop-scale struc-
tures from the KFZ and upstream Shyok
Valley. (a) Horizontal lineations representing
the Tangtse strand of the KFZ. (b) Vertical
foliation near the Tangtse strand of the
KFZ. (c) Horizontal lineations representing
the Muglib strand of the KFZ. Pen for scale
is ~ 13 cm long. (d) Migmatization in the
TMC of the KFZ. (e) Foliation-parallel (black)
and cross-cutting (red) leucocratic dyke
intrusions within the SMC. (f) Leucocratic
dyke intrusions parallel to the foliation plane
within the SMC. GPS for scale is ~30 cm long.
(g) Normal faulting showing extensional fea-
ture in the north of the Shyok–Muglib strand.
(h) Well-exposed marble near the Pangong
Tso region in the Tangtse Valley. Geological
hammer for scale is ~33 cm long.
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Karakoram terrane is equivalent to the Qiangtang Block of Tibet
(Fig. 1b) (Searle, 2015). The KTS consists of limestone, shale, slate,
sandstone and quartzite to the north of the KB along the upper
Shyok Valley (Gergan & Pant, 1983) (Fig. 1b), but the burial
and exhumation history of these sediments is still unknown.

2.b. Previous geochronological record

The SSZ represents the region of the initial subduction phase of the
Neo-Tethyan oceanic lithosphere beneath the southern margin of
the Asian plate (Crawford & Searle, 1992; Searle et al. 1998;
Heuberger et al. 2007; Kumar et al. 2017). The subduction
of Neo-Tethyan oceanic lithosphere produced the large-scale
NW–SE-striking KB, which mainly comprises pre-collisional

subduction-related calc-alkaline granites emplaced during
Cretaceous time or earlier (Fig. 1c) (Debon et al. 1987; Crawford
& Searle, 1992; Searle et al. 1998; Heuberger et al. 2007; Kumar
et al. 2017). In the NW region of the Karakoram, these granites
include the Hunza plutonic unit (~105Ma; Fraser et al. 2001), K2
gneiss (~120–115Ma; Searle et al. 1990), Tirich Mir granite
(~121–115 Ma; Desio et al. 1964; Heuberger et al. 2007), Muztag
Tower unit (~82Ma; Searle et al. 1988) and Hushe gneiss
(~145Ma; Searle et al. 1989). In the eastern Karakoram, these are
recognized as the Tirit granites (~110–68Ma; Weinberg et al.
2000; Jain & Singh, 2008; Upadhyay, 2008; Kumar et al. 2017)
and Panamik granite in the Khalsar–Panamik region (~105Ma)
(Rao & Rai, 2009; Ravikant et al. 2009) exposed in the Nubra
Valley, Ladakh region of NW India (Fig. 1c).

Fig. 3. (Colour online) Outcrop-scale
structures from the upstream Shyok
Valley. (a) Marble and amphibolite schist
of the PMC mapped along the Shyok river
in the NE of the Shyok–Muglib strand of
the KF. (b) Contact of the SMC with the
KB. (c) Porphyritic granites with large laths
of K-feldspar and plagioclase feldspar.
Geological hammer for scale is ~33 cm long.
(d) Undeformed granite body of the KB. (e, f)
Contact of the Murgo Volcanics (rhyolites)
with the KB.
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The SSZ exposes calc-alkaline volcanic rocks in the Khardung
and Shyok formations in the Ladakh region (Thakur et al. 1981;
Srimal et al. 1987; Dunlap & Wysoczanski, 2002; Borneman
et al. 2015) (Fig. 1c). The Khardung Formation includes
felsic and intermediate volcanic rocks, tuffs and sediments
(Thakur et al. 1981; Srimal et al. 1987; Kumar et al. 2016).
Geochemically, the Khardung Volcanics are calc-alkaline and
are considered to be the volcanic counterpart of the Ladakh
Batholith (Srimal et al. 1987; Weinberg & Dunlap, 2000; Thanh
et al. 2010; Kumar et al. 2017). Dunlap & Wysoczanski (2002)
reported a zircon U–Pb age of ~67Ma for the rhyolite and
an intrusion age of ~60Ma for a porphyritic sill from the
KhardungVolcanics, defining Late Cretaceous – early Tertiary ages
for the eruption of the volcanic rocks. The Shyok Formation includes
sediments and volcanic mafic to ultramafic rocks (Thakur et al.
1981). The minimum age of volcanism in the Shyok Formation
has been reported to be ~125Ma, based on an 40Ar–39Ar hornblende
age from a hypabyssal dyke from the eastern Karakoram (Borneman
et al. 2015), and older than c. 110Ma, inferred from the intrusive
relationship of the Tirit granites (c. 110–104Ma) with the Shyok
Volcanics (Kumar et al. 2017).

Records of post-India–Asia collision-related two-mica (S-type)
granites within the KB have also been found, which were emplaced
during Miocene time as a result of either crustal rejuvenation due
to compressional heating or dextral shearing along the KF (Searle
et al. 1989; Phillips et al. 2004; Ravikant, 2006; Boutonnet et al.
2012). The two-mica (S-type) granites extend from the NW to
SE regions of the Karakoram, and include the Baltoro plutonic unit
(~21Ma; Searle et al. 1988; Parrish & Tirrul, 1989; Fraser et al.
2001) and leucogranite intrusions within the TMC (21–14Ma;
Searle et al. 1998; Phillips et al. 2004; Jain & Singh, 2008;
Ravikant et al. 2009; Reichardt et al. 2010; Leloup et al. 2011;
Phillips et al. 2013; Sen et al. 2014). These two-mica granites
and leucogranites are considered to be of crustal origin.

2.c. Sample selections as per field relationships

We collected ten samples of granite and three samples of rhyolite
based on observed field relationships between the SMC and the KB.
The granite samples SM 8 and SM 9A/B were collected from the
SMC and KB contact (Figs 1c, 3a). These samples may preserve
the features of partial melting within the SMC in the form of
dissolution, overgrowth or recrystallization of zircon that can lead
to perturbation, and possibly the resetting of zircon, which can
constrain the thermal events that operated in this region. The
remaining seven granite samples (SM 10, SM 11, SM 13, SM 14,
SM 16, SM 17 and SM 20) along with the three rhyolite samples
(SM 21, SM 22 and SM 23) were collected from further north along
the upper Shyok Valley region (Fig. 1c) where the effect of partial
melting within the SMC becomes negligible. The sample locations
with coordinates are given in online Supplementary Material
Table S1.

3. Methodology

Whole-rock geochemical analysis was carried out on ten granite
(SM 8, SM 9A, SM 9B, SM 10, SM 11, SM 13, SM 14, SM 16,
SM 17, SM 20) and three rhyolite (SM 21, SM 22, SM 23) samples,
the locations of which are shown in Figure 1c. The samples were
crushed using a jaw crusher and then powdered in an agate mill
to sizes <200 mesh. Whole-rock major and trace elements were
determined using wavelength dispersive X-ray fluorescence

(WD-XRF) (Bruker S8 Tiger) on pressed-powder pellets at the
Wadia Institute of Himalayan Geology (WIHG), Dehradun, India.

The methodology adopted in this paper is similar to that
described by Singhal et al. (2019). The accuracy (% RDS) and
precision of the results for major oxides are within 5 % and
1.5 %, respectively (Saini, 1998). The geochemical data processing
and plotting were carried out using Geochemical Data Toolkit
(Janoušek et al. 2006).

The rare earth element (REE) concentrations were measured
using ICP-MS (Perkin-Elmer SCIEX ELAN DRC-e) at WIHG,
Dehradun. We used an open-system digestion method to prepare
the samples. A sample of 0.1 g of rock powder was mixed with (2:1)
HFþHNO3 solution of 20 ml in Teflon™ crucibles for the com-
plete digestion of the sample. The digested samples were then
extracted using 20%HNO3 and diluted to 100 ml volume.We used
rock standards (JG-2 and MB-H) for calibration.

The zircon separates were obtained using conventional heavy
liquid separation techniques. The zircon mounts were polished up
to 0.25micron using a diamond lapping compound. Backscattered
electron (BSE) and cathodoluminescence (CL) images were taken
using a scanning electronmicroscope (SEM-Zeiss EVO 40 EP) using
Zeiss Everhart-Thornley SE and Chroma UV CL2 detectors. Zircon
U–Pb ages were measured using an LA-MC-ICP-MS Neptune plus
instrument (Thermofisher Scientific) coupled with an Analyte G2
193 nm ArF excimer laser ablation system (Teledyne) at WIHG,
Dehradun, India. Zircon standard Harvard 91500 (TIMS reference
age 1062.4± 0.4Ma) (Wiedenbeck et al. 1995) was used as a primary
standard for correcting the instrumental mass bias and downhole
fractionation. However, we used Plesovice (TIMS reference age
337.13 ± 0.37Ma) (Sláma et al. 2008) as a secondary standard for
U–Pb geochronology. The complete methodology adopted in this
paper is similar to that described by Mukherjee et al. (2017). Off-line
processing of the data obtained from themass spectrometer was done
using Iolite version 2.5 (Paton et al. 2011). Concordia and histogram
plotting was carried out using IsoplotR (Vermeesch, 2018). We used
histograms to demonstrate and identify the peaks of the analysed
zircon spots. We selected the highest peak to calculate the weighted
mean age of the studied samples. We used IsoplotR (Vermeesch,
2018) for the calculation of weighted mean ages, which accounts
for the analytical uncertainties in heteroscedastic datasets. IsoplotR
provides three different calculated uncertainties with lower to upper
bounds. We considered the upper uncertainty bound to exclude
any error.

4. Petrography and geochemistry

The studied undeformed granites (SM 8, SM 9A, SM 9B, SM 10,
SM 11, SM 13, SM 14, SM 16, SM 17, SM 20) of the pluton from
the KB are medium to coarse grained, equigranular to porphyritic
in nature, and mainly consist of quartz (Qz), K-feldspar (Kfs), pla-
gioclase (Pl) and biotite (Bt) as the major rock-forming minerals
(mineral symbols after Whitney & Evans, 2010) (Fig. 4a–i). The
granites SM 9A and SM 9B are porphyritic with phenocrysts of
K-feldspar and plagioclase (Fig. 4b, c). Hornblende (Hbl) can be
observed only in one sample, SM 11 (Fig. 4e), while in all other
samples, biotite is the mafic phase (Fig. 4a–i). Extrusive rhyolites
(SM 21, SM 22, SM 23) that rest on the granite pluton (Fig. 3f)
exhibit a porphyritic texture in which euhedral phenocrysts of
sanidine (Sa), plagioclase and quartz are embedded within a felsic
groundmass mainly composed of fine crystals of quartz, orthoclase
and plagioclase. Features such as flow structures are not apparent,
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but phenocrysts of quartz and K-feldspar are present in the
quenched glassy groundmass (Fig. 4j–l).

Table 1 presents the results of the whole-rock geochemical
analysis. All granites exhibit a relatively wide range of SiO2

(66.92–73.85 wt %) and K2O (2.48–5.33 wt %) contents, belonging
to the medium to high potassium calc-alkaline series (Fig. 5)
(Peccerillo & Taylor, 1976). The granites are largely peraluminous,
except the metaluminous granite samples SM 8 and SM 11;
the A/CNK (molar Al2O3/CaOþNa2O þ K2O, i.e. alumina
saturation index of Shand, 1947) ratios range from 0.95 to 1.14.
The rhyolites (SM 21, SM 22, SM 23) are strongly peraluminous

(A/CNK = 1.42–1.81) (Fig. 6a). The nature of the differentiation
series of silicic magma can be determined through (FeOt)/
(FeOt þ MgO) (Frost et al. 2001), while the modified alkali lime
index (Peacock, 1931) of a silicic magmatic suite can be used
to decipher the nature and source of the magma (Frost et al.
2001). The granites and rhyolites follow the calc-alkali series, being
magnesian (Fig. 6b, c). On the A/CNK versus SiO2 plot (Chappell &
White, 1974), the granites show I-type affinity, while the rhyolites lie
in the S-type granite field (Fig. 6d). The granites and rhyolites do not
show much compositional difference, plotting in the field of granite
and granodiorite in terms of Na2O versus SiO2 (Middlemost, 1994)

Fig. 4. (Colour online) Photomicrographs of the studied rock samples from the SMC and KB. (a–i) Granites showing medium- to coarse-grained porphyritic texture with
phenocrysts of quartz (Qz), K-feldspar (Kfs), plagioclase (Pl) and biotite (Bt). (j–l) Porphyritic texture and exhibition of euhedral phenocrysts of sanidine (Sa), plagioclase and
quartz. hbl – hornblende.
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Table 1. Major- (wt %) and trace-element (ppm) contents of the analysed samples from the Karakoram Batholith, eastern Karakoram, India

Elements SM 8 SM 9A SM 9B SM 10 SM 11 SM 13 SM14 SM 16 SM 17 SM 20 SM 21 SM 22 SM 23

SiO2 70.15 73.85 66.92 72.29 70.53 67.63 70.70 72.08 67.13 67.80 65.88 71.16 71.49

TiO2 0.29 0.08 0.45 0.21 0.40 0.51 0.18 0.30 0.48 0.54 0.95 0.68 0.71

Al2O3 15.24 14.92 16.74 14.27 13.63 14.48 15.61 14.18 15.59 14.86 16.74 13.07 14.37

Fe2O3
t 1.85 0.36 2.94 1.38 3.35 3.96 1.28 2.49 3.23 3.37 6.04 5.06 4.67

MnO 0.02 0.01 0.04 0.02 0.05 0.05 0.03 0.05 0.05 0.05 0.06 0.05 0.02

MgO 0.49 0.10 0.75 0.27 1.34 1.50 0.26 0.68 1.21 1.56 1.83 1.77 1.02

CaO 3.01 1.37 2.39 1.95 2.60 2.32 1.88 2.10 2.87 3.13 0.78 1.10 0.58

Na2O 4.02 3.63 4.62 3.82 2.84 2.62 4.26 2.94 3.07 2.78 2.90 2.51 2.19

K2O 2.93 5.33 2.48 4.06 4.48 4.80 3.76 4.35 4.05 4.01 3.37 2.83 3.03

P2O5 0.14 0.09 0.05 0.10 0.12 0.18 0.05 0.11 0.17 0.19 0.14 0.15 0.06

LOI 4.02 0.49 0.78 0.92 0.58 1.97 1.01 1.25 1.44 0.97 2.01 1.51 1.97

TOTAL 102.16 100.23 98.16 99.29 99.92 100.02 99.02 100.53 99.29 99.26 100.70 99.89 100.11

A/CNK 0.99 1.04 1.14 1.00 0.95 1.05 1.07 1.06 1.06 1.01 1.70 1.42 1.81

Sc 4.3 2.6 6.2 3.4 6.5 7.4 3.0 5.0 7.2 7.2 12.2 7.7 8.2

V 21 4 36 18 54 62 11 31 48 58 122 88 82

Ni 1 BDL 1 2 9 10 BDL 5 5 4 31 24 10

Cu 3 1 6 6 4 5 1 1 4 8 17 19 9

Zn 40 14 57 28 40 55 33 40 47 41 66 60 36

Ga 18 16 21 16 15 16 17 17 17 18 18 14 13

Pb 28 39 25 43 38 37 40 38 29 20 24 15 8

Th 8 5 47 21 51 44 19 22 18 19 10 9 7

Rb 95 117 104 123 236 240 122 200 172 138 118 94 104

U BDL BDL 4.3 3.0 5.6 4.0 BDL 5.0 4.8 5.5 2.4 BDL BDL

Sr 528 253 395 443 226 308 457 245 309 517 163 120 114

Y 14 15 14 17 33 31 16 32 26 21 23 19 19

Zr 162 76 209 160 192 205 129 140 161 211 241 202 298

Nb 7 1 11 4 22 17 6 17 16 15 19 15 15

Ba 1084 302 614 930 436 618 1385 434 595 798 742 500 582

La 20.830 12.133 69.947 33.500 58.640 86.700 13.227 39.160 35.405 42.954 35.495 27.288 24.472

Ce 39.486 23.757 139.21 62.020 111.130 155.400 23.513 74.880 68.658 79.003 73.506 56.765 50.949

Pr 3.941 2.456 15.018 6.790 11.160 16.400 2.241 8.270 7.186 8.137 8.072 6.166 5.539

Nd 14.689 9.029 56.334 23.40 39.776 53.000 7.997 28.11 27.63 31.017 32.347 24.644 22.142

Sm 2.374 1.585 8.869 3.930 6.377 8.940 1.147 5.980 4.878 5.012 5.614 4.368 3.933

Eu 0.639 0.476 0.579 0.790 0.923 1.360 0.342 0.960 1.027 1.237 1.249 0.921 0.917

Gd 1.670 1.043 5.549 3.600 4.792 8.380 0.831 5.940 3.609 3.629 3.992 3.158 2.828

Tb 0.231 0.140 0.588 0.420 0.706 1.020 0.102 0.910 0.578 0.514 0.579 0.472 0.41

Dy 1.288 0.744 2.390 1.760 4.551 5.000 0.568 4.880 3.806 3.118 3.558 2.821 2.525

Ho 0.119 0.066 0.168 0.300 0.500 0.940 0.053 0.960 0.408 0.315 0.354 0.287 0.248

Er 0.354 0.204 0.471 0.760 1.745 2.670 0.167 2.520 1.383 1.026 1.153 0.920 0.780

Tm 0.036 0.022 0.032 0.080 0.233 0.380 0.020 0.380 0.181 0.122 0.140 0.110 0.094

Yb 0.320 0.207 0.275 0.530 2.374 2.560 0.192 2.500 1.902 1.234 1.429 1.079 0.953

Lu 0.047 0.031 0.041 0.070 0.384 0.380 0.033 0.360 0.311 0.191 0.235 0.171 0.153

∑REE 86.021 51.893 299.470 137.950 243.290 343.130 50.433 175.810 156.960 177.500 167.720 129.170 115.943

(Continued)
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(Fig. 7). The contents of TiO2, MgO, CaO, FeOt and Al2O3 show
a decreasing trend with increasing SiO2 for both the granites
and rhyolites (Fig. 8). On the Nb versus Y tectonic discrimination
diagram (Pearce et al. 1984), all the studied samples plot in the
volcanic arc granite (VAG) plus syn-collisional granite (syn-COLG)
fields (Fig. 9a), and on the Rb versus Y þ Nb diagram they plot in
the VAG field (Fig. 9b). The granites SM 8 and SM 9most likely origi-
nated from metapelite, as evident from the observed low to moderate
Mg no. (11.7–57.6), and high Na2O (3.63–4.62), TbN/YbN (3.0–9.1),
Al2O3/(MgOþ FeOt) (7.0–35.5) andK2O/Na2O (0.5–1.4), as typically
suggested elsewhere for melts generated from metapelites (Altherr
et al. 2000).

The total sum of REEs for the granites varies from 50.43 to
299.47 ppm and for the rhyolites from 115.9 to 167.7 ppm. The
rhyolites exhibit almost similar chondrite-normalized (Taylor &
McLennan, 1985) REEpatterns to those observed for the granites, with
moderate negative europium anomalies (EuN/Eu* =0.75–0.84) com-
pared to the granites, which show a wide range of negative to positive
europium anomalies (EuN/Eu* = 0.25–1.13) (Fig. 10a; Table 1).
The light rare earth element (LREE) patterns are inclined, whereas
the heavy rare earth elements (HREEs) exhibit almost flat patterns,
suggesting moderate LREE to HREE fractionation (LaN/LuN =
11.29 to 177.1) for the studied granites and rhyolites. However,
the LREE to HREE fractionation (LaN/LuN = 11.29 to 177.1) of
the granites is slightly more than that observed for the rhyolites
(LaN/LuN = 15.68–16.60).

The primitive mantle-normalized (Taylor & McLennan, 1985)
trace-element patterns of the granites and rhyolites show enriched
large ion lithophile element (LILE) patterns relative to the high field
strength elements (HFSE). The observed negative Nb, Sr, Ti and V
anomalies for the granites suggest subduction-related calc-alkaline
magmatism (Kelemen et al. 1993). The rhyolites also show negative
Nb–Sr anomalies, but a slight enrichment in Ti, V and Ni contents
compared to those observed for the granites (Fig. 10b).

5. Zircon U–Pb geochronology

We selected five granite samples (SM 8, SM 9, SM 16, SM 17, SM
20) and one rhyolite sample (SM 22) from the KB for zircon U–Pb
geochronology to constrain the timing of magmatic events. Online
Supplementary Material Table S2 presents the LA-MC-ICP-MS
analysed zircon U–Pb geochronological database for the granites
and rhyolite. The details are as follows.

5.a. SM 8 (granite)

The zircons from SM 8 are euhedral, showing oscillatory zoning
patterns with bright cores (Fig. 11a). We analysed 25 zircon spots
on 17 zircon grains. The Th/U ratio of 13 zircon cores and rims
varies from 0.02 to 0.07, while ten analyses show a relatively high
Th/U ratio of 0.17–0.57, and two zircon cores show a very high
Th/U ratio of 27.2 and 30.5 (online Supplementary Material
Table S2). Although low Th/U (<0.2) and high Th/U (>0.2) ratios
have been suggested for zircons of metamorphic and magmatic
origins, respectively (Rubatto & Gebauer, 2000; Hoskin &
Schaltegger, 2003), no clear distinction regarding the mode of ori-
gin of zircons can be made on the basis of Th/U ratio alone.
However, the sharp contacts between the oscillatory zoned rims
and cores with a high Th/U ratio (>0.2) observed for most of
the zircon grains indicates a magmatic origin. The data for all
the zircon spot analyses were plotted on a concordia diagram,
on which the analyses from the rims suggest an age range of middle
to late Miocene (18.2–10.22 Ma), while the ages from the cores
vary from Palaeoproterozoic to Late Cretaceous (2028–80Ma),
suggesting their inheritance from the Karakoram basement
(Fig. 12a). The seven most concordant analyses from the zircon
rims yield a 206Pb–238U weighted mean age of 15.029 ± 0.01 Ma
(MSWD = 1.34), which can be interpreted as the crystallization
age of the zircons in the granite (Fig. 12b). Inherited zircon grains
yield ages of 80, 787, 1170, 1830 and 2028Ma, which indicate the
involvement of heterogeneous sources in the genesis of the granite.

5.b. SM 9 (granite)

The zircons from SM 9 are mostly euhedral and oscillatory
zoned with weakly zoned rims having some homogeneous

Table 1. (Continued )

Elements SM 8 SM 9A SM 9B SM 10 SM 11 SM 13 SM14 SM 16 SM 17 SM 20 SM 21 SM 22 SM 23

Rb/Sr 0.179 0.462 0.263 0.277 1.044 0.779 0.266 0.816 0.5566 0.266 0.723 0.783 0.912

LaN/LuN 46.00 40.63 177.11 49.68 15.85 23.69 41.61 11.29 11.82 23.35 15.68 16.57 16.60

EuN/Eu* 0.98 1.13 0.25 0.64 0.51 0.48 1.07 0.49 0.74 0.88 0.80 0.75 0.84

LaN/SmN 5.52 4.82 4.96 5.37 5.79 6.10 7.26 4.12 4.57 5.39 3.98 3.93 3.92

GdN/LuN 4.42 4.19 16.85 6.40 1.55 2.75 3.14 2.05 1.44 2.37 2.12 2.30 2.30

Fe2O3
t – total iron; LOI – loss on ignition; A/CNK –molar Al2O3/CaOþ Na2Oþ K2O; ∑REE – sum of the total REE; Eu* –

p
(SmN) × (GdN); BDL – below detection limit; REE normalization based on

Taylor & McLennan (1985).
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Fig. 5. K2O versus SiO2 plot for the studied granites and rhyolites (fields are shown
after Peccerillo & Taylor, 1976).
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domains. The cores are bright with sharp to transgressive
contacts, but the rims show features of recrystallization (Fig. 11b).
Thirty-one analyses on 19 zircon grains were carried out. The data
for all analyses were plotted on a concordia diagram, on which all
12 analyses from the rims suggest an age of middle to late Miocene
(14.96–11.62 Ma), except two analyses with Late Cretaceous and
early Palaeogene ages (67 Ma and 57Ma), while the other ten
analyses from the cores vary from Mesoproterozoic to Late
Cretaceous (1969–65Ma) in age, suggesting inheritance from
the Karakoram basement (Fig. 12c). The five most concordant

analyses from the zircon rims yield a 206Pb–238U weighted mean
age of 12.680 ± 0.26 Ma (MSWD = 2.62), which is interpreted
as the zircon crystallization age in the granite (Fig. 12d).
Inherited zircon ages from the cores cluster in the groups
57–70Ma, 95.6–205Ma, 418.8–696Ma, 1382Ma and 1969Ma,
which strongly points to the recycling of heterogeneous older
sources in the genesis of the granite.

5.c. SM 16 (granite)

The zircons from sample SM 16 are subhedral to euhedral, showing
oscillatory zoning developed over the bright cores (Fig. 11c). Thirty
spots on 18 zircon grains were analysed. Twenty-three zircon
analyses have high measured Th/U ratios (0.20–1.99), which indi-
cate a magmatic origin (Rubatto & Gebauer, 2000). Seven analyses
from the zircon rims and cores have measured Th/U ratios of
between 0.05 and 0.18, indicating a metamorphic or recrystallized
origin for the zircon grains (online Supplementary Material
Table S2). Data for all of the 30 analyses were plotted on a concor-
dia diagram, on which 26 analyses suggest Early to Late Cretaceous
ages (86.3–45.4 Ma), while three analyses from the inherited cores
show Palaeozoic ages (379Ma, 349Ma and 579Ma), with a single
rim analysis showing an Eocene age (52.6 Ma) (Fig. 12e). The seven
most concordant zircon analyses yield a 206Pb–238U weighted
mean age of 99.38 ± 0.89 Ma (MSWD = 0.75), whereas six zircon
analyses yield a 206Pb–238U weighted mean age of 105.62 ± 1.75
(MSWD = 2.94). These ages at least indicate two episodes of
granite magmatism in Middle Cretaceous time (Fig. 12f). Inherited
zircon core ages vary from 349 to 519Ma, which probably indicates
the involvement of juvenile and Gondwana components in the origin
of the granite.
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5.d. SM 17 (granite)

The zircons from SM 17 are mostly subhedral, having oscillatory
zoned to weakly zoned rims (Fig. 11d). Thirty analyses on 20 grains
were carried out. The Th/U ratio for all the analyses is >0.2 (0.22–
0.90), indicating a magmatic origin for the zircons, except a single
analysis from a rim (Th/U = 0.13). All the 30 analyses were plotted
on a concordia diagram, on which 27 analyses suggest an age of
Early to Late Cretaceous (130–86.2 Ma), while three inherited
zircon cores show Palaeozoic to Neoproterozoic ages (405, 536
and 741Ma) (Fig. 13a). The six most concordant analyses yield
a 206Pb–238U weighted mean age of 104.52 ± 0.75 Ma (MSWD =
2.03), interpreted as the zircon crystallization age in the granite
(Fig. 13b). Inherited ages from the zircon cores vary from 405.3
to 741 Ma, which suggests their source is Gondwanaland.

5.e. SM 20 (granite)

The zircons from SM 20 are euhedral and oscillatory zoned.
Inherited zircon cores can be seen with sharp to somewhat diffu-
sive contacts (Fig. 11e). Thirty analyses on 18 zircon grains were

carried out. Th/U ratios for most of the analyses are higher than
0.2 (0.20–1.0), indicating a magmatic origin, while some zircon
cores and rims have measured Th/U ratios of between 0.09 and
0.19 (online Supplementary Material Table S2). All the 30 analyses
were plotted on a concordia diagram, on which 18 analyses suggest
an age of Early to Late Cretaceous (142–92.1 Ma), while the nine
inherited zircon cores suggest Palaeoproterozoic to Palaeozoic
ages (1601–328Ma) (Fig. 13c). The five most concordant zircon
analyses yield a 206Pb–238U weighted mean age of 108.03 ± 0.61
Ma (MSWD = 2.52), interpreted as the zircon crystallization age
in the granite (Fig. 13d). Inherited zircon ages from this sample
vary in the age groups 328–702Ma and 1193–1601Ma, which
suggests the involvement of Meso- to Neoproterozoic and some
younger crustal components in the genesis of this granite.

5.f. SM 22 (rhyolite)

The zircon grains from SM 22 are mostly homogeneous with some
faint oscillatory zoning patterns (Fig. 11f). Thirty analyses on 24
zircon grains were carried out, mostly on the cores because the rims
were too thin to perform the analysis. Th/U ratios for most of the
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1985) trace-element spider diagram plotted for the analysed samples.
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zircon analyses are >0.2 (0.20–2.1), indicating a magmatic origin,
while some analyses have Th/U ratios of between 0.11 and 0.19
(online SupplementaryMaterial Table S2). All the 30 analyses were
plotted on a concordia diagram, on which 17 analyses suggest an
age of Early to Late Cretaceous (~136.6–65.8 Ma), three analyses
an age of Early to Middle Jurassic (192–175Ma) and 11 analyses
a Permian age (782–284Ma) (Fig. 13e). The ages from the rhyolite
can be divided into three groups: Coniacian to Santonian within
the Late Cretaceous (89.7–84.7 Ma with Th/U= 0.73–2.1), Early
to Late Cretaceous (136.6–98.4 Ma with Th/U = 0.405–0.893)
and Neoproterozoic to Middle Jurassic (782–175Ma with
Th/U = 0.11–1.3).

The four most concordant zircon analyses yield a 206Pb–238U
weighted mean age of 103.52 ± 2.17 (MSWD = 1.01), while a
cluster of another four zircon analyses (Th/U= 0.73–2.1) yield a
206Pb–238U weighted mean age of 84.79 ± 1.87 (MSWD= 3.64)
(Fig. 13f). These two age peaks corresponding to the Late
Cretaceous are observed on the Kernel density estimate (KDE) plot
(Fig. 13f). Inherited zircon ages from this sample vary in the age
groups 175–284Ma and 343–782Ma, which indicates the contri-
bution of Permian to Middle Jurassic and Neoproterozoic to Late
Palaeozoic components in the evolution of the rhyolite.

6. Discussion

6.a. Process diagnosis and likely tectonic settings of the
granites and Murgo Volcanics

The studied granites and rhyolites from the Shyok Valley region
are undeformed and do not show evidence of mylonitization
and migmatization, as commonly observed near the KFZ. The
granites are metaluminous to weakly peraluminous (S-type; molar
A/CNK = 0.95–1.14), which might be due to evolution through
fractional crystallization of calc-alkaline, metaluminous (I-type)
parental magma giving rise to amildly peraluminous residual melt.
However, the rhyolites are strongly peraluminous (S-type) in
nature (molar A/CNK = 1.42–1.81), which could have been
formed by AFC. TiO2, MgO, CaO, FeOt and Al2O3 behave as com-
patible elements in both granites and rhyolites, which equivocally
dictates that their evolution is dominantly controlled by fractiona-
tion of biotite, plagioclase, K-feldspar and sphene (Fig. 8) from
calc-alkaline, magnesian-type felsic parental melts (Fig. 6).

Slab dehydration during subduction leads to the release of fluids
that carry mobile elements into the overlying mantle wedge, which
is a common feature of arc environments (Keppler, 1996; Xiao et al.
2016). These fluids from the subduction zone interact with the
fluids of the mantle wedge, and form hydrous minerals (e.g.
hornblende, biotite), which are present in the studied granites
(Fig. 4) (e.g. Murphy, 2006). Enrichment of the LILEs in the gran-
ites suggests that the mobile elements (e.g. K, Rb, Ba, Sr, U, Th)
extracted from the subducted slab through supercritical fluid have
enriched the overlying mantle wedge, and this is recorded in the
contents of trace elements in the samples (Fig. 10b; Table 1)
(e.g. Spandler et al. 2003; Murphy, 2006). The enrichment of
LREEs relative to HREEs with moderately negative to mildly pos-
itive Eu anomalies (EuN/Eu* = 0.25–1.13) in the granites (Fig. 10a;
Table 1) would have been controlled mainly by plagioclase frac-
tionation and little plagioclase accumulation, respectively, during
the evolution of the parental granite magma. The presence of
negative Eu anomalies (EuN/Eu* = 0.75–0.84) in the rhyolites
suggests plagioclase fractionation during their evolution.
The total sum of REEs for the granites (172.2 ppm; n= 10;

SiO2 = 66.92–73.85 wt %) and rhyolites (137.6 ppm; n= 3; SiO2 =
65.88–71.49 wt %) and the average LREE/HREE fractionation
(LaN/LuN = 44.10 for the granites and LaN/LuN= 16.28 for the
rhyolites) points to the relatively more evolved nature of the gran-
ites compared to the rhyolites (Table 1). Both the granites and
rhyolites exhibit LILE enrichment (e.g. Th, K, Ba) and HFSE
depletion (e.g. Nb, Ti, Zr) with negative Nb, Ti and Zr and positive
Th anomalies with respect to primitive mantle values (Fig. 10b),
which are mostly sourced from the subducting lithosphere, which
induced melting of the mantle wedge. Tectonic discrimination via
major oxides (Maniar & Piccoli, 1989) also shows that the granites
and rhyolites belong to continental arc granitoids (CAG) of the
orogenic field. The granites (SM 10–SM 20) and the rhyolites bear
high Mg nos. (100Mg/Mg þ Fe) ranging from 27.3 to 69.4 and
from 51.4 to 62.6, respectively. We observed low Na2O contents
for the granites (2.84–4.26 wt %) and rhyolites (2.19–2.90 wt %)
and high abundances of incompatible elements, and (Tb/Yb)N =
1.29–3.3 and 1.73–1.87, respectively, for the granites and rhyolites.
These characteristics suggest an origin from enriched lithospheric
mantle sources (Altherr et al. 2000). The rhyolites are calc-alkalinewith
lowHFSEs andhighZr/Y (10.4–15.6) and LaN/YbN (16.7–17.3), which
corresponds to the FI group of rhyolites typically formed in subduction
settings (Lesher et al. 1986).

In the eastern Karakoram, the exposed felsic magmatic rocks in
the Nubra–Shyok Valley are represented by calc-alkaline metalu-
minous (I-type) Tirit granites (Rao &Rai, 2009; Kumar et al. 2017),
while the Panamik granites exposed in the Khalsar–Panamik
(Fig. 1c) area are weakly peraluminous (Rao & Rai, 2009), similar
to those noted for the studied granites from the Shyok–Murgo
section (Fig. 1c). In contrast, the rhyolites exhibit elevated molar
A/CNK (with enriched LILEs and LREEs), which may suggest der-
ivation from pelitic sources present in the accretionary wedge or
the crustal basement (e.g. Thorpe, 1982). The observed moderate
to high K2O (2.48–5.33 wt %) and K2O > Na2O with enrichment
of Rb content (95–240 ppm) for the granites; and K2O (2.83–
3.37 wt %) and K2O > Na2O with high Rb content (94–
118 ppm) for the rhyolites also advocates for varying amounts of
crustal contribution in their genesis. The Th/Nb versus Zr plot
(Fig. 14) for the granites shows a continuously increasing Zr trend
with slight enrichment in Th/Nb that suggests fractional crystalli-
zation as the dominant process in the evolution of the granites
(e.g. Nicolae & Saccani, 2003). On the other hand, the rhyolites
demonstrate an increasing trend of Th/Nb with Zr that suggests
the dominant role ofAFCduringmagmatic differentiation (Fig. 14).
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Fig. 14. Th/Nb versus Zr plot for the studied samples. Trends reflect increasing
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On the Rb versus YþNb plot (Fig. 9b), the granites and rhyo-
lites lie within an ellipse approaching a triple point formed by the
intersection of the boundary lines separating the VAG, syn-COLG
and within-plate granite (WPG) fields, which is the region of post-
collisional granites (Pearce, 1996). The observed enrichment of Rb
and K2O, and high A/CNK ratios in the granites and rhyolites can
be most likely achieved through AFC. However, the major oxide
contents demonstrate the continental arc nature of the rhyo-
lites (Fig. 6b).

6.b. Quantitative modelling of fractional crystallization and
assimilation

During fractional crystallization, the magma simultaneously
assimilates the surrounding rocks of the crust because of heat
transfer from the hot magma to the more cold surroundings
(Kuritani et al. 2005). The deep lower crustal rocks in the
Karakoram terrane are mainly igneous and high-grade metamor-
phic rocks (Searle, 2015). In the study area, the main bedrock is
highly evolved Late Cretaceous granites that contain older crustal
components such as Palaeozoic and Proterozoic zircons, as
recorded in the present work and elsewhere (Kumar et al. 2017
and references therein). Geochemically, these granites are slightly
peraluminous to metaluminous, and enriched in the LILEs (e.g. Sr,
Rb, Ba). The rhyolites are strongly peraluminous and exhibit xen-
ocrystic magmatic zircons derived from the KB pluton, which can
be explained based on the trace-element (U, Th) composition of
the zircons. The zircons from the rhyolite sample SM 22 have
Late Cretaceous ages (84.7 to 89.7 Ma) with high Th/U ratios
(0.73–2.1), while the other xenocrystic zircons of Early to Late
Cretaceous and Neoproterozoic to Middle Jurassic ages have
Th/U ratios of between 0.40–0.9 and 0.11–1.3, which correlates
well with the observed Th/U ratios (0.06–1.1) of the zircons from
the granites (SM 16–SM 20). Hence, we prefer these granites as the
potential candidates for contaminants during synchronous frac-
tional crystallization. We suggest that the rhyolite magma was
formed by fractional crystallization of a more primitive magma
at depth accompanied by assimilation of the KB.

An attempt was made to quantitatively constrain the likely
processes of assimilation of the pre-existing granites by the rhyo-
lites accompanied by fractional crystallization using trace ele-
ments, including the REEs of the rhyolite and assimilant granite,
and the Microsoft Excel-based Petromodeler program containing
partitioning coefficients (Kds) of the Geochemical Earth Reference
Model (GERM) database (Ersoy, 2013). To quantitatively model
the fractional crystallization forming the cogenetic granites, we
assumed the least fractionated sample SM 13 as the starting paren-
tal magma composition (Cof). An increasing degree of F, i.e. the
fraction of remaining melt, was used to test the fractionation of this
parental magma. The REE content of the highly evolved SM 10
granite as a residual melt with SiO2= 72.29 wt % can be achieved
at F= 37 %, which at least constrains the evolved nature of the
granite melt through 63 % fractional differentiation (Fig. 15).

For modelling the AFC, we considered the rhyolite sample SM
23 to be the least contaminated or uncontaminated sample,
because of its extremely low content of incompatible elements
(e.g. Sr, U, La,), and granite sample SM 14 of the KB as the assimi-
lant (Fig. 16a, b). The average of the pre-collision granites (SM 10
and SM 20) was also used as a possible contaminant (Fig. 16c, d).
The obtained results dictate that rhyolite SM 21 can be achieved by
assimilation of ~34.5 % (r= 0.13; the ratio of assimilation rate and
fractional crystallization rate) of granite SM 14 by rhyolite SM 23

(Fig. 16a). Rhyolite SM 22 can be produced by ~13.8 % (r= 0.40)
assimilation of rhyolite SM 23 with granite SM 14 (Fig. 16b). The
rhyolites SM 21 and SM 22 can also be achieved by ~34.5 %
(r= 0.10) and ~13.8 % (r= 0.15) assimilation of the average
pre-collisional granites as contaminants (Fig. 16c, d). The likely
higher degree of assimilation might have occurred owing to a sec-
ond boiling prevailing in the chamber (Sisson & Bacon, 1999).
Further, the latent heat of crystallization of the anhydrous ground-
mass minerals may induce the effect of a second boiling (Kumar,
2014). The obtained quantitative models at least constrain the
evolution of the rhyolites through AFC. The future work on
whole-rock Sr–Nd isotopes of the granites and rhyolites can
strengthen our proposed model of AFC.

6.c. Episodic magmatism in the evolution of the Karakoram
Batholith

Several earlier attempts have been made to understand the contri-
bution of magmatism in the evolution of the KB. Weinberg et al.
(2000) reported the U–Pb zircon crystallization age of ~68Ma as
the emplacement age for the Tirit granites exposed along the
Nubra–Shyok Valley and correlated this part with an equivalent
magmatic episode of the Ladakh Batholith. Upadhyay (2008)
reported a more or less similar emplacement age of ~71Ma
for the Tirit granites. However, Kumar et al. (2017) reported
~109–105Ma ages for the calc-alkaline Tirit granites and opined
that subduction along the SSZ started much earlier in Early
Cretaceous time. Our results are similar to the observations of
Ravikant et al. (2009), who reported ~103–100Ma ages for zircon
crystallization in enclaves from the Skyangpoche region and con-
cluded that the subduction along the SSZ might have initiated at
~103 Ma, i.e. much earlier than along the ITSZ. However, studies
from the western Karakoram by Heuberger et al. (2007) suggested
that the subduction started still earlier again at ~121Ma, as evident
from the U–Pb zircon crystallization age of the Tirich Mir pluton.
In the present study, zircon dating from three granite samples
(SM 16, SM 17 and SM 20) points to episodic magmatism spanning
~108 to 100Ma (Figs 12e, f, 13a–d).

Zircon U–Pb geochronological data from previous and present
studies on the volcano-plutonic magmatic rocks of the KLA
and Karakoram Block have been compiled and processed in order
to plot an age probability diagram (Fig. 17). Two main pre-
collisional magmatic episodes in the Karakoram Block during
Early Cretaceous time (125–99Ma) and Late Cretaceous to
Palaeogene times (85–50Ma) can be recognized (Fig. 17a).
However, there is a significant magmatic gap observed between
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~99 Ma and ~85Ma. It appears that the KLA has grown continu-
ously through magmatism spanning from ~85 Ma to 40Ma, with
sparse magmatic pulses at ~102–91Ma (Fig. 17b) to the south of
the SSZ. Most importantly, the quiescent period of magmatism in

the Karakoram is apparent during ~99–85Ma, and the lower age
limit of this quiescent period matches well with the timing of
initiation of the most pronounced magmatic episode at ~85Ma
in the Kohistan–Ladakh block (Fig. 17b).
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The timing of suturing along the SSZ and collision of the KLA
and Karakoram terrane has been suggested as ~110–75Ma
(Petterson & Windley, 1985; Treloar et al. 1996; Rolland et al.
2000; Heuberger et al. 2007; Ravikant et al. 2009; Borneman
et al. 2015; Kumar et al. 2017) based on several lines of chronologi-
cal evidence. These include: (1) ~75 Ma Jutal dykes (Treloar et al.
1989) that cross-cut the ~102 Ma Matum das Karakoram pluton
and ~113–100Ma Chalt Volcanics (Petterson & Windley, 1992);
(2) an ~85 Ma aplite dyke from the Nubra Valley that cross-cuts
the unconformity between the Shyok Volcanics and the Saltoro
molasse in the SSZ; (3) ~86–84Ma granites (Borneman et al. 2015)
and ~109–104Ma granites (Kumar et al. 2017) that intrude the
Shyok Volcanics; (4) a detrital zircon U–Pb age of 92.43± 0.24Ma
from the Saltoro molasse that contains zircons from both the
Kohistan–Ladakh and Karakoram blocks (Borneman et al. 2015).

Extrusive Murgo rhyolite (SM 22) can be seen within
the KB and provides a zircon U–Pb age of 84.86 ± 1.87 Ma
(Th/U= 0.4–0.8), with some zircon inheritance from Neoproterozoic
to Early Cretaceous (782–103 Ma) components (Fig. 13e, f).
Interestingly, this sample records the Late Cretaceous event of
~85 Ma (Th/U = 0.7–2.1) (Fig. 13e, f) that is not present in the
granites of the KB. We interpret the Late Cretaceous (~85Ma)
age as the eruptive age of the rhyolites, while the observed Early
Cretaceous, Neoproterozoic and Late Palaeozoic inherited zircons
are xenocrysts most likely entrapped into the melt during the par-
tial assimilation of thickened Karakoram crust formed as a result of
the collision of the KLA and Karakoram Block. This proposed
model gives an insight into the AFC processes responsible for
the evolution of the MV, which possibly originated owing to the
partial melting of the mantle wedge, and subsequently experienced
AFC at the active continental margin of the Karakoram during
the ascent of the magma (Fig. 18).

Based on the above discussion, we suggest that, in the
Karakoram terrane, the Albian (~110–100Ma) was the time period
when the eastern and western regions of the KB began evolving
owing to the subduction of Tethys oceanic lithosphere along the
SSZ. The Karakoram Block then collided with the KLA (Dras
island arc) in Late Cretaceous time, before ~85Ma (Fig. 17).
Afterwards, the KLA and Karakoram Block evolved as a single
block following the closure of the SSZ in Santonian time, most
clearly demonstrated through the observed southward migration
of calc-alkaline subduction-related magmatism (Fig. 17b).

Also, the two undeformed granite samples (SM 8 and SM 9A)
provide evidence of post-India–Asia collisional magmatic events
at ~12 and 15Ma. Two primary mechanisms are well known for

the generation of post-collisional granites in this region. First,
the melting of the pelitic source in the upper crust during
Miocene time, which is arguably explained by crustal thickening
due to the collision of the Indian and Asian plates during Early
Eocene time that resulted in this stage of magmatic rocks
(Searle et al. 1988; Searle, 1991; Fraser et al. 2001; Brookfield
et al. 2017), or second, due to shearing along the lithospheric-scale
KF zone (Murphy et al. 2000; Weinberg & Dunlap, 2000; Lacassin
et al. 2004; Valli et al. 2008; Leloup et al. 2011; Boutonnet et al.
2012; Horton & Leech, 2013; Sen et al. 2014). In the present case,
no deformation related to the KF is seen, and these granites are unde-
formed (Fig. 3c, d) and lie near to the contact of the SMC and KB.
Therefore, we infer the two most plausible models for the generation
of post-collisional granitemelts. First, these were formed as a result of
dehydrationmelting of a metapelitic source due to high thermal gra-
dients associated with crustal thickening, which served as a signifi-
cant heat source required for crustal melting (e.g. Parrish & Tirrul,
1989; Schärer et al. 1990; Searle et al. 2010). Second, these granites
represent accumulated melts and were possibly migrated from the
pool of magmas formed in batches at depth as a result of shear heat-
ing during deformation along the KF.

7. Conclusions

Field, petrographic, geochemical and zircon U–Pb geochronologi-
cal data from the granites and rhyolites of an unexplored domain
of the Karakoram Block exposed along the Shyok Valley have
been presented and interpreted, and combined with the previously
published zircon U–Pb age data for the magmatic rocks of the
Karakoram Block. The main magmatic episode in the Karakoram
Block took place during ~110–100Ma in the western as well as
the eastern Karakoram. This study provides a new model for the
closure of the SSZ based on the emplacement of calc-alkaline rhyolite
that has dominant continental signatures, which most likely resulted
from synchronous AFC within the thickened continental margin
during the ascent ofmagma from themantle wedge. Our results sug-
gest that the closure of the SSZ took place before ~85Ma. The KLA
and theKarakoramBlock evolved as a single block after the closure of
the SSZ, i.e. after the Late Cretaceous period. After that, themagmatic
pulse shifted southwards towards the Ladakh Batholith region, with
sparse magmatic events in the Karakoram Block.
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