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Summary
The North China Plain is an important summer maize/winter wheat rotation area. However, over the
years, continued intensive tillage has destroyed the soil aggregate accelerating the mineralization and
decomposition of soil organic carbon (SOC), which plays an important role in soil quality, as increased
organic carbon storage improves soil fertility and crop yields. Thus, the objective of this study was to
explore the comprehensive impact of tillage methods on soil aggregates, aggregate-associated SOC, and
carbon sequestration capacity under a regime of straw return. In 2002, we started a 14-year long-term
tillage experiment; then in 2016–2017, we tested the following tillage methods, zero tillage (ZT), rotary
tillage (RT), subsoiling (SS), and conventional tillage (CT). The results showed that in the 0–10 cm soil
layer, tillage methods significantly reduced the proportion of aggregates in the order of 2–0.25> 5–
2> 0.25–0.053 mm. Additionally, conservation tillage (i.e., SS and ZT) significantly increased the percent-
age of macroaggregates (0–40 cm) and their SOC content, compared to CT. Additionally, the contribution
rate of macroaggregates to SOC was 17.2% and 30.6% higher under SS and ZT than under CT, respectively.
Conservation tillage methods improved the carbon sequestration capacity of soil aggregates. Our study
provides a theoretical basis for the development of more suitable tillage methods. Furthermore, long-term
conservation tillage seemingly protected large aggregates and, SOC, whereby carbon sequestration was
enhanced and soil carbon emissions were effectively reduced.
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Introduction
Worldwide, nearly 1550 Pg of organic carbon is stored in the superficial (0–1m) layer of the soil profile
(Brahim et al., 2014). Generally, total soil organic carbon (SOC) is approximately twice the atmo-
spheric carbon pool and 2.5 times the total carbon stored in terrestrial vegetation (Schlesinger and
Andrews, 2000); therefore, even small changes in SOC can cause significant changes in atmospheric
CO2 content (Brown and Lugo, 1982). Further, SOC is vital for crop production because it regulates
nutrient cycling and affects soil fertility. Indeed, overall, SOC is an essential component of the healthy
soil’s biological, physical, and chemical regulatory functions (Al-Kaisi and Kwaw-Mensah, 2020).

Jastrow (1996) observed that 90% of farmland topsoil SOC is located in soil aggregates, which
act as an intermediate link in the formation and transformation of SOC. Specifically, they protect
and stabilize SOC, while their formation and structure depend on the amount of SOC (Sarker
et al., 2018; Somasundaram et al., 2018). Studies have shown that soil aggregates can effectively
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retain SOC through physical encapsulation, which contributes to their long-term stability
(Golchin et al., 1994). Farmlands are an important part of the organic carbon pool, and agricul-
tural production processes ensure its active transformation (Wang et al., 2016). Particularly in
farmlands, particle size distribution and carbon sequestration by soil aggregates are differentially
affected by tillage methods. The frequent mechanical disturbance caused by farming operations
destroys soil macroaggregates, exposing the original SOC protected by aggregates, and accelerat-
ing its decomposition rate (Castro Filho et al., 2002; Six et al., 2000).

Conservation tillage reduces the intensity and frequency of tillage, avoids soil inversion to
reduce soil aggregate disruption (Aguilera et al., 2013), and keeps a minimum of 30 % of the soil
surface covered with residues to ensure soil conservation (Singh et al., 2018). According to FAO
(2015), conservation agriculture comprises cropping system based on three principles: 1) direct seeding
of crops with minimal soil disturbance; 2) retention of crop residues as mulch on the soil surface, and
3) the use of crop rotations and/or intercropping. Numerous studies have shown that conservation
tillage implemented to improve SOC sequestration capacity increases SOC content and promotes the
formation of soil aggregates. These findings have attracted worldwide attention (Nandan et al., 2019;
Wang et al., 2019a). Aggregates of different grain sizes play different roles in nutrient retention, supply,
and transformation (Paul et al., 2013). Thus, Jat et al. (2019) found that macroaggregates are rich
conservers of organic carbon despite being highly prone to oxidation and are particularly effective
in improving SOC. Further, it is especially important to increase SOC by applying the right tillage
methods to retain crop residues in the soil because they promote the formation of soil macroaggre-
gates. Andruschkewitsch et al. (2014) showed that conservation tillage improves the quantity of mac-
roaggregates in the 0–5 cm topsoil layer significantly, while reducing the amount of microaggregates.
In particular, zero tillage (ZT) and minimum tillage methods can reduce the interference with and the
destruction of soil aggregates, thus maintaining the biological and the spatial separation of the min-
eralization area, compared to microbial decomposition of organic carbon. As organisms grow and
develop, metabolites continue to accumulate (Horikoshi et al., 1981). A large number of macroaggre-
gates can delay the mineralization process of soil organic matter (Oberson and Joner 2005; Richardson
and Simpson, 2011), thus extending the organic carbon storage cycle in aggregates and slowing down
SOC flow through the soil (Barto et al., 2010). However, some researchers believe that ZT and reduced
tillage do not increase the soil carbon content of the whole soil profile, compared to conventional
tillage (CT) (Black and Tanaka 1997; Blanco-Canqui and Lal, 2008), and that the results of experi-
ments on increasing soil carbon content under conservation, compared with CT tillage, remain incon-
clusive and may be affected by multiple factors such as time interval and soil depth (Steward et al.,
2018; Xu et al., 2016). We believe that the effects of different tillage methods on SOC have been well
explained in the case of long-term experimental results. However, the dynamic effects of farming
methods after long-term conservation tillage, on aggregate-related organic carbon and carbon seques-
tration capacity during a cropping period, await elucidation.

Therefore, we hypothesized that after long-term conservation tillage, soil aggregates and carbon
sequestration capacity show dynamic changes during the crop growth period due to the differential
influence of different tillage methods. To test this hypothesis, we examined (1) the effects of different
tillage methods on organic carbon in soil aggregates and (2) the effects of tillage methods on the con-
tribution rate to total SOC and the capacity for carbon sequestration by aggregates of different particle
sizes. The results will provide a sound theoretical basis for the development of more suitable tillage
methods to improve the carbon sequestration capacity of soil aggregates in the North China
Plain (NCP).

Materials and Methods
Site description

A long-term pilot experiment based on different tillage methods began in 2002 at the
Experimental agronomy station(36°09 030.78 00-36°09 027.59 00N 117°09 013.79 00-117°09 012.02 00E),
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Shandong Agricultural University, in the North China Plain (NCP), and the data were used in the
present experiment, which was conducted from October 2016 to October 2017. The climate at the
study site is semidry temperate, with annual average temperature of 15.02 °C and an annual aver-
age precipitation of 786.2 mm. Basic soil physical and chemical properties in the 0–20 cm topsoil
layer are shown in Table 1.

Experimental design

Summer maize/winter wheat rotation cropping is common practice across the region. For the
experiment described herein, straw comprising all crop residues remaining after harvest was pul-
verized and returned to the field. Straw was managed twice: once before tillage methods were
implemented in mid-October, and once before summer maize was sown in mid-June. Four tillage
methods, namely ZT (zero tillage, tillage depth 0 cm), RT (rotary tillage, tillage depth 10 cm), SS
(subsoiling, tillage depth 40 cm), and CT (conventional tillage, tillage depth 20 cm), were included.
RT consisted of 60 blades (Guangming Model® 1GQN-200, Jiangsu, China), while SS consisted of
five shovels (Haofeng Model® 1SF–200, Henan, China) to a depth of 40 cm.

Treatment within each experimental plot was 15 m× 4 m, and each area was duplicated three
times. The experimental plots were planted with summer maize variety Zhengdan 958; at a population
density of 7.5× 104 plants/ha with plant and row spacings of 22.2 and 60 cm, respectively. Fertilization
included potassium chloride 180 kg ha−1 (K2O≥ 60%), urea 225 kg N ha−1 (N≥ 46.2%), and super-
phosphate 180 kg ha−1 (P2O5 ≥ 12%). All tillage treatments were watered with 60mm during the bell
mouth stage of summer maize and fertilized with 100 kg N ha−1 (≥ 46.2%) fertilizer. The four tillage
methods tested were performed once a year before wheat sowing, and summer maize was sown
directly by a no-tillage seeder, a multi-functional machine that can finish sowing, rolling, fertilization,
and pressing at the same time; experimental operations are summarized in Table 2.

Measured variables and methods

Soil samples were collected at jointing stage (JS), anthesis stage (AS), grain filling stage (FS), and
maturity stage (MS) of summer maize. Undisturbed arable soil was sampled at 0–10, 10–20, and
20–40 cm depths using a 10 cm diameter ring cutter according to the five-point sampling method
in each of the three replicate plots. Five randomly selected soil cores were taken and mixed into a
composite sample, for total of 45 number of samples for each tillage treatment. Soil aggregates
were separated by the wet sieve method (Yoder 1936). One hundred grams of air-dried soil
was placed on the top layer of the aggregate analyzer (Tuopuyunnong Model® TPF-100,
Zhejiang, China) sieve-cover, which comprised a vertical series of sieves with mesh sizes of 5,
2, 0.25, and 0.053 mm from top to bottom. Deionized water was added slowly to the soil; the range

Table 1. Initial characteristics of the main soil physicochemical properties in the
0–20 cm soil layer

Physical properties Chemical properties

Sand (%) 37 SOC (g kg−1) 10.87
Silt (%) 48 TN (g kg−1) 1.1
Clay (%) 19 TP (g kg−1) 8.89
SBD (g cm−3) 1.4 TK (g kg−1) 2.79

AN (mg kg−1) 108.8
AP (mg kg−1) 0.79
AK (mg kg−1) 41.32
pH 6.22

SBD-bulk density, SOC-soil organic carbon, TN-total nitrogen, TP-total phosphorus, TK-
total potassium, AN-available nitrogen, AP-available phosphorus, AK-available potassium.
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of the aggregate analyzer was adjusted to 20 times/min and the soil was soaked for 10 min after
sieving for 3 min, and three duplicate soil samples were set for each composite soil sample. Soil
aggregates< 0.053 mm were silt-clay and were not retained. Soil aggregates from different levels
of the screen layer were collected in aluminum boxes, air-dried to a constant weight, and weighed
(Madari et al., 2005). The organic carbon content of the soil aggregates was determined by the
potassium dichromate external heating method (Bao 2000).

The contribution rate of each particle aggregate to soil total organic carbon (F) was calculated
as per eq. 1 (Xu et al., 2018):

F � c × m
C

(1)

where c is the organic carbon content in the aggregate, m is the aggregate mass (g), and C is the
total SOC content (g kg−1).

The carbon sequestration capacity of each aggregate was calculated as per eq. 2 (Wang et al., 2018):

CFC � MACi × MAi
100

(2)

where CFC is the carbon sequestration capacity of each aggregate (g kg−1),MACi is the organic carbon
content of each aggregate particle size (g kg−1), and MAi is the aggregate mass (g).

Carbon input

After harvest, wheat and maize crop residues to be returned to the soil included straw, stubble, and
roots. Carbon input for each different straw returning treatment was calculated using equations 3,
4, and 5:

Cstraw � Rstraw × Ystraw × OCplant (3)

Cstubble � Rstubble × Ystra × OCplant (4)

Croots � Rrouts × Ystraw � Ygrain

� �
× OCplant (5)

where Cstraw, Cstubble, Croots are carbon inputs (t ha−1) from wheat or maize stalks, stubble, and
roots, respectively; Rstraw (%) is the ratio of returned straw to total straw biomass; Rstubble (%) is the

Table 2. Specific operation schemes for field testing design

Treatment Tillage depth Specific operation scheme

CT 20 cm Maize mechanical harvesting → Straw returning to the field (full amount) →
Conventional tillage → Wheat sowing → Wheat mechanical harvesting → Straw
returning to the field (full amount) → Direct seeding of summer maize no-tillage
planter.

SS 40 cm Maize mechanical harvesting → Straw returning to the field (full amount) →
Subsoiling tillage → Wheat sowing → Wheat mechanical harvesting → Straw
returning to the field (full amount) → Direct seeding of summer maize no-tillage
planter.

RT 10 cm Maize mechanical harvesting → Straw returning to the field (full amount) → Rotary
tillage → Wheat sowing → Wheat mechanical harvesting → Straw returning to the
field (full amount) → Direct seeding of summer maize tillage planter.

ZT 0 cm Maize mechanical harvesting → Straw returning to the field (full amount) → No
tillage → Wheat sowing → Wheat mechanical harvesting → Straw returning to the
field (full amount) → Direct seeding of summer maize no-tillage planter.

ZT-zero tillage, RT-rotary tillage, SS-subsoiling, and CT-conventional tillage.
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ratio of the residue to total straw biomass, and the values for wheat and maize are 26% and 3%,
respectively (Wang et al., 2015); Rroots(%) is the ratio of below-ground biomass to aboveground
biomass, that is, 24% and 29%, for wheat and maize, respectively (Bolinder et al., 2007); Ystraw and
Ygrain are straw biomass and grain yield (t ha−1); OCplant is the carbon content of the aboveground
crop biomass, that is, 0.399 and 0.444 kg kg−1or Chinese wheat and maize, respectively (Zhang
et al., 2010).

Statistical analyses

Data were processed and statistically analyzed using Excel 2016 (Chicago, USA). All statistical
analyses were performed using SPSS for Windows software v. 19. Multiple comparisons
(α= 0.05) were made among different treatments using the least significant difference (LSD),
and Pearson’s correlation method was used to analyze the correlations between variables.

Results and Discussion
Percentage of soil aggregates

Soil aggregate stability can be used to evaluate the soil structure dynamics (He et al., 2021).
Generally, aggregates with a particle size greater than 0.25 mm are called macroaggregates, while
the smaller particles are called microaggregates. Their respective contents, in the 0–10 cm topsoil
layer, differed significantly (p< 0.05) under different tillage treatments and decreased in the order
of 2–0.25> 5–2> 0.25–0.053 mm (Figure 1a). Compared with CT, the aggregate content size
5–2 mm under aggregate SS increased significantly by 15.0% at the FS stage, while it increased
significantly (p< 0.05) by 13.6% at the MS stage under ZT. Compared with CT, macroaggre-
gates content under ZT and SS in the 0–10 cm topsoil layer increased by 5.5% and 4.8%, respec-
tively, while conversely the soil microaggregates content decreased. The 5–2 mm number of
aggregates was significantly higher by 15% in ZT- and SS-treated plots than in CT-treated plots,
at FS; furthermore, the same number was significantly higher by 13.6% under ZT than CT at the
MS stage. Thus, our results have shown that SS and ZT can significantly (p< 0.05) increase
macroaggregates content in the surface. This result is consistent with those obtained by previ-
ously reported protective tillage measures in that both effectively reduced the damage to soil
aggregates under mechanical disturbance to varying extents, thereby increasing the macroag-
gregate content of the topsoil layer (Briar et al., 2011). Straw returned to the field provides car-
bon material for the formation of macroaggregates, which increases macroaggregate contents
and improves surface soil structure (Carter, 1992). Studies have shown that, in northern
China, conservation tillage, especially SS and ZT, reduces soil bulk density by enhancing the
activity of the crop root system and increasing the activity of root microorganisms (He et al.,
2019), thus contributing to the formation of soil aggregates and the transformation of micro-
aggregates into macroaggregates.

Under SS and ZT treatments, the 5–2 mm aggregates content in the 10–20 cm soil layer in SS
treatment increased significantly (p< 0.05) by 18.18% (Figure 1b) and by 13.63% respectively,
compared with CT, at MS stages. Consistently, the number of 5–2 mm aggregates was significantly
higher in ZT than that in CT at AS, FS, and MS growth stages by 15%, 31.25, and 18.18%, respec-
tively. Similarly, it was significantly higher in SS than in CT by 10%, 25%, and 13.64%, respec-
tively. Working at the experimental station of the Instituto Agronomico, Castro Filho et al. (2002)
showed that ZT allows more organic matter to be stored in the soil surface, which is conducive to
the formation of macroaggregates. In turn, Wang et al. (2019b) conducted a field tillage experi-
ment in the south-eastern Loess Plateau of China in 2007 and showed that SS increased the diver-
sity of soil microbial communities, promoted the formation of macroaggregates, and allowed
greater organic matter fixation activity.
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The content of 2–0.25 mm aggregates content in the 20–40 cm soil layer was increased by
12.86% and 5.63% at JS and FS, respectively, under SS treatment compared with that under
the CT treatment. Consistently, the 5–2 mm aggregates contents increased by 16.67%, 15.79%,
and 15.79% under the ZT treatment at AS, FS, and MS (Figure 1c), respectively, relative to
CT. This showed that SS and ZT significantly (p< 0.05) increased the percentage content of mac-
roaggregates, while reducing the percentage content of microaggregates. Compared with the
0–20 cm topsoil layer, the percentage content of macroaggregates in the 20–40 cm soil layer
decreased, whereas that of microaggregates increased, indicating that the surface soil was more
conducive to the formation of microaggregates than to that of macroaggregates, likely because

Figure 1. Percentage of mass of soil water aggregates in 0–10 cm (a), 10–20 cm, (b) and 20–40 cm (c) soil layer of maize. The
vertical error bar represents the standard error of the mean. ZT-zero tillage, RT-rotary tillage, SS-subsoiling, and CT-
conventional tillage. The abscissa is the four growth periods of summer maize. JS-jointing stage; AS-anthesis stage; FS-
filling stage; MS-maturation stage and the ordinate is the content percentage of aggregates.
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the amount of stubble in the surface soil is larger than that in the deeper soil, which further
increases the proportion of macroaggregates in the surface soil. From the perspective of tillage
methods, CT often disturbs soil aggregates and may lead to the loss of large C-rich aggregates
and an increase in microaggregates lacking C (Six et al., 2000). Relative to CT, the microaggregates
were gradually encapsulated by clay particles and microbial products under ZT (Six et al., 1998),
which significantly improved the turnover rate of macroaggregates (Six et al., 1999).

Soil aggregate-associated organic carbon

Organic carbon content of the soil aggregates showed a decreasing trend with increasing soil depth
(Figure 2). Organic carbon content of water-stable aggregates in the 0–10, 10–20, and 20–40 cm
soil layers was 6.59–12.82, 6.19–11.36, and 5.67–10.65 g kg−1, respectively. Furthermore, aggregate
organic carbon content decreased as aggregate size decreased. Thus, in the 0–10 cm topsoil layer,
organic carbon content of 5–2, 2–0.25, and 0.25–0.053 mm aggregates was 9.46–12.82, 7.22–10.81,
and 6.59–10.71 g kg−1, respectively; meanwhile in the 10–20 cm soil layer, organic carbon was
8.65–11.36, 7.35–9.55, and 6.19–8.55 g kg−1, respectively and in the 20–40 cm soil layer, it was
7.95–1.65, 6.50–8.72, and 5.67–7.17 g kg−1, respectively. Aggregate organic carbon content ini-
tially increased and then decreased with growth, and generally reached a maximum value during
AS. From the perspective of soil depth, aggregate organic carbon content in the surface soil was
significantly(p< 0.05) higher than that in the deeper soil layers studied; thus, soil depth signifi-
cantly affected soil aggregate carbon content (Table 3), presumably, mainly because the newly
imported external organic matter first accumulated in the surface soil, and then the gradient
in organic carbon content between the surface layer and the lower layer acted as the driving force
for carbon infiltrate deeper into the soil (Gupta Choudhury et al., 2014). Consistently, as the soil
depth increases the soil aggregate-associated SOC content generally decreased due to low organic
input levels, and SOC content increased with increasing soil aggregate size (Wu et al., 2019). From
the perspective of tillage method, aggregate organic carbon content in the 0–40 cm soil layer
increased in the order SS> ZT> RT> CT (p< 0.05), similar to total carbon input (Table 4),
which reached 246.34, 241.46, 260.37, and 251.22 t ha−1 under ZT, RT, SS, and CT, respectively.

Clearly, conservation tillage increases aggregate organic carbon content, presumably, mainly,
because conservation tillage reduces soil cultivation intensity, which in turn reduces SOC decom-
position rate, therefore promoting an increase in SOC content (Six et al., 2004). Conversely, CT
soil disturbance by the machinery accelerates organic carbon mineralization, thereby reducing
organic carbon content (Al-Kaisi and Yin, 2005). In our experiment, compared with CT, the
ZT treatment effectively improved the soil capacity for accumulation of organic carbon by not
only protecting soil aggregates from decomposition (Singh et al., 2020), but by stimulating further
isolation of organic carbon in soil aggregates retained from plant residues as well (Alvarez and
Alvarez, 2000; Six et al., 1999). The SS treatment disrupted the compacted hardpan layer without
damaging the surface soil structure that benefits soil carbon storage and growth of the crop root
system. Moreover, subsoiling increased soil permeability and water retention, which indirectly
increased root growth and thus increased crop root exudates, and protected soil aggregates.
Additionally, the resulting increase in root secretions enhanced microbial nourishment and pro-
moted rapid decomposition of straw, along with the increase in SOC accumulation (Cai et al.,
2014; Jin et al., 2007).

Carbon sequestration capacity of aggregates

There were significant differences in carbon sequestration capacity of soil aggregates of different
particle size (Figure 3a); being highest for particles 2–0.25 mm in size, followed by 5–2 mm par-
ticles, and finally by the 0.25–0.053 mm particles. Carbon sequestration capacity of soil aggregates
was determined by organic carbon content and soil aggregate mass. It was highest for 2–0.25 mm
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particle aggregates, which were the particles with the largest mass percentage. These results
showed that higher SOC content in macroaggregates is consistent with those reported by
Wang et al. (2019c) and Zheng et al. (2022). Compared to CT, in the 0–40 cm soil layer, macro-
aggregate carbon sequestration capacity in SS and ZT plots increased by 13.3% and 10.1% at MS,
respectively. In terms of tillage method, SS showed carbon sequestration capacity, followed by ZT,
RT, and finally CT. Therefore, we conclude that ZT is an effective approach to improve SOC
sequestration capacity. (Bessam and Mrabet, 2003; Blanco-Canqui and Lal, 2008; Das et al.,
2014). Consistently, a nine-year long-term experiment by Modak et al. (2020) showed that ZT
can keep crop residues on the soil surface and reduce wind and rain erosion of aggregates.
Further, the combination of ZT and crop residues return improved the physical protection of
the soil, which may be one of the reasons for the high carbon content of macroaggregates. At
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Figure 2. Dynamic changes of organic carbon in aggregates. The vertical error bar represents the standard error of the
mean. ZT-zero tillage, RT-rotary tillage, SS-subsoiling ,and CT-conventional tillage. The abscissa is the four growth stages
of summer maize, JS-jointing stage; AS-anthesis stage; FS-filling stage; MS-maturation stage, and the ordinate is the organic
carbon content of aggregates.

Table 3. The ANOVA for tillage, soil layer, particle size on aggregate-associated organic carbon, aggregates carbon
sequestration capacity, and aggregates total organic carbon contribution rate

Difference source AOC (g·kg−1) ACSC (g·kg−1) ATOCC (%)

Tillage (T) 68.12*** 15.69*** 15.69***
Soil layer (L) 68.78*** 14.59*** 14.59***
Particle size (S) 502.15*** 1929.04*** 1929.04***
T× L 3.40** 1.32ns 1.32ns

T× S 8.14*** 5.78*** 5.78***
L× S 7.30*** 11.45*** 11.45***
T× L× S 7.44*** 2.53** 2.53**

AOC-aggregate-associated organic carbon content, ACSC-aggregate carbon sequestration capacity, ATOCC-aggregate total organic
carbon contribution rate. **Significant at the 0.01 level; *** Significant at the 0.001 level.
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the same time, earthworms are more active under the ZT treatment and may also enhance carbon
sequestration in aggregates under ZT (Arai et al., 2013). Application of conservation tillage
improved the carbon sequestration capacity of the soil macroaggregates, consistently with results
reported by Xu et al. (2013).

Aggregate total organic carbon contribution rate

The contribution of soil aggregate-related organic carbon to total SOC differed significantly
among aggregate particle sizes. Specifically, it was highest for the 2–0.25 mm particle size
(Figure 3b). Further, in the 0–40 cm soil layer, the contribution rate of 5–2 mm aggregates in
the ZT treatment was significantly higher by 17.2%, than that in CT. Overall, the contribution
of soil aggregate-related organic carbon to total SOC decreased in the order of
ZT> SS> RT> CT, with significant (p< 0.05) differences. The contribution rate of 2–0.25 mm
granular aggregates in the SS treatment was 30.6% higher than that of CT and it decreased in the
order of SS> ZT> RT> CT (p= 0.12). Compared with CT, the SS and ZT treatments increased
the contribution rate of total SOC, probably because these tillage treatments imply less disturbance
to the soil, which is conducive to the process of soil aggregation and slows down the decomposi-
tion of soil organic matter. Therefore, in the process of soil aggregation, this leads to more seques-
tration of soil organic carbon in soil aggregates. Therefore, the contribution rate of organic carbon
improved in the surface soil, plow bottom, bottom layer aggregates. Finally, the carbon seques-
tration capacity of the soil was enhanced (Ankrom, 2009; Tian et al., 2014). The contribution of
different tillage methods to the total organic carbon in macroaggregates was significant in the
0–40 cm soil layer (p< 0.05), and the highest was found under SS, followed by ZT and RT, while
the lowest was recorded for CT. Tillage, soil depth, and particle size have a highly significant
relationship with aggregates’ total organic carbon contribution rate (Table 3). The interaction
of tillage, soil depth, and particle size had a significant effect on the contribution rate of total
organic carbon.

The reason may be that continuous ZT reduced the exchange capacity between the deep soil
and the surface soil, resulting in the accumulation of organic matter in the surface soil; in turn, this
may have reduced the supply of nutrients in the lower layer (Zhou et al., 2007), along with organic
carbon content in deeper soil profile (Li et al., 2006). The SS treatment allowed for full reaction of
soil nutrients, and it accelerated the decomposition of organic matter and helped increase the
organic carbon content in the deeper soil layers (Hernanz et al., 2002). Compared with CT,
the organic carbon contribution rates in SS and ZT both increased. Indeed, our results unequivo-
cally that, compared with CT, conservation tillage was more effective in increasing the contribu-
tion rate of macroaggregates (0–40 cm) to total soil organic carbon content.

Correlations among the aggregates and SOC pools

CT correlation results showed that the number of macroaggregates was significantly and positively
correlated with aggregate-associated SOC, aggregate carbon sequestration capacity, and aggre-
gates’ total organic carbon contribution rate (Table 5). In contrast, microaggregates were nega-
tively correlated with aggregate-associated SOC, aggregates carbon sequestration capacity, and
aggregates total organic carbon contribution rate. Additionally, there was a significant positive

Table 4. Carbon input accumulation during 2002–2017 under the different tillage and straw returning treatments

ZT(t/ha) RT(t/ha) SS(t/ha) CT(t/ha)

Wheat 110.98 111.59 117.68 112.20
Maize 135.36 129.87 142.69 139.02
Total carbon input 246.34 241.46 260.37 251.22
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correlation among aggregate-associated SOC, aggregates carbon sequestration capacity, and
aggregates total organic carbon contribution rate, indicating that conservation tillage significantly
increased the distribution and quantity of macroaggregates and improved the aggregate-
associated SOC, thereby increasing SOC content.

According to Six et al. (2000), tillage practices can damage soil aggregates. Tillage and frequent
mechanical disturbances will have a great impact on soil aggregates, thus triggering the transfor-
mation of macroaggregates into microaggregates (Qian et al., 2018). In this study, there was a
significant and positive correlation between macroaggregates and aggregate-associated SOC,
whereas microaggregates showed the opposite trend (Table 5). Increasing the proportion of mac-
roaggregates is important for increasing SOC content (Al-Kaisi et al., 2014).

Consistently, Jastrow (1996) showed that the larger the aggregate particle size, the larger the
carbon content in the aggregates. Among the four tillage methods tested herein, ZT improved
the aggregation ability of macroaggregates, which supports the results of Fernández et al.
2010), the main reason being that ZT minimizes soil disturbance and plays a positive role in mac-
roaggregate formation (Sheehy et al., 2015). Consistently, Song et al. (2016) found that macro-
aggregates were formed by organic matter cementation, and the increase in the number of

Figure 3. Changes of carbon sequestration capacity of grain aggregates under different tillage methods (a); changes of soil
organic carbon by different tillage methods and aggregates (b). The abscissa is the four tillage methods, and the ordinate is
the carbon sequestration capacity of aggregates. ZT-zero tillage, RT-rotary tillage, SS-subsoiling, and CT-conventional till-
age. The different letters in the picture indicate that they are significantly different in different particle size.
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macroaggregates under ZT treatment protected unstable C from microbial attack, which may also
be an important reason to explain the observed ZT-induced increase in SOC. The SS treatment
reduced the extent of soil cultivation and changed the spatial position of, such that straw and soil
could be thoroughly mixed, and improved the number of aggregates (Zhang et al., 2019).
Conversely, CT brings about severe soil disturbance, exposing SOC to the air, which in turn exac-
erbates SOC oxidation and decomposition (Luo et al., 2010), leading to the decomposition of soil
aggregates and the loss of carbon associated with aggregates.

Conclusion
The results of the long-term conservation tillage experiment reported herein showed that the SS
and ZT treatments significantly increased macroaggregates and aggregate-associated SOC con-
tent. Thus, these conservation tillage methods were effective in improving carbon sequestration
capacity and total organic carbon contribution rate of soil aggregates in the 0–40 cm soil layer
during the critical growth period of summer maize. Therefore, both SS and ZT were effective till-
age management strategies in the cropping areas of the NCP. This means that long-term conser-
vation tillage, especially SS and ZT, may protect large soil aggregates, and SOC and, consequently,
contribute significantly to the achievement of greater carbon sequestration and reduced soil car-
bon emissions. Therefore, conservation tillage should be promoted in the future.
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