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This paper studies the parameter estimation for Ornstein–Uhlenbeck stochastic volatil-
ity models driven by Lévy processes. We propose computationally efficient estimators
based on the method of moments that are robust to model misspecification. We develop
an analytical framework that enables closed-form representation of model parameters in
terms of the moments and autocorrelations of observed underlying processes. Under mod-
erate assumptions, which are typically much weaker than those for likelihood methods, we
prove large-sample behaviors for our proposed estimators, including strong consistency and
asymptotic normality. Our estimators obtain the canonical square-root convergence rate
and are shown through numerical experiments to outperform likelihood-based methods.
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1. INTRODUCTION

Volatility plays a central role in the pricing of derivative securities according to Ghysels et
al. [14]. The Black–Scholes European options pricing model, despite being the most preva-
lent choice that offers symbolic indicators such as implied volatility, restrictively assumes
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constant volatility that may not be practically sufficient. Empirical evidence from financial
markets, such as volatility clustering, the dependence between increments, and volatility
smiles, indicates that the assumption of constant volatility is inappropriate (see [10]); thus,
adequately quantifying volatility is critical to capture these important features observed in
real markets. Stochastic volatility (SV) models are developed for this purpose and capture
the time-varying volatility in financial markets. The early SV models include discrete-time
models (see [28]) and diffusion-based continuous-time SV models (e.g., [19]) which do not
incorporate jumps that are widely observable in financial time series nor can they model
realistic short-term implied volatility patterns. The second-generation continuous-time SV
models add jumps, for example, the BNS model proposed by Barndorff-Nielsen and Shep-
hard [3] where the volatility behaves according to an Ornstein–Uhlenbeck (OU) process,
driven by a positive Lévy process without Gaussian component. However, despite prac-
tical relevance, the parameter estimation for continuous-time SV models has presented a
formidable computational challenge for practical implementation. Two major categories of
estimation methods are moment-based inference and likelihood-based inference. This paper
presents a new moment-based approach to solve the seemly complicated problem by succinct
methods.

Traditionally, for parameter estimation of SV models, the focus has largely been
likelihood-based inference. There are two major likelihood-based methods known as Markov
chain Monte Carlo (MCMC) and maximum likelihood estimation (MLE). MCMC requires
assuming a prior distribution of the parameters to be solved, and then, iteratively sampling
variables and parameters in a Bayesian framework until the Markov chain converges (e.g.,
see [12,15,16,21,25]). This approach usually suffers from slow convergence to the Markov
chain equilibrium distribution and may become computationally prohibitive. In contrast
to MCMC, the MLE approach takes a frequentist view and avoids the prior dependence
between variables and parameters. However, traditional MLE needs the analytical form
of state transition density function which is often intractable in SV models. Even worse,
the MLE approach in many situations leads to non-convex optimization problems that are
challenging to solve. Therefore, various approximation methods have been proposed, among
which two prevail schemes are quasi-maximum likelihood estimation (QMLE) and simu-
lated maximum likelihood estimation (SMLE). Harvey et al. [17] propose a quasi-maximum
likelihood approach relying on transforming the model into a state-space form. Ruiz [26]
introduces a linear system constructed by treating the logarithm of volatility as a hidden
variable and analyzes sample properties of a QMLE estimator based on the Kalman filter.
SMLE introduces additional hidden states to be simulated between two observable states
to reduce the bias in estimating the likelihood Durham and Gallant [9]. Recently, Peng et
al. [24] propose a gradient-based simulated MLE method using characteristic functions to
estimate parameters in general Lévy-driven SV models.

However, these MLE methods are still computationally intensive and may require exces-
sive simulation efforts; also too many assumptions that may be hard to satisfy. Financial
markets give rise to numerous real-time decision-making instances that demand computa-
tionally fast and robust estimators that require fewer samplings. Method of moments (MM)
is a case in point, but not much is known. Few important contributions include the simulated
methods of moments (SMM), the generalized method of moments (GMM), and the efficient
methods of moments (EMM). SMM is, in fact, a special case of indirect inference estimation
(IIE) that is characterized by the use of an auxiliary model to capture aspects of the data
on which the estimates are based. The basic idea is to generate simulated series from the
“true” models and then estimate parameters by matching simulated data moments with
actual data moments numerically. Duffie and Singleton [8] provide a consistent estimator
of parameters of a dynamic system in which the state vector follows a time-homogeneous
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Markov process. GMM can be applied when we have more sample moment conditions than
the number of parameters by choosing the estimates that minimize a certain norm of the
sample averages of the moment conditions. GMM estimation of an SV model is given by
Andersen et al. [1] and Bregantini [5]. EMM, introduced by Bansal et al. [2] and devel-
oped in [13], is a variant of SMM, matching the efficiency of the MLE with the flexibility
of the GMM procedure, see [1] for estimating and testing the SV model by EMM. Gen-
erally, the major issue of the moment-based inference is its statistically inefficiency, that
is, the higher-order moments are used, the greater potential for estimation biases to occur.
For instance, see [27], even if merely estimating the Lévy-driven OU process, that is, the
latent volatility process in BNS models, the moment-based method confirms the existence
of this phenomenon when using higher-order moments; nevertheless, we can ameliorate the
estimation effect through some improvements in computational techniques (e.g., see [29]).

In this paper, we develop the first tractable MM parameter estimators for one type of
the BNS model. To this end, based on tractable properties of the BNS model, we first deduce
the analytic form of the moments needed for MM and propose an efficient method for esti-
mating the compensation rate parameter λ without relying on any information other than
the observed data. (Note that in this paper, expectation, variance and autocovariance are
collectively called “moments” in a broad sense.) Next, we provide a closed-form representa-
tion of model parameters in terms of moments. We combine these analytical representations
and numerical computation to further enhance our MM estimators. Specifically, we reduce
the use of one dimension of the simultaneous equations that significantly improves the per-
formance of estimation. Our approach manages to mitigate the drawback of MM that a
single high-order moment presented in the estimator may significantly reduce estimation
efficiency.

Under moderate conditions, we prove large-sample behaviors for our MM estimators,
including strong consistency and asymptotic normality. In addition, we have compared MM
with likelihood-based methods, including MCMC and MLE numerically. We can see the
strengths and weaknesses of MM, and some empirical suggestions for subsequent applica-
tions of this method are provided. As a classical parameter estimation method, the greatest
advantage of MM is its simplicity and computational efficiency. We believe our method has
the capacity to outperform most previous iterative algorithms in the aspect of computa-
tional speed. In the previous literature, MM is hardly used to estimate the parameters of
SV models, let alone on the BNS model while our work fills the gap.

The rest of this paper is organized as follows. In Section 2, we provide some preliminary
results and discuss the parameter estimation procedure of the SV model in Section 3. In
Section 4, we prove the strong consistency and asymptotic normality for our estimators. In
Section 5, the comparison between MM and likelihood-based methods is provided, and we
present extensive numerical experiment results of MM. Section 6 concludes this paper.

2. PRELIMINARIES

2.1. SV Model

We consider the following SV model first proposed by Barndorff-Nielsen and Shephard [3]:

dr(t) = (μ+ βv(t)) dt+
√
v(t) dw(t), (1)

dv(t) = −λv(t) dt+ dz(λt), (2)

where r(t) is the log price of an asset at time t, v(t) is the spot volatility at time t, w(t) is
a standard Brownian motion, z(t) is a compound Poisson process with arrival rate a and

https://doi.org/10.1017/S0269964820000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000315


978 X. Yang et al.

jump size distribution J (·, b) (where b is a parameter in the distribution), μ is the drift,
and β is the volatility risk premium coefficient. In financial markets, the discrete-time series
of the log of asset prices r(t) can be observed, but SV v(t) is unobservable. We want to
estimate parameters in Eqs. (1) and (2) from the discretely observable price series.

Suppose the asset price is observed at t = nΔ (n = 0, 1, . . . , N), where Δ is the time
unit. Define

vn � v(nΔ),

zn � z(λnΔ),

Δvn �
∫ nΔ

(n−1)Δ

dv(s) = vn − vn−1,

Δzn �
∫ nΔ

(n−1)Δ

dz(λs) = zn − zn−1,

Δezn �
∫ nΔ

(n−1)Δ

eλ(s−nΔ) dz(λs),

yn �
∫ nΔ

(n−1)Δ

dr(t),

qn �
∫ nΔ

(n−1)Δ

v(t) dt,

for n = 1, . . . , N . It is clear that {(Δzn,Δezn), n = 1, . . . , N} are i.i.d. (independent
and identically distributed); hence, we sometimes use a generic (Δz,Δez) to represent
(Δzn,Δezn) when there is no confusion. Note that the sequence {yn} represents the aggre-
gate returns over intervals of length Δ. In the framework of MM, we take {yn} as observable
data to estimate the parameters in Eqs. (1) and (2).

2.2. Moments Equations

Based on Eqs. (1) and (2), we have

yn = μΔ + βqn +
√
qnεn, (3)

qn =
1
λ

[Δzn − Δvn], (4)

vn = e−λΔvn−1 + Δezn, (5)

where {εn, n = 1, . . . , N} are i.i.d. standard normal variables. Based on Eqs. (3)–(5), we
can obtain

E[yn] = μΔ + βE[qn], (6)

var[yn] = β2 var[qn] + E[qn], (7)

cov(yn, yn+1) = β2 cov(qn, qn+1), (8)

cov(y2
n, yn+1) = β3 cov(q2n, qn+1) + (β + 2μΔβ2) cov(qn, qn+1), (9)
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cov(yn, y2
n+1) = β3 cov(qn, q2n+1) + (β + 2μΔβ2) cov(qn, qn+1). (10)

Eqs. (6) and (7) follow directly from Eq. (3) (noting that qn and εn are independent
of each other). To derive Eqs. (8)–(10), we first point out that if A1, A2, B, andC are four
random variables, and (A1, A2), B, and C are independent of each other, then

cov(BA1, CA2) = E[B]E[C] cov(A1, A2).

Therefore, we have

cov(yn, yn+1) = cov(μΔ + βqn +
√
qnεn, μΔ + βqn+1 +

√
qn+1εn+1)

= β2 cov(qn, qn+1) + β cov(qn,
√
qn+1εn+1)

+ β cov(
√
qnεn, qn+1) + cov(

√
qnεn,

√
qn+1εn+1)

= β2 cov(qn, qn+1),

cov(y2
n, yn+1) = β3 cov(q2n, qn+1) + β cov(qnε2n, qn+1) + 2μΔβ2 cov(qn, qn+1)

= β3 cov(q2n, qn+1) + (β + 2μΔβ2) cov(qn, qn+1),

cov(yn, y2
n+1) = β3 cov(qn, q2n+1) + β cov(qn, qn+1ε

2
n+1) + 2μΔβ2 cov(qn, qn+1)

= β3 cov(qn, q2n+1) + (β + 2μΔβ2) cov(qn, qn+1).

Furthermore, E[qn], var[qn], cov(qn, qn+1), cov(q2n, qn+1), and cov(qn, q2n+1) in Eqs.
(6)–(10) can be calculated as follows:

E[qn] = aΔE[J ], (11)

var[qn] =
a

λ2
(λΔ − (1 − e−λΔ))E[J2], (12)

cov(qn, qn+1) =
a

2λ2
(1 − e−λΔ)2E[J2], (13)

cov(q2n, qn+1) =
a2Δ
λ2

(1 − e−λΔ)2E[J ]E[J2] +
a

3λ3
(1 − e−λΔ)3E[J3], (14)

cov(qn, q2n+1) =
a2Δ
λ2

(1 − e−λΔ)2E[J ]E[J2] +
a

6λ3
(1 − e−λΔ)3(1 + e−λΔ)E[J3], (15)

where J is the jump size of the compound Poisson process. The detailed derivations of
Eqs. (11)–(15) are provided in the Appendix. By substituting Eqs. (11)–(15) into Eqs.
(6)–(10), E[yn], var[yn], cov(yn, yn+1), cov(y2

n, yn+1), and cov(yn, y2
n+1) can be expressed

in terms of parameters μ, β, λ, a, and b, respectively. On the other hand, E[yn], var[yn],
cov(yn, yn+1), cov(y2

n, yn+1), and cov(yn, y2
n+1) can be estimated based on {Y1, . . . , YN}, a
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sample of {y1, . . . , yN} as follows:

E[yn] ≈ 1
N

N∑
i=1

Yi, (16)

var(yn) ≈ 1
N

N∑
i=1

(Yi − Y )2, (17)

cov(yn, yn+1) ≈ 1
N

N−1∑
i=1

(Yi − Y )(Yi+1 − Y ), (18)

cov(y2
n, yn+1) ≈ 1

N

N−1∑
i=1

(Y 2
i − Y 2)(Yi+1 − Y ), (19)

cov(yn, y2
n+1) ≈

1
N

N−1∑
i=1

(Yi − Y )(Y 2
i+1 − Y 2), (20)

where Y = (1/N)
∑N

i=1 Yi and Y 2 = (1/N)
∑N

i=1 Y
2
i . The above estimates in combination

with Eqs. (6)–(15) can then be used to estimate μ, β, λ, a, and b, which we will discuss in
detail in the next section.

In what follows, we present a more efficient way to estimate λ. Similar to Eq. (8), we
have

cov(yn, yn+k) = β2 cov(qn, qn+k), for k ≥ 1. (21)

Furthermore, from Eqs. (4) and (5), we have for k ≥ 2

cov(qn, qn+k) =
1
λ2

(cov(Δvn,Δvn+k) − cov(Δzn,Δvn+k))

=
1
λ2

(cov(Δvn, e−λΔΔvn+k−1 + Δezn+k − Δezn+k−1)

− cov(Δzn, e−λΔΔvn+k−1 + Δezn+k − Δezn+k−1))

=
e−λΔ

λ2
(cov(Δvn,Δvn+k−1) − cov(Δzn,Δvn+k−1))

= e−λΔ cov(qn, qn+k−1).

Therefore, we have

cov(yn, yn+k) = e−(k−1)λΔ cov(yn, yn+1), (22)

which leads to

λ =
1

(k − 1)Δ
ln
(

cov(yn, yn+1)
cov(yn, yn+k)

)
. (23)

Eq. (23) can be used to estimate λ. For example, we can construct the following
estimator for λ:

λ̂n =
1
KΔ

K∑
k=2

1
k − 1

ln

(
(n− k)

∑n−1
i=1 (Yi − Y )(Yi+1 − Y )

(n− 1)
∑n−k

i=1 (Yi − Y )(Yi+k − Y )

)
, (24)

where 2 ≤ K < n (usually K takes a small value, e.g., K ≤ 10). Once λ is estimated, other
parameters can be estimated as stated earlier by using Eqs. (6)–(15) or their subset.
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3. PARAMETER ESTIMATION

In this section, we discuss how to derive our moment-based estimators for λ, μ, β, a, and
b from Eqs. (6)–(15) and propose two moment-based estimation methods. We show that
different estimators may be derived and they can have very different statistical properties.
Before proceeding, we point out that similar to Eqs. (6)–(15) other moments equations (e.g.,
E[(yn − E[yn])3], cov(yn, y2

n+k), cov(y2
n, yn+k), k ≥ 2) can be derived as well, based on which

different types of estimators can then be developed. However, in this paper, we only use
Eqs. (6)–(15) (or their subset). In the rest of this section and thereafter, we assume that λ
is estimated using Eq. (24); therefore, we only need to focus on estimating μ, β, a, and b
by using Eqs. (6)–(15).

First, we present the following results which can be derived directly from Eqs. (6)–(15):

1
β

=
1

1 − e−λΔ

[
2cov(yn, y2

n+1) − (1 + e−λΔ) cov(y2
n, yn+1)

cov(yn, yn+1)

− 2(1 − e−λΔ)E[yn]
]
, (25)

E[J ]
E[J2]

=
β2(1 − e−λΔ)2 var[yn]
2λ2Δcov(yn, yn+1)

− β2(λΔ − (1 − e−λΔ))
λ2Δ

, (26)

a =
2λ2 cov(yn, yn+1)
β2(1 − e−λΔ)2E[J2]

, (27)

μ =
E[yn]

Δ
− βaE[J ]. (28)

It is clear that Eqs. (25)–(28) can be used to estimate β, b, a, and μ, respectively
(though b is not expressed explicitly in Eq. (26)), which seems to be simple and elegant.
However, as our numerical results in Section 5 show, the estimators based on Eqs. (25)–(28)
(which we shall call Moment Method 1—MM1) may perform poorly in some cases.

In what follows, we propose a different approach to estimate μ, β, a, and b (which
we shall call Moment Method 2—MM2). We only use Eqs. (6)–(9) and Eqs. (11)–(14),
which are suffice in estimating μ, β, a, and b. Different from MM1, MM2 does not pro-
vide unified closed-form expressions for different jump size distributions. In the paper, we
separately provide MM2 estimators for four different jump distributions: exponential jump,
deterministic jump, inverse Gaussian jump, and Pareto jump, among which some of the
expressions are implicit (e.g., for inverse Gaussian jump and Pareto jump); thus, we need
to resort numerical methods to obtain the estimation for the corresponding parameters. As
we should see in what follows, the exact formulas of the estimators derived based on this
approach are different for different jump size distributions. To illustrate, we first consider
the case in which the jump size is exponential and then expand to other cases.

3.1. Exponential Jump

If J is exponentially distributed with mean b, that is, E[Jn] = bnn! (n = 1, 2, 3, . . .), then
Eqs. (6)–(9) can be rewritten as follows:

E[yn] = μΔ + βabΔ,

var[yn] =
2aβ2b2(λΔ − 1 + e−λΔ)

λ2
+ abΔ,
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cov(yn, yn+1) =
aβ2b2(1 − e−λΔ)2

λ2
,

cov(y2
n, yn+1) = β3

(
6ab3(1 − e−λΔ)3

3λ3
+

2a2b3Δ(1 − e−λΔ)2

λ2

)

+ (β + 2μβ2Δ)
ab2(1 − e−λΔ)2

λ2
.

Using the above four equations, we can derive

β =
cov(yn, yn+1)

cov(y2
n, yn+1) − 2cov(yn, yn+1)E[yn]

[
1 +

2λΔcov(yn, yn+1)
(1 − e−λΔ)V C

]
, (29)

bβ2 =
λ2Δcov(yn, yn+1)
(1 − e−λΔ)2V C

, (30)

ab =
1
Δ
V C, (31)

μ =
E[yn]

Δ
− β

Δ
V C, (32)

where

V C � var[yn] − 2(λΔ − 1 + e−λΔ) cov(yn, yn+1)
(1 − e−λΔ)2

.

It is clear that β, b, a, and μ can be estimated from Eqs. (29)–(32) recursively.

3.2. Deterministic Jump

If J is deterministic, we have E[Jn] = bn (n = 1, 2, 3, . . .). Therefore, only Eqs. (29) and (30)
need to be modified as follows:

β =
cov(yn, yn+1)

cov(y2
n, yn+1) − 2cov(yn, yn+1)E[yn]

[
1 +

4λΔcov(yn, yn+1)
3(1 − e−λΔ)V C

]
, (33)

bβ2 =
2λ2Δcov(yn, yn+1)

(1 − e−λΔ)2V C
. (34)

β, b, a, and μ can then be estimated based on Eqs. (33) and (34), together with Eqs. (31)
and (32).

3.3. Inverse Gaussian Jump

If J is inverse Gaussian distributed, then its first three moments are E[J ] = b,E[J2] = b+ b2,
and E[J3] = b3 + 3b2 + 3b, respectively. Hence, instead of Eqs. (29) and (30), we have

cov(y2
n, yn+1)

cov(yn, yn+1)
=

1
β

+ 2E[yn] +
2(1 − e−λΔ)

3λ

(
β +

BB

β
+

β3

BB

)
, (35)

β2(1 + b) =
2λ2Δcov(yn, yn+1)

(1 − e−λΔ)2V C
, (36)

where

BB � 2λ2Δcov(yn, yn+1)
(1 − e−λΔ)2V C

.
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Though it is not expressed explicitly in β, Eq. (35) can be used to solve β numerically. In
fact, when β > 0 (or β < 0), Eq. (35) can be transformed into a strictly convex (or concave)
function with respect to β with two possibilities: two real-valued solutions or none. In our
numerical experiments presented in Section 5, we adopt the following empirical policy: if
there are two solutions, then we take the smaller one as our solution for β; otherwise, take
the minimum (or maximum) point as our solution. Once β is obtained, then b, a, and μ can
be easily estimated based on Eqs. (36), (31), and (32) as for exponential and deterministic
jumps.

3.4. Pareto Jump

Finally, we consider the case in which J has the Pareto distribution. Without loss of gener-
ality, we assume that the scale parameter (the minimum value of the Pareto distribution)
is equal to 1; hence, E[Jn] = b/(b− n), n = 1, 2, 3, . . .. We have

abβ2

b− 2
=

2λ2 cov(yn, yn+1)
(1 − e−λΔ)2

, (37)

a =
b− 1
bΔ

V C, (38)

β =
λ

1 − e−λΔ

√
2(b− 2)Δ cov(yn, yn+1)

(b− 1)V C
. (39)

We can then obtain the following equation for solving b

cov(y2
n, yn+1)

cov(yn, yn+1)
=

1
β

+ 2μΔ + β

[
4(eλΔ − 1)

3λeλΔ(b− 3)(b− 1)
+

2b(−1 + eλΔ + 3aλeλΔΔ)
3λeλΔ(b− 1)

]

=
1 − e−λΔ

λ

√
(b− 1)V C

2(b− 2)Δ cov(yn, yn+1)
+ 2E[yn]

+
2(b− 2)
3(b− 3)

√
2(b− 2)Δ cov(yn, yn+1)

(b− 1)V C
. (40)

Notice that Eq. (40) is a six-degree equation which does not have any analytical solution.
Therefore, we have to resort to numerical methods (such as the R function “optimize”) to
solve b. Once b is obtained, then a, β, and μ can be estimated easily.

It is clear that the estimates of all the parameters can then be obtained based on
the above equations if we replace the theoretical moments with the corresponding sample
moments provided by Eqs. (16)–(20). We introduce the following general notations for the
moments:

ψ̂n = (η̂(ζ), γ̂ζ,ζ(0), 1 ≤ ζ ≤ r0 ∨ s0; γ̂r,s(h), 1 ≤ h ≤ k, 1 ≤ r ≤ r0, 1 ≤ s ≤ s0)′, (41)

ψ∗ = (η(ζ), γζ,ζ(0), 1 ≤ ζ ≤ r0 ∨ s0; γr,s(h), 1 ≤ h ≤ k, 1 ≤ r ≤ r0, 1 ≤ s ≤ s0)′, (42)
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where

η̂(ζ) =
1
n

n∑
i=1

yζi ,

γ̂r,s(h) =
1
n

n−h∑
i=1

(yri − η̂(r))(ysi+h − η̂(s)),

η(ζ) = E[yζn],

γr,s(h) = cov(yrn, y
s
n+h),

r ∨ s = max(r, s),

(for h = 0, 1, . . . , k, r = 1, 2, . . . , r0, s = 1, 2, . . . , s0, ζ = 1, 2, . . . , r0 ∨ s0). It is clear that
η̂(ζ) is the ζ-th sample moment and γ̂r,s(h) is the sample autocovariance with lag h. For
h = 0, r = s, the autocovariance simply reduces to the variance. Furthermore, let us define
our moment-based estimators (for both MM1 and MM2) and the corresponding true values
as follows:

θ̂n = (λ̂n, μ̂n, β̂n, ân, b̂n)′, (43)

θ∗ = (λ∗, μ∗, β∗, a∗, b∗)′. (44)

Based on the above derivations, it is not difficult to see that using either MM1 or MM2,
we can always define a continuous mapping G : R

dim(ψ∗)−→R
5, such that

G(ψ̂n) = θ̂n, (45)

G(ψ∗) = θ∗, (46)

where dim(ψ∗) signifies the dimension of vector ψ∗.
For example, if we denote the moments and estimators for MM1 as

ψ̂MM1
n = (η̂(1), γ̂1,1(0), γ̂1,1(1), γ̂1,1(k), γ̂2,1(1), γ̂1,2(1))′,

ψMM1
∗ = (η(1), γ1,1(0), γ1,1(1), γ1,1(k), γ2,1(1), γ1,2(1))′,

θ̂MM1
n = (λ̂MM1

n , μ̂MM1
n , β̂MM1

n , âMM1
n , b̂MM1

n )′,

respectively, then based on Eqs. (23) and (25)–(28), we have a continuous mapping g :
R

6−→R
5, such that

g(ψ̂MM1
n ) = θ̂MM1

n , (47)

g(ψMM1
∗ ) = θ∗. (48)

These continuous mappings are useful in establishing consistency and asymptotic
normality for our estimators in the next section.

4. LARGE-SAMPLE BEHAVIOR: STRONG CONSISTENCY AND ASYMPTOTIC
NORMALITY

In this section, we address the issues related to large-sample behaviors for our moment-
based estimators (for both MM1 and MM2) derived in the previous section. First, we use
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MM1 to illustrate the basic idea of how strong consistency and asymptotic normality can
be established for our moment-based estimators.

Lemma 4.1: We have the following results as n→ ∞:

(i) If the sample moments derived based on MM1 are strongly consistent, that is,

ψ̂MM1
n −→ψMM1

∗ a.s.,

then
θ̂MM1
n −→ θ∗ a.s.

(ii) If the sample moments derived based on MM1 are asymptotically normal, that is,
there exists a (positive definite) covariance matrix ΣMM1 such that

√
n
(
ψ̂MM1
n − ψMM1

∗
)

d−→ N(0,ΣMM1),

where d−→ denotes the convergence in distribution, then
√
n(θ̂MM1

n − θ∗)
d−→ N(0, JgΣMM1J′g),

where Jg is the Jacobian of g.

Proof: Using MM1, all the estimates can be uniquely expressed by moment-based quanti-
ties as expressed by Eqs. (47)–(48). Hence, (i) follows directly from the continuous mapping
theorem.

On the other hand, if the sample moments are asymptotically normal, applying the
delta method we have

√
n(g(ψ̂MM1

n ) − g(ψMM1
∗ )) d−→ N(0, JgΣMM1J′g),

where Jg is the Jacobian of g, a 5 × 6 matrix of partial derivatives with respect to the entries
of g. Taking the first row of Jg as an example, it is the gradient of λ∗ with respect to ψMM1

∗
as follows: (

0, 0,
1

(k − 1)Δ cov(yn, yn+1)
,

1
(1 − k)Δ cov(yn, yn+k)

, 0, 0
)
.

Combined this with Eqs. (47)–(48), we have (ii). � �

Remark 4.2: In fact, using MM1 or MM2, our moment-based estimators are continuous
mappings of the sample moments, they are strongly consistent and asymptotically normal
if the sample moments are strongly consistent and asymptotically normal (based on the
continuous mapping theorem and the delta method). Therefore, the key to proving strong
consistency and asymptotic normality is to establish strong consistency and asymptotic
normality for the sample moments.

We begin with the following assumptions:

(A1) The volatility process v(t) is strictly stationary.
(A2) Fv is the self-decomposable marginal distribution of v(t) satisfying∫

R

|v|pFv dv <∞,

for some p > 0.
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(A3) There exists a constant κ > 0 such that

E[y4+κ
1 ] <∞ and E[|Z1|2+κ] <∞,

where

Z1 = (yζ1 , (y
ζ
1 − η(ζ))2, 1 ≤ ζ ≤ r0 ∨ s0;

(yr1 − η(r))(ys1+h − η(s)), 1 ≤ h ≤ k, 1 ≤ r ≤ r0, 1 ≤ s ≤ s0)′.

We point out that under some moderate conditions (e.g., see [27]), (A.1) and (A.2) are
satisfied.

Theorem 4.3: Under (A.1)–(A.3), we have the following results as n→ ∞:

(i) Moment-based estimators are strongly consistent, that is,

θ̂n−→ θ∗ a.s. (49)

(ii) Moment-based estimators are asymptotically normal, that is, there exists a covariance
matrix Σθ such that

√
n(θ̂n − θ∗)

d−→ N(0,Σθ). (50)

Remark 4.4: Notice that we do not give an analytical expression for Σθ in (50). However,
as we can see in the proof of Lemma 4.1, as long as there is an explicit functional relationship
between moment-based quantities and parameters (see Eqs. (25)–(40)), we can always give
the closed-form expression for Σθ through basic calculus (e.g., derivatives of implicit function
and chain rules).

Before proving Theorem 4.1, we first introduce some definitions on mixing, which plays
a central role in the proof of Theorem 4.1.

Definition 4.5: Suppose that V = V (t)t≥0 is a stationary process with σ-algebras F1 =
F(0,u) = σ({Vt}, 0 ≤ t < u) and F2 = F[u+x,∞) = σ({Vt}, t ≥ u+ x), then

(i) V is called β-mixing if:

β(x) = sup
Ai∈F1,Bj∈F2

1
2

∑
i

∑
j

| P (Ai ∩Bj) − P (Ai)P (Bj) |→ 0 as x→ ∞, (51)

where the supremum is taken over all pairs of partitions Ai and Bj such that Ai ∈ F1

for each i and Bj ∈ F2 for each j.
(ii) V is called β-mixing with exponential rate if it is β-mixing with

β(x) ≤ C1e
−q1x, ∀x ≥ 0, (52)

for some C1 > 0 and q1 > 0.
(iii) V is called strong mixing (or α-mixing) if:

α(x) = sup
A∈F1,B∈F2

| P (A ∩B) − P (A)P (B) |→ 0 as x→ ∞. (53)

https://doi.org/10.1017/S0269964820000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000315


METHOD OF MOMENTS ESTIMATION FOR LÉVY-DRIVEN OU SV MODELS 987

(iv) V is called strong mixing with the exponential rate if it is strong mixing with

α(x) ≤ C2e
−q2x, ∀x ≥ 0, (54)

for some C2 > 0 and q2 > 0.

The above definitions on β-mixing and strong mixing (with the exponential rate) can
be easily extended to a discrete-time process. We point out that β-mixing implies strong
mixing, and strong mixing implies ergodicity.

According to Theorem 4.3 in [22], we have

Proposition 4.6: Under (A.1)–(A.2), v(t) is β-mixing with β(x) = O(e−qx) for some q >
0 as x→ ∞, which implies that both v(t) and its discrete-time correspondence {vn} are
ergodic.

On the other hand, it is not difficult to see that {yn} can be viewed as a generalized
hidden Markov model (see Definition 3 in [7]), with the following observation kernel:

yn|vn ∼ N(μΔ + βΔvn,Δvn). (55)

Since {vn} is β-mixing, we have the following result based on Carrasco and Chen [7]
(Proposition 4 (ii)):

Proposition 4.7: {yn} is a generalized hidden Markov model with a hidden chain {vn} as
defined by (55), and {yn} is also β-mixing with a decaying rate at least as fast as that of
{vn}.

We are now ready to prove Theorem 4.1.

Proof: Based on Propositions 4.1 and 4.2, {yn} is strictly stationary and ergodic.
Therefore, we have the following strongly consistent result (see [4]):

ψ̂n−→ψ∗ a.s.

According to the continuous mapping theorem, we have

G(ψ̂n)−→G(ψ∗) a.s.

that is, (49) holds.
Next, we prove (50). We define

Zi = (yζi , (y
ζ
i − η(ζ))2, 1 ≤ ζ ≤ r0 ∨ s0; (yri − η(r))(ysi+h − η(s)),

1 ≤ h ≤ k, 1 ≤ r ≤ r0, 1 ≤ s ≤ s0)′,

σm,l = cov(Z(m)
1 , Z

(l)
1 ) + 2

∞∑
i=1

cov(Z(m)
1 , Z

(l)
i+1),

where Z(m)
i is the mth component of Zi (m = 1, 2, . . . ,dim(ψ∗)),

Σ = [σm,l]
dim(ψ∗)
m,l=1 ,

γ̂∗r,s(h) =
1
n

n∑
i=1

(yri − η(r))(ysi+h − η(s)), h ∈ {0, . . . , k}, r ∈ {1, . . . , r0}, s ∈ {1, . . . , s0},

ψ̂∗
n = (η̂(1), . . . , η̂(r0 ∨ s0), γ̂1,1(0), γ̂∗1,2(1), γ̂∗2,1(1), . . . , γ̂∗r0,s0(k))

′.
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Table 1. Comparison between MM1 and MM2: exponential jump case

True values MM1 MM2 MM1 with β given

λ = 0.4 0.400 ± 0.004 0.400 ± 0.005 0.400 ± 0.005
μ = 1 −9.481 ± 339.637 0.975 ± 0.432 0.980 ± 0.737
β = 2 2.847 ± 27.361 2.006 ± 0.068 N/A
a = 3 610.732 ± 1034.819 3.007 ± 0.118 3.009 ± 0.194
b = 4 6.781 ± 7.784 3.989 ± 0.185 3.999 ± 0.137
λ = 0.8 0.798 ± 0.017 0.801 ± 0.018 0.799 ± 0.018
μ = 0.5 0.594 ± 1.602 0.503 ± 0.165 0.504 ± 0.152
β = −0.5 −0.504 ± 0.088 −0.500 ± 0.013 N/A
a = 2.5 2.646 ± 1.076 2.503 ± 0.109 2.509 ± 0.128
b = 7 7.4560 ± 2.401 7.004 ± 0.296 6.996 ± 0.242
λ = 0.32 0.320 ± 0.003 0.320 ± 0.003 0.320 ± 0.003
μ = 9.41 23.476 ± 2696.76 9.390 ± 3.538 9.276 ± 18.870
β = 4.66 4.138 ± 81.854 4.755 ± 0.619 N/A
a = 6.27 1960.21 ± 3723.69 6.277 ± 0.308 6.380 ± 1.573
b = 5.23 164.722 ± 239.61 5.210 ± 0.680 5.309 ± 0.701

Table 2. Comparison between MM1 and MM2: deterministic jump case

True values MM1 MM2 MM1 with β given

λ = 0.4 0.400 ± 0.005 0.399 ± 0.005 0.400 ± 0.005
μ = 1 −1.446 ± 80.228 1.005 ± 0.718 1.026 ± 0.450
β = 2 2.196 ± 6.653 1.999 ± 0.068 N/A
a = 3 37.459 ± 434.69 3.001 ± 0.187 2.994 ± 0.126
b = 4 4.529 ± 3.286 4.014 ± 0.252 4.006 ± 0.096
λ = 0.8 0.797 ± 0.026 0.800 ± 0.027 0.797 ± 0.028
μ = 0.5 0.747 ± 1.809 0.514 ± 0.289 0.505 ± 0.136
β = −0.5 −0.513 ± 0.102 −0.500 ± 0.017 N/A
a = 2.5 2.758 ± 1.264 2.512 ± 0.193 2.513 ± 0.149
b = 7 7.324 ± 2.571 6.999 ± 0.497 6.985 ± 0.308
λ = 0.32 0.319 ± 0.003 0.320 ± 0.003 0.319 ± 0.003
μ = 9.41 333.29 ± 6551.13 9.476 ± 6.709 8.827 ± 0.874
β = 4.66 −6.273 ± 212.155 4.707 ± 0.353 N/A
a = 6.27 11508.5 ± 18946.7 6.273 ± 0.559 6.333 ± 0.745
b = 5.23 65.519 ± 95.797 5.227 ± 0.542 5.232 ± 0.318

Under (A.3), our proof of asymptotic normality essentially follows that of Proposition
2 in [18]. For every w ∈ R

d+2 satisfying w′Σw > 0, we consider {w′Zi}. Recall that {yn}
is strictly stationary and β-mixing with the exponential rate; therefore, it is strictly sta-
tionary and strong mixing with the exponential rate. According to Francq and Zakoian [11]
(Appendix A.3), {Zi} is also strictly stationary and strong mixing with the exponential
rate. Furthermore, it is known that strong mixing with the exponential rate is preserved
under linear transformation; hence, {w′Zi} is strictly stationary and strong mixing with the
exponential rate. Therefore,

√
n

(
1
n

n∑
i=1

w′Zi − w′ψ0

)
d−→ N(0, σ̃2),
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Table 3. Comparison between MM1 and MM2: inverse Gaussian jump case

True values MM1 MM2 MM1 with β given

λ = 0.4 0.399 ± 0.004 0.400 ± 0.005 0.400 ± 0.004
μ = 1 25.449 ± 412.589 0.877 ± 0.990 1.050 ± 0.483
β = 2 −0.006 ± 33.760 2.015 ± 0.095 N/A
a = 3 −4.638 ± 117.017 3.051 ± 0.328 2.986 ± 0.148
b = 4 5.545 ± 5.961 3.967 ± 0.432 4.014 ± 0.123
λ = 0.8 0.799 ± 0.023 0.802 ± 0.025 0.801 ± 0.026
μ = 0.5 0.781 ± 1.749 0.485 ± 0.289 0.488 ± 0.134
β = −0.5 −0.516 ± 0.099 −0.499 ± 0.018 N/A
a = 2.5 2.915 ± 1.547 2.491 ± 0.205 2.490 ± 0.153
b = 7 7.279 ± 2.864 7.060 ± 0.568 7.037 ± 0.333
λ = 0.32 0.320 ± 0.003 0.319 ± 0.003 0.320 ± 0.003
μ = 9.41 100.672 ± 1441.56 9.072 ± 8.405 9.449 ± 11.634
β = 4.66 1.713 ± 47.307 4.674 ± 0.438 N/A
a = 6.27 2.152 ± 34.144 6.345 ± 0.861 6.319 ± 1.070
b = 5.23 98.932 ± 142.99 5.296 ± 0.887 5.269 ± 0.492

Table 4. Comparison between MM1 and MM2: Pareto jump case

True values MM1 MM2 MM1 with β given

λ = 0.4 0.399 ± 0.006 0.400 ± 0.006 0.399 ± 0.006
μ = 1 37.046 ± 568.911 0.805 ± 0.091 0.359 ± 0.107
β = 2 −0.9.494 ± 132.136 1.896 ± 0.029 N/A
a = 3 0.472 ± 21.049 3.202 ± 0.050 3.385 ± 0.077
b = 4 3.036 ± 60.288 3.872 ± 0.127 4.624 ± 0.190
λ = 0.8 0.801 ± 0.121 0.799 ± 0.118 0.808 ± 0.119
μ = 0.5 0.367 ± 10.172 0.504 ± 0.086 0.505 ± 0.019
β = 0.5 0.544 ± 3.468 0.500 ± 0.033 N/A
a = 2.5 1.869 ± 7.183 2.475 ± 0.194 2.516 ± 0.306
b = 7 −2.627 ± 95.950 11.774 ± 21.103 18.245 ± 136.235
λ = 0.32 0.320 ± 0.004 0.320 ± 0.004 0.320 ± 0.003
μ = 9.41 53.566 ± 1.268 4.502 ± 0.419 7.573 ± 0.841
β = 4.66 −0.704 ± 0.112 3.602 ± 0.047 N/A
a = 6.27 5.778 ± 0.091 8.592 ± 0.149 13.105 ± 0.533
b = 5.23 2.027 ± 0.009 4.073 ± 0.110 −6.971 ± 1.483

where σ̃2 = var(w′Z1) + 2
∑n
i=1 cov(w′Z1, w

′Zi+1) = w′Σw [20, Thm. 1.7]. In other words,
for every w ∈ R

d+2 satisfying w′Σw > 0, we have

√
n
(
w′ψ̂∗

n − w′ψ0

)
d−→ N(0, w′Σw),

(noting that ψ̂∗
n = (1/n)

∑n
i=1 Zi). Then, by the Cramer–Wold device, we have

√
n(ψ̂∗

n − ψ0)
d−→ N(0,Σ). (56)

On the other hand, following the proof of Proposition 7.3.4 of [6], we have

√
n
(
w′ψ̂∗

n − w′ψ̂n
)
−→0 in probability,
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Table 5. Comparison between MM2 and GSMLE

λ μ β a b T

True values 0.4 0.5 −0.5 2 3 –
GSMLE 0.974 ± 0.158 0.663 ± 0.126 −0.827 ± 0.190 2.757 ± 0.495 4.576 ± 0.794 4.86 h

MM2(1) 0.399 ± 0.020 0.502 ± 0.053 −0.5002 ± 0.012 2.007 ± 0.082 2.992 ± 0.134 14.81 s

MM2(2) 0.399 ± 0.000 0.499 ± 0.002 −0.4999 ± 0.000 1.999 ± 0.003 3.001 ± 0.005 3.25 h
True values 0.5 0.1 0.2 3 2 –
GSMLE 0.997 ± 0.014 0.009 ± 0.210 0.127 ± 0.162 2.345 ± 0.238 1.471 ± 0.214 5.10 h

MM2(1) 0.538 ± 0.212 0.129 ± 0.097 0.194 ± 0.018 2.943 ± 0.557 2.026 ± 0.401 15.73 s

MM2(2) 0.502 ± 0.006 0.100 ± 0.003 0.200 ± 0.000 2.991 ± 0.023 2.006 ± 0.015 4.30 h
True values 0.347 0.373 0.103 0.897 0.239 –
GSMLE 0.723 ± 0.451 0.034 ± 0.206 0.167 ± 0.128 2.182 ± 1.566 0.726 ± 0.511 4.42 h

MM2(1) 0.044 ± 0.885 0.369 ± 0.078 0.121 ± 0.368 1.216 ± 11.594 0.014 ± 0.331 13.14 s

MM2(2) 0.354 ± 0.075 0.373 ± 0.002 0.102 ± 0.007 0.890 ± 0.079 0.243 ± 0.023 2.21 h

that is, ψ̂n has the same asymptotic behavior as ψ̂∗
n. Combining this with (56), we can

conclude that the following holds:

√
n
(
ψ̂n − ψ∗

)
d−→ N(0,Σ), (57)

that is, the sample moments are asymptotically normal. Applying the delta method to (57),
we have

√
n
(
G(ψ̂n) −G(ψ∗)

)
d−→
[
∂G(ψ∗)
∂ψ∗

]
N(0,Σ), (58)

that is, (50) holds. This completes our proof. �

5. NUMERICAL EXPERIMENTS

In the previous sections, we develop two different ways of estimating the parameters based
on our moment-based method (MM1 and MM2). We also establish strong consistency and
central limit theorem for these estimators. In this section, we numerically investigate the
statistical efficiency of MM1 and MM2 and also compare them with other existing parameter
estimation methods. The results can be summarized as follows:

1. First, we compare MM1 and MM2. Our numerical results show that MM2 performs
much better than MM1. One reason is that MM2 uses less high-order (third-order)
sample moments than MM1 does. This illustrates that our moment-based method
may produce different estimators with different statistical efficiency. In general, those
using less high-order sample moments would perform better. This explains why
many moment-based methods that rely heavily on high-order moment estimations
are usually statistically inefficient.

2. Secondly, we compare MM2 with a type of MLE method recently proposed by Peng
et al. [23], which they call gradient-based simulated maximum likelihood estimation
method (GSMLE). Our numerical results show that MM2 performs much better
than GSMLE. We should point out that even though we do not provide a numerical
comparison between MM2 and another traditional method, the MCMC method,
the numerical results provided in [23] shows that GSMLE has several advantages
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Figure 1. Log(sample standard deviation)–log(sample size) plot 1.

over MCMC. For example, MCMC highly depends on the initial prior distribution
of the parameters, and it also converges much more lowly than GSMLE. Our own
investigation also confirms these conclusions.

3. Finally, we conduct extensive numerical experiments under different parameter set-
tings to test MM2. Our results show that MM2 performs reasonably well in most
instances.

All numerical experiments reported in this section were performed on a PC with single
Core(TM) m3-6Y30 processor.
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Figure 2. Log(sample standard deviation)–log(sample size) plot 2.

5.1. MM1 vs. MM2

In this subsection, we compare MM1 and MM2. The estimators of MM1 Eqs. (25)–(28) are
much simpler and straightforward than those of MM2; however, our extensive numerical
experiments show that MM2 surprisingly performs much better than MM1. Tables 1–4
provide some numerical examples under different jump size distributions with multiple
parameter settings. (Note that according to Eq. (39), β must be nonnegative in the case of
Pareto jump.) For each jump size distribution, we run 400 replications with 100,000 samples
for each replication. The numerical results are presented as “mean ± standard deviation”
based on these 400 replications (the format remains the same for all numerical results in
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Figure 3. Log(sample standard deviation)–log(sample size) plot 3.

this section). It is clear that by comparing the results in columns 2 and 3 in Tables 1–4,
MM2 performs much better than MM1. In fact, MM1 performs poorly. One reason is that
MM1 uses more third-order sample moments (cov(yn, y2

n+1) and cov(y2
n, yn+1)) than MM2

does (cov(y2
n, yn+1)) in estimating β. We note that the third-order moment estimations are

only explicitly used in Eq. (25) in estimating β. Hence, to further verify this hypothesis,
we assume that β is given and use Eqs. (26)–(28) to estimate b, a, and μ, the numerical
results are given by column 4 in Tables 1–4. It is clear that most estimation results are
significantly improved. Therefore, if possible, we should avoid using high-order moments
as much as possible in our moment-based estimation. In addition, we remark that MM1
is more sensitive to simulation errors than MM2 in the sense that a small disturbance in
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simulation samples can lead to a large estimation error. For example, for Pareto jump,
we have b = 1/(1 − EJ/EJ2) + 1 based on MM1; however, in some simulation runs, the
“EJ/EJ2” term are slightly greater than 1 (even when the parameter β is fixed), which
may produce negative estimation for b. Therefore, how to overcome this numerical problem
in MM1 is an important topic for future research. In the remainder of this section, we will
temporarily focus on MM2 only.

5.2. MM2 vs. Other Methods

In this subsection, we compare MM2 with GSMLE, a type of MLE method recently pro-
posed by Peng et al. [23]. However, we should mention that we have done extensive numerical
studies comparing MM2, GSMLE, and MCMC as well and found that in general MM2 per-
forms much better than both GSMLE and MCMC, while GSMLE is better than MCMC.
Since Peng et al. [23] have presented many numerical results comparing GSMLE and MCMC
and our conclusion is the same as theirs, to make our numerical study more focused here,
we choose to only present our experimental results on MM2 and GSMLE (for more dis-
cussions on a comparison between GSMLE and MCMC, the reader is referred to [23]).
Before proceeding, we want to point out GSMLE proposed in [23] is only applicable when
the volatility process follows a Gamma distribution (i.e., the jump size is exponentially
distributed). Therefore, all the numerical examples considered in this subsection have expo-
nential jump sizes. In addition, it is worth noting that many existing MCMC methods
proposed in the literature are also quite restrictive in their applications. For example, they
often assume that μ and β are known in Eq. (1) and focus on estimating a, b, and λ, the
parameters involved in Eq. (2).

We consider three numerical examples here (they are the same as the last three examples
of Table 8 in [23]). For each example, we run 40 replications (we do not run 400 replica-
tions as we do in other numerical experiments because each replication of GSMLE method
requires hours of computational time). For each replication,

1. GSMLE method iterates 1,000 steps with initial values (0.3, 0.5, 0.5, 1.5, 1.5), N =
1, 000, and M = 100, where N is the sample size of each simulation replication and
M is the number of particles as mass points to represent the posterior distribution in
sequential Monte Carlo (SMC). The feasible parameter space is [0.01, 1] × [−1, 1] ×
[−1, 1] × [0.1, 5] × [0.1, 5] and Δ = 1.

2. MM2 is run for two scenarios: one with 100,000 samples (MM2(1)) and the other one
with 100,000,000 samples (MM2(2)). For both scenarios, we set Δ = 1 and K = 5
(K is the lag number for estimating λ).

The numerical results are presented in Table 5, where the last column T represents
the total running time (h—hours, s—seconds). As the results in Table 5 indicate, in both
scenarios, MM2(1) and MM2(2) are superior both in terms of statistical efficiency and run-
ning time: MM2(1) needs much less computation time and MM2(2) produces much better
estimates. Moreover, under the same three sets of parameter settings, we plot three fig-
ures (Figures 1–3) to demonstrate the asymptotic behavior of MM2. In each figure, the
x-coordinate is the logarithmic sample size, and the y-coordinate is the logarithmic sample
standard deviation (corresponding to a fixed sample size). It can be seen that almost all
the regression lines (red lines) are approximately with a slope of −1/2, which reflects the
asymptotic normality of our method. In addition, we give the following remarks:

• Since GSMLE is an iterative algorithm, there are many hyper-parameters involved
which can affect the quality of such an algorithm (e.g., the initial solution, the search
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Table 6. MM2 estimates for exponential jump

λ μ β a b λ̂ μ̂ β̂ â b̂
(True values) (Estimates)

0.1 1 2 3 6 0.0999 ± 0.0017 1.0415 ± 1.0412 1.9976 ± 0.0649 2.9917 ± 0.1901 6.0419 ± 0.3949
0.4 1 2 3 6 0.4000 ± 0.0048 0.9894 ± 0.6761 1.9998 ± 0.0846 3.0054 ± 0.1250 6.0088 ± 0.3287
1 1 2 3 6 1.0002 ± 0.0160 0.9790 ± 0.6705 2.0440 ± 0.2560 3.0038 ± 0.1234 5.9536 ± 0.6778
0.5 0.5 2 3 5 0.5001 ± 0.0058 0.5107 ± 0.5555 2.0065 ± 0.0903 2.9984 ± 0.1222 5.0001 ± 0.2740
0.5 1 2 3 5 0.4999 ± 0.0056 0.9648 ± 0.4999 2.0007 ± 0.0899 3.0090 ± 0.1090 5.0041 ± 0.2620
0.5 2 2 3 5 0.4996 ± 0.0064 2.0099 ± 0.5072 2.0011 ± 0.0915 2.9991 ± 0.1108 5.0127 ± 0.2673
0.1 1 0.5 2 4 0.0998 ± 0.0066 0.9962 ± 0.0907 0.5004 ± 0.0126 2.0081 ± 0.1115 3.9981 ± 0.2228
0.1 1 1 2 4 0.1002 ± 0.0027 0.9924 ± 0.0027 1.0013 ± 0.0275 2.0089 ± 0.1210 3.9967 ± 0.2431
0.1 1 2 2 4 0.0999 ± 0.0017 0.9441 ± 0.4194 2.0080 ± 0.0585 2.0142 ± 0.1246 3.9832 ± 0.2485
0.8 1 2 0.3 6 0.7989 ± 0.0114 0.9946 ± 0.0537 2.0268 ± 0.2215 0.3011 ± 0.0110 5.9811 ± 0.6455
0.8 1 2 1.5 6 0.8000 ± 0.0119 0.9691 ± 0.2765 2.0153 ± 0.1936 1.5060 ± 0.0533 5.9963 ± 0.5477
0.8 1 2 9 6 0.7996 ± 0.0110 0.9884 ± 2.8787 2.0063 ± 0.1928 9.0149 ± 0.4928 6.0342 ± 0.5925
0.6 1 2 3 4 0.6005 ± 0.0075 0.9689 ± 0.4332 2.0115 ± 0.1000 3.0097 ± 0.1187 3.9840 ± 0.2260
0.6 1 2 3 8 0.6008 ± 0.0075 0.9941 ± 0.7972 2.0265 ± 0.1586 3.0030 ± 0.1109 7.9419 ± 0.6135
0.6 1 2 3 12 0.5995 ± 0.0073 0.9846 ± 1.3113 2.0105 ± 0.2448 3.0039 ± 0.1197 12.0946 ± 1.3583
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Table 7. MM2 estimates for deterministic jump

λ μ β a b λ̂ μ̂ β̂ â b̂
(True values) (Estimates)

0.1 1 2 3 6 0.1001 ± 0.0018 0.9547 ± 1.5096 2.0013 ± 0.0890 3.0179 ± 0.2668 6.0171 ± 0.5386
0.4 1 2 3 6 0.3999 ± 0.0048 0.9530 ± 1.0610 2.0054 ± 0.0715 3.0104 ± 0.1825 5.9940 ± 0.3699
1 1 2 3 6 1.0008 ± 0.0178 1.0303 ± 1.2124 2.0173 ± 0.1519 2.9954 ± 0.2109 6.0010 ± 0.5077
0.5 0.5 2 3 5 0.5001 ± 0.0060 0.4798 ± 0.9344 2.0028 ± 0.0763 3.0079 ± 0.1950 5.0063 ± 0.3264
0.5 1 2 3 5 0.4999 ± 0.0067 0.9595 ± 0.9299 2.0064 ± 0.0785 3.0096 ± 0.1910 4.9956 ± 0.3281
0.5 2 2 3 5 0.4996 ± 0.0067 2.0092 ± 0.8429 1.9967 ± 0.0740 2.9999 ± 0.1777 5.0263 ± 0.3070
0.1 1 0.5 2 4 0.1004 ± 0.0112 0.9933 ± 0.1058 0.5006 ± 0.0143 2.0080 ± 0.1198 4.0002 ± 0.2357
0.1 1 1 2 4 0.1003 ± 0.0037 1.0006 ± 0.2325 1.0005 ± 0.0303 2.0025 ± 0.1304 4.0088 ± 0.2619
0.1 1 2 2 4 0.1001 ± 0.0019 0.9510 ± 0.5497 2.0072 ± 0.0703 2.0168 ± 0.1494 3.9862 ± 0.2933
0.8 1 2 0.3 6 0.8005 ± 0.0125 0.9947 ± 0.0402 2.0112 ± 0.1173 0.3011 ± 0.0087 5.9740 ± 0.3036
0.8 1 2 1.5 6 0.7994 ± 0.0130 0.9690 ± 0.3863 2.0023 ± 0.1060 1.5071 ± 0.0694 5.9971 ± 0.3401
0.8 1 2 9 6 0.8007 ± 0.0116 0.9844 ± 6.0227 2.0076 ± 0.1428 9.0297 ± 1.0254 6.0429 ± 0.7087
0.6 1 2 3 4 0.6003 ± 0.0078 0.9911 ± 0.6960 2.0018 ± 0.0700 3.0045 ± 0.1807 4.0070 ± 0.2395
0.6 1 2 3 8 0.5999 ± 0.0078 0.9780 ± 1.3842 2.0047 ± 0.1004 3.0052 ± 0.1782 8.0093 ± 0.5289
0.6 1 2 3 12 0.5999 ± 0.0075 1.0672 ± 2.0520 2.0040 ± 0.1300 2.9972 ± 0.1780 12.0511 ± 0.9172
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Table 8. MM2 estimates for inverse Gaussian jump

λ μ β a b λ̂ μ̂ β̂ â b̂
(True values) (Estimates)

0.1 1 2 3 6 0.1000 ± 0.0017 0.9303 ± 2.0171 2.0016 ± 0.1136 3.0343 ± 0.4243 6.0483 ± 0.8081
0.4 1 2 3 6 0.4001 ± 0.0051 0.9094 ± 1.2803 2.0111 ± 0.0908 3.0254 ± 0.2621 5.9805 ± 0.5388
1 1 2 3 6 1.0005 ± 0.0152 1.0160 ± 1.4023 2.0173 ± 0.1876 3.0083 ± 0.2835 6.0275 ± 0.7802
0.5 0.5 2 3 5 0.5002 ± 0.0060 0.4406 ± 1.1146 2.0052 ± 0.0978 3.0256 ± 0.2832 5.0032 ± 0.4893
0.5 1 2 3 5 0.5000 ± 0.0064 0.9586 ± 1.0962 2.0029 ± 0.1008 3.0196 ± 0.2755 5.0136 ± 0.4911
0.5 2 2 3 5 0.5002 ± 0.0062 1.9760 ± 1.1520 2.0013 ± 0.0962 3.0172 ± 0.2877 5.0218 ± 0.5075
0.1 1 0.5 2 4 0.0995 ± 0.0101 1.0360 ± 0.0991 0.4960 ± 0.0138 1.9465 ± 0.1319 4.1233 ± 0.2879
0.1 1 1 2 4 0.0999 ± 0.0031 0.9922 ± 0.3414 1.0006 ± 0.0435 2.0181 ± 0.2356 4.0159 ± 0.4543
0.1 1 2 2 4 0.1001 ± 0.0018 0.9174 ± 0.9264 2.0108 ± 0.1173 2.0494 ± 0.3335 3.9938 ± 0.5878
0.8 1 2 0.3 6 0.7997 ± 0.0113 0.9978 ± 0.0734 2.0050 ± 0.1416 0.3009 ± 0.0159 6.0189 ± 0.5654
0.8 1 2 1.5 6 0.8006 ± 0.0112 0.9374 ± 0.5229 2.0226 ± 0.1433 1.5150 ± 0.1075 5.9507 ± 0.5974
0.8 1 2 9 6 0.8005 ± 0.0120 0.2303 ± 7.0828 2.0322 ± 0.1957 9.2327 ± 1.4821 5.9708 ± 1.0270
0.6 1 2 3 4 0.6002 ± 0.0078 0.9386 ± 1.0064 2.0098 ± 0.1101 3.0362 ± 0.3316 3.9958 ± 0.4634
0.6 1 2 3 8 0.5997 ± 0.0075 0.8513 ± 1.1625 2.0093 ± 0.1040 3.0358 ± 0.2359 5.9715 ± 0.5375
0.6 1 2 3 12 0.6011 ± 0.0076 0.9295 ± 2.2200 2.0214 ± 0.1523 3.0137 ± 0.2083 11.9445 ± 1.1552
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Table 9. MM2 estimates for Pareto jump

λ μ β a b λ̂ μ̂ β̂ â b̂
(true values) (estimates)

0.1 1 2 3 6 0.1000 ± 0.0031 0.9269 ± 0.1146 1.9045 ± 0.0331 3.1081 ± 0.0725 5.4330 ± 0.5864
0.4 1 2 3 6 0.4005 ± 0.0072 0.9611 ± 0.7830 1.8865 ± 0.0266 3.1009 ± 0.0546 5.2319 ± 0.3168
1 1 2 3 6 1.0014 ± 0.0226 0.9953 ± 0.1167 2.0049 ± 0.0545 3.0008 ± 0.0968 6.1323 ± 0.8204
0.5 0.5 2 3 5 0.5008 ± 0.0086 0.4754 ± 0.0749 1.9279 ± 0.0277 3.0696 ± 0.0517 4.6909 ± 0.2116
0.5 1 2 3 5 0.5000 ± 0.0085 0.9797 ± 0.0750 1.9284 ± 0.0290 3.0662 ± 0.0537 4.6889 ± 0.2141
0.5 2 2 3 5 0.5004 ± 0.0089 1.9765 ± 0.0782 1.9297 ± 0.0286 3.0666 ± 0.0551 4.6915 ± 0.2092
0.1 1 0.5 2 4 0.1125 ± 0.1066 0.9991 ± 0.0195 0.5030 ± 0.0429 1.9948 ± 0.2521 3.9959 ± 0.4965
0.1 1 1 2 4 0.1005 ± 0.0091 0.9807 ± 0.0352 0.9893 ± 0.0167 2.0374 ± 0.0393 4.0186 ± 0.1951
0.1 1 2 2 4 0.1002 ± 0.0029 0.8514 ± 0.0669 1.9166 ± 0.0286 2.1313 ± 0.0390 3.9329 ± 0.1671
0.8 1 2 0.3 6 0.8001 ± 0.0167 1.0078 ± 0.0057 2.0785 ± 0.0441 0.2896 ± 0.0070 6.4822 ± 0.4864
0.8 1 2 1.5 6 0.8006 ± 0.0167 1.0411 ± 0.0429 2.0757 ± 0.0439 1.4470 ± 0.0382 6.4664 ± 0.6461
0.8 1 2 9 6 0.8000 ± 0.0146 1.1714 ± 0.6001 2.0857 ± 0.0671 8.7372 ± 0.3857 7.4321 ± 4.7900
0.6 1 2 3 4 0.6006 ± 0.0102 0.9918 ± 0.0927 1.9938 ± 0.0306 3.0105 ± 0.0587 3.9948 ± 0.1339
0.6 1 2 3 8 0.6003 ± 0.0110 1.0536 ± 0.1231 1.9757 ± 0.0440 2.9749 ± 0.0915 8.0030 ± 8.4954
0.6 1 2 3 12 0.6013 ± 0.0119 1.0725 ± 0.1255 1.9740 ± 0.0459 2.9517 ± 0.1078 11.9578 ± 8.7169
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space, the step size, etc.). These hyper-parameters often require substantial efforts
of fine-tuning and they are very much problem-dependent. On the other hand, MM2
completely avoids this problem.

• MM2 (or any other moment-based estimation method) requires few assumptions on
models and parameters, for example, it does not assume that the volatility process
has the Gamma distribution or require any prior distribution for the parameters.
This makes it less model-dependent and more applicable. Therefore, it tends to be
more robust with respect to modeling errors.

5.3. More Numerical Experiments for MM2

In this subsection, we present extensive numbers of results for MM2. We consider four
cases: (1) exponential jump, (2) deterministic jump, (3) inverse Gaussian jump, and (4)
Pareto jump, and each case under 15 different parameter settings (by considering three
different values for each of the five parameters, λ, μ, β, a, and b). For each parameter
setting, we run 400 replications with 100,000 samples for each replication. The numerical
results are presented in Tables 6–9. Overall, the results show that MM2 works reasonably
well in most cases, with two exceptions: (1) the estimates of μ and (2) the estimates of b
for the case with Pareto jump. For the former case, we note that μ is estimated based on
μ = E[yn]/Δ − βaE[J ], which contains the product term βaE[J ]. It could introduce large
variances (errors) for the estimates of μ. As for the latter case, since we have to solve a
six-degree polynomial Eq. (40), whose coefficients depend on various sample moments and
autocovariances. This could introduce large errors for the estimates of b. Of course, as we
have demonstrated in the previous subsection, the accuracy of our estimates based on MM2
can be improved if we increase the number of samples.

6. CONCLUSION

In this paper, we study the problem of parameter estimation for the Lévy-driven OU SV
model by using the MM. We derive an analytical framework that enables us to derive closed-
form formulas for the moments of this model. Based on these formulas, we then develop two
types of computationally efficient estimations (MM1 and MM2). Though MM1 is simpler, it
uses more high moments than MM2 and, therefore, is much less efficient. We also establish
the large-sample results and show that the estimators we developed are strongly consistent
and asymptotic normal under moderate assumptions. Finally, we provide extensive numer-
ical results to demonstrate that our moment-based estimators are more efficient than other
traditional methods such as MLE, and they produce very good estimates in most instances
we tested. Our work in this paper is the first to offer an efficient moment-based method
for parameter estimation of the Lévy-driven OU SV model, and it overcomes the issue of
statistical inefficiency usually associated with moment-based methods. We remark that the
model studied in the paper assumes the underlying Poisson process has a constant arrival
rate and the jump size distribution is independent of the arrival process, which may limit the
implementation of our method in financial markets. To deal with the time-varying arrival
rate, one can consider using a piecewise constant rate to approximate the true rate. If the
underlying process is stationary during each “piece”, then we can apply our moment-based
methods to estimate the parameters separately. For tackling the dependence problem, we
point out that more ad hoc assumptions on the model structure may be needed, which is
beyond the scope of this paper.
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APPENDIX: DERIVATIONS OF EQS. (11)–(15)

In this appendix, we provide detailed derivations for Eqs. (11)–(15). We first present the following
results which are useful in our derivations:

E[Δz] = (λaΔ)E[J ], (A.1)

E[Δez] = a(1 − e−λΔ)E[J ], (A.2)

E[(Δz)2] = (λaΔ)E[J2] + (λaΔ)2(E[J ])2, (A.3)

E[(Δez)2] = 1
2a(1 − e−2λΔ)E[J2] + a2(1 − e−λΔ)2(E[J ])2, (A.4)

E[ΔzΔez] = a(1 − e−λΔ)E[J2] + (λa2Δ)(1 − e−λΔ)(E[J ])2, (A.5)

E[(Δz)2Δez] = a(1 − e−λΔ)E[J3] + 3(λa2Δ)(1 − e−λΔ)E[J ]E[J2]

+ (λaΔ)2a(1 − e−λΔ)(E[J ])3, (A.6)

E[Δz(Δez)2] = 1
2a(1 − e−2λΔ)E[J3] + 2a2(1 − e−λΔ)2E[J ]E[J2]

+ 1
2 (λa2Δ)(1 − e−2λΔ)E[J ]E[J2] + (λa3Δ)(1 − e−λΔ)2(E[J ])3. (A.7)

To illustrate how Eqs. (A.1)–(A.7) can be derived, we only consider Eq. (A.7) in what follows
since the others can be derived in a very similar manner.

Suppose that during [0, Δ], Poisson process z(t) has jumps J1, J2, . . . , Jn(Δ) at
s1, s2, . . . , sn(Δ), respectively (n(Δ) is a Poisson random variable with mean aΔ). We should point
out that s1, s2, . . . , sn(Δ) are not ordered; hence, given n(Δ) s1, s2, . . . , sn(Δ) are i.i.d. uniform
random variables over [0, Δ]. We use s to represent a generic uniform random variable over [0, Δ].
We have

E
[
eλ(s−Δ)

]
=

1 − e−λΔ

λΔ
, (A.8)

E
[
e2λ(s−Δ)

]
=

1 − e−2λΔ

2λΔ
, (A.9)

and

E[Δz(Δez)2] =
∞∑
n=1

e−λaΔ (λaΔ)n

n!
E

⎡
⎣( n∑

i=1

Ji

)(
n∑
i=1

e(si−1)λΔJi

)2
⎤
⎦

=
∞∑
n=1

e−λaΔ (λaΔ)n

n!
nE[e2λ(s−Δ)]E[J3]

+ 2
∞∑
n=2

e−λaΔ (λaΔ)n

n!
n(n − 1)(E[eλ(s−Δ)])2E[J ]E[J2]

+

∞∑
n=2

e−λaΔ (λaΔ)n

n!
n(n − 1)E[e2λ(s−Δ)]E[J ]E[J2]
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+
∞∑
n=3

e−λaΔ (λaΔ)n

n!
n(n − 1)(n − 2)(E[eλ(s−Δ)])2(E[J ])3

=
1

2
a(1 − e−2λΔ)E[J3] + 2a2(1 − e−λΔ)2E[J ]E[J2]

+
1

2
(λa2Δ)(1 − e−2λΔ)E[J ]E[J2] + (λa3Δ)(1 − e−λΔ)2(E[J ])3.

Hence, we have Eq. (A.7). Based on Eqs. (A.1)–(A.7), we have

var[Δz] = (λaΔ)E[J2], (A.10)

var[Δez] = 1
2a(1 − e−2λΔ)E[J2], (A.11)

cov(Δz, Δez) = a(1 − e−λΔ)E[J2], (A.12)

cov((Δz)2, Δez) = a(1 − e−λΔ)E[J3] + 2(λa2Δ)(1 − e−λΔ)E[J ]E[J2], (A.13)

cov(ΔzΔez, Δez) = 1
2a(1 − e−2λΔ)E[J3] + a2(1 − e−λΔ)2E[J ]E[J2]

+ 1
2 (λa2Δ)(1 − e−2λΔ)E[J ]E[J2], (A.14)

cov(Δz, (Δez)2) = 1
2a(1 − e−2λΔ)E[J3] + 2a2(1 − e−λΔ)2E[J ]E[J2]. (A.15)

Since {vn, n ≥ 1} is stationary, we use a generic v to represent vn. Noting that vn−1 and Δezn
in Eq. (5) are independent of each other, we can obtain:

E[v] = aE[J ], (A.16)

E[v2] =
a

2
E[J2] + a2(E[J ])2, (A.17)

E[v3] =
a

3
E[J3] +

3a2

2
E[J ]E[J2] + a3(E[J ])3. (A.18)

Based on Eq. (4), we have

E[qn] =
1

λ
[E[Δzn] − E[Δvn]] = λaE[J ],

which gives Eq. (11). Next, we consider Eq. (12). Based on Eqs. (4) and (5), we have

qn =
1

λ
(Δzn − Δvn) =

1

λ
(Δzn − Δezn + (1 − e−λΔ)vn−1),

hence

var[qn] =
1

λ2
(var[Δzn − Δezn] + (1 − e−λΔ)2var[vn−1])

=
1

λ2
(var[Δzn] + var[Δezn] − 2 cov(Δzn, Δezn) + (1 − e−λΔ)2var[vn−1])

=
a

λ2
(λΔ − (1 − e−λΔ))E[J2],

which gives Eq. (12). Eq. (13) can be verified as follows:

λ2 cov(qn, qn+1) = cov(qn, (1 − e−λΔ)vn)

= (1 − e−λΔ)2 cov(vn−1, vn) + (1 − e−λΔ) cov(Δzn − Δezn, vn)

= (1 − e−λΔ)2e−λΔvar[vn−1] + (1 − e−λΔ) cov(Δzn − Δezn, Δezn)

=
a

2
(1 − e−λΔ)2E[J2].
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We now consider Eq. (14). First, we have

λ3 cov(q2
n, qn+1) = cov(q2

n, (1 − e−λΔ)vn)

= (1 − e−λΔ) cov((Δzn − Δvn)2, vn)

= (1 − e−λΔ)(cov((Δzn)2, vn) + cov((Δvn)2, vn) − 2 cov(ΔznΔvn, vn)).
(A.19)

The three terms in Eq. (A.19) can be calculated as follows:

cov((Δzn)2, vn) = cov(Δzn)2, Δezn)

= a(1 − e−λΔ)(E[J3] + 2(λaΔ)E[J ]E[J2]). (A.20)

cov((Δvn)2, vn) = cov(v2
n − 2vnvn−1 + v2

n−1, vn)

= cov(v2
n, vn) + cov(v2

n−1, vn) − 2 cov(vnvn−1, vn)

= cov(v2
n, vn) + cov(v2

n−1, e−λΔvn−1 + Δezn)

− 2cov((e−λΔvn−1 + Δezn)vn−1, e−λΔvn−1 + Δezn)

= (1 + e−λΔ − 2e−2λΔ) cov(v2, v)

+ e−λΔE[Δezn]var[vn] + E[vn−1]var[Δezn]

=
a

3
(1 − e−λΔ)(1 + 2e−λΔ)E[J3]. (A.21)

cov(ΔznΔvn, vn) = cov(Δzn((e−λΔ − 1)vn−1 + Δezn), e−λΔvn−1 + Δezn)

= (e−λΔ − 1)(e−λΔE[Δzn]var[vn−1] + E[vn−1] cov(Δzn, Δezn))

+ cov(ΔznΔezn, Δezn)

=
a(1 − e−λΔ)

2

(
λaΔE[J ]E[J2] + (1 + e−λΔ)E[J3]

)
. (A.22)

Substituting Eqs. (A.20)–(A.22) into Eq. (A.19), we can obtain Eq. (14). Finally, we consider
Eq. (15). Similar to Eq. (A.19), we have

λ3 cov(qn, q2
n+1) = cov(Δzn − Δvn, (Δzn+1 − Δvn+1)

2)

= −2cov(Δzn, Δzn+1Δvn+1) + cov(Δzn, (Δvn+1)
2)

+ 2cov(Δvn, Δzn+1Δvn+1) − cov(Δvn, (Δvn+1)
2). (A.23)

We now calculate the four terms in Eq. (A.23):

cov(Δzn, Δzn+1Δvn+1) = cov(Δzn, Δzn+1((e
−λΔ − 1)vn + Δezn+1))

= (e−λΔ − 1) cov(Δzn, Δzn+1vn)

= (e−λΔ − 1)E[Δzn+1] cov(Δzn, vn)

= (e−λΔ − 1)E[Δzn+1] cov(Δzn, Δezn)

= −a(1 − e−λΔ)2(λaΔ)E[J ]E[2]. (A.24)
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cov(Δzn, (Δvn+1)
2) = cov(Δzn, (e−λΔ − 1)vn + Δezn+1)

2)

= (e−λΔ − 1)2 cov(Δzn, v2
n) + 2(e−λΔ − 1) cov(Δzn, vnΔezn+1)

= (e−λΔ − 1)2 cov(Δzn, (e−λΔvn−1 + Δezn)2)

+ 2(e−λΔ − 1)E[Δezn+1] cov(Δzn, vn)

= (e−λΔ − 1)2(2e−λΔE[vn−1] cov(Δzn, Δezn) + cov(Δzn, (Δezn)2))

+ 2(e−λΔ − 1)E[Δezn+1] cov(Δzn, Δezn)

=
a

2
(1 − e−λΔ)2(1 − e−2λΔ)E[J3]. (A.25)

cov(Δvn, Δzn+1Δvn+1) = cov(Δvn, Δzn+1((e
−λΔ − 1)vn + Δezn+1))

= (e−λΔ − 1)E[Δzn+1] cov(Δvn, vn)

= −(1 − e−λΔ)2E[Δz]var(v)

= −a

2
(1 − e−λΔ)2(λaΔ)E[J ]E[J2]. (A.26)

cov(Δvn, (Δvn+1)
2) = cov(Δvn, ((e−λΔ − 1)vn + Δezn+1)

2)

= (e−λΔ − 1)2 cov(Δvn, v2
n) + 2(e−λΔ − 1) cov(Δvn, vnΔezn+1)

= (e−λΔ − 1)2(cov(vn, v2
n) − cov(vn−1, (e−λΔvn−1 + Δezn)2))

+ 2(e−λΔ − 1)E[Δezn+1] cov(Δvn, vn)

= (e−λΔ − 1)2((1 − e−2λΔ) cov(v, v2) − 2e−λΔE[Δez]var[v])

− 2(e−λΔ − 1)2E[Δez]var[v]

=
a

3
(1 − e−λΔ)2(1 − e−2λΔ)E[J3]. (A.27)

Substituting Eqs. (A.24)–(A.27) into Eq. (A.23), we have (15). This completes our derivations
for Eqs. (11)–(15).
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