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SUMMARY
The most important applications of many computer vision systems are based on robust features
extraction, matching and tracking. Due to their extraction techniques, image features locations
accuracy is heavily dependent on the variation in intensity within their neighbourhoods, from
which their uncertainties are estimated. In the present work, a robust L∞ optimisation solution for
monocular motion estimation systems has been presented. The uncertainty estimation techniques
based on SIFT derivative approach and its propagation through the eight-point algorithm, singular
value decomposition SVD and the triangulation algorithm have proved an improvement to the global
motion estimation. Using monocular systems makes the motion estimation challenging due to the
absolute scale ambiguity caused by projective effects. For this, we propose robust tools to estimate
both the trajectory of a moving object and the unknown absolute scale ratio between consecutive
image pairs. Experimental evaluations showed that robust convex optimisation with the L∞ norm
under uncertain data and the Robust Least Squares clearly outperform classical methods based on
Least Squares and Levenberg-Marquardt algorithms.

KEYWORDS: Robust optimisation; Uncertainty propagation; L∞ Norm; Convex optimisation;
Monocular visual odometry; SOCP.

1. Introduction
In the recent years a need to deal with uncertain data has become crucial especially when real
life applications are involved. In these circumstances, robust optimisation aims to recover an
optimal solution whose feasibility must guaranteed for any realisation of the uncertain data.1 Robust
optimisation for which the data are not specified exactly has come to explicitly incorporate uncertainty
to protect the decision-maker against parameters ambiguity and stochastic uncertainties.2

Visual Odometry (VO) types of approaches have been widely studied in the last decade as a possible
solution for autonomous navigation systems. Optimisation techniques, such as bundle adjustment
are used to deliver trajectory estimates. Typically, the camera pose is estimated from the available
corresponding points between two views and the camera calibration parameters. Commonly, essential
matrix estimation is performed through the eight-point algorithm which is then used to recover the
camera pose by solving linear least-squares problems via Singular Value Decomposition SVD.3 A
successful technique in ref. [4] for real time motion estimation of a single camera or stereo rig is
presented. While stereo visual odometry takes advantage of the known baseline to directly remove
any scale ambiguity, it suffers from huge lack of accuracy when the distance to the 3D landmarks
(features) is much larger than the baseline. Hence, monocular VO becomes more practical to be
adopted as the former reduces to the monocular case.5 On the other hand, monocular algorithms
suffer from the scale ambiguity. Esteban et al. in ref. [6] presented a successful monocular visual
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odometry algorithm relying on a linear computation of the scale ratio between frame pairs using Least
Squares algorithm. Real world information such as cameras height to the ground plane and position
with respect to the axis of the vehicle, could be used as well to estimate the global scale factor to
retrieve absolute motion from monocular camera.17

Bundle adjustment algorithm has been widely used in motion estimation for both stereo and
monocular systems. It is an optimisation technique for refining a visual reconstruction jointly with
optimal camera pose estimates by minimising the re-projection error. This optimisation problem is
usually formulated as a non-linear least squares problem, where the error is the squared L2 norm
of the difference between the observed feature location and the projection of the corresponding 3D
point on the image plane of the camera. Levenberg-Marquardt (LM) algorithm is the most popular
algorithm for solving non-linear least squares problems, and the algorithm of choice for bundle
adjustment. However, the main issue with these methods, and notwithstanding of dependency on
good initialisation, is related to the high probably of converging to a local minimum or even to an
infeasible solution.

As a powerful alternative, convex optimisation (CVX) offers the possibility of getting around
issues when dealing with these non-linear minimisation problems.7, 8 A projective bundle adjustment
algorithm using L∞ norm is proposed by Mitra and Chellappa9 based on minimising the L∞ norm of
re-projection error where the problem is divided into two successive tasks by fixing the parameters of
one sub-problem while optimising the remaining sub-problem using convex optimisation. The first
sub-problem is linked to recovering the camera parameters while keeping the structure parameters
fixed. The second one is linked to fixing the camera parameters and estimating structure parameters.
In ref. [10], a stereo visual odometry approach determining the essential matrix by minimizing the
algebraic error through a convex optimisation is presented.

Dealing with uncertain data and more specifically in our visual uncertain data has become
crucial. Robust optimisation is able to recover an optimal solution that guarantees its feasibility
for any realisation of the uncertain data.1 Indeed, robust optimisation for which data are not
precisely specified can explicitly incorporate uncertainty.2 Knowing that image-based measurements
are subject to deterministic perturbations, more studies have started to focus on how parameters
estimation using these measurements might be improved if additional information characterising the
uncertainty of the data is available.11 Robust convex optimisation, on the other hand, would be a
valid option to develop for visual odometry for which image-base measurements are associated with
uncertainties. The common way of expressing this uncertainty information is in terms of covariance
matrices.

Extracting feature points is a first step in many vision applications such as 3D reconstruction
or camera resectioning. Uncertainty on detected feature points have well been investigated in the
literature.11–13 Many studies tried to improve the optimisation problems by incorporating these
uncertainty information. Brooks et al. showed that covariance may be used to improve the quality
of the estimate of the fundamental matrix. Similar results were concluded by Zeisl et al. However,
Kanazawa and Kanatani12 stated that covariance matrices for image features based on the calculate
Hessian information do not improve homography or fundamental matrix estimation since they are
isotropic and of similar size. On the other hand, Zeisl et al.13 showed a performance improvement
for bundle adjustment by incorporating the uncertainty for scale invariant feature points.

Haralick describes how to propagate additive random perturbations through the various stages of
a vision based algorithm.14 A similar idea is adopted by Leo et al. who present a methodology for
the propagation of the measurement uncertainty from initial stages through the stereo calibration to
the uncertainty in triangulation.15 However, a complete method using covariance information to get
better estimates of the camera motion for monocular systems has not been given.

2. The Proposed Solution
Following from this, we aim, in this work, to robustly improve the camera motion estimations of
an innovative monocular visual odometry solution by incorporating feature localisation uncertainties
and their propagation through the multiple view geometry algorithms. Our approach provides a
framework to obtain robust and global solution under the L∞ norm. This approach, which relies on
modern optimisation methods, is more efficient in dealing with uncertain data than their traditional
gradient-based counterparts; therefore a robust and global solution is guaranteed.
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Fig. 1. A block diagram showing the main architecture of the proposed solution.

Although most researchers avoid uncertainty due to the added complexity in constructing the robust
optimisation model and to the lack of knowledge of the nature of these uncertainties, especially their
propagation, our work focuses on robust convex optimisation along with estimating the uncertainties
in every step of the algorithm, starting from uncertainties in features positions. First, we propose
a technique for minimising errors by incorporating these uncertainties from all sources and their
propagation to the rotation, to the translation and to their corresponding 3D scene points estimates,
using robust L∞ convex optimisation via the Second-Order Cone Programming (SOCP). Secondly,
we propose to use the robust least squares solution via the SOCP as well capable of dealing with
system uncertainties for frame to frame absolute scale estimation. The proposed solution, which
is geometrically meaningful, does not possess any element of randomisation in which the global
optimality is ensured since their local minimum are, by definition, guaranteed to be a global minimum.

Thus, our first set of contributions consists of globally robust and optimal solutions to problems
that arise in monocular motion estimation using robust convex optimisation under the L∞ norm.
Our goal is to provide a solution with a priori guaranteed feasibility when the uncertain problem’s
parameters vary within the approved uncertainty set defined after propagation. Implementation of
these techniques is conducted on challenging real data collected from indoor environment, urban
environment and data gathered at a Mars/Moon analogue site.

The proposed solution, described in Fig. 1, assumes a fully calibrated system with known intrinsic
parameters K . Using a vehicle equipped with a single camera capturing sequences of images, the final
goal is to estimate the camera pose at each time step relying only on these images and incorporating
the uncertainties. Thus, the main steps of our algorithm are:

� Extraction of image feature points using SIFT detector and estimating their uncertainties;
� Estimating the initial relative rotations Ri and the translation Ti via the essential matrix;
� Estimation of the propagated uncertainties to Ri and Ti through the normalized 8-point algorithm

and the SVD;
� Estimation of the 3D scene points using convex optimisation along with their uncertainties;
� Optimising the motion using robust L∞ convex optimisation taking in consideration all sources of

uncertainties with a sequence of camera resectioning /triangulation;
� Computing the unknown absolute scale ratio using robust least squares via SOCP;

The rest of the paper is structured as follows. Basic concepts of robust convex optimisation are
discussed in Section 3. Section 4 provides details on uncertainty estimation in features position
using both Harris corner detector and SIFT estimator. In Section 4, we describe the propagation
of uncertainties to the rotation and to the translation. In Section 6 we present techniques used in
estimating uncertainties in the reconstructed 3D points. Robust L∞ motion estimation and robust
scale estimation algorithms are detailed in Sections 7 and 8 respectively. Results are given in Section
9 followed by Section 10 giving the main conclusions of this work.

3. Robust Convex Optimisation
Optimisation is essential in engineering and control design where most applications assume complete
knowledge of the problem data to optimise. However, most optimisation problems deal with uncertain
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data. Two main sources for the uncertainty are cited: data which are not exactly known or cannot be
exactly measured, and the impossibility of the implementation of the exact solution due to inherent
inaccuracy of the devices.1 This data uncertainty results in uncertain constraints and objective function.

Robust optimisation is a recent approach to optimisation under uncertain data, where the uncertainty
model is not stochastic, but rather deterministic. Even though it is still considered as a new approach
to optimisation problems under uncertainty; more and more real applications have already proved
its efficiency. Robust optimisation is mainly designed to allow uncertainty-affected optimisation
problems to provide guarantees about the performance of the solution.1, 2 In other words, in
this optimisation, instead of recovering the solution in some probabilistic sense under stochastic
uncertainty, the optimiser builds a solution that is optimal for any realisation of the uncertainty in
a given set.18 In cases where the optimality of a solution is affected by the uncertainty, the robust
optimisation main goal will be then to seek a solution that performs relatively well for any value taken
by the unknown coefficients. While a common approach is to optimise the worst-case objective, more
studies are conducted toward other robustness methods.2

Robust optimisation, in general form, deals with two sets of entities, decision variables and
uncertain variables. Here, the first aim of worst-case robust optimisation is to recover the optimal
solution on the decision variables such that the worst-case is minimised and the constraints are robustly
feasible, while the uncertainty is allowed to take arbitrary values in a defined uncertainty set.19 The
optimal solution is evaluated using the realisation of the uncertainty that is most unfavourable.2 The
general form of this robust optimisation is given by:

min
x

max
ω

f (x, ω)

subject to g(x, ω) ≤ 0 ; ∀ω ∈ W
(1)

Where ω is the uncertain variables, W the uncertainty set and x is the decision variables.
In the main part of this work, we deal with convex optimisation problems for monocular motion

estimation for which the data are uncertain and known to belong to a given uncertainty set W . These
problems can be efficiently recast and solved using Second-Order Cone Programming (SOCP),
which is a standard technique in convex optimisation. A SOCP constraint, which is a conic quadratic
constraint, is of the form:

‖Aix + bi‖2 ≤ c�
i x + di, Ai ∈ R

(m)×n bi ∈ R
mci ∈ R

n di ∈ R (2)

Where x is the variable vector and Ai ,bi ,ci ,di are the constraints parameters.8, 20 The robust counterpart
is the problem of finding x such that:

‖Aix + bi‖2 ≤ c�
i x + di, ∀(Ai, bi, ci, di) ∈ W. (3)

Boni et al. showed that a convex quadratic constraint with ellipsoidal uncertainty error can be
implemented as a system of conic quadratic constraint.1 In addition, they showed that, a conic
quadratic constraint with ellipsoidal uncertainty error can be reformulated as a set of nearly conic
quadratic constraints.

According to the standard in,21 the uncertainty indicates the upper and lower values that an
uncertain variable may assume after all systematic biases have been corrected. Suppose we have a
measurement function g fulfilling some mathematical constraints with n uncertain input quantities
q1, . . . , qn, p = g(q1, , qn), the uncertainty of the output could be estimated trough a first order Taylor
approximation:22

u2
p =

n∑
i=1

n∑
j=1

(
∂g

∂qi

)(
∂g

∂qj

)
u(qi, qj ) (4)

Where u(qi, qj ) is the covariance of qi and qj and when i = j the
√

(u(qi, qi)) = qi is the uncertainty
of qi . Equation (4) can be written in a more general form:

u2
p = �g = Jp�pJ�

p (5)
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(a) Indoor environment (b) Urban environment (c) Mars/Moon analogue

Fig. 2. Harris image features with location covariances visualised via error ellipses.

Where �p is the input covariance matrix, and Jp is the input Jacobian matrix, namely the matrix of
partial derivatives.

4. Feature Location Uncertainty
Extracting feature points is a first step in many vision applications such as Homography, 3D
reconstruction or motion estimation. Since the detected feature points, regardless the nature of
the detector, have some uncertainty, the proposed solution in this work to robustly estimate motions
involves robust convex optimisation based on those uncertainties which are expressed in terms of
covariance matrices.

4.1. Uncertainty estimation for Harris corner detector
Harris corner detector is the most famous algorithm in computer vision. For detection, this algorithm
relies on the second order derivative matrix, or known as the second moment matrix, constructed
from intensity values.

Assume f (x, y) represent an image feature extracted using Harris corner detector.21 The true
location of this feature is given by (x̃, ỹ). Errors in its location are then given by (�x, �y) =
(x − x̃, y − ỹ). If �x and �y are regarded as random variables, the covariance matrix is given as:12

�x =
[

E
[
�x2

]
E [�x�y]

E [�x�y] E
[
�y2

] ]
(6)

Where E[�.] denotes expectation. Two main techniques were used in literature for determining �x ,
a residual based approach and a derivative based approach. These techniques are detailed in ref. [12].
We employ the latter for its ease of use and implementation.

We define a matrix of first order partial derivatives squared for spatial coordinates x and y as
follows:

H =
[ ∑

(x,y)∈Np
ωxyI

2
x

∑
(x,y)∈Np

ωxyIxIy∑
(x,y)∈Np

ωxyIyIx

∑
(x,y)∈Np

ωxyI
2
y

]
(7)

where Ix and Iy denote the partial derivatives and ωxy is a weighting function, normally Gaussian.
The matrix H in (7), which is the Hessian matrix, describes the curvature distribution around a point.
Therefore, the greater the change in curvature the more accurately the corner can be located and vice
versa (Fig. 2). Hence, considering the inverse of this expression to define the covariance would be an
acceptable approach:12

�x = inv(H ) (8)

4.2. Uncertainty estimation for Scale Invariant Feature Transform (SIFT)
New algorithms that are not only able to detect points in an image but also interest regions23 are
developed to tackle the problems with Harris corner detector such as invariance to scale and rotation.
These interest regions represent in general areas which are brighter or darker than the surrounding.13

Popular region detectors are SIFT23 and SURF.24 We focus on evaluating localisation uncertainty for
each region found using SIFT (Fig. 3). The latter detector uses Laplacian operator for spatial feature
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(a) Indoor environment (b) Urban environment (c) Mars/Moon analogue

Fig. 3. SIFT image features with location covariances visualised via error ellipses.

detection and scale. Using the derivative based approach, location uncertainty for scale invariant
feature points in SIFT is calculated as the inverse of the Hessian:13

�x =
⎛
⎝ ∑

(x,y)∈Np

ω (i, j )

[
Dxx

(
i, j, δp

)
Dxy

(
i, j, δp

)
Dyx

(
i, j, δp

)
Dyy

(
i, j, δp

)]
⎞
⎠

−1

(9)

Where Dxx , Dxy and Dyy are the second order derivatives at point p, δp is the scale. Np is the image
point neighbourhood.

4.3. Feature localisation uncertainty implementation
Implementation of these techniques is conducted on challenging datasets and shown in Figures 2 and
3. The first one collected in our laboratory using a Pioneer P3-DX platform with a fully-calibrated
forward looking camera. The second is gathered from a vehicle travelling in an urban city environment
with a pointing-forward calibrated camera is mounted on this vehicle.25 The third one is a collection
of data from a Mars/Moon analogue site at Devon Island, Nunavut.26

Figures 4 and 5 show clearly that feature points localisation uncertainties using Harris corner
detector are relatively less than those estimated using SIFT for all environments datasets. The results
are summarised in Table I as well. The average error for Harris in urban environment, for example,
is in the order of 0.04 whereas it reaches 0.15 using SIFT. In the Moon/Mars analogue environment
and due to its nature, these uncertainties increase remarkably (0.05 for Harris corner detector and
0.25 for SIFT) which directly affects subsequent motion estimations. For the indoor environment, the
same pattern is recorded, with an average error of 0.03 pixels for Harris and about 0.12 using SIFT,
however in overall lower errors are noticed here in comparison to the two other environments and
this is due to nature of the environment.

Matching in Harris corner detector algorithm is performed using the cross correlation between
local image patches. This means that only features that correlate most strongly with each other in both
directions are accepted. Therefore, as an important drawback, the matching accuracy and robustness,
in this algorithm, is completely depending on the actual transformation between views. On the other
hand, SIFT uses the Euclidean distance between two feature points vectors as the similarity criteria
of the two key points and uses the nearest neighbour algorithm to match each other which increase
significantly its accuracy. Even the matching using Harris corner detector can be performed with
low time consumption, its accuracy is compromised comparing to the high accuracy and robustness
matching that is provided by SIFT.

By analysing the obtained results from Harris corner detector and SIFT for both datasets, the latter
is confirmed to provide relatively more stable and conservative uncertainty estimations. The later
quality is necessary to discard underestimated uncertainty as in Harris which could influence on the
performance of motion estimations. This in addition to matching accuracy of SIFT that justifies its
adoption SIFT in our monocular motion estimation algorithm.

5. Feature Uncertainty Propagation in the Rotation Matrix and the Translation Vector
Our robust optimisation motion estimation algorithm takes as well into account the uncertainties
in the rotation and the translation which are estimated through the propagation of feature position
uncertainties via the 8-point algorithm and Singular Value Decomposition (SVD) algorithm.
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Table I. Average localisation errors of the extracted feature points
using Harris and SIFT on two real datasets.

Average localisation errors

Harris SIFT

Indoor site 0.03 0.12
Urban site 0.04 0.15
Moon/Mars analogue site 0.05 0.25

Fig. 4. Average feature points localisation errors using SIFT.

Fig. 5. Average feature points localisation errors using Harris corner detector.

It is clear that the entity encoding the translation and rotation comprising the 3D motion is the
essential matrix E. E is defined by E = [T ]×R, where T and R represent respectively the translation
vector and the rotation matrix. In calibrated systems, this matrix is deduced from the fundamental
matrix F which is estimated via the 8-point algorithm followed with an SVD process. Starting from
the estimated uncertainties in feature points extraction, we present in this section techniques used in
our implementation for estimating the uncertainty in the fundamental matrix, the uncertainty in the
essential matrix and then the propagated uncertainties to T and R.
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5.1. Uncertainty propagation in the fundamental matrix
The fundamental matrix is the crucial link that represents the vision geometry between two views
in the pinhole camera model.3 Given two views with camera matrices Pi and Pj , a pair of matching
image points xi ⇔ xj must satisfy: x�

j Fxi = 0 where F is the fundamental matrix. Estimating the
fundamental matrix is the key stage for any motion estimation algorithm where information has to
be retrieved from several images as a unique source. Since F is defined up to a scale factor, it can be
estimated from no more than eight correspondences.27 Since the subsequent motion estimation steps
rely heavily on the estimation of this matrix, a rational interest on recovering its parameters should
be allocated. Indeed, estimating an optimal F is a hard task since points locations are noisy and the
correspondences are spoilt by outliers. RANSAC28 is a well-known robust statistics solution for this
type of problems.

Unfortunately, RANSAC and similar solutions are able to detect outliers, but the inaccuracy in the
image point locations is still not estimated. In literature, two main methods are used for estimating
the covariance of F : Monte-Carlo simulations, and the derivation of a closed-form formula. The
uncertainty estimation method adopted in this work was originally introduced in ref. [27]. It is well
known that for each pair of images Ii and Ij , point correspondences xi ⇔ xj where xi = (xi, yi, 1)
and xj = (xj , yj , 1), the 3 × 3 fundamental matrix F can be derived from the following system
equation:

x�
j Fxi = (xj , yj , 1)�

⎡
⎣F11 F12 F13

F21 F22 F23

F11 F32 F33

⎤
⎦ (xi, yi, 1) = 0 (10)

Let the vector f made up of the entries F where: f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)� If
we have n correspondences, then the n × 9 matrix M is given by:

M =

⎡
⎢⎢⎣

xj1xi1 xj1yi1 xj1 yj1xi1 yj1yi1 yj1 xi1 yi1 1
xj2xi2 xj2yi2 xj2 yj2xi2 yj2yi2 yj2 xi2 yi2 1

...
...

...
...

...
...

...
...

...
xjn

xin xjn
yin xjn

yjn
xin yjn

yin yjn
xin yin 1

⎤
⎥⎥⎦ (11)

The epipolar geometry constraint, that is,

∀k ∈ [1, n], x�
j Fxi = 0

simply leads to the matrix equation Mf = 0. The well-known method for solving problem is by using
singular value decomposition (SVD) of M and putting the smallest singular value of F to zero (rank
2 constraint enforcement).

Using the propagation property of the uncertainty through the non-linear systems in (5), and as
detailed in ref. [27], the basic outline of the algorithm for estimating the uncertainty of the fundamental
matrix is described in the following steps:

� Computation of JX, the Jacobian of f̃, where f̃ = M̃
−1

c is the solution to the linear system of
equations (M̃ is the sub-matrix of M containing the first eight column and c = −[18]� is an
8 × 1vector);

� Estimation of the covariance matrix �f̃ = Jx�xJ
�
x where �x is the covariance matrix representing

the feature position uncertainties.
� Enforcing the rank 2 constraint by computing (SVD):

F = UD

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ V �

� Computation of JSV D , the Jacobian of the SVD using techniques introduced in ref. [29];
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� Finally, the 9 × 9 covariance of the fundamental matrix F is given by:

�F = JSV D

[
�f̃ 08,1

01,8 0

]
JSV D

� (12)

5.1.1. Uncertainty propagation in the essential matrix. The relationship between the fundamental
and the essential matrices is given by:3

E = K�
j FKi (13)

Where K is the camera calibration matrix. Using (5) and given the covariance of the fundamental
matrix �F , the covariance of E, �E can be computed as:29

�E =
∂

(
K�

j FKi

)
∂F

�F

∂
(
K�

j FKi

)
∂F

�

(14)

The derivative of K�
j FKi with respect to the element Fij of F is equal to:

∂
(
K�

j FKi

)
∂F

= K�
j

∂F

∂F
Ki (15)

5.2. Uncertainty propagation in R and T

It is clear that given the essential matrix

E = Udiag(1, 1, 0)V

and making the first camera matrix Pi = [I |0], then the four possible choices for the second camera
matrix Pj are:3

� Pj = [R1| + T ], Pj = [R1| − T ],
� Pj = [R2| + T ], Pj = [R2| − T ].

Where the rotation matrices R1 = UWV � and R2 = UW�V �, the translation vector T = U (0, 0, 1)�

is the last column of U and W =
[

0 −1 0
1 0 0
0 0 1

]
.

5.2.1. Estimation of the covariance of the rotation matrix. The uncertainty of the rotation matrix R1

knowing �E , the uncertainty of E is given by:

�R1 = ∂
(
UWV �)
∂E

�E

∂
(
UWV �)
∂E

�
(16)

The same technique is used to estimate the covariance of R2 where we use W� instead of W .

5.2.2. Estimation of the covariance of the translation vector. The translation vector T is given by
u3 = U (0, 0, 1)� the last column of U . Hence its covariance �T is then simply:

�T = ∂ (u3)

∂E
�E

∂ (u3)

∂E

�
(17)
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6. Feature Uncertainty Propagation in 3D Reconstruction
Assume we have m views of a scene point X̂ which maps to image points xi = [ui, vi] via camera
matrices Pi , reconstruction is to recover the 3D space position of points X̂ such that xi = PiX̂ for
i = 1, . . . , m. These quantities are related by the projection function f where:

fu(R, T , xi, X) = ui − ri1
�X + ti1

ri3
�X + ti3

= 0

fv(R, T , xi, X) = vi − ri2
�X + ti2

ri3
�X + ti3

= 0 (18)

Clearly the camera matrices Pi = [Ri |ti] where Ri = [ri1, ri2, ri3] and ti = [ti1, ti2, ti3] are the rotation
matrix and the translation vector respectively. Note that X̂ = [X, 1] is represented by homogeneous
coordinates (X = [X, Y, Z] ∈ R

3). In calibrated system, normalized camera matrices are used, where
P1 = [I |0], set as a reference camera, and P2 = [R2|T2]. In this case, a system composed of four
equations can be obtained from (18).

Let �X represents the covariance matrix of the scene point X and �In = diag(�xi
, �Ri

, �Ti
) is

the diagonal covariance matrix associated with the input parameters vector In = [xi, R, T ] which
was estimated using techniques presented in Sections 4 and 5. Then, the following expression can be
written to model the covariance propagation:30

JX�XJ�
X = JIn�InJ

�
In (19)

Where JX and JIn are the Jacobian matrices of derivatives of f in (18) with respect to the 3D point
X and the input parameters vector In = [xi, R, T ] respectively:

JX =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂fu1 (R,T ,x1,X)
∂X

∂fu1 (R,T ,x1,X)
∂Y

∂fu1 (R,T ,x1,X)
∂Z

∂fv1 (R,T ,x1,X)
∂X

∂fv1 (R,T ,x1,X)
∂Y

∂fv1 (R,T ,x1,X)
∂Z

∂fu2 (R,T ,x2,X)
∂X

∂fu2 (R,T ,x2,X)
∂Y

∂fu2 (R,T ,x2,X)
∂Z

∂fv2 (R,T ,x2,X)
∂X

∂fv2 (R,T ,x2,X)
∂Y

∂fv2 (R,T ,x2,X)
∂Z

⎤
⎥⎥⎥⎥⎥⎥⎦

JIn =
[
Jx1 0 JRT1 0

0 Jx2 0 JRT2

]

Jxi
=

⎡
⎣ ∂fu1 (R,T ,x1,X)

∂ui

∂fu1 (R,T ,x1,X)
∂ui

∂fv1 (R,T ,x1,X)
∂ui

∂fv1 (R,T ,x1,X)
∂ui

⎤
⎦

JRTi
=

⎡
⎣ ∂fui

∂Ri11

∂fui

∂Ri12
. . .

∂fui

∂Ri33

∂fui

∂Ti1
. . .

∂fui

∂Ti3

∂fvi

∂Ri11

∂fvi

∂Ri12
. . .

∂fvi

∂Ri33

∂fvi

∂Ti1
. . .

∂fvi

∂Ti3

⎤
⎦

The output covariance matrix and, thus, the output uncertainties are given by:

�X = JX
†(JIn�InJ

�
In)JX

�†
(20)

Where JX
† = (J�

X JX)−1J�
X is the pseudo inverse matrix of JX. An extensive experimental validation

has been conducted of the developed theory above. Figure 6 shows the 3D points’ uncertainties
patterns of a sequence frame against their respective depths. It can be clearly seen that closer points
have smaller uncertainties than relatively distant points. Therefore, tracked points over long sequence
of images will have decreasing uncertainties as the vehicle approaches them. Note that while these
uncertainties are dependent to the keypoints’ image positions uncertainties, they are completely
independent of their images coordinates (ui, vi). Indeed, selecting relatively closer points would be
better for good robust motion estimation.
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Fig. 6. 3D points uncertainties against their depths.

As a summary of Sections 4–6:
� Uncertainties in features positions are given in (8) and (9);
� Propagated uncertainties to the rotation and the translation are given in (16) and (17) respectively;
� Propagated uncertainty to the reconstructed 3D points is given in (20).

7. Robust L∞ Motion Estimation Algorithm
After having estimated �x , the uncertainties in features position from (8) and (9) and uncertainties
in the initial rotation and translation �R and �T from (16) and (17) respectively, robust L∞ motion
estimation is then performed. For each consecutive image pair, the whole algorithm is summarized
in the following operations:
� Estimating the 3D position for each point Xi by Robust L∞ triangulation using covariance matrices

�xi
, �T and �R(Section 7.2);

� Estimating the covariance matrix �Xi
for each recovered point Xi using (20) (Section 6);

� Estimating the camera parameters by robust L∞ resectioning using covariance matrices �xi
and

�Xi
(Section 7.3).

These operations are repeated until the L∞ projection errors reach a satisfactory minimum.

7.1. Computational cost
It is known that the computational complexity of the Levenberg-Marquardt algorithm is: O((m +
n)3))), where m is the number of cameras and n is the number of 3D scene points.3 In our algorithm,
at a given time step we are dealing with either the triangulation problem or camera parameters
recovering problem for which they are solved using bisection algorithm for feasibility checks. The
triangulation problem part has a computational complexity of O(m1.5) and a memory requirement
of O(m) where m is the number of cameras in which the triangulating point is visible.9, 31 Similarly,
the camera parameters recovering problem has a computational complexity of O(n1.5) and a memory
requirement of O(n) where n is the number of scene points. Therefore, for one whole update of the
proposed solution when dealing with n scene points and m cameras the computational complexity is
given by: O(mn(

√
m + √

n)) and the memory requirement is O(max(m, n)).9

Number of iterations as well is crucial in this kind of problems, when a bisection search is
performed. In our solution defining the initial diameter of the second order cones plays a very
important role in determining the number of required iterations. Hence, the upper and the lower
parameters of the bisection algorithm are chosen so the search area is reduced. A memorable search
based on the previous iteration parameters is performed where these parameters are chosen in relation
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with the previous iteration results. This technique reduces significantly the number of iterations
and hence the time consumption. This makes this solution comparable to the classical L2 Bundle
Adjustment (BA) in term of time consumption and in the same time it recovers the global minimum
of the cost functions which is a huge advantage over the classical L2 BA.

7.2. Robust L∞ triangulation with uncertain data
In order to provide an optimal solution to subsequent L∞ robust motion estimation, a need for a robust
and efficient optimal triangulation algorithm will be crucial. Our approach is based on robust convex
optimisation with L∞ norm taking in consideration all sources of uncertainties. Our data uncertainty
are bounded, therefore, we are looking for optimal solutions which are feasible for any realisation of
the data.

As described in Section 6, the function f in (18) relates all parameters of the triangulation between
two cameras positions Pi . In this problem, the aim is to recover the value of X which minimises the
maximum of this re-projection error across all images:

εi = d(xi, PiX̂) (21)

Where d denotes image-space Euclidean distances between the measured and the projected points. Our
aim is then to recover X which minimises the maximum of this re-projection error across all images.
Given the camera matrices Pi = [Ri |ti] where Ri = [ri1, ri2, ri3] , ti = [ti1, ti2, ti3], X̂ = [X, 1] and
their corresponding images xi = [ui, vi]; and by considering uncertainties in feature position �xi ,
in rotation matrices �Ri and in translation vectors �Ti from covariance matrices �xi

, �Ri
and �Ti

respectively; the L2 norm of this re-projection error function is given by:

Fi (X) =
∥∥∥∥∥∥
(
ui + �ui

) − (r�
i1+�r�

i1)X+(ti1+�ti1)

(r�
i3+�r�

i3)X+(ti3+�ti3)
,(

vi + �vi

) − (r�
i2+�r�

i2)X+(ti2+�ti2)

(r�
i3+�r�

i3)X+(ti3+�ti3)

∥∥∥∥∥∥
2

(22)

This problem is formulated within a quasi-convex optimisation framework. By using the L∞ norm
instead, the projection error will be given by:

G(X) = maxiFi(X) (23)

For a scene point X to be visible as image points xi it must lie in front of all cameras Pi . This
implies the constraint g(X, Pi) > 0 for all i, where g(X, Pi) = (ri3 + �ri3)�X + (ti3 + �ti3). Our
optimisation problem is then given by:

min
x

G(X)

subject to g(X, Pi) > 0 ; ∀i = 1, . . . , m
(24)

The m error residuals in (21) give the error vector ε = (ε1, . . . , εm)�. The estimated scene point
is then the vector X that minimises the norm of this error vector. Given an upper bound γ , the
inequality εi ≤ γ defines a set representing a second order cone represented by the first equation of
optimisation problem (24). Note that each projection defines a conical surface where the bound γ is
the radius of this cone and the camera centre is its apex. It is worthy as well to mention here that each
image measurement adds one conical constraint in (24). This optimisation problem is solved using
a sequence of robust SOCP feasibility problem capable of dealing with features’ uncertainties and
computing robust solution.19 This leads toward using a bisection search to find the minimum value
of γ for which the optimisation problem is feasible. The recovered 3D points using this robust L∞
triangulation and their uncertainties are then used in the optimisation algorithm for recovering the
camera parameters.
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7.3. Robust L∞ camera resectioning with uncertain data
Assume we have n scene points X̂i with their uncertainties �Xi

which are mapped to image points
xi with again their uncertainties �Xi

via the camera projection matrix P . This mapping is written
as xi = P X̂i for i = 1, . . . , n . The problem of camera resectioning is to find P given a set of
correspondences xi ⇔ X̂i for i = 1, . . . , n which minimises the maximum of the re-projection error
across all points:

εi = d(xi, P X̂i) (25)

Where d denotes again image-space Euclidean distances between two points in the image, the
measured and the projected points. By introducing uncertainties in feature position �xi = (�ui, �vi)
and those in their 3D correspondence points �Xi ; the L2 norm of this re-projection error function is
given by:

F (X) =
∥∥∥∥∥∥
(
ui + �ui

) − p1�
(Xi+�Xi )

p3�(Xi+�Xi )
,(

vi + �vi

) − p2�
(Xi+�Xi )

p3�(Xi+�Xi )

∥∥∥∥∥∥
2

(26)

Where pj denotes the j th row vector of P . Similarly to the triangulation problem, the L∞ re-projection
error is a quasi-convex function of the unknown camera parameters and the global minimum can be
obtained by solving the following optimisation problem:

min
x

max
i

Fi(X)

subject to p3�
(Xi + �Xi) > 0 ; ∀i = 1, . . . , n

(27)

The recovered camera parameters and their uncertainties are then used again in the subsequent robust
L∞ triangulation algorithm and so on as detailed in Section 7 above.

8. Robust Scale Estimation
After having robustly estimated the motion of the camera using robust L∞ convex optimisation
under uncertain data, ambiguities in the translation scale still occur. Unlike in the stereo scheme,
the monocular visual odometry estimates both the relative motion and the 3-D structure up to an
unknown scale. This absolute scale cannot be estimated unless information about real world is
provided. Assuming we have i 3D points X̂i which maps to image points x̂i = [ui, vi, 1]� via the
normalized camera matrix P = [R|T ] then:3, 6

nx̂i = [R|ST ]X̂i (28)

Where S is the unknown scale factor6 and n is the depth factor that takes into account the projection
plan ambiguity. This leads to the problem of finding a solution S to the over determined set of
equations:

(tzui − tx)S = (r1 − r3ui)Xi

AS = b (29)

Where ri denotes the ith row vector of R and T = [tx, ty, tz]�. Finding a solution S to this problem in
the least squares sense (LS) means minimizing the residual ‖�b‖ subject to AS = b + �b.6 However,
knowing that xi , Xi , R and T are subject to deterministic perturbations, this solution is expected to
exhibit very sensitive behaviour to these perturbations.32 Therefore thinking about using more robust
estimator would be a valid option to investigate. Thus, in our implementation, robust least squares
(RLS) technique is used instead.16 Robust least squares (RLS) solution computes the exact value of
the optimal worst-case residuals using again a convex second-order cone programming (SOCP) of
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the general form:

min
x

f �x

subject to ‖Aix + bi‖2 ≤ c�
i x + di, i = 1, . . . , m.

g�
i x = hi, i = 1, . . . , p.

(30)

Where vectors x,f ,ci ,gi ∈ R
n, scalars di ,hi ∈ R, matrix Ai ∈ R

(ni−1)×n and bi ∈ R
ni−1. The norm

‖.‖2 is the standard Euclidean norm ‖u‖2 = (u�u)
1/2 . The SOCP that formulate this problem is:16

min
x

λ

subject to ‖AS − b‖2 ≤ λ − τ∥∥∥∥
[
S

1

]∥∥∥∥
2

≤ τ

(31)

The unique solution to this problem is then given by:

S =
{ (

μI + A�A
)−1

A�b if μ = (λ − τ )/τ > 0

A‡ else,
(32)

Where A‡ is the pseudo-inverse matrix of A. (λ, τ ) are the unique optimal solutions for problem (31).

9. Experimental Results
In order to test the proposed solution, we have used data from three different environments. The first
one consists on data collected in our laboratory using a Pioneer P3-DX platform with a fully-calibrated
forward looking camera. Ground-truth is collected from an OptiTrack motion-capture system that
provides absolute position information with millimetre accuracy at 100 Hz (Fig. 7).

More challenging environments are used as well in our experiments. The second one is a dataset
collected from a vehicle travelling in an urban environment with a pointing-forward calibrated camera
mounted on the roof of this vehicle.25 The third one is a collection of data gathered at a Mars/Moon
analogue site at Devon Island, Nunavut.26

As we can realise, the three environments are completely different so the technique would be
tested in unbiased circumstances. The concurrent methods of the proposed solution are those which
use iterative optimisation via L2 norm, hence comparisons with bundle adjustment method based on
Levenberg-Marquardt algorithm on exactly the same data are given.

Thus, in this section, we show first the navigation results illustrating the motion estimation using
robust convex optimisation applied on a vehicle travelling through a variety of environments. Second,
the robustness of the proposed solution is investigated where our method is tested under different
error-level scenarios. A sequence of robust SOCP feasibility problem for the convexity task using
SeDuMi toolbox33 is employed along with Yalmip19 toolbox for uncertainties modelling.

9.1. Motion estimation
Motion estimation using robust convex optimisation algorithm was integrated into our implementation
for each environment. As explained previously, uncertainties in feature positions and their propagation
in the rotation, in the translation and in the reconstructed 3D points have been taken in consideration
in this implementation. We compare the output of our solution to the classical bundle adjustment
system. We illustrate that robust convex optimisation pose estimates are more accurate and more
consistent under a diversity of circumstances in realistic ground vehicle scenarios. Figure 8 shows the
performance of both algorithms on each environment. Figure 8(a) shows errors of indoor trajectory
where the robot has performed two loops in the main room in our laboratory. Figure 8(b) plots errors of
a trajectory of more than 350 meters estimated through 200 key-frames from the urban environment,
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Fig. 7. Setup used in our indoor experimental validations.

while Fig. 8(c) shows errors of a travelled distance of more than 650 meters recovered through 1000
key-frames taken from the Mars/Moon analogue site.

It can be seen, from the Euclidian distance errors, that robust convex optimisation approach is more
accurate in all environments than classical bundle adjustment using Levenberg-Marquardt approach.
Indeed, convex optimisation has shown its ability to ensure the global minima in recovering the
motion parameters in comparison to iterative methods where a predefined termination criterion is set
which favours convergence to local minima.

Notwithstanding of convex optimisation properties, this can be explained as well by the fact
that incorporating uncertainties made the optimisation problem more robust leading to an efficient
min-max optimisation in presence of high levels of noise.

In addition to motion estimation, using robust algorithm for scale estimation in our monocular
system ensured more consistent trajectories. Deployment of robust least squares under second-order
cone programming (SOCP) along with incorporating uncertainties in both feature positions and
in their corresponding 3D scene points has demonstrated its ability to compute the absolute scale
accurately and robustly. This can be seen as well in the recovered trajectories in Fig. 9. This figure
plots the trajectory estimates aligned with their corresponding ground truth. Figure 9(a) plots the
trajectory of the indoor experiment while Fig. 9(b) gives the trajectories estimates of a portion of
the Moon/Mars analogue dataset. Clearly, more accuracy can be distinguished when robust convex
optimisation is used in comparison with classical bundle adjustment with LM algorithm. This is in
accordance with the theory as the estimates should be globally optimal.

Achieved results are good, reaching errors smaller than 3% and normally bounded by 5 − 12% in
terms of travelled error, defined as:

Travelled error = 100.
abs(error)

Travelled distance
(33)

This also shows that our algorithm is very much suitable for estimating the motion of a vehicle
travelling in different environments where high level of noises of unknown nature are likely to occur.

9.2. Motion estimation robustness
We want to highlight the robustness of the proposed solution and its behaviour and sensitivity to high
levels of noise. To do that, four scenarios were adopted in function of noise (Table II). In fact, we take
the extracted image points xi = (ui, vi) using SIFT algorithm and then perturb them with varying
levels of Gaussian noise �xi where x̂i = (ûi , v̂i) = xi + �xi . These noisy image points x̂i are then
subsequently used to estimate the camera motion and scene points Xi using the proposed solution
(which we called here Robust CVX). The same noisy image points x̂i are used as well to estimate
the camera motion using a L∞ convex optimisation without taking in consideration the uncertainties
(which we called Normal CVX). Therefore, four different scenarios can be distinguished in this test
as illustrated in Table II.

The first and second scenarios consist of using xi and x̂i respectively with the proposed robust
L∞ convex optimisation solution (Robust CVX) under uncertain data, while in the third and the
fourth scenarios we use the same xi and x̂i respectively but with the L∞ convex optimisation solution
(Normal CVX) (Table II).

The estimated camera motions for the four scenarios are aligned with the ground truth and the
Euclidian distance errors on camera position are computed. A plot of these errors is shown in Fig. 10.
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Table II. The four scenarios for robustness investigation.

Non-perturbed image Perturbed,image
points xi points x̂i

Robust convex optimisation Scenario 1 Scenario 2
(Robust CVX)
Convex optimisation Scenario 3 Scenario 4
(Normal CVX)

(a) Indoor environment

(b) Urban environment

(c) Mars/Moon analogue

Fig. 8. Camera motion estimation errors.

This plot shows that motion can be estimated well even with a high level of noise using robust convex
optimisation (Robust CVX) which is not the case when normal convex optimisation (Normal CVX)
is used where important divergence is recorded (dashed blue line Fig. 10).
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Table III. Average back projection errors of the estimation of the 3D scene points and the
camera parameters of the two real datasets under the four scenarios.

Average back projection errors

Indoor site Urban site Moon/Mars analogue site

Robust CVX 0.4985 0.7189 3.3107
Robust CVX + Gaussian noise 0.5102 0.7281 3.3204
Normal CVX 0.5215 0.7372 3.3401
Normal CVX + Gaussian noise 1.7253 2.0504 7.2978

(a) Indoor environment (b) Mars/Moon analogue

Fig. 9. Comparison between the trajectories estimates using robust convex optimisation and the classical BA
using LM algorithm.

From these results, we learn that the proposed method, which takes in consideration the
uncertainties of its inputs, performs remarkably better than the normal L∞ convex optimisation
as expected since it encodes large intervals in its optimisation and models well the uncertainties.

In order to assess the robustness in depth, back projection errors of the 3D scene points for the
same scenarios are investigated as well. Figure 11 plots these projection errors of recovered 3D scene
points on the image plan. These errors depict the accuracy of both the 3D position of the scene points
and the camera motion parameters. Similar pattern to Fig. 10 can be noticed here as well. Typically
robust convex optimisation performs well even when corrupted image points x̂i are used and in all
environments (Fig. 11 - solid red graphs). On the other hand, using normal convex optimisation for
motion estimation with corrupted image points x̂i would generate significant divergence (Fig. 11 -
solid blue graphs). Logically both solutions provide similar performances with non-corrupted inputs
xi (dashed red and blue graphs). Indeed, it is clear that the uncertainty scheme always produces the
best results.

Table III summarises the results regarding the average back projection errors for the different
scenarios applied on the three environments. Obviously, the algorithm performs better in indoor
environment. This can be justified by the fact that indoor features are more distinguishable (i.e.
better matching) and their distances to the robot are relatively closer in comparison to features
from the two other environments. Furthermore, the algorithm performs well in urban environment
where feature points are relatively easily detected, matched and reconstructed in comparison to the
Moon/Mars analogue site where the landscape presents more difficulties. Feature points extraction and
matching is more challenging in this type of environments where their corresponding uncertainties
are relatively higher as shown in Table I above. However the uncertainty incorporation impact is
easily distinguishable in all environments, preventing potential divergence in presence of high level
of noise.
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Fig. 10. Performance of the motion estimation algorithm as a function of noise level for the four different
scenarios.

Fig. 11. Re-projection errors for the four different scenarios applied on the three environments.

10. Conclusions
In this work, a robust convex optimisation solution for monocular motion estimation systems has been
presented. Including uncertainty estimation, based on SIFT derivative approach with the developed
propagations through the eight-point algorithm and singular value decomposition SVD to the rotation
and the translation of the camera and also to the 3D reconstructed points via triangulation, have proved
improving global motion estimation. An experimental validation has been conducted and compared
to optimal solution using classical bundle adjustment based on LM algorithm.

Although solutions to the motion estimation problem based on bundle adjustment with LM
algorithm are eligible to provide accurate results, they present limitations in the presence of a
high level of noise that a system based on robust L∞ norm is able to overcome. Through several
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experimental results, we show that our technique, by including all sources of uncertainties, clearly
outperforms these classical techniques which use Levenberg-Marquardt algorithm for motion and
Least Squares for absolute scale estimations.

Our second contribution, which follows on nicely from the first one, is to use the robust least
squares algorithm capable of dealing with system uncertainties for frame to frame absolute scale
estimation.
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