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We explore asset pricing in the context of the one-sector Benhabib-Farmer-Guo (BFG)
model with increasing returns to scale in production and compare our results with
financial implications of the standard dynamic stochastic general equilibrium (DSGE)
model. Our main goal is to determine the effects of local indeterminacy and the presence
of sunspot shocks on asset pricing. We find that the BFG model does not adequately
represent key stylized facts of U.S. capital markets and does not improve on the
asset-pricing results obtained in the standard DSGE model.
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1. INTRODUCTION

Over more than two decades, financial economists have been striving to explain
time- variation in interest rates and cross-sectional variation in returns on average
stocks and bonds in the dynamic stochastic general equilibrium (DSGE) frame-
work. DSGE models, in which macroeconomic factors affect both output and
asset prices, seem to be a natural context for asset-pricing explorations. Typically
the analysis is undertaken in an exchange context, although production style real
business cycle (RBC) formulations have been studied as well.1 The common
feature of neoclassical RBC models is that they rely on technology shocks as
the main source of fluctuations. Although remarkably successful in matching
business cycle statistics, most neoclassical RBC models are unable to replicate
one or several stylized financial facts: the high equity premium, the low risk-free
rate, and the high volatility of equity returns with corresponding low volatility of
bond returns.2
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More recently, starting with the pioneering work of Benhabib and Farmer (1994)
and Farmer and Guo (1994), a large body of literature has developed in which
DSGE models, modified to include increasing returns to scale in production, can
result in a continuum of equilibria indexed by agents’ expectations.3 In these mod-
els, economic agents’ self-fulfilling beliefs, also referred to as sunspots or animal
spirits, can generate business cycle fluctuations that are difficult to distinguish from
the dynamics of neoclassical RBC models driven by technology shocks. To our
knowledge, the financial implications of these models have not been investigated.

In this research we attempt to study financial properties of DSGE models,
in which economic agents’ (investors’) beliefs, alone or in combination with
technology shocks, generate fluctuations. Because financial markets are theorized
to be driven, at least in part, by agents’ expectations, one might expect that
models with indeterminacy would reflect well the behavior of such markets. Our
main objective therefore is to explore whether inclusion of nonfundamental belief
shocks and a different (endogenous) shock propagation mechanism, which arises
in indeterminate models, enhances asset pricing performance.

As a framework for examining the behavior of financial assets in an inde-
terminate one-sector RBC economy, we adopt the Benhabib-Farmer-Guo (BFG)
model. The one-sector BFG model requires large increasing returns to scale to
support sunspot equilibria. To the extent that one objects to the high returns-to-
scale calibration, the quantitative experiments that we present below should be
viewed more from a methodological perspective as evaluating the value added of
indeterminacy and sunspots in accounting for the stylized financial facts.4 We also
realize that it is not possible to represent stylized financial and macroeconomic
facts adequately in the context of the BFG model at the same time because the
volatility of the pricing kernel in the BFG model depends solely on the volatility
of consumption growth, just as in the standard consumption-based asset-pricing
models. In the data, consumption growth does not vary much and therefore the
standard deviation of the pricing kernel is bound to be low if one wishes to
replicate this feature of the data. In the determinate DSGE models, the standard
deviation of consumption growth is typically lower than its empirical counterpart.
From another perspective, the work of Hansen and Jagannathan (1991) implies
that accounting for the equity premium in the U.S. data requires the volatility of
the stochastic discount factor to be at least 50% annually. Our goal in this research
is therefore not to resolve the financial puzzles but to understand if sunspots and
indeterminacy help to alleviate them to some degree.

We compare the asset-pricing results obtained in the indeterminate BFG model
with the results from the indivisible-labor business cycle model of Hansen (1985).
These two models are canonical in their respective classes, indeterminate and
neoclassical. Apart from the nature of shocks, they differ only in the level of
returns to scale in production, facilitating a controlled comparison of financial
implications of two competing paradigms.

In this comparison, we see the second contribution of our research. The empir-
ical productivity analysis literature [e.g., Caballero and Lyons (1992), Basu and
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Fernald (1997), Laitner and Stolyarov (2004)] has not achieved a broad consensus
on the degree of aggregate increasing returns in the data, and therefore on the
relevance of sunspots to many models with indeterminacy. This problem is well
understood in light of Kamihigashi’s (1996) observational equivalence argument:
if the shock behind economic fluctuations is left unrestricted, the observed time
series of consumption, investment, output, capital, and labor input can be gener-
ated by an economy with any value of returns to scale. Cole and Ohanian (1999)
show that even with a restricted shock process the measurement of increasing
returns is imprecise, making it difficult to discriminate between models. The
two formulations, however, have different implications for economic policy and
for that reason any additional information in favor of choosing one setting over
the other is of value. Several studies [for instance, Farmer and Guo (1994) and
Thomas (1999)] have shown the two types of models to be comparably successful
in replicating essential macroeconomic features of the business cycle. Success
along asset-pricing dimensions would certainly present strong support for sunspot
formulations.

Unfortunately, our results indicate that the BFG model does not substantially
improve upon the performance of the neoclassical RBC model of Hansen (1985)
in representing stylized financial facts of the data. The 4.0176% log gross return
on equity is significantly below the 7.58% average log gross return on equity in
the U.S. data. The risk-free rate is high: 4.0163% versus 1.54% in the data.5 The
reported numbers clearly illustrate the presence of the equity premium puzzle of
Mehra and Prescott (1985) and the risk-free rate puzzle of Weil (1989) in the BFG
model. In addition, the volatility of the log return on equity in the model economy
is only 0.37% in contrast to the 15.47% in the U.S. economy, indicating the
volatility puzzle. The corresponding financial stylized facts from Hansen’s model
are almost identical to those of the BFG model when similarly parameterized.

Our conclusion is that the presence of the sunspot shock and the endogenous
shock propagation mechanism does not have any significant impact on financial
performance. For example, the equity premium depends on the covariance be-
tween the return on equity and consumption growth. The covariance, in turn, is
the product of the standard deviations of the return on equity and consumption
growth and their correlation coefficient. Indeterminacy and the sunspot do not
increase these statistics and therefore do not alleviate the severity of the equity
premium and other financial puzzles. Overall, the indeterminate BFG model fails
to resolve financial puzzles for the same reason as does Hansen’s model: in both
settings risk-averse agents can adjust consumption, labor supply, and the rate of
capital accumulation in response to shocks, and they smooth consumption “too
much,” even relative to empirically observed consumption growth. Because in
both formulations the stochastic discount factor is equal to the rate of consump-
tion growth, the pricing kernel is insufficiently volatile. The natural conclusion
is that improvement along the asset-pricing dimension requires some technology
that breaks the link between the pricing kernel and consumption growth. One
way to disconnect the two variables is to introduce habit formation into investors’
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preferences. However, previous studies in asset pricing [Jermann (1998), Avalos
(2001), Boldrin, Christiano, and Fisher (2001), and others] have shown that such
modification by itself does not help to resolve asset-pricing puzzles in production
economies. Habit formation increases agents’ local risk aversion. Very risk-averse
investors are eager to smooth their consumption, which is easy to accomplish
by adjusting labor and capital inputs. Therefore, an additional mechanism, which
prevents easy consumption smoothing, must be put in place. This mechanism,
however, would also prevent indeterminacy, since for swings in optimism and
pessimism to translate into corresponding movements in economic activity there
must be enough flexibility in the model economy to allow agents to act on their
expectations. For example, Kim (2003) shows that indeterminacy disappears when
capital adjustment costs are incorporated into the BFG model.6

The rest of this paper proceeds as follows: In Section 2 we describe the model
and its equilibrium; in Section 3 we discuss the solution method and its application
to asset pricing, in Section 4 we choose parameter values and present our results;
in Section 5 we conclude.

2. THE MODEL

The economy is populated by a continuum of identical households indexed by
[0,1] and by a representative “stand-in” firm. There exists a legitimate financial
market in which equity claims to the representative firm’s net income stream and
possibly other assets are traded.

2.1. Households

Households maximize their expected lifetime utility defined over consumption and
leisure by deciding on the time they wish to work and by choosing their financial
asset holdings,

Max{Zt+1,Nht }E0

( ∞∑
t=0

βt (Ct )
1−ξ − 1

1 − ξ

)
− �Nht (1)

subject to
Ct + Z′

t+1P
z
t ≤ Z′

t

(
P z

t + Dz
t

) + WtNht , (2)

where β(0 < β < 1) is the subjective time discount factor and parameter ξ(0 <

ξ < ∞) is the coefficient of the relative risk aversion; Ct and Nht are per capita
consumption and labor services, respectively, each in period t . Each household is
endowed with one unit of time and the parameter �(� > 0) in the utility function
is chosen to match the fraction of that time devoted to work in the data.7 Wt is
period t’s wage rate. Zt is a vector of financial assets held at period t and chosen at
t-1. P z

t and Dz
t are vectors of asset prices and current period payouts (dividends).8

Vector Zt includes an equity security, whose price and dividend are denoted by
P e

t and De
t . We normalize number of equity shares to 1. Another asset included

https://doi.org/10.1017/S1365100507060373 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060373


54 NATALIA GERSHUN AND SHARON G. HARRISON

in Zt is the one-period risk-free bond, whose price isP b
t . The bond is in zero net

supply.
The period preference ordering of the representative household is assumed to

be separable in consumption and leisure and has its origins in Hansen (1985).
The representative household’s marginal utility of consumption is given by
Uc(Ct , Nht ) = (Ct )

−ξ and its intertemporal marginal rate of substitution in con-
sumption, also known as the stochastic discount factor or pricing kernel, by

Mt+1 = β
Uc(Ct+1, Nht+1)

Uc(Ct , Nht )
= β

(
Ct+1

Ct

)−ξ

. (3)

The first-order conditions for optimization program (1)–(2) with respect to
financial asset holdings produce asset pricing equations. For instance, the equation
for the price of the equity security, P e

t , which is a claim to the infinite sequence of
dividends, paid by the firm {De

t+j }∞j=1, is given by

P e
t = Et

[
Mt+1

(
P e

t+1 + De
t+1

)]
. (4)

Equation (4) means that in his intertemporal choice problem, a typical investor
equates the loss in utility associated with buying an additional unit of the fi-
nancial asset (equity) at time t—P e

t Uc(Ct , Nht )—to the discounted expected
utility of the resulting additional consumption in the next period (βEt [(P e

t+1+
De

t+1)Uc(Ct+1, Nht+1)]). Substituting forward for P e
t+j (j = 1, . . . ,∞) and using

the law of iterated expectations, we obtain a unique nonexplosive solution for (4):

P e
t = Et

⎡
⎣ ∞∑

j=1

Mt+jD
e
t+j

⎤
⎦ . (5)

The price of a one-period risk-free bond—an asset that pays one unit of consump-
tion in every state next period—is just the expectation of the stochastic discount
factor:

P b
t = Et [Mt+1]. (6)

The first-order condition for the household’s labor decision equates the utility
of extra consumption obtained by working longer to the disutility of the additional
work effort:

(Ct )
−ξWt = �. (7)

The conditional expectations in (4) and (6) are taken over two exogenous
sources of fluctuations: technology shock and nonfundamental belief or sunspot
shock. The latter is an extra return on the equity security (in terms of a utility
increment), which the household believes to materialize over the period. Under
certain parameterizations of the model, beliefs become self-fulfilling.
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2.2. Firms

A representative firm begins period t with the stock of capital, Kt , carried over
from the previous period. The evolution of the capital stock is given by

Kt+1 = (1 − �)Kt + It
(8)

K0 given,

where It is period t investment and �(0 < � < 1) is the depreciation rate. The
firm produces output via a standard Cobb-Douglas function,

Yt = AtXt(Kt)
α(Nft )

−α, (9)

with two inputs—capital, Kt , and labor, Nft—and the current level of technology
At , the log of which is assumed to follow an AR(1) process with the persistence
coefficient ρ ∈ (0, 1):

at = ln At = (1 − ρ) ln Ā + ρ ln At−1 + εt
(10)

A0 given.

There is an external effect, Xt , which depends on the economywide quantities of
capital and labor, denoted by variables with bars:

Xt = K̄
αη
t N̄

(1−α)η
t . (11)

The parameter η(η ≥ 0) captures the size of the aggregate production ex-
ternality.

The firm takes the external effect as given and views its production function
as having constant returns to scale. As a result, the firm behaves competitively.
However, there are increasing returns to scale in production at the aggregate level
because of the externality. If η = 0, private and social returns to scale are both
constant.

After period t output is produced, the firm sells it and uses the proceeds of
the sale to pay the wage bill, WtNft , and to finance investments, It , under the
knowledge of the equation of motion of the capital stock (8). The remaining
output is distributed as dividends to the shareholders (households):

Dt = Yt − WtNft − It . (12)

In this complete market setting the representative firm’s objective is to maximize
its predividend stock market value, period by period, by choosing its investment
and labor input. The competitive firm realizes that shareholders’ intertemporal
marginal rates of substitution are crucial for asset pricing and uses investors’
valuation for the price of equity9 provided by equation (5). Expression (5) simply
equates the share price to the expected present discounted value of the infinite
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dividend stream paid by the firm. The representative firm’s dynamic optimization
program is

Max{It ,Nft }
(
De

t + P e
t

)
(13)

subject to (5), (8), (9), and (12).
The program (13) is a decentralized version of the stochastic growth model

proposed by Danthine and Donaldson (2002a). This interpretation requires share-
holders to convey to the firm a complete listing of their future intertemporal
marginal rates of substitution [equation (5)]. Danthine and Donaldson (2002a)
show that in the complete market setting with homogenous agents there is perfect
unanimity about the provided information. Alternatively, shareholders appoint one
of their cohort to manage the firm, realizing that his or her preferences over future
consumption are identical to their own.

The first-order conditions for the firm’s problem (13) with respect to its labor
hiring and investment decisions are

(1 − α)
Yt

Nft
= Wt (14)

and

−1 + Et

[
Mt+1

{
α

Yt+1

Kt+1
+ 1 − �

}]
= 0. (15)

Because the private technology of a representative firm is convex, an interior
solution to the model exists and the equilibrium is well defined.

2.3. Equilibrium

An equilibrium in this economy is a vector of price sequences, {Wt }∞t=0, {P z
t }∞t=0,

and the set of policy functions {Yt }∞t=0, {Ct }∞t=0, {Nt }∞t=0, {Kt }∞t=0, {It }∞t=0, and
{Dt }∞t=0 such that

(1) The first-order conditions of the representative household, (4), (6), and (7), and of the
representative firm, (14) and (15), are satisfied together with the usual transversality
condition limt→∞ βtUc(Ct , Nt )Kt+1 = 0.

(2) The labor, goods, and capital markets clear: Nht = Nft = N̄t , Yt = Ct + It , and Kt =
K̄t . Equilibrium in the financial market requires that investors hold all outstanding
equity shares and all other assets are in zero net supply: Ze

t = 1 and Zb
t = 0.

If the externality exists (η is positive) the decentralized equilibrium is not Pareto
optimal because the representative firm fails to take the external effect into account
when choosing optimal labor and investment.

3. MODEL SOLUTION AND ASSET PRICING

First, we solve the model for the approximate dynamics of the macroeconomic
variables by log-linearizing the equations around the unique steady state implied
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by the above equilibrium conditions as in King et al. (1988). The solution of the
approximated model can be represented by a log-linear state space system with
the vector of state variables st following a first-order autoregressive process with
multivariate normal i.i.d. impulses:

st+1 = Pst + Qωt
(16)

k0 given.

The lower case letters denote the log deviations of variables from their steady-state
values. For the economies considered in this research, st contains capital stock
kt , level of technology at , and possibly an additional endogenous state variable.10

The square matrix P governs the dynamics of the system. When the equilibrium is
unique the steady state is a saddle point, and the third variable in st has to be chosen
so that the system is always on the stable branch. Alternatively, the transversality
condition is violated. If two eigenvalues of the matrix P , corresponding to capital
stock and the third variable in st , are both within the unit circle, the equilibrium
is indeterminate. In this case the transversality condition is satisfied for any value
of the third variable in st , which then becomes an additional endogenous state
variable.

The vector of exogenous shocks ωt consists of two variables: the technology
shock, εt , and the sunspot, νt . Consistency with rational expectations requires that
the sunspot be i.i.d. with Et [νt ] = 0.

For asset pricing, we obtain the log of dividends d and the log of the stochastic
discount factor m as linear combinations of the state vector.

3.1. Rates of Return

The next step in our solution is to apply the lognormal pricing method developed
by Jermann (1998), which combines the linearization approach detailed above
with nonlinear asset-pricing formulae. The main advantage of this technique over
nonlinear value-function iteration, used for example in Danthine et al. (1992) and
Rouwenhorst (1995), is its ability to handle a model with multiple endogenous
state variables with ease. This would be a hurdle in purely nonlinear discrete state
space methods. On the other hand, our return computations do not impose equal
ex ante returns across securities, as is generally true under pure linearization of
the utility, which results in risk neutrality.

The basic pricing equation requires that the time t price of a claim to a single
uncertain future payout (dividend), Dt+j , is equal to its expected present value

discounted using the stochastic discount factor Mt+j = βj
(

Ct+j

Ct

)−ξ

:

Pt(Dt+j ) = Et [Mt+jDt+j ] = βjEt [exp{ξ(ct − ct+j ) + dt+j }]. (17)

Since the log deviations of the stochastic discount factor and dividends with respect
to the steady state values are conditionally normal, M and D are conditionally
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lognormal. Using the well-known theorem about the expectation of lognormal
variables, the Euler equation (17) can be written as

Pt(Dt+j ) = βj exp

{
Et [ξ(ct − ct+j ) + dt+j ] + 1

2
Vart [ξ(ct − ct+j ) + dt+j ]

}
.

(18)
It is possible to obtain closed-form solutions for first and second moments of

returns on assets with a single-period payout as in equation (17). For example, the
return on a one-period bond, which pays one unit of consumption good in every
state, i.e., per-period risk-free rate, is given by

Rb
t,t+1(1t+1) = β−1 exp

{
−Et [ξ(ct − ct+1)] − 1

2
Vart [ξ(ct − ct+1)]

}
. (19)

The unconditional mean risk-free rate and its variance can be shown to be equal
to

E
[
Rb

t,t+1

] = β−1 exp

{
1

2
Var[Et [ξ(ct − ct+1)]]

− 1

2
Var[ξ(ct − ct+1) − Et [ξ(ct − ct+1)]]

}
, (20)

Var
[
Rb

t,t+1

] = β−2 exp{Var[Et [ξ(ct − ct+1)]] − Var[ξ(ct − ct+1)

−Et [ξ(ct − ct+1)]]}(exp{Var[Etξ(ct − ct+1)]} − 1). (21)

An equity security is the claim to the infinite sequence of dividends {Dt+j }∞j=1
and can be regarded as an infinite composite of single-strip securities, which are
priced according to equation (18). The period gross return to the firm’s equity is
given by

Re
t,t+1

({Dt+j }∞j=1

) = P e
t+1

({Dt+j }∞j=1

) + Dt+1

P e
t

({Dt+j }∞j=1

)
(22)

=
∑∞

j=1
βjEt+1[exp{ξ(ct+1 − ct+1+j ) + dt+1+j }] + exp dt+1∑∞

j=1
βjEt [exp{ξ(ct − ct+j ) + dt+j }]

We can compute stock returns from the model’s linear solution, but to calculate
the unconditional expectation and variance of the return on equity, it is necessary
to use simulations.11

3.2. Financial Puzzles in DSGE Models

The average excess stock return E[Re − Rb] in the U.S. data is almost 8%. The
average excess stock return justified in the context of the standard DSGE model as

https://doi.org/10.1017/S1365100507060373 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060373


ASSET PRICING WITH INDETERMINACY 59

a reward for bearing risk is close to zero. Herein lies the equity premium puzzle.
To understand the determinants of the equity premium using the standard DSGE
framework, we rewrite the asset-pricing Euler equations (5) and (6) in terms of
returns12

1 = Et

[(
1 + Re

t,t+1

)
Mt+1

]
, (23)

1 + Rb
t,t+1 = 1

Et [Mt+1]
. (24)

Denote the log gross returns on stocks and the risk-free asset by re
t,t+1 =

ln(1 + Re
t,t+1) and rb

t,t+1 = ln(1 + Rb
t,t+1) and the log of the stochastic discount

factor by mt = ln(Mt+1) = ln β − ξ(ct+1 − ct ) = ln β − ξ�ct+1. Because the
marginal rates of substitution and asset returns are jointly lognormally distributed
and homoscedastic, we can rewrite the equations (23) and (24) in terms of logs,13

rb
t,t+1 = −Et [mt+1] − Var(m)

2
, (25)

Et

[
re
t,t+1

] = −Et [mt+1] − 1

2
(Var(re) + Var(m) + Cov(re,m)), (26)

Et

[
re
t,t+1 − rb

t,t+1

] + Var(re)

2
= −Cov(re,m) = ξCov(re,�c)

(27)
= ξρ(re,�c)σreσ�c,

where �c denotes log consumption growth. Equation (27) states that the log of the
expected risk premium, adjusted for Jensen’s inequality, is equal to the covariance
between the log return on equity and log consumption growth. Intuitively, the
asset whose return positively covaries with consumption growth pays in “good”
times when the consumption level is high and the marginal utility of additional
consumption is low. Such assets require high returns to induce investors to hold
them. Alternatively, the assets that pay in the “bad” states are very desirable
and command low returns because they allow risk-averse agents to smooth their
consumption patterns. In the data, the standard deviation of the log consumption
growth is 1.08% and the standard deviation of the log return on equity is around
16%. Even if one is willing to assume the perfect positive correlation between the
two variables, a relative risk aversion coefficient (ξ) of about 50 is required to
resolve the puzzle in the context of the DSGE models, in which the pricing kernel
is equal to the consumption growth. In the literature, ξ = 10 is considered to be
the maximum plausible value for this parameter.

The equity premium results can be also examined in the framework pro-
vided by the work of Hansen and Jagannathan (1991). They show that the
unconditional version of the first-order condition for excess return on equity,
E[Mt+1(R

e
t,t+1 − Rb

t,t+1)] = 0, implies the following restriction for the Sharpe

https://doi.org/10.1017/S1365100507060373 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060373


60 NATALIA GERSHUN AND SHARON G. HARRISON

ratio of any asset’s excess return,

E
[
Re

t,t+1 − Rb
t,t+1

]
σ

[
Re

t,t+1

] = −ρ
(
Mt+1, R

e
t,t+1 − Rb

t,t+1

) σ [Mt+1]

E[Mt+1]
≤ σ [Mt+1]

E[Mt+1]
, (28)

where ρ denotes the unconditional correlation between two variables, which can-
not be higher than 1 in absolute value. The inequality in (28) is the Hansen–
Jagannathan lower bound (HJB) on the pricing kernel. In equation (28), E[Mt+1]
is the expected value of the price of a one-period risk-free discount bond and
should be close to 1, which means that σ [Mt+1] should be around 0.5 in annual
terms.

On the other hand, for the investor whose preferences are given by the standard
power utility, high relative risk aversion implies low elasticity of intertemporal
substitution (reciprocal of the relative risk aversion coefficient). That is, a very
risk-averse person is also extremely unwilling to substitute consumption across
time. Such investor would hold risk-free bonds only if they offered high return,
which is the essence of the risk-free rate puzzle of Weil (1989). More specifically,
let us take the unconditional expectations of (25):

E[rb] = − ln β + ξE[�c] − ξ 2σ 2
�c

2
. (29)

From equation (29), it is clear that higher relative risk aversion parameter ξ has
two opposite effects on the average risk-free rate: it increases the risk-free rate
through the intertemporal consumption smoothing effect (ξE[�c]) and reduces
the risk-free rate through the precautionary savings effect (ξ 2σ 2

�c/2). Intuitively,
given the positive average rate of consumption growth, agents would like to
borrow from the future to reduce the growth in their consumption, but also save to
protect themselves against future uncertainty. For the precautionary savings effect
to dominate the intertemporal consumption smoothing effect the coefficient of the
relative risk aversion needs to be implausibly high. But even with high ξ the low
risk-free rate and the reasonable rate of time preferences (β) can be simultaneously
obtained only for a very narrow range of relative risk aversion coefficient values.
It follows that the increase in the relative risk aversion parameter would not
satisfactory resolve financial puzzles.

The equity premium puzzle is related to the volatility puzzle because the stan-
dard deviation of stock returns also depends on the volatility of consumption
growth in addition to the volatility of dividend growth. Campbell (1999) shows
that the standard deviation of dividends needs to be counterfactually high to
achieve the 16% standard deviation of stock returns found in the U.S. data.

In the models investigated in this research, the stochastic discount factor is equal
to the consumption growth rate. Given the arguments outlined above, one would
not expect to solve asset-pricing puzzles without altering the pricing kernel, and
that is not our objective here. Rather, our focus is on understanding the impact
that local indeterminacy and sunspot have on asset pricing. We are interested in
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knowing whether these two features help to alleviate financial puzzles and to what
degree.

4. QUANTITATIVE RESULTS

The main purpose of the quantitative evaluation presented in this section is to
examine the potential of the indeterminate BFG model to explain the historic
equity premium, the average risk-free rate, and the volatility of financial asset
returns found in the U.S. data, while maintaining its ability to replicate the stylized
business cycle facts. We start the discussion of asset-pricing implications of one-
sector DSGE models with a review of the financial implications of the indivisible-
labor model of Hansen (1985). As noted earlier, the BFG model and Hansen’s
model differ in the degree of aggregate returns in production and in the nature
of the driving processes. We would like to disentangle the impact of increasing
returns on asset pricing from the impact of the sunspot shock. To achieve this goal,
we examine three types of model economies. First we consider economies with
different values of the increasing returns parameter, η, with fluctuations driven
solely by technology shocks. Then we turn our attention to BFG economies—
those with increasing returns to scale high enough to be driven by belief shocks—
and consider these shocks alone. Finally, we explore one version of the BFG
economy with both sources of uncertainty: the nonfundamental belief shock and
the productivity (technology) shock.

4.1. Calibration

Each of these model economies shares commonly calibrated parameter values. All
are in line with empirical estimates and the values commonly used in the literature.
[See for instance Hansen (1985), Mehra and Prescott (1985), Juster and Stafford
(1991), Poterba (1998), Jermann (1998), Boldrin, et al. (2001), and King and
Rebelo (1999).] Capital’s share of output, α, is 0.3 and the quarterly depreciation
rate, �, is 0.025. The subjective discount factor, β, is 0.99, corresponding to a
steady-state risk-free rate of return of 4% per year. We choose � to yield steady-
state work time of the representative household equal to 1/3 of its time endowment.
Estimations of the Solow residual typically yield a highly persistent AR(1) process
[see Prescott (1986) for details]. For the AR(1) process describing At , we choose
the value of the persistence parameter, ρ, equal to 0.95.

Our benchmark value of ξ , the relative risk aversion (RRA) coefficient, is equal
to 1. Because the RRA coefficient is a critical parameter for asset pricing, we
present cases in which the RRA coefficient is equal to 5 in our second group of
simulations.

The degree of increasing returns to scale (IRS) in the model economy is given
by 1 + η. Despite numerous attempts to estimate the level of returns to scale
in the data, there is no broad agreement in the literature on its value. Basu
and Fernald (1997) demonstrate that although the average U.S. industry exhibits
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approximately constant returns to scale, the aggregate private business economy
appears to exhibit large increasing returns. The largest aggregate estimate they
obtain is 1.72 (standard error equal to 0.36). They suggest that aggregate estimates
are appropriate for calibration of one-sector models. This argument is very helpful
for the proposed research because the one-sector BFG model requires a minimum
externality of about 0.55 to support sunspot equilibria. Our benchmark value is
η = 0.6, but we present results using higher and lower values in our simulations
in the first and second groups of results.

We have freedom in setting the variances of our shocks. In each case we set
them to match the standard deviation of output in the U.S. data (1.82%). When
we use both shocks, they are uncorrelated.14 Because there is no obvious way to
estimate the variances of the shocks individually, we choose these parameters to
maximize the log equity premium in the BFG model with two shocks.15

4.2. Effect of Increasing Returns on Asset Prices

Our objective in this section is to investigate the effect of the change in the level
of returns to scale in production on asset pricing implications of the indivisi-
ble labor model. In Table 1, we collect statistics from the model economies in
our first group. For easy comparison, the first column of Table 1 replicates the
point estimates of moments of the U.S. data (standard errors are in parentheses).

TABLE 1. Effect of increasing returns, models with technology shocks only

Models with technology shocks only

U.S. data η = 0 (Hansen) η = 0.15 η = 0.6

A. Select business cycle moments
σy 1.82 1.82 1.82 1.82
σc 0.87 0.57 0.56 0.66
σ�c 1.08 0.76 0.75 0.9
σ�d 28 16.87 17.09 7.78

B. Financial moments
E[re] 7.58 (2.33) 4.0188 4.0186 4.0141
σre 15.47 (0.13) 0.25 0.25 0.37
E[rb] 1.54 (0.19) 4.0178 4.0175 4.0135
σrb 2.5 (0.002) 0.2 0.2 0.29
E[re − rb] 6.04 (2.27) 0.001 0.0011 0.0006
σM/E[M] ≥0.53 0.0038 0.0038 0.0045
Corr(re,�c) 0.2 0.69 0.65 0.386
Cov(re, �c) 3.41 0.13 0.12 0.128

Notation: variables y, c, and d denote log-deviations of the Hodrick-Prescott filtered series of output, consumption
and dividends respectively. σy and σc are quarterly standard deviations of output and consumption. �c and �d

are the logs of consumption growth and dividend growth and σ�c and σ�d are their annualized quarterly standard
deviations. re = ln(1 + Re) and rb = ln(1 + Rb) denote the log gross return on equity and on the one-quarter risk-
free bond. All financial statistics are reported in annualized percentage points.
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Column two of Table 1 shows statistics obtained from simulations of the Hansen
indivisible labor model with constant returns to scale in production (η = 0). In
columns three and four we increase the level of returns to scale first to 1.15 and
then to 1.6. In each case, we adjust the standard deviation of the technology shock
(σε) to match the standard deviation of output in the U.S. data. In each case the
coefficient of the relative risk aversion (ξ) is equal to one. The information in this
and subsequent tables is provided in two panels: Panel A presents selected macroe-
conomic statistics, which determine prices of financial assets in our framework,
and panel B contains financial results. In panel B we choose to report statistics in
the form consistent with equation (27).

Comparing the statistics in panel A, we note that in the indivisible labor economy
the standard deviation of log consumption growth is 0.76% and the standard
deviation of log dividend growth is 16.87%, whereas both of these statistics are
higher for the U.S. data—1.08% and 28% respectively.

The log gross return on equity in the Hansen model is 4.0188%—fairly low
in comparison with the 7.58% average log gross return on U.S. equities. The log
gross risk-free rate in the indivisible labor model is 4.0178%, almost the same as
the return on the risky equity security, whereas the risk-free rate in the U.S. data
is 1.54%. The log equity premium in the model is close to zero, in stark contrast
to the 6% log risk premium observed in the U.S. data. The model’s financial
asset return volatilities, especially the volatility of the return on equity, are an
order of magnitude lower than their empirical counterparts: 0.25% versus 15.47%
for the stock and 0.2% versus 2.5% for the risk-free bond. Presented numbers
clearly demonstrate the equity premium, risk-free rate, and volatility puzzles in
the Hansen model.

In column three, we report results from the model economy with mildly increas-
ing returns (parameter η = 0.15). Comparison of results in columns two and three
indicates that the increase in the level of returns to scale from 0 (Hansen’s model)
to 0.15 has a negligible effect on the results. The standard deviation of the log con-
sumption growth remains at around 0.76%. The standard deviation of the log div-
idend growth increases slightly to 17.09%. The covariances between the log con-
sumption growth and the return on equity in columns two and three are 0.13% and
0.12%, respectively, versus the empirical covariance of 3.41% (column one). The
HJB in both model economies is 0.0038, whereas the lower bound on the volatility
of the pricing kernel inferred from the U.S. data is greater than 0.5. The returns on
financial assets and their volatilities in the mildly increasing-returns economy are
almost identical to those in the Hansen model. We note that with the level of IRS
equal to 0.15 indeterminacy cannot arise in this one-sector production model.

In column four the level of IRS is 1.6 (η = 0.6) and the model economy
is capable of supporting sunspot equilibria. The volatility of log consumption
growth increases to 0.9% but this improvement is offset by the decrease in the
volatility of the dividend growth to 7.78%. As a result, the return on equity in
this economy actually drops slightly to 4.0141%. The risk-free rate is a little
lower and is equal to 4.0135%. This is due to the small increase in the stochastic
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discount factor volatility. The covariance between the log consumption growth and
return on equity is 0.128% and the equity premium is 0.0006%. The volatilities of
financial asset returns in the model economy with η = 0.6 are 0.37% for equity
and 0.29% for the riskless bond, a slight improvement on the results from the
constant-returns-to-scale economy, but still an order of magnitude lower than the
empirical return volatilities.

Our conclusion is that the increase in the level of returns to scale in production
has a negligible effect on the financial implications of DSGE models.

4.3. Effect of the Sunspot Shock on Asset Prices

Our next step is to explore asset pricing in the increasing-returns-to-scale
economies, where η is sufficiently high to allow for indeterminacy. This is the
BFG framework. BFG economies can generate business cycle fluctuations when
driven by belief (sunspot) shocks alone. Our goal now is to investigate the im-
pact of the nonfundamental belief shock on the financial performance of DSGE
models. Table 2 displays results from several parameterizations of the BFG model
with only one extrinsic shock: the sunspot. Similarly to Table 1, we replicate the
corresponding statistics for the U.S. economy in column one and for the Hansen
model in column two. In column three we present statistics from the economy with
the benchmark parameter values, i.e., the RRA coefficient ξ = 1 and η = 0.6. In

TABLE 2. Quantitative results for the BFG model with sunspot shocks only

Hansen BFG with sunspot shocks only
U.S. model
data ξ = 1, η = 0 ξ = 1, η = 0.6 ξ = 1, η = 0.72 ξ = 5, η = 0.6

A. Select business cycle moments
σy 1.82 1.82 1.82 1.82 1.82
σc 0.87 0.57 0.31 0.42 0.06
σ�c 1.08 0.76 0.34 0.5 0.07
σ�d 28 16.87 22.86 18.96 24.14

B. Financial moments
E[re] 7.58 4.0188 4.0196 4.0204 4.0192
σre 15.47 0.25 0.21 0.225 0.18

E[rb] 1.54 4.0178 4.0195 4.0201 4.0192
σrb 2.5 0.2 0.13 0.173 0.13

E[re − rb] 6.04 0.001 0.0001 0.0003 0
σM/E[M] ≥0.53 0.0038 0.0017 0.0025 0.0016

Corr(re,�c) 0.2 0.69 0.45 0.49 0.28
Cov(re, �c) 3.41 0.13 0.03 0.06 0.03

Notation: variables y, c, and d denote log-deviations of the Hodrick-Prescott filtered series of output, consumption
and dividends, respectively. σy and σc are quarterly standard deviations of output and consumption. �c and �d

are the logs of consumption growth and dividend growth and σ�c and σ�d are their annualized quarterly standard
deviations. re = ln(1 + Re) and rb = ln(1 + Rb) denote the log gross return on equity and on the one-quarter
risk-free bond. All financial statistics are reported in annualized percentage points.
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column four we increase the degree of increasing returns to 0.72 [the value used
in Farmer and Guo (1994)] while leaving the risk aversion parameter unchanged.
And finally, in column five, we make investors more risk-averse (ξ = 5), but leave
η = 0.6.16

In panel A, we note that in all considered “sunspot-only” cases, the standard
deviation of the log consumption growth is lower than in the Hansen model and
in the U.S. data. In column four, the change in the level of returns to scale (η)

from 0.6 to 0.72 increases the volatility of consumption growth from 0.34% to
0.51%. Among the sunspot-driven economies, the economy with high relative risk
aversion in column five has the least volatile consumption growth, with standard
deviation of only 0.07%.17 This is not surprising because more risk averse agents
strive to achieve smoother consumption patterns. In all sunspot-only parameteriza-
tions HJBs and covariances between the log consumption growth and the return on
equity are an order of magnitude lower than the corresponding values in the U.S.
economy and are slightly lower than values obtained in the indivisible labor model.
It comes as no surprise that the financial statistics from sunspot-only economies
are marginally worse than those produced by the Hansen model. The highest equity
premium we are able to obtain is 0.0003% in the economy with level of IRS equal
to 0.72 and RRA coefficient equal to 1 (column four in Table 2). The economy
with high relative risk aversion (column five Table 2) has a zero excess return on
stocks because the negative effect of the reduction in the standard deviation of
the stochastic discount factor and the volatility of the equity return on premium
outweighs the positive effect of the increase in RRA coefficient [see equation (27)].
Therefore increasing the RRA coefficient within empirically plausible values does
not help to solve the equity premium puzzle in the BFG model. Of all considered
sunspot-only cases the economy with η = 0.72 (column four) has the highest
volatilities of asset returns (0.225% for equity and 0.173% for the risk-free bond),
but these numbers are slightly lower than in the Hansen model.

We summarize the results of the exercise presented in this section as follows:
The equity risk premium in the BFG model, driven by sunspot shocks only, is
close to zero and the standard deviations of the returns on financial assets are an
order of magnitude lower than their empirical estimates obtained from the U.S.
data. The BFG model describes the stylized financial facts of the U.S. economy
marginally worse than the Hansen model. We suspect that without the persistent
technology shock, successive i.i.d. sunspot shocks cancel each other out, resulting
in smaller standard deviations of the stochastic discount factor and returns on
equity and lower covariance between them than the corresponding statistics in the
Hansen model.

4.4. Financial Implications of the BFG Model with Simultaneous Sunspot
and Technology Shocks

We now turn to Table 3, which presents results from the BFG model with two
exogenous shocks: sunspot and technology (column three). Note that we use the
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TABLE 3. Quantitative results for the BFG model with two schocks

U.S. data Hansen model BFG model with two schocks

A. Select business cycle moments
σy 1.82 1.82 1.82
σc 0.87 0.57 0.447
σ�c 1.08 0.76 0.92
σ�d 28 16.87 8

B. Financial moments
E[re] 7.58 4.0188 4.0176
σre 15.47 0.25 0.37

E[rb] 1.54 4.0178 4.0163
σrb 2.5 0.2 0.3

E[re − rb] 6.04 0.001 0.0013
σM/E[M] ≥0.53 0.0038 0.0046

Corr(re, �c) 0.2 0.69 0.58
Cov(re, �c) 3.41 0.13 0.2

Notation: variables y, c, and d denote log-deviations of the Hodrick-Prescott filtered series of output, consumption,
and dividends, respectively. σy and σc are quarterly standard deviations of output and consumption. �c and �d

are the logs of consumption growth and dividend growth and σ�c and σ�d are their annualized quarterly standard
deviations. re = ln(1 + Re) and rb = ln(1 + Rb) denote the log gross return on equity and on the one-quarter risk-
free bond. All financial statistics are reported in the annualized percentage points.

benchmark values of both ξ = 1 and η = 0.6. To facilitate comparison, the first
column of Table 3 displays the point estimates of moments of the U.S. data and
the second column presents the corresponding statistics obtained from Hansen’s
indivisible labor model.

In panel A, we note that with the addition of the technology shock, the standard
deviation of the log consumption growth in the BFG model increases to 0.92%,
which is quite close to 1.08% observed empirically and higher than 0.76% in the
Hansen model. But the log dividend growth is not sufficiently volatile: its standard
deviation is only 8%. These statistics are almost identical to the corresponding
quantities in the similarly parameterized economy driven by technology shocks
only (Table 1, column four), which confirms our results from the previous section,
namely that the addition of the sunspot shock does not improve the financial
performance of DSGE models.

In panel B, the log gross return on equity in the BFG model with two shocks
is 4.0176% and the log gross risk-free rate is 4.0163%. The log equity premium
is 0.0013%. It is the highest value of all cases considered thus far, including the
Hansen model (0.001%), but still a negligible amount when compared to the data.
The standard deviation of the return on equity is 0.37%, which presents a marginal
improvement over the 0.25% standard deviation of the stock returns in the Hansen
model.

The covariance between the log consumption growth and log return on equity
is 0.2% compared to 0.13% covariance in the indivisible labor economy. The
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covariance value is slightly higher than in all previously considered cases due to
the higher standard deviations of the log consumption growth, return on stocks,
and slightly higher correlation coefficient between them.

In summary, the BFG model with two exogenous shocks presents a marginal
improvement over the Hansen model (and all previously considered cases) in
replicating stylized financial facts, but this improvement is clearly insufficient to
judge it a success.

The reason for the poor financial performance of the BFG model18 is evident
from equation (27), which states that the log risk premium is determined by the
product of the RRA coefficient (ξ) and the covariance of the log consumption
growth and log return on equity [Cov(re,�c) = Corr(re,�c)σ�cσre ]. In the data,
covariance between two variables is 3.41% and even with this value, very high
RRA coefficients are necessary to match the equity premium. In the BFG model
with two shocks, the covariance between the logs of consumption growth and
stock returns is only 0.2%, which is more than 15 times lower than that in the data.
The BFG model comes close to matching the empirical volatility of consumption
growth. However, the volatility of the equity return in the BFG model, although
higher than that in the determinate model, is 42 times lower than in the data,
resulting in low Cov(re,�c).

The inspection of the market price of risk—the ratio σM/E[M]—confirms
the severity of the equity premium puzzle. The market price of risk in the data,
implied by the HJB is greater than 0.53, meaning that the standard deviation of
the stochastic discount factor (σM) should be at least 50% annually. The HJB in
the BFG economy with two shocks is only 0.0046, the same order of magnitude
as the HJB in the Hansen model (0.0038). In both models, low market price of
risk ratios follow from the smoothness of the pricing kernel, which is equal to the
consumption growth.

Our results clearly show that the one-sector DSGE model, modified to include
increasing returns to scale in production sufficient for indeterminacy and the
sunspot shock, does not explain the stylized financial facts of the U.S. data any
better than the standard RBC model of Hansen (1985).

5. CONCLUSION

We have investigated the pricing of financial assets in the context of the one-sector
indeterminate Benhabib-Farmer-Guo model with increasing returns to scale in
production and sunspot shocks and compared the asset-pricing results from the
models with indeterminacy with results obtained in Hansen’s (1985) model, a
standard in the RBC literature. The two formulations differ in the degree of
increasing returns, the nature of shocks, and the shock propagation mechanism.
The main purpose of this research has been to determine whether these differences
affect the ability of consumption-based DSGE models to replicate key stylized
financial facts observed in the U.S. data.
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Our principal conclusion is that indeterminacy and the sunspot shock have
almost no effect on the financial performance of the one-sector production model.
We also find that the level of increasing returns does not influence financial
statistics in any significant way. We show that neither the introduction of the
sunspot shock nor a higher level of returns to scale in production increases the
volatility of the stochastic discount factor and the standard deviation of the return
on equity, both of which are necessary to account for the equity premium.

Moreover, it is not clear how to modify the model to increase the standard de-
viation of the pricing kernel and the return on equity and simultaneously preserve
indeterminacy. In the previous asset pricing studies in the standard DSGE frame-
work without indeterminacy [for example, Boldrin et al. (2001), Jermann (1998),
and Avalos (2001)], improvement in the asset-pricing performance followed from
the introduction of habit formation into the agent’s preferences in combination with
costs of adjustments in capital stock or other similar mechanisms, which prevented
easy factor adjustments in response to shock. The combination of habit persis-
tence and capital adjustment costs resolves the asset-pricing puzzles in production
economies because the agents whose preferences display habit persistence are very
risk-averse locally and are eager to avoid fluctuations in their consumption. With
frictions such as adjustment costs, the equity security becomes an unattractive
instrument for consumption smoothing relative to the risk-free asset. As a result,
agents require a higher return for holding equity and accept a lower return on
bonds. On the other hand, adjustment costs prevent the instantaneous response
of the capital stock to exogenous shocks and therefore increase the volatility of
the return on equity. Similar mechanisms are not consistent with indeterminacy
because full mobility of factors of production is needed for agents to act on their
beliefs.

We therefore conclude that the resolution of long-standing financial puzzles is
an even more challenging task in the context of real models with self-fulfilling
expectations than in the standard RBC framework because of two conflicting
requirements. On the one hand, frictions that restrict the mobility of factors of
production, especially of capital, are needed to generate a sufficient equity pre-
mium and volatility of asset returns. On the other hand, factors of production
that respond flexibly to shocks are essential for the model economy to exhibit
local indeterminacy with realistic increasing returns. Perhaps a model in which
indeterminacy is introduced through channels other than aggregate increasing
returns in production will fare better in this regard.

NOTES

1. Examples of such investigations include Brock (1979), Donaldson and Mehra (1984), Naik
(1994), Rouwenhorst (1995), Boldrin et al. (2001), Jermann (1998), Tallarini (2000), Danthine and
Donaldson (2002b), Lettau (2003), and Gomes et al. (2003), among others.

2. Excellent reviews of the literature on asset-pricing puzzles include Kocherlakota (1996), Mehra
and Prescott (2003), and Campbell (1999).

3. Benhabib and Farmer (1999) present a comprehensive survey of the indeterminacy literature.
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4. We discuss the issue of returns to scale calibration further in the Calibration section of this paper.
5. The cited financial statistics are obtained from the BFG model with simultaneous technology and

sunspot shocks. The asset pricing results from other parameterizations of the BFG model, as presented
in Sections 4.2 and 4.3, are similar.

6. Our results apply more generally to other models with indeterminacy, especially real models
requiring a lower degree of increasing returns for indeterminacy. One example is Wen’s (1998a) model
with variable capacity utilization. The variable capacity functions as an additional factor of production,
bringing down the level of IRS necessary for indeterminacy but providing risk-averse investors with
one more channel for consumption smoothing in response to shocks. As a result, in Wen’s model the
standard deviation of consumption is close to zero, which leads to an extremely smooth pricing kernel.
On the other hand, Wen(1998b) shows that in the presence of adjustment costs in the variable capacity
utilization model, indeterminacy-disappears.

7. We choose � so that the steady-state value of N is 1/3.
8. We do not consider leverage effects because they have a negligible effect on asset prices in our

economy.
9. The share price is equal to the ex-dividend value of the firm because the number of shares is

normalized to one.
10. Consumption, investment, and shadow price of capital can serve as an additional variable in st .
11. The appendix with the detailed derivation of the financial asset returns is available and will be

provided by the authors upon request.
12. A similar discussion is presented in Campbell (1999).
13. If variable X is conditionally lognormal, ln Et [X] = Et [ln X]+ 1

2 Vart [ln X] with Vart [ln X] =
Var[ln X] if X is homoscedastic.

14. We thank an anonymous referee for suggesting this. We considered a wide range of correlation
coefficients between the two shocks and found that this parameter does not significantly affect the
asset pricing implications of the studied economies.

15. With uncorrelated shocks, the highest value of the log equity premium that we are able to
achieve is 0.0013%.

16. For detailed exploration of the macroeconomic performance of the BFG model see Farmer and
Guo (1994) and Thomas (1999).

17. We do not present results from the cases with relative risk aversion coefficients smaller than one,
in other words, when investors become almost risk-neutral. We simulated several parameterizations
of the model with ξ < 1 and found results to be marginally worse than in the case with a logarithmic
utility function. Generally, the logarithmic utility function is the lowest RRA coefficient considered in
the asset-pricing literature.

18. The following discussion is relevant to all model economies considered in this research. We
focus on the BFG model with two shocks because of its marginally better financial performance.
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