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GLOBAL IDENTIFICATION IN
NONLINEAR MODELS WITH
MOMENT RESTRICTIONS

IVANA KOMUNJER
University of California, San Diego

This paper derives sufficient conditions for global identification in nonlinear models
characterized by a finite number of unconditional moment restrictions. The main
contribution of this paper is to provide a set of assumptions that are alternative to
those of Gale-Nikaidô-Fisher-Rothenberg, and which when satisfied guarantee that
the moment conditions globally identify the parameters of interest.

1. INTRODUCTION

The problem of identification of economic relations has a long-standing history,
with systematic discussions given in a collective work of the Cowles Foundation
edited by Koopmans (1950).1 In a nutshell, the identification problem is con-
cerned with the unambiguous definition of the parameters to be estimated. Thus,
it precedes the problem of statistical estimation. When identification fails, the
properties of conventional statistical procedures are likely to change (see, e.g.,
Phillips, 1989; Choi and Phillips, 1992). The objective of this paper is to provide
primitive conditions under which identification is guaranteed to hold.

Based on the work of Koopmans and Reiersøl (1950), a complete treatment of
identification in a parametric context was given in Rothenberg (1971) and Bowden
(1973). Using an approach based on information criteria, they provided conditions
under which parametric models are locally and globally identified. Unfortunately,
such results may only be applied in models in which it is possible to specify the
likelihood function of the observed variables.

Situations in which the distribution of the observables is left unspecified re-
quire conditions for identification in a nonparametric context. Those have been
derived in the work of Brown (1983), Roehrig (1988), Matzkin (1994, 2008), and
Benkard and Berry (2006), among others (see, e.g., Matzkin, 2007, for a com-
plete survey). Common to all the studies is an assumption of independence be-
tween the observed explanatory variables and latent disturbances to the structural
system.
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Moment restriction models, which are the focus of this paper, fall in between
the fully parametric and nonparametric models. They arise, for example, when
the distribution of the disturbances is only known to satisfy certain moment
restrictions. These are typically expressed as conditions for orthogonality between
the disturbances and instruments—functions of explanatory variables—and are
hence weaker than an assumption of independence.

The present paper examines identification in models defined by unconditional
moment restrictions. Thus, its contributions are complementary to the existing
literature that considers models with conditional moment restrictions, such as
Chesher (2003), Newey and Powell (2003), Chernozhukov and Hansen (2005),
Severini and Tripathi (2006), and Chernozhukov, Imbens, and Newey (2007),
for example. It is worthwhile distinguishing these two cases, as identification in
some unconditional moment models implied by the conditional ones may fail even
when the conditional model is identified. Examples of such failures can be found
in Dominguez and Lobato (2004).

The basic identification criteria for linear simultaneous equation systems under
linear parameter constraints were given in Koopmans (1950). These criteria are
the well-known rank conditions that were extended by Fisher (1961, 1965) to non-
linear systems that are still linear in parameters. An important step toward a full
treatment of identification in general nonlinear models was made by Fisher (1966)
and Rothenberg (1971). Their insight was to treat the identification problem sim-
ply as a question of uniqueness of solutions to nonlinear systems of equations.
With the exception of Fisher (1966) and Rothenberg (1971), few global identifi-
cation results apply to models that are nonlinear. Newey and McFadden (1994)
remarked that, as a consequence, much of the applied literature has adopted an
approach in which identification is simply assumed.

Both Fisher’s (1966) and Rothenberg’s (1971) results exploit the uniqueness
conditions given in Theorem 6w of Gale and Nikaidô (1965, p. 89). The key
idea behind the Gale-Nikaidô-Fisher-Rothenberg approach is to look for condi-
tions under which the (nonlinear) equations under consideration correspond to the
first order conditions of an optimization problem that involves a strictly convex
objective function, called a potential. This approach requires that the derivative
matrix of the system of equations be weakly positive quasidefinite, i.e., that its
symmetric part be positive semidefinite and that its Jacobian be (strictly) positive
everywhere. These conditions ensure that the system derives from a potential that
is strictly convex. In many instances, however, this approach produces sufficient
conditions for global identification that—in the words of Rothenberg (1971)—
are “overly strong.”

Indeed, the conditions used in Gale-Nikaidô-Fisher-Rothenberg are sufficient
but not necessary. The main contribution of this paper is to provide an alternative
set of primitive conditions for global identification. Our uniqueness results exploit
the pioneering work by Palais (1959), which does not require the mappings un-
der consideration to derive from a potential. Our key requirement is a properness
condition introduced by Palais (1959). In addition to properness, we impose two
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conditions: One concerns the Jacobian of the system, while the other excludes
“flats.” In particular, we assume that the Jacobian of the system is either every-
where nonnegative or everywhere nonpositive. When the system is continuously
differentiable with respect to the structural parameter, this requirement is weaker
than the full rank conditions given in Theorem 5.10.2 in Fisher (1966) and Theo-
rem 7 in Rothenberg (1971).2 In other words, we allow the rank of the derivative
matrix to be less than full, provided this only happens over sufficiently small re-
gions in the parameter space. The latter is our second main requirement: that the
system does not have any “flats,” i.e., does not remain constant over regions in the
parameter space that have nonzero dimension. Our results exploit well-established
results of nonlinear functional analysis.

The paper is organized as follows: Section 2 sets up the problem. In Section 3
we derive the key mathematical results of the paper. Their implications for iden-
tification are discussed in Section 4, which concludes.

2. SETUP

This paper is concerned with models characterized by a finite set of unconditional
moment restrictions,

E[r(X,θ0)] = 0, (1)

in which r : DX ×Rk → R
k is a known mapping and DX ⊆ R

K with K < ∞.
The variables entering into these equations consist of a set of observed variables
X ∈DX , and a finite dimensional parameter θ ∈Rk (k < ∞). Here we shall focus
on the case in which the parameter θ is allowed to take any value in Rk , so the
parameter space is the entire euclidean space Rk . The object of interest is the true
value θ0 of the structural parameter θ in equation (1).

We call FX the distribution (measure) of the observables X defined on DX .
The expectations are always taken with respect to FX , which can itself depend on
θ0. In order to guarantee that the expression in (1) is well defined over the entire
parameter space, we assume that E[r(X,θ)] exists and is finite for every θ ∈ Rk .

The moment function r in equation (1) takes values in Rk ; hence, we are in a
situation in which there are exactly as many unconditional moment restrictions
as there are components of θ to identify. Our main question is then: Under what
conditions on r is the true value θ0 globally identified? We shall work with the
following definition.

DEFINITION 1. The true parameter value θ0 is globally identified if and only
if E[r(X,θ)] = 0 has a unique solution θ = θ0 on Rk .

The identification condition in Definition 1 is the well-known generalized
method of moment (GMM) identification condition. As pointed out by Newey
and McFadden (1994, Sect. 2.2.3, p. 2127), “here conditions for identification are
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like conditions for unique solutions of nonlinear equations [...], which are known
to be difficult.” In what follows, define a mapping g : Rk → R

k , which to each
θ ∈ Rk assigns

g(θ) ≡ E[r(X,θ)].

As previously, the expectation is taken with respect to FX . The identification con-
dition in Definition 1 is thus equivalent to the condition that g(θ) = 0 be uniquely
solved at θ = θ0. Hereafter, we shall maintain the following assumptions on g.

Assumption A. The map g is in C2(Rk).

The mapping g is assumed to be twice continuously differentiable on Rk , and
we let Dg ∈ L(Rk,Rk) denote its derivative. The following assumption restricts
the behavior of the Jacobian Jg ≡ det Dg of g on Rk .

Assumption B. For every θ ∈ Rk , Jg(θ) is nonnegative.3

The condition on the nonnegativity of the Jacobian Jg is a weakening of
the Gale-Nikaidô-Fisher-Rothenberg condition that the latter be positive. Note
that unlike Gale-Nikaidô-Fisher-Rothenberg, Assumption B does not require the
matrix of derivatives Dg to be quasipositive definite. It is worth pointing out
that the sign condition in Assumption B is also a weakening of the condition
that the Jacobian be nonvanishing on Rk . Indeed, if g is twice continuously
differentiable, then its Jacobian Jg is continuous, so requiring that for every
θ ∈ Rk , Jg(θ) �= 0 is equivalent to requiring that Jg be either positive or negative
on Rk .

Next, we require that the mapping g be proper, i.e., that the inverse image by
g of each compact subset of Rk be a compact in Rk . Since g is continuous, a
necessary and sufficient condition is

Assumption C. ‖g(θ)‖ → ∞ whenever ‖θ‖ → ∞.

Finally, we impose the following.

Assumption D. For every p ∈ Rk the equation g(θ) = p has countably many
(possibly zero) solutions in Rk .

Assumption D excludes the situations in which the map g remains “flat” over
regions in the parameter space that are of dimension greater than or equal to 1.
The requirement that g(θ) = p have at most countably many solutions is only
binding for values of p that are not regular (such values are called critical val-
ues). Indeed, if p is a regular value (meaning that the inverse image of {p} con-
tains only the parameter values θr ∈Rk for which the Jacobian Jg(θr ) is different
from 0) then the set of solutions to g(θ) = p is finite.4

We are now ready to derive primitive conditions under which

g is continuous and one-to-one from R
k onto Rk with a continuous inverse. (2)
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A mapping g that satisfies the property in (2) is called a homeomorphism
from R

k to Rk . According to Definition 1, the homeomorphic property of g
is sufficient for θ0 to be identified. Notice, however, that this property is not
strictly necessary, since identification only restricts the behavior of g around
g(θ) = 0.

3. HOMEOMORPHISM RESULT

THEOREM 1. Let g : Rk → R
k satisfy Assumptions A through D. Then, the

following results hold:

(i) if k = 1, then g is a homeomorphism from R to R;
(ii) if k > 2 and the set of points θs ∈ Rk for which rankDg(θs) < k − 1 is

bounded, then g is a homeomorphism from Rk to Rk .

Proof. We start by fixing the notation. Let f : Rk → R
k be a continuous map-

ping. We denote by f (A) the image by f of any subset A ⊆ Rk , and by f −1(C)
the inverse image by f of any subset C ⊆ f (Rk). The mapping f is said to be
open if whenever A is open, f (A) is open; f is said to be light if for every point
p ∈Rk , f −1(p) is totally disconnected, i.e., dim f −1(p)� 0;5 and f is proper if
whenever K is compact, f −1(K ) is compact. We let Bf denote the set of all points
in Rk at which f fails to be local homeomorphism. The set of points xs at which
rankD f (xs) � q with 0 � q � k is denoted by Rq

f ; it follows that Bf ⊆ Rk−1
f .

Finally, f is said to be a covering space map if one can find a covering of Rk by
open sets U such that for each U , f −1(U ) is the disjoint union of open sets, each
of which is mapped homeomorphically onto U .

The proof is in five steps.
Step 1. Under Assumption D, the map g :Rk →R

k is light. From Theorem 2 in
Titus and Young (1952) we have: Every f : Rk → R

k of class C1 that is light and
whose Jacobian Jf is nonnegative on Rk is open. Thus, Assumptions A, B, and D
imply g is open. Now we can use an extension of the inverse function theorem for
open maps given in Theorem 1.4 by Church (1963): If f : Rk → R

k of class C1

is open, then f is local homeomorphism at x ∈ Rk whenever rank Jf (x)� k −1.
Hence, Bg = ∅ when k = 1, and Bg ⊆ Rk−2

g when k > 1.
Step 2. First, we use Corollary 2.3 in Church and Hemmingsen (1960): If f is

light open and dim f (Bf ) < k, then dim Bf = dim f (Bf ) = dim f −1( f (Bf )).
From Step 1 we know that g is light open. Moreover, when k > 1, we have
g(Bg) ⊆ g(Rk−2

g ) so dim g(Bg)� dim g(Rk−2
g ). To show that dim g(Bg) < k we

use Theorem 2 in Sard (1965): If f ∈ Cn(Rk) with n� k −q, then dim f (Rq
f )� q.

Under Assumption A, g ∈ C2(Rk) so letting q = k − 2 we get dim g(Rk−2
g ) <

k − 1; hence dim g(Bg) < k − 1. Combining the two results shows that when
k > 1, dim Bg = dim g(Bg) = dim g−1(g(Bg)) < k −1.

Step 3. We show that g(Rk) =Rk , that g is proper, and that Rk\g−1(g(Bg)) is
connected when k > 1.

https://doi.org/10.1017/S0266466611000776 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466611000776


724 IVANA KOMUNJER

Recall from Step 1 that g is open; this implies that g(Rk) is open in Rk . Now
using Assumption C we show that g(Rk) is closed in Rk : Take a sequence {g(θn)}
(n ∈ N) such that g(θn) −→

n→∞ p for some p ∈ Rk . By Assumption C we then have

{θn} (n ∈ N) bounded, so θn −→
n→∞ θ̄ for some θ̄ . By continuity of g, p = g(θ̄), so

p ∈ g(Rk) and g(Rk) is closed. Since g(Rk) is both open and closed in Rk , we
have g(Rk) = Rk .

To show that g is proper, take any K ⊂ R
k compact. Given that g is continu-

ous, g−1(K ) is closed in Rk . It remains to be shown that g−1(K ) is bounded. As-
sume the contrary; then there exists a sequence {θn} (n ∈ N) in g−1(K ) such that
‖θn‖ −→

n→∞ ∞. By Assumption C, this implies that the sequence {g(θn)} (n ∈ N)

in g(g−1(K )) = K is such that ‖g(θn)‖ −→
n→∞ ∞. So, K is unbounded, which

contradicts the fact that K is compact.
Finally, to show that Rk\g−1(g(Bg)) is connected for any k > 1, we use The-

orem IV.4 in Hurewicz and Wallman (1948): Any connected k-dimensional set in
R

k cannot be disconnected by a subset of dimension < k − 1. The desired result
follows by using the connectedness of Rk together with dim g−1(g(Bg)) < k −1
obtained in Step 2.

Step 4. We now show that the restriction of g to Rk\g−1(g(Bg)) is a covering
space map.

For this we use Covering Space Theorem 1 in Plastock (1978): Let A be a
connected open set inRk . Then f : A → f (A) is a covering space map if (i) f is a
local homeomorphism, and (ii) f is proper. When k = 1, Plastock’s result applies
to A ≡R and f = g, since from Step 1 we known that g is a local homeomorphism
on R, and from Step 3 we know that g is proper. Hence, when k = 1, g is a
covering map.

Now, consider the case k > 1, let A ≡Rk\g−1(g(Bg)), and let f be a restriction
of g to A, which we denote by f ≡ g|A. First, note that g−1(g(Bg)) ⊇ Bg so A ∩
Bg = ∅ and g|A : A → R

k\g(Bg) is a local homeomorphism. Next, we show that
g|A is proper: Let C be a compact subset of Rk\g(Bg) and note that g|−1

A (C) =
g−1(C) since g|−1

A = g|−1
Rk\g(Bg)

. Then by properness of g we have that g−1(C)

is compact in Rk . Since C ∩ g(Bg) = ∅ it follows that g−1(C)∩ g−1(g(Bg)) = ∅
and so g−1(C) is compact in A.

Finally, we show that A is open. Consider θ ∈ Rk\Bg . Then g is a local home-
omorphism at θ , i.e., there exists an open neighborhood U of θ such that g(U )
is open in Rk and g|U : U → g(U ) is a homeomorphism. So U ∩ Bg = ∅ and
U ⊂ R

k\Bg , which shows that Rk\Bg is open; hence, Bg is closed. It then fol-
lows that g(Bg) is closed in Rk , since any continuous proper map g is also closed,
i.e., g(A) closed whenever A ⊂ R

k closed (see, e.g., corollary in Palais, 1970).
Continuity of g then guarantees that g−1(g(Bg)) is closed in Rk , thus A is open.

From Step 3 we know that when k > 1, the set Rk\g−1(g(Bg)) is connected.
We can then apply Plastock’s (1978) Covering Space Theorem to show that when
k > 1 the restriction of g to Rk\g−1(g(Bg)) is a covering map.
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Step 5. Finally, we use Theorem 1.3 in Church and Hemmingsen (1960): Let
f be an open map of Rk onto Rk , k �= 2, such that dim f (Bf ) � k − 2. If the
restriction of f to Rk\ f −1( f (Bf )) is a covering map, and if Bf is compact, then
f is a homeomorphism. That g is open follows from Step 1; that g is onto Rk

follows from Step 3. In Step 1 we show that when k = 1 the set Bg is empty, so
g(Bg) = ∅ and dim g(Bg) = −1. When k > 2, Step 2 shows that dim g(Bg) �
k − 2. That g|Rk\g−1(g(Bg)) is a covering map follows from Step 4. It remains
to show that Bg is compact. When k = 1, the result is trivial. When k > 2, we
know from Step 4 that Bg is closed. From Step 1 we know that Bg ⊆ Rk−2; so
the condition that Rk−2 is bounded from Theorem 1 implies that Bg is bounded.
Thus, g is a homeomorphism from R

k to Rk . �

We now comment on the conditions imposed in Theorem 1. First, note that
the result of Theorem 1 does not hold if the dimension of the parameter set is
k = 2. Church and Hemmingsen (1960) and Chua and Lam (1972) contain simple
examples of mappings that are not one-to-one and yet satisfy all the requirements
of Theorem 1 except k �= 2.6

Second, when k > 2, Theorem 1 puts an additional restriction on the set of
points θs ∈ Rk for which rankDg(θs) � k − 2, set which we denote by Rk−2

g .

The restriction is that Rk−2
g be bounded. A simple sufficient condition is that the

Jacobian Jg does not vanish at infinity. Indeed, if for large enough values of ‖θ‖
the Jacobian remains positive (negative), then the set Rk−1

g remains bounded. A

fortiori, its subset Rk−2
g is then bounded as well.

Third, while sufficient, not all the assumptions of Theorem 1 are necessary.
It is clear that if g is homeomorphism from R

k to Rk , then g is light on Rk ;
hence, Assumption D is necessary. Assuming g ∈ Ck(Rk), Theorem 2.3 in Chua
and Lam (1972) further shows that Assumptions C and B are necessary for g to
be homeomorphism from R

k to Rk , and so is the requirement that Rk−1
g cannot

be a k-dimensional open set. However, the condition of Theorem 1 that Rk−2
g

be bounded is not necessary. The following theorem replaces the latter with an
alternative assumption.

THEOREM 2. Let g : Rk → R
k satisfy Assumptions A through D. Then, the

following results hold:

(i) if k = 1, then g is a homeomorphism from R to R;
(ii) if k > 2 and the set of points θs ∈ Rk for which rank Dg(θs) < k − 1 is of

dimension less than or equal to k −3, then g is a homeomorphism from Rk

to Rk .

Proof. The proof is identical to that of Theorem 1 except for the proof of the
result for k > 2 in Step 5, which should be modified as follows.

Step 5. We use Lemma 1 in Plastock (1978): If f : A → f (A) is a covering
space map, A and f (A) pathwise connected, and f (A) simply connected, then f
is a global homeomorphism. Let A ≡ Rk\g−1(g(Bg)) and f ≡ g|A. From Step 2
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we know that dim g(Bg) = dim g−1(g(Bg)) � k − 2. By using the same reason-
ing as in Step 3, we then have that A and g|A(A) = R

k\g(Bg) are connected.
Recall in addition from Step 4 that A is open and that g(Bg) is closed, so that
g|A(A) = R

k\g(Bg) is open in Rk . Hence, A and g|A(A) are two open subsets
of Rk that are connected; this implies that they are also pathwise connected. To
show that g|A(A) is simply connected, we use Theorem 25 in Basye (1935): If
K is a closed subset of Rk of dimension k − 3 or less, then Rk\K is simply con-
nected. Letting K ≡ g(Bg), we know that K is closed in Rk . Moreover, from Step
2 we know that dim g(Bg) = dim Bg � dim Rk−2

g , which from the condition of
Theorem 2 is less or equal than k − 3; this implies that g|A(A) is simply con-
nected. Hence, g|Rk\g−1(g(Bg)) is a homeomorphism from R

k\g−1(g(Bg)) onto

R
k\g(Bg).
It remains to show that g|g−1(g(Bg)) is a homeomorphism from g−1(g(Bg)) onto

g(Bg). Then let ḡ ≡ g|g−1(g(Bg)). By construction, ḡ : g−1(g(Bg)) → g(Bg) is
onto. We now show that it is also one-to-one: Let p ∈ g(Bg) and assume that
g−1(p) ⊃ {θ1,θ2} with θ1 �= θ2. Since Rk is separated, there exist two disjoint
open sets U1 and U2 containing θ1 and θ2, respectively. Given that g is open,
V1 = g(U1) and V2 = g(U2) are open, and so V1 ∩ V2 ⊃ {p} �= ∅ is open in Rk ; by
Theorem IV.3 in Hurewicz and Wallman (1948) then, dim V1 ∩ V2 = k. In partic-
ular, V1 ∩ V2 contains a point q ∈ Rk\g(Bg); otherwise, V1 ∩ V2 ⊆ g(Bg), which
would imply dim g(Bg) = k and is contradictory with dim g(B) < k −1 shown in
Step 2. Now, g|Rk\g−1(g(Bg)) being a homeomorphism from R

k\g−1(g(Bg)) onto

R
k\g(Bg) is in contradiction with U1 ∩U2 = ∅. Hence, ḡ is one-to-one, onto, con-

tinuous, and both open and closed; hence, its inverse is also continuous, and ḡ is a
homeomorphism from g−1(g(Bg)) onto g(Bg). Combining all of the above shows
g is a homeomorphism from R

k to Rk . �

When k > 2, Theorems 1 and 2 give sufficient conditions for g to be a homeo-
morphism under alternative assumptions on the set Rk−2

g . If the latter is bounded,
then the result of Theorem 1 applies. If boundedness cannot be established, then
Theorem 2 still holds provided the dimension of Rk−2

g remains sufficiently small
relative to the dimension k of the parameter space.

We now relate the results of Theorems 1 and 2 to the literature.
Important homeomorphism results have been obtained under the assumption

that the Jacobian Jg is positive: Corollary 4.3 in Palais (1959) combines Jg > 0
with the properness condition on g to show that g is homeomorphism from R

k to
R

k ; Theorem 6w in Gale and Nikaidô (1965, p. 89)—also used in Fisher (1966)
and Rothenberg (1971)—combines Jg > 0 with the restriction that the matrix Dg
be weakly positive quasidefinite, i.e., that its symmetric part be everywhere pos-
itive semidefinite. These conditions ensure that g derives from a potential that is
strictly convex on Rk ; hence g is homeomorphism from R

k to Rk . Both Palais’s
(1959) and Gale and Nikaidô’s (1965) conditions require everywhere positive Ja-
cobian Jg , which is considerably stronger than our Assumption C.
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An extension of Palais’s (1959) result to the case where Jg is nonnegative can
be found in Chua and Lam (1972). Their Theorem 2.2 combines Jg � 0 with the
requirement that the set Rk−1

g be of dimension less than or equal to 0. Our Theo-
rem 2 imposes Assumption D but relaxes Chua and Lam’s dimension requirement
on Rk−1

g by replacing it with a weaker requirement that dim Rk−2
g � k − 3. Our

Theorem 1 uses an entirely different boundedness condition on Rk−2
g . To the best

of our knowledge, the use of such boundedness conditions in deriving homeomor-
phism results is new to the literature. Neither Chua and Lam’s nor our results hold
in dimension k = 2.

4. DISCUSSION AND CONCLUSION

We now apply the results of Theorems 1 and 2 to the identification problem.
An alternative application of global homeomorphism results is to the problem
of indirect inference; see, e.g., Phillips (2012).

Say that the parameter of interest θ in equation (1) is a scalar (k = 1) whose
true value θ0 ∈ R is known to satisfy E[r(X,θ0)] = 0. As previously, the expec-
tation is taken with respect to FX obtained under θ0, and the map r : RK+1 → R

is known. The true parameter value θ0 is globally identified if θ0 is the unique
solution on R to the equation g(θ) ≡ E[r(X,θ)] = 0. A simple sufficient con-
dition for global identification of θ0 is that g′ > 0 everywhere on R. However,
this condition is stronger than necessary. Indeed, Theorems 1 and 2 show that
identification obtains under sole Assumptions A through D. A simple sufficient
condition for Assumption D is that g′ only vanishes over a set of isolated points
(see, e.g., Church and Hemmingsen, 1960, Thm. 2.5). This shows that g′ > 0 is
not necessary for identification even in the scalar case.

When k > 1, θ and r(X,θ) are both vectors in Rk , the map g is from R
k to Rk

and we are brought to consider its Jacobian instead of the above derivative. Unlike
in the scalar case, requiring that the Jacobian of g be positive (or negative) on Rk

no longer suffices to show that θ0 is globally identified. This is because Jg > 0 is
no longer a sufficient condition for the mapping g to satisfy the property in (2). A
standard counterexample is the mapping c :R2 →R

2, which to each (θ1,θ2)
′ ∈R2

assigns c(θ1,θ2) = (expθ1 cosθ2,expθ1 sinθ2). It is easy to check that its Jacobian
is everywhere positive, yet the inverse image by c of any point in R2\{0} has an
infinite number of distinct elements. Our solution is to first eliminate the mappings
such as c by requiring that g be proper (Assumption C), i.e., that the inverse image
of any compact set be compact. This condition is clearly violated by c since for
any (p1, p2)

′ ∈ R2\{0} the inverse image c−1({(p1, p2)
′}) is unbounded (hence

not compact) in R2.
Properness by itself does not guarantee that g is either one-to-one on Rk or

onto Rk . The latter is true if one is willing to assume that in addition its Jaco-
bian Jg never vanishes (see, e.g., Palais, 1959, Cor. 4.3). Still, in models that are
nonlinear in θ , everywhere nonvanishing Jacobian might be too strong an assump-
tion. It turns out, however, that when k �= 2, restricting the Jacobian to be either
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nonnegative onRk or nonpositive onRk (Assumption B) suffices to make a proper
mapping g be one-to-one and onto, provided g is nowhere “flat” (Assumption D).
This last assumption is automatically satisfied for any regular value p = g(θ);
however, it needs to be verified whenever p is a critical value.

Working with systems whose Jacobian possibly vanishes requires additional
restrictions on the set of points at which rankDg � k − 2. If this set is bounded,
then the result of Theorem 1 applies. If boundedness cannot be established, then
Theorem 2 still holds provided the dimension of this set remains sufficiently small
relative to the dimension k of the parameter space.

Importantly, Theorems 1 and 2 show that Gale-Nikaidô-Fisher-Rothenberg
conditions Jg > 0 and Dg weakly positive quasidefinite are not necessary for
global identification to hold, at least not in the case k �= 2.

NOTES

1. See, e.g., Dufour and Hsiao (2008) for a review of historical and recent developments on iden-
tification in economics.

2. It is worth pointing out that we place conditions only on the sign of the Jacobian. Unlike Gale-
Nikaidô-Fisher-Rothenberg, we do not make any positive definiteness assumptions on the derivative
matrix of the system.

3. Alternatively, Assumption B can be replaced with the requirement that Jg be non-positive.
4. By properness, the inverse image of {p} is a compact set in Rk ; the inverse function theorem

guarantees that this set is discrete, hence it is finite (see, e.g., step 5 in the proof of Theorem by Debreu,
1970).

5. A set A has dimension 0 if every element of A has arbitrary small open neighborhoods with
empty boundaries, i.e. A is a totally disconnected set. In particular, every nonempty finite or countable
set has dimension 0. The empty set is the only set that has dimension −1 (see, e.g., Hurewicz and
Wallman, 1948).

6. A simple counterexample is b : R2 → R
2, b(θ1,θ2) = (θ2

1 − θ2
2 ,θ1θ2) for any (θ1,θ2)′

∈ R2.
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