
q quaternion

qc current attitude quaternion

qg commanded attitude quaternion

qob obstacle quaternions

V lyapunov function

Va attractive component of Lyapunov function

Vrep repulsive component of Lyapunov function

x state vector

λ shaping parameter

ν shaping parameter

σ modified Rodrigues parameter

σc current attitude modified Rodrigues parameter

σg commanded attitude modified Rodrigues parameter

σob obstacle modified Rodrigues parameter

σs shadow set

σ constant attitude vector

ω angular velocity vector 

ωcs required angular velocity 

ωav obstacle avoidance angular velocity

ABSTRACT

This paper analyses and compares two different attitude representa-

tions, using quaternions and modified Rodrigues parameters, in the

context of the potential function method applied to autonomously

control constrained attitude slew manoeuvres. This method hinges

on the definition of novel Lyapunov potential functions in terms of

the attitude parameters representing the current attitude, the goal

attitude and any pointing constraints, which may be present. It

proves to be successful in forcing the satellite to achieve the desired

attitude while at the same time avoiding the pointing constraints. A

linearised version of the modified Rodrigues parameterisation is also

introduced and analysed. Finally advantages and drawbacks of all

attitude representations are discussed.

NOMENCLATURE

A shaping parameter

B shaping parameter

kD proportional-derivative controller parameter

kii weighting coefficients

kp proportional-derivative controller parameter
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for the goal state x.
Lyapunov’s theorem guarantees that a system that admits such a

Lyapunov function is globally stable. Moreover, once the final target
state has been defined, it is possible to consider stability and control as
equivalent. We will consider two possible kinematics equations: one
based on quaternions, and one based on modified Rodrigues
parameters. Since the kinematics equation of all attitude parameterisa-
tions provide a relationship between the attitude parameters and the
angular velocities in the form of a differential equation, the kinematics
model is cascaded to the dynamics model. In fact, the angular velocities
are both the output of the dynamics model and the input of the
kinematics model. This particular feature of the system in the rigid
body control problem allows two different regulators for the two
models to be employed: the control system over the kinematics model,
given the goal values of the kinematics parameters, determines the
required angular velocities, while the control system over the dynamics
model calculates the torque needed to track these required angular
velocities. In this work, we will consider a potential function control for
the kinematics subsystem and a proportional-derivative regulator for
the dynamics model.

3.0 QUATERNION BASED 
PARAMETERISATION

As previously explained, the convergence towards the goal attitude is
achieved through the attractive component of the potential function, the
stability (control) properties of which can be validated with the
Lyapunov theorem. The first step in the control system synthesis is the
choice of the state variables to be used to build the potential function.
In this section we will consider the quaternions as the state variables.
They are a once-redundant set of rotation parameters, bounded to
satisfy the constraint of unity norm. This means that all possible trajec-
tories generate arcs on the surface of a four-dimensional unit sphere,
thus bounding the quaternions to values between 1 and –1. They are not
unique, since the same physical location can be described by two
different sets of quaternions, which differ by a sign. The two sets
represent respectively a clockwise and a counter clockwise rotation
about the same principal rotation axis of angles differing by 360
degrees, thus describing the same orientation(13).

The chosen state variables are, more precisely, the error quaternion,
which are the set of quaternion elements that express the rotation
required to reach the target attitude from the current attitude. In fact the
commanded attitude quaternion qg = (q1g, q2g, q3g, q4g) and the current
attitude quaternion qc = (q1c, q2c, q3c, q4c) are related to the error
quaternion q = (q1, q2, q3, q4) as follows(14):

Since changing the signs of all the quaternion elements simultane-
ously does not change the parameterised attitude, the target values for
the state variables (error quaternion) are both q = [0 0 0 1]T and 
q = [0 0 0 –1]T. To account for this, the potential function must be built
in order to have global minima in both target states. Thus, the attractive
component of the potential function is expressed as follows:

1.0 INTRODUCTION

Performing constrained attitude slew manoeuvres is currently a
common problem for many spacecraft missions. The constraints
often arise from payload safety reasons: usually they consist in either
not directing delicate instrumentation (typically infrared and optical
instruments) towards bright sky regions or avoiding blinding of
attitude sensors. For example a cryogenically cooled infrared
telescope has to be slewed between astronomical targets without
directing the payload towards the Sun, Moon, or any other infrared
bright region of the sky. Moreover, three-axis stabilised satellites
must perform manoeuvres to safe pointing modes in case of failure
without blinding attitude sensors. The problem of performing
constrained attitude slews has traditionally been addressed by
exploiting conventional approaches(1-3): open-loop approaches enable
the calculation of high-precision solutions that minimise a user-
prescribed cost functional, such as fuel consumption or manoeuvre
time. However, these approaches usually involve iterative proce-
dures and are hence, in most cases, computationally expensive and
not completely reliable. Closed loop or feedback approaches perform
only non-iterative procedures and calculate the current control action
based on the current state. Feedback approaches typically perform at
best near optimality, and for nonlinear controllers or nonlinear
dynamical systems, it is not easy to guarantee that the controller is
always able to drive the states to the goal values. Moreover, it is
usually difficult to enforce state constraints. More recently, new
control techniques, relying on artificial intelligence or expert
systems(4), introduced with the aim of allowing autonomous real time
on-board control, proved to require significant on-board computa-
tional capabilities. Other approaches using neural networks(5),
although successful are difficult to explicitly validate. Additionally,
the complexity of specific spacecraft control problems is largely due
to the nonlinear dynamics and uncertainties of the problem under
analysis. To better account for these features, many nonlinear
approaches have been applied to spacecraft dynamics: typical
nonlinear approaches include sliding mode control(6), input-output
feedback linearisation(7) and output regulation theory(8). The potential
function method represents a novel non-linear approach to the
problem of attitude control. Potential function methods have been
used for autonomous guidance and control systems applied to
terminal descent to a planetary surface(9), to constrained proximity
manoeuvring for space station rendezvous(10), to formation flying(11)

and to attitude control(12). This paper presents the stability and
control analysis of large angle feedback slew manoeuvres with
pointing constraints. Different representations of the spacecraft
attitude are considered: quaternions, modified Rodrigues parameters
and a linearised form of the modified Rodrigues parameters are the
selected attitude parameterisations.

2.0 THE POTENTIAL FUNCTION METHOD

The potential function method is an extension of Lyapunov’s second
method. This method has found a number of applications in the space
field for the generation of closed-loop control functions with the
advantage of allowing the implementation of non-linear controls,
since the method does not hinge on linearisation. Given a set of
differential equations y = f(x), which describe the time evolution of a
dynamic system, and defining the desired final state, the convergence
to this state and the global stability of the system can be guaranteed
by building a Lyapunov potential function that has a global minimum
in the final state. In fact, a function V = V(x) is a Lyapunov function
for the system if the following conditions are met:
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that the introduction of more pointing constraints requires the intro-
duction of two new variables for each new constraint, as the angular
orientation along the axis of the instrument that has to avoid the
constrained direction is free. The final commanded angular velocity
is then calculated from the difference between the current angular
velocity and the required angular velocity:

∆ω = ω – ωc

where ω is the angular velocity vector in body-fixed frame, and ωc is
the angular velocity vector that must be supplied by the actuators to
slew the spacecraft towards the desired attitude while at the same
time avoiding any pointing constraints. The expression for ωc is:

where λ and ν are shaping parameters and Ξ is the matrix of
quaternion kinematics.

4.0 MODIFIED RODRIGUES 
PARAMETERISATION

To address the problem of singular orientations while using a
minimal set of three rigid body attitude coordinates, the modified
Rodrigues parameters have been recently proposed. They are derived
from the quaternions through stereographic projection; the transfor-
mation is the following:

where σ = [σ1 σ2 σ3]
T is the vector of the modified Rodrigues

parameters. Like the quaternions, the modified Rodrigues parameters
are not unique, and reversing the signs of the qi in Equation (8)
generates a second set of σi. This alternative set is called ‘shadow
set’ and the transformation from the original set to the shadow set is:

where σs is the shadow set. Both σ and σs describe the same
physical orientation, similar and related to the case of the two
possible sets of quaternions and principal rotation vectors. The
modified Rodrigues shadow parameters have the opposite singular
behaviour to the original ones. The original parameters are linear
near a zero rotation and are singular at a ±360° rotation. The
shadow parameters are linear near the ±360° rotation and singular
at the zero rotation. Since both sets satisfy the same equation of
motion, only differing in initial conditions, the advantage of using
modified Rodrigues parameters is that if a singularity is encoun-
tered with the original set, by switching to the shadow set the
singularity can be avoided and vice versa. The only effect of
switching parameters is the discontinuity that occurs at the
switching point. The choice in distinguishing between the two sets
is purely arbitrary so the choice of σTσ = 1 implies that the
magnitude of the orientation vector is bounded between 0 and 1,
which means that the principal rotation angle is restricted to ±180°.
Once again, the choice of the state variables to build the potential
function is subject to the consideration that the rotation required to
reach the target attitude σg from the current attitude σc is expressed,
in terms of modified Rodrigues parameters, as:

The vector σ = [σ1 σ2 σ3]
T now represents the attitude error

modified Rodrigues parameters and is used to build the potential
function. The attractive component of the potential function can now

Equation (3) is a quadratic form of all four quaternion elements,
with two as the maximum value of the potential and global minima
in the target values of the attitude. The following figure shows the
shape of the potential function as a function of q3 and q4, with q1 and
q2 are set to zero: the presence of two global minima, which describe
the same final state is easily noticeable. 

Within the context of potential function control, the pointing
constraint requirements are easily introducible and controllable. The
basic concept that leads to prevent pointing towards the constraint is
placing a large potential around the constrained direction. Due to the
nature of the control methodology, the manoeuvre will however be
non optimal, regardless of the size of the avoidance cone. The
technical literature presents different forms of the component of the
potential function that can be used to implement this feature. In the
present work, the repulsive capability is achieved through the
following exponential function:

where qob = [qob1 qob2 qob3 qob4]
T is the quaternion representing the

constrained direction – a direction that has to be avoided for payload
or instrument safety – in an inertial frame of reference, and A and B
are shaping parameters. The choice of exponential functions to
implement the repulsive component of the potential function repre-
sents a compromise between accuracy and computational complexity
because they are simple and suitable to describe pointing constraints
in terms of separation from a direction.  With the use of different
values for the parameters A and B, it is possible to define the
increase or decrease and alter the shape of the constrained area. The
reliability of the method hinges on Lyapunov’s theorem, so an
attitude requirement close to a constraint region can be achieved.
This however will most likely require a careful selection of the
shaping parameters.

The control system is endowed with the pointing avoidance
capability as well as the convergence capability by introducing a
total potential function, built as the sum of the attractive and
repulsive potentials we obtain the following expression of the
potential function:

Because of the form that the composition of rotations assumes in
terms of quaternion elements, Equation (5) is function of five
variables, three components of q, representing the rotation needed to
reach the goal attitude and two components of qob, representing the
direction of the constrained direction. A straightforward remark is
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Figure 1. Visualisation of the potential function for a rotation 
around a principal inertia axis, described with quaternions.
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desired attitude while at the same time avoiding any pointing
constraints. A proportional-derivative controller finally tracks the
required difference in angular velocities.

5.0 LINEARISED MODIFIED RODRIGUES
PARAMETERISATION

As previously highlighted, both the use of the quaternions and of the
modified Rodrigues parameters implies the initiation of an increas-
ingly large number of parameters to be integrated and controlled as
multiple pointing constraints are introduced. This is basically due to
the nonlinear form of Equations (2) and (10), which do not allow
expressing the attitude error parameters in a more simple form. It
appears to be interesting, then, to investigate what happens if the
expression that yields the relative rotation between two sets of
kinematics parameters is linearised. Because of the strict constraint
that bounds the values of the quaternions, a linearisation of Equation
(2) that maintains the unity norm of the quaternions is not possible.
On the other hand, the modified Rodrigues parameters can easily be
linearised. By observing the form of Equation (10), it is easy to
notice that, for small angles, it becomes:

σ ≅ σc – σg

Equation (15) is a linear relation that allows an easy, though
approximate, calculation of the attitude error. It reflects the previ-
ously highlighted features of linearity of the modified Rodrigues
parameters: very good linearity for near zero rotations (that is for
small angles) and near the ±360° rotation (thanks to the introduction
of the shadow set), and approximated results for rotations of inter-
mediate magnitude, that is near the switching surface. The aim of
this linearisation is two fold: to show that the controller is stable
even though large angle slews are performed and to evaluate the
performance of the controller when an approximation of the angular
error is used. By exploiting Equation (15), it is now possible to write
the potential function for the control with modified Rodrigues
parameterisation in the following form:

where σ = [σ1 σ2 σ3]
T is the vector of the current attitude parameters,

and  is the constant vector of the goal attitude in

terms of modified Rodrigues parameters. Switching to the shadow set
is still possible, thus the shape of the potential function is completely
similar to that represented in Fig. 2. The repulsive capability is
achieved through the following exponential function:

.. 
where σob = [σob1 σob2 σob3]

T arethe modified Rodrigues parameters
representing direction of the constraint, but now, because of the use
of Equation (15), they are constants. The global potential function
therefore is:

The potential function in Equation (18) does not show the same
behaviour of the potential functions in Equations (5) and (13): in fact
it is now a function of three variables, since both the rotation that
would lead the spacecraft to target attitude and the rotation that
would force the body-axes to point towards the constrained direction
are expressed as the difference of the current modified Rodrigues
parameters and the constant components of vectors σ and σob. The
only variables are now the three components of σ. It is a remarkable
feature of the linearised parameterisation via modified Rodrigues
parameters that the introduction of more constrained attitudes does

be written as a quadratic function of the three modified Rodrigues
parameters, as follows:

Equation (11) has a maximum at 0⋅5 in correspondence of the
switching condition between the original and the shadow sets. The
following figure shows the shape of the potential function for the
variation of two modified Rodrigues parameters.

The change in the sign of the derivative of the potential function in
correspondence of the switching condition is due to the use of the
shadow set in Equation (11) to calculate the value of V, while Fig. 2
reports only the original values of σ1 and σ2 along the axes. The
behaviour of the potential function outside the switching condition also
suggests that four more global minima are present for the different
combinations of ±360° rotations described by the parameters σ1 and σ2.
As previously done for the case of quaternions, the repulsive capability
is achieved through the following exponential function:

where σob = [σob1 σob2 σob3]
T are the modified Rodrigues parameters

representing the constrained direction, while A and B are shaping
parameters. In order to endow the control system with the pointing
avoidance capability as well as the convergence capability, a total
potential function, built as the sum of the attractive and repulsive
potentials, is introduced:

The final commanded angular velocity is then calculated from the
difference between the current angular velocity and the required
angular velocity:

∆ω = ω – ωc

.. 
where ω is the angular velocity vector in body-fixed frame, and ωc,
introduced in Equation (7), is the angular velocity vector that must
be supplied by the actuators to slew the spacecraft towards the
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adding a small error term to the kinematics parameters (and then re-
normalising in the case of the quaternions). Consequence of this is
that the analytical constraint does no longer match the physical
constraint from which it arose: thus an encroachment of the physical
constrained area is likely. To avoid this problem, however, it is suffi-
cient to increase the size of the analytical constrained area, by
modifying the values of the parameters A and B in the equation of
the repulsive component of the potential function.

The second goal is achieved by modifying the repulsive
component of the potential function in all the employed forms, that
is Equations (4), (12) and (17). This is accomplished by expressing
these equations respectively as:

The introduction of weight coefficients kii is intended to increase
the repulsive force in the out-of-plane direction: this is actually
accomplished by reducing the coefficient relative to the axis perpen-
dicular to the plane of rotation. For example, if the rotation takes
place in the x-y plane, it is necessary to decrease the value of the
coefficient relative to the z axis, that is k33. It is remarkable that in
Equation (20) a fourth weight coefficient has been added: it is
relative to the scalar component of the quaternions and its physical
interpretation is not immediate. However, its introduction has proved
useful in forcing the rotation out-of the plane, by decreasing its value
together with that of another coefficient. The performed simulations
showed that the manoeuvres are sensitive to the values of the weight
coefficients: moreover the dependence of the problem from initial
and goal conditions and the difficulty of associating a physical
meaning to some coefficients testify how difficult is to implement a
strategy for choosing the weight parameters. No explicit strategy has
been implemented within this work, but it seems realistic that the
laws that will be used to calculate the values of the kii coefficients
should take into account the initial and goal conditions and the
constrained orientations, thus promoting the control to be self-tuning
or adaptive, with the relative advantages and drawbacks. 
The values of the parameters, for all the different controllers, are:
ν = 0⋅1rad/s, λ = 50 – see Equation (7) – A = 1 and B = 100. The
obstacles are identified by the following parameters: qob1 = (0, 0,
1/√2, 1/√2), qob2 = (0, 0, –1/√2, 1/√2), σob1 = (0, 0, 1/(1+√2)), σob2 =
(0, 0, –1/(1+√2)). Moreover, the displacement of the constraints
has been implemented by adding an artificial error of 0⋅005 to qob1

and qob2 (and re-normalising) for the quaternions-based parameter-
isation, to σob1 and σob2 for the modified Rodrigues parameteri-
sation and to the differences (σ1 – σob1) and (σ2 – σob2) for the
linearised modified Rodrigues parameterisation. The out-of-the-
plane torque has been increased by imposing a value of 0⋅2 for the
k33 coefficients of both the modified Rodrigues parameterisations,
and a value of 0⋅2 for both the k33 and k44 coefficients of the
quaternions-based parameterisation. Since the unbalanced torque
generation is not useful when approaching the goal position, the
previously listed coefficients are set to 1 respectively for |σ3| < 0⋅9
(modified Rodrigues parameterisation) and |q4| < 0⋅9 (quaternions-
based parameterisation). The remaining kii coefficients have all
been set to 1. The coefficients of the proportional-derivative
regulators are the same for each component of the angular velocity
in all the implemented control systems. Considering the usual
form of the proportional-derivative controller, here reported as:

not require the introduction of new variables. The final commanded
angular velocities are finally calculated from the difference between
the current angular velocities and the required angular velocities:

∆ω = ω – ωc

where ω is the spacecraft’s angular velocity and ωc, introduced in
Equation (7), is the required angular velocity that the actuators must
produce in order to have the satellite pointing towards the required
direction while still avoiding the constrained attitudes. The required
difference in angular velocities is once again tracked by a propor-
tional-derivative controller.

6.0 NUMERICAL SIMULATIONS

All the described control systems have been implemented and
simulated in the Matlab/Simulink environment. The aim of the
numerical analysis is to provide results for a sample of meaningful
manoeuvres to be used as the basis for the evaluation of the control
performances. The spacecraft is considered to be a three-axis
stabilised satellite controlled through a continuous torque control,
capable of providing torques of up to 30Nm around each principal
axis. Actuator dynamics and sensor accuracy and filtering are neither
modelled nor taken into account since they are not relevant for the
purpose of evaluating and comparing the performances of the three
different potential function controllers. The simulation chosen to
illustrate the behaviour of the controllers is also useful to highlight
some features of the selected potential functions and to illustrate the
corrections required in specific cases to escape possible failures in
reaching the required attitude. In fact, since the repulsive component
of all the previously illustrated controllers describes symmetric
constraints, in a limited number of cases, the control system might
not be able to select between two equivalent (in terms of the
potential function) paths, thus failing to overcome the constraint and
reach the goal attitude. 

One representative case of this behaviour consists in having initial
and goal attitudes placed such that a rotation of ±180° around one of
the principal axes is required, with two equally spaced constraints
between the initial and the goal attitude (that is placed at ±90°
around the principal axis). If the constraints are perfectly symmetric,
the two possible commanded rotations of ±180° and −180° required
to reach the goal are completely equivalent in terms of potential: this
means that the system is in the situation represented, for example, in
Fig. 1 by the unstable equilibrium points placed along the q4 = 0
coordinate. Given that the actual system is subject to perturbations,
and that the equilibrium is unstable, the symmetry of the system is
somewhat broken and all the previously illustrated controllers are
able to discriminate between the two possible rotations. Once the
commanded rotation forces the spacecraft to rotate around the
principal axes, one of the pointing constraints is approached: the
closer the constraint, the larger the repulsive component of the
potential. This process continues until the repulsive component of
the potential is large enough to overcome the value of the attractive
component, thus commanding the action of the controller to prevent
the infringement of the constraint. However, because of the
symmetric nature of the constraint, the control action does not force
the rotation to continue out of the plane perpendicular to the
principal axis in order to overcome the constraint, but simply implies
that the rotation stops at a saddle point near the constrained attitude.
The previous remarks about equilibrium instability and perturbed
motion imply that the saddle is eventually escaped but the process is
so slow and expensive in terms of control effort that an alternative
solution is needed. The selected approach fulfils two goals, namely
to force the potential to be asymmetric and to increase the
component of the torque required to have an out-of-plane rotation. 

The first goal is implemented by artificially displacing the
constraint: the orientation of the constrained attitude is modified by
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Figure 3. Time history of the quaternions.

Figure 4. Time history of the modified Rodrigues parameters.

Figure 5. Time history of the linearised modified Rodrigues.

Figure 6. Time history of angular velocities around the – axis.

Figure 7. Time history of angular velocities around the y-axis.

Figure 8. Time history of angular velocities around the z-axis.
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The velocity profile achieved with the quaternions-based controller
is subject to a change in the sign of the angular velocity in the 24-36
seconds period, thus testifying that the constraint is overcome in two
steps: at first, the spacecraft bounces back against the constraint, but in
the meantime the rotations around the x and y axes allow the
constrained attitude to be overcome after nearly 50 seconds. In the
following figures (Figs 9-10), the convergence of the potential function
to zero is shown for all the control systems under analysis alongside
with the evolution of the derivatives of the potential function.

The values of the potential functions, expressed by Equations (13)
and (18), and of their derivatives, relative to the nonlinear and
linearised modified Rodrigues parameterisations, have been multiplied
by four in order to be represented in the same scale as the potential
function and derivative obtained using the quaternion representation.
As far as the potential function relative to the quaternion-based control
is concerned, it is noticeable from Fig. 9, and confirmed by Fig. 10, that
in the span of 15-25 seconds of simulation the potential function
increases: this behaviour is forced by the control system in order to
escape the saddle in the potential function close to the attitude
constraint. A second increase in the value of the potential function
takes place after 60 seconds of simulation and it is due to the fact that
the spacecraft either reaches the goal attitude or moves close to it, but
when it starts to move further, the momentum is too large to be
immediately compensated with the available torque. The same
behaviour is shown by the other control systems: the increase in the
value of the potential function relative to the modified Rodrigues
parameterisation takes place after 40 seconds, while that of the
potential function relative to the linearised modified Rodrigues
parameters takes place after 25 seconds and is much larger than the
others. The following figures show the time history of the control
torques.

The main feature of these figures is that the actuators perform
continuous torques of small magnitude (up to 2Nm), alternated by
much larger impulses. The reason of this behaviour is that the propor-
tional-derivative controller continuously tracks the commanded angular
velocity, thus performing the continuous corrective torques, while the
commanded angular velocity is controlled by the potential function
control system in a discontinuous way: that is the commanded angular
velocity is different from zero only when the derivative of the potential
function is larger than a fixed threshold. In order to guarantee conver-
gence, the value of this threshold has to be negative: in this work a
fixed value of the threshold equal to – 0⋅05 has been employed. In Fig.
12, we can notice that the control torques exerted by the control system
based on modified Rodrigues parameters present a fewer number of
impulses, with respect to Fig. 11, thus implying a fewer number of

where u and ω are referred to a generic component, and the
chosen values for the coefficients are: kp = 15 and kD = 5. The
integration technique chosen to solve the system composed by the
dynamics equations and the kinematics equations is based on the
fifth-order Dormand-Price formula. The following figures compare
the time history of the kinematics parameters for the three control
systems under analysis. In Fig. 3, it is shown how the vector part of
the quaternions, that is q1, q2, and q3, converges to zero, thus proving
the achievement of the goal attitude, while the scalar part, q4,
converges to –1, thus preserving the constraint on the norm of the
quaternions. It is interesting to note that q1 and q2 are initially
displaced from their initial state in order to overcome the constrained
attitude, and later converge again to the initial state, also corre-
spondent to the final state. In Fig. 4, the convergence of the error
modified Rodrigues parameters is represented: it is again noticeable
that σ1 and σ2 are displaced from their initial state and converge to
zero after the constraint is overcome. The same features are present
in Fig. 5, where the convergence and capability of complying with
the pointing constraint of the linearised modified Rodrigues
parameters are shown.

In the following figures the angular velocities obtained with the
three control systems under analysis are compared. Figure 6
compares the angular velocities of the spacecraft around the x-axis.
The angular velocities are forced to move out of the plane, thus
allowing the constraint to be overcome. The controller based on
linearised modified Rodrigues parameters commands the maximum
values of angular velocity during the manoeuvre. The velocity
profiles with modified Rodrigues parameters and with linearised
modified Rodrigues parameters are similar: the response of the
linearised modified parameters is slightly faster and the values of the
velocity slightly larger. The profile with the quaternions is more
regular and with smaller values of velocity. Figure 7 represents the
angular velocities of the spacecraft around the y-axis. The maximum
velocity is once again achieved with the linearised modified
Rodrigues parameters, while the response of the controller with the
modified Rodrigues parameters is slower and implies a smaller
velocity, whilst the velocity profile achieved with the quaternions is
nearly symmetric. Figure 8 shows the angular velocities of the
spacecraft around the z-axis: the rotation around the z axis is
counter-clockwise both with the modified Rodrigues parameteri-
sation and with the linearised modified Rodrigues parameterisation,
while the quaternions-based controller commands a clockwise
rotation. The direction of rotation around the z-axis is the conse-
quence of the different implementation of the displacement of the
symmetric constrained attitudes. 
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Figure 9. Evolution of the potential functions. Figure 10. Evolution of the derivatives of the potential function.
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Figure 13. Applied control torques during the manoeuvre accomplished with
the control system based on linearised modified Rodrigues parameters.

Figure 12: Applied control torques duzring the manoeuvre accomplished
with the control system based on modified Rodrigues parameters.

Figure 11. Applied control torques during the manoeuvre 
accomplished with the quaternions-based control system.

relevant attitude corrections. Moreover, the magnitude of the impulses
is lower, with the relevant consequence of less control effort. Figure 13
shows the control torques for the control system based on the linearised
modified Rodrigues parameters: the magnitude of the impulses is
smaller than in the previous cases, but the total control expense is larger
than with the controller based on modified Rodrigues parameters, even
if smaller than that with the quaternions-based controller.

7.0 CONCLUSIONS

In this paper, the problem of autonomous slew manoeuvring has been
addressed within the context of the potential function method. Three
controllers based on different kinematics parameterisations have been
analysed and compared. Alongside with well-known quaternions and
modified Rodrigues parameterisations, a new linearised form of the
modified Rodrigues parameters has been introduced in order to
decrease the computational complexity of the problem. All the control
systems, respectively based on quaternions, modified Rodrigues
parameters, and linearised modified Rodrigues parameters, have
proved to be able of reaching the goal attitude, in accordance with the
Lyapunov theorem, whilst complying with the pointing constraints.
Future extension of this work will centre in three directions. To add one
or more forced directions; that is a direction that the spacecraft has to
maintain: for example constantly pointing the solar panels towards the
Sun. To investigate the possibility of having attitude requirements that
are very close to constrained regions through an appropriate selection
of the shaping parameters in the Lyapunov function. Finally, we will
consider an optimisation, in terms of fuel consumption and time, of the
manoeuvre.
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