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Turbulent-kinetic-energy (TKE) production Pk = R12(∂U/∂y) and TKE dissipation
Ek = ν〈(∂ui/xk)(∂ui/xk)〉 are important quantities in the understanding and modelling
of turbulent wall-bounded flows. Here U is the mean velocity in the streamwise
direction, ui or u, v, w are the velocity fluctuation in the streamwise x- direction,
wall-normal y- direction, and spanwise z-direction, respectively; ν is the kinematic
viscosity; R12 =−〈uv〉 is the kinematic Reynolds shear stress. Angle brackets denote
Reynolds averaging. This paper investigates the integral properties of TKE production
and dissipation in turbulent wall-bounded flows, including turbulent channel flows,
turbulent pipe flows and zero-pressure-gradient turbulent boundary layer flows (ZPG
TBL). The main findings of this work are as follows. (i) The global integral of
TKE production is predicted by the RD identity derived by Renard & Deck (J. Fluid
Mech., vol. 790, 2016, pp. 339–367) as

∫ δ
0 Pk dy=Ubu2

τ −
∫ δ

0 ν(∂U/∂y)2 dy for channel
flows, where Ub is the bulk mean velocity, uτ is the friction velocity and δ is the
channel half-height. Using inner scaling, the identity for the global integral of the
TKE production in channel flows is

∫ δ+
0 P+

k dy+ = U+b −
∫ δ+

0 (∂U+/∂y+)2 dy+. In the
present work, superscript + denotes inner scaling. At sufficiently high Reynolds
number, the global integral of the TKE production in turbulent channel flows can be
approximated as

∫ δ+
0 P+

k dy+ ≈U+b − 9.13. (ii) At sufficiently high Reynolds number,
the integrals of TKE production and dissipation are equally partitioned around the
peak Reynolds shear stress location ym:

∫ ym

0 Pk dy≈
∫ δ

ym
Pk dy and

∫ ym

0 Ek dy≈
∫ δ

ym
Ek dy.

(iii) The integral of the TKE production IPk(y) =
∫ y

0 Pk dy and the integral of the
TKE dissipation IEk(y) =

∫ y
0 Ek dy exhibit a logarithmic-like layer similar to that of

the mean streamwise velocity as, for example, I+Pk
(y+) ≈ (1/κ) ln(y+) + CP and

I+E k
(y+) ≈ (1/κ) ln(y+) + CE , where κ is the von Kármán constant, CP and CE

are addititve constants. The logarithmic-like scaling of the global integral of TKE
production and dissipation, the equal partition of the integrals of TKE production and
dissipation around the peak Reynolds shear stress location ym and the logarithmic-like
layer in the integral of TKE production and dissipation are intimately related. It is
known that the peak Reynolds shear stress location ym scales with a meso-length scale
lm=
√
δν/uτ . The equal partition of the integral of the TKE production anddissipation
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around ym underlines the important role of the meso-length scale lm in the dynamics
of turbulent wall-bounded flows.

Key words: boundary layer structure, boundary layers

1. Introduction
Beginning with Prandtl in 1904, turbulent wall-bounded flows have been intensively

investigated by numerous researchers. Reviews of the topic can be found in Cantwell
(1981), Robinson (1991), Gad-el Hak & Bandyopadhyay (1994), Fernholz & Finley
(1996), Klewicki (2010), Marusic et al. (2010b), Smits, McKeon & Marusic (2011),
Jiménez (2013), Smits & Marusic (2013), and Marusic, Baars & Hutchins (2017). The
present work focuses on turbulent-kinetic-energy (TKE) production and dissipation,
and specifically on the integral properties of TKE production and dissipation.

Better knowledge of TKE production Pk = R12(∂U/∂y) and TKE dissipation
Ek = ν〈(∂ui/xk)(∂ui/xk)〉 can shed light on how turbulence is (re)generated and
sustained. In this work, U represents the mean velocity in the streamwise direction x,
and u, v represent the fluctuating velocity component in the streamwise direction x and
the wall-normal direction y, and R12 =−〈uv〉 is the kinematic Reynolds shear stress.
Angle brackets denote averaging. While the balance of the TKE budget equation is
commonly presented in numerical simulation of turbulent wall-bounded flows, as by
Eggels et al. (1994), Abe, Kawamura & Matsuo (2001), Hoyas & Jiménez (2008),
Wu & Moin (2009), Jiménez et al. (2010), the integral of TKE production and
dissipation has received less attention.

Panton (2001) pointed out the important role of TKE production in the generation
of Reynolds stress and self-sustaining turbulence in the near-wall region. It is well
known that the peak TKE production occurs within the viscous buffer layer at y+≈ 12
(Fernholz & Finley 1996). In the present work, superscript + denotes inner scaling.
The inner-scaled distance, y+, from the wall, is y+= y/(ν/uτ ) where uτ is the friction
velocity. Plotting the pre-multiplied TKE production on semilogarithmic axes, Marusic,
Mathis & Hutchins (2010a) have shown that the main contribution to the bulk TKE
production comes from the near-wall region at low Reynolds number. At sufficiently
high Reynolds number the logarithmic region dominates TKE production, as shown in
Marusic et al. (2010a), Bernardini, Pirozzoli & Orlandi (2014), Pirozzoli, Bernardini
& Orlandi (2016) and Renard & Deck (2016).

Orlandi (1997) derived a decomposition of the TKE production into two parts, one
containing the streamwise component of the fluctuating Lamb vector and the other
in a divergence form. Using direct numerical simulation (DNS) data, Bernardini et al.
(2014) examined Orlandi’s decomposition of TKE production. They proposed a scaling
for the TKE production and offered an explanation for the mixed scaling

√
uτU∞ for

the streamwise velocity variance 〈uu〉, where U∞ is the free streamwise velocity of
zero-pressure-gradient turbulent boundary layer flows (ZPG TBLs).

Pirozzoli et al. (2016) have investigated the global TKE production for the mean
streamwise velocity and scalar. They found that the near-wall region is characterized
by nearly equal values of velocity and scalar production, and the global velocity
dissipation is found to exceed the global dissipation of the scalar. The difference was
attributed to the pressure term in the velocity equation, consistent with the analogy
proposed by Abe & Antonia (2009).
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Integral properties of TKE production and dissipation 451

Laadhari (2007) examined the Reynolds number dependence of the dissipation of
the mean kinetic energy and TKE in wall-bounded flow. He found that the mean part
reaches a constant value at sufficiently high Reynolds number, while the turbulent part
follows a logarithmic law. Laadhari (2007) pointed out that the logarithmic law of
friction can be obtained without any assumption on the mean velocity distribution.

Recently, Abe & Antonia (2016) examined the integrals of the mean and TKE
dissipation rates using DNS data from turbulent channel flow. They established
a logarithmic dependence of the integrated turbulent energy dissipation rate for
300<δ+< 104, and found that the dependence is intimately linked to the logarithmic
skin friction law. The scaling of the turbulent energy dissipation rate in the inner
region, outer region and overlap region were examined. Abe & Antonia (2017) have
extended the studies on the integration of the transport equations for the mean and
turbulent parts of the scalar dissipation rate, and have obtained a simple relation for
the bulk mean scalar and the wall transfer coefficient.

Renard & Deck (2016) derived an identity that decomposes the mean skin friction
coefficient into a laminar part and a turbulent part. One motive for Renard and Deck’s
work was to improve the FIK identity, a decomposition of the mean skin friction
coefficient derived by Fukagata, Iwamoto & Kasagi (2002). The Renard and Deck
(RD) identity was also independently derived by Abe & Antonia (2016). While the
FIK identity and the RD identity focus on the decomposition of the mean skin friction
coefficient, here we show that the RD identity in fact reveals a very important property
of the TKE production, that is, the global integral of the TKE production.

The rest of the paper is organized as follows. In § 2, we present the RD identity
in the form of the global integral of TKE production for turbulent channel flows,
turbulent pipe flows and ZPG TBL. In § 3.1 we briefly present the distribution of Pk

and Ek. In § 3.2 the RD identity equations are verified using DNS and experimental
data from turbulent channel flows, turbulent pipe flows and ZPG TBL. In § 3.3 we
briefly review the scaling for the peak Reynolds shear stress location and meso-length
scale. In § 3.4 we present the pre-multiplied TKE production and dissipation. In § 3.5
we show the partition of the integral of the TKE production and dissipation around
the peak Reynolds shear stress location ym. In § 3.6 we present the integral profiles of
the TKE production and dissipation.

2. The RD identity and the global integral of the TKE production

Using the mean streamwise kinetic-energy budget equation in an absolute reference
frame, Renard & Deck (2016) derived a decomposition of the mean skin friction
coefficient Cf in turbulent wall-bounded flows. For channel flows, the RD identity can
be written as

Cf =
2

U3
b

∫ δ

0
ν

(
∂U
∂y

)2

dy+
2

U3
b

∫ δ

0
R12

∂U
∂y

dy, RD identity, (2.1)

where δ is the channel half-height, the mean skin friction coefficient is defined as
Cf = τw/(0.5ρU2

b)= 2u2
τ/U

2
b and Ub= (

∫ δ
0 U dy)/δ is the bulk mean velocity. Renard &

Deck (2016) have thoroughly examined the contribution of turbulence to the mean
skin friction. While they focused on the mean skin friction, here we examine the
RD identity from the perspective of the global integral of the TKE production. For
completeness, we will briefly derive the RD identity using a simplified approach.
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The simplified derivation starts from the mean momentum balance (MMB) equation
for fully developed turbulent channel flow:

0=
u2
τ

δ
+ ν

∂2U
∂y2
+
∂R12

∂y
, (2.2)

where u2
τ/δ comes from the mean pressure force −(1/ρ)(dP/dx) (see Pope 2001). The

corresponding boundary conditions are

y= 0 (wall): U = 0, R12 = 0, ν
∂U
∂y
= u2

τ ; (2.3a−c)

y= δ (centreline): U =Uc, R12 = 0. (2.4a,b)

Integrating the MMB equation (2.2) in the wall-normal direction and applying
boundary conditions yields a relation for the total shear stress, viscous shear stress
plus Reynolds shear stress, as

ν
∂U
∂y
+ R12 = u2

τ −
u2
τ

δ
y. (2.5)

The integral of TKE production can be obtained in two steps. Step one is to multiply
the MMB equation (2.2) by a weight function U

0=
u2
τ

δ
U + ν

∂2U
∂y2

U +
∂R12

∂y
U. (2.6)

In step two, the weighted MMB equation (2.6) is integrated in the wall-normal
direction y to produce

0=
u2
τ

δ

∫ y

0
U dy+

{
ν
∂U
∂y

U − ν
∫ y

0

(
∂U
∂y

)2

dy

}
+

{
R12U −

∫ y

0
R12

∂U
∂y

dy
}
. (2.7)

Note that integration by parts was applied to the second and third terms in (2.6), and
no-slip boundary conditions were applied for U and R12 at the channel wall.

Substituting the relation for ν(∂U/∂y)+ R12 in (2.5), the integrated equation (2.7)
can be rearranged as

∫ y

0
Pk dy=

u2
τU − u2

τ

(
yU −

∫ y

0
U dy

)
δ

− ν
∫ y

0

(
∂U
∂y

)2

dy. (2.8)

For brevity, we denote the TKE production term as Pk = R12(∂U/∂y). The global
integral identity for TKE production is obtained by setting y = δ in the integral
equation (2.8) ∫ δ

0
Pk dy= u2

τUb − ν

∫ δ

0

(
∂U
∂y

)2

dy. (2.9)

It can be easily shown that the identity equation (2.9) is the RD identity equation (2.1).
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Integral properties of TKE production and dissipation 453

In the study of turbulent wall-bounded flows, uτ and ν are often used to scale the
mean velocity, Reynolds shear stress and wall-normal distance as U+ = U/uτ , R+12 =

R12/u2
τ and y+= yuτ/ν. This procedure is commonly referred to as ‘inner scaling’. The

inner-scaled integral equation (2.8) can be expressed as

∫ y+

0
P+

k dy+ =

U+ −
y+U+ −

∫ y+

0
U+ dy+

δ+

−
∫ y+

0

(
∂U+

∂y+

)2

dy+, (2.10)

and the global integral identity equation (2.9) in inner scaling can be expressed as∫ δ+

0
P+

k dy+ =U+b −
∫ δ+

0

(
∂U+

∂y+

)2

dy+, (2.11)

where the inner-scaled TKE production is P+

k = R+12(∂U+/∂y+). In other words,
the RD identity states that the sum of the global integrals of (∂U+/∂y+)2 and the
TKE production P+

k always equals U+b in a channel flow, regardless of the Reynolds
number. The identity equation (2.9) for the global integral of TKE production was first
presented by Laadhari (2007). Although Laadhari started with the dissipation equation
for the kinetic energy, equating the TKE production to dissipation in turbulent channel
flow, he essentially used the mean momentum balance equation to obtain the identity
equation. Here the identity equation is derived in a more straightforward fashion.

Due to the geometric shape, the global integral identity for the TKE production in
turbulent pipe flows is (see appendix B for more details)

1
R+

∫ R+

0
P+

k r+ dr+ =U+b −
1

R+

∫ R+

0

(
∂U+

∂r+

)2

r+ dr+, (2.12)

where P+

k = R+12(∂U+/∂r+) for turbulent pipe flow.
The global integral identity for the TKE production in ZPG TBL is (see appendix A

for more details)∫ δ+

0
P+

k dy+ = U+
∞
−

∫ δ+

0

(
∂U+

∂y+

)2

dy+ +

{∫ δ+

0
U+
[

U+
∂V+

dy+
− V+

∂U+

dy+

]
dy+

−U+
∞

∫ δ+

0

[
U+

∂V+

dy+
− V+

∂U+

dy+

]
dy+
}
. (2.13)

The identity equations for the global TKE production in turbulent channel flow,
turbulent pipe flow and ZPG TBL have similar form, but there are subtle differences.
For example, it is known that the profiles of the mean velocity and Reynolds shear
stress of channel and pipe flows are similar, but there are subtle differences, especially
in the wake region (see Jiménez et al. 2009; Mathis et al. 2009b; Monty et al. 2009,
and Ng et al. 2011). Given the difference in geometry and the ensuing difference in
the integration, the global identities for channel flow and pipe flow will not be the
same, as we will show in the following.
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FIGURE 1. TKE production and dissipation versus wall-normal distance. (a) Inner-scaled
wall-normal distance y+. (b) Outer-scaled wall-normal distance y/δ. Data are from
independent DNS studies by Iwamoto et al. (2002) and Lee & Moser (2015).

3. Experimental and numerical data

The calculation of the TKE production Pk requires data on the mean streamwise
velocity gradient ∂U/∂y and the kinematic Reynolds shear stress R12. In physical
experiments, the spatial resolution is limited, especially in the near-wall region, where
the gradient ∂U/∂y varies rapidly. Moreover, in high Reynolds number physical
experiments, the first data point of R12 is often beyond the peak Reynolds shear
stress location. Thus, it is challenging to obtain TKE production Pk data in physical
experiments, especially in the near-wall region of high Reynolds number flows. The
measurement of the TKE dissipation Ek in physical experiments is even more difficult.
The scarcity of the TKE production and dissipation data from physical experiments
is one of the reasons why their integrals have not been widely studied in the past.

During the past three decades, however, numerical simulations, especially direct
numerical simulation, have provided high quality data for Pk and Ek. At the same
time, higher resolution probes have been developed to obtain data in the near-wall
region of high Reynolds number flows (see, for example, Vallikivi, Hultmark &
Smits 2015). The present work would not have been possible without the aid of the
high quality DNS data and experimental data generously shared by the researchers.
Here, we use DNS and high resolution experimental data to investigate the integral
properties of TKE production and dissipation, including the global integral, partition
of the integrals, and shapes of the integral profiles.

3.1. TKE production and dissipation distribution
TKE production Pk and dissipation Ek profiles have been commonly presented in
DNS studies of turbulent wall-bounded flows (see, for example, Eggels et al. 1994;
Abe et al. 2001; Hoyas & Jiménez 2008; Wu & Moin 2009; Jiménez et al. 2010). For
the convenience of readers, figure 1 presents Pk and Ek versus wall-normal distance
from two independent DNS studies of turbulent channel flows by Iwamoto, Suzuki
& Kasagi (2002) and Lee & Moser (2015). The agreement between the DNS of Lee
& Moser (2015) at Reτ = 550 and the DNS of Iwamoto et al. (2002) at Reτ = 640
indicates the high quality of the simulations.

In figure 1(a) the wall-normal distance is inner scaled as y+ = y/(ν/uτ ). To better
show the near-wall region, the data are plotted on semilogarithmic axes. To show the
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FIGURE 2. (Colour online) Reynolds number dependence of the global integral of∫ δ+
0 (∂U+/∂y+)2 dy+ (magenta squares),

∫ δ+
0 P+

k dy+ (green squares) and
∫ δ+

0 E +k dy+ (red

squares) in turbulent channel flows. Also shown are the sum of
∫ δ+

0 (∂U+/∂y+)2 dy+ and∫ δ+
0 P+

k dy+ (black squares), the U+b from DNS (black ×) and U+b from experimental
measurement (black star) by Wei & Willmarth (1989). (a) On linear–linear axes. (b) On
semilogarithmic axes. DNS data are from four independent studies: Abe et al. (2001),
Iwamoto et al. (2002), Lee & Moser (2015), Pirozzoli et al. (2016).

trend in the outer region, figure 1(b) presents TKE production and dissipation versus
the outer-scaled location y/δ.

Three notable features of figure 1(a) are as follows. (i) The inner-scaled TKE
production P+

k peaks at y+ ≈ 12 with a maximum value of about P+

k,max ≈ 0.25,
with no apparent Reynolds number dependence (the Reτ = 180 case clearly has
a low Reynolds number effect). (ii) The inner-scaled TKE dissipation at the wall
E +k (y = 0) clearly increases with Reynolds number. (iii) The TKE production P+

k
and dissipation E +k are not always in equilibrium. For example, the balance of the
TKE budget equation in the viscous sublayer is between the dissipation E +k and
the viscous diffusion term. However, the viscous diffusion, turbulent transport and
pressure velocity correlation terms in the TKE budget equation only redistribute TKE
among different layers, and the global integral of these transport terms can be shown
to be zero in turbulent channel flow and turbulent pipe flows. Therefore, the global
integral of TKE production and dissipation must have the same magnitude, but with
opposite signs. The global identity for the TKE production should also apply to the
global integral of the TKE dissipation.

The balance of the TKE budget equation among different terms is commonly
presented in DNS studies of turbulent wall-bounded flows, as in Bernardini et al.
(2014) and Lee & Moser (2015), and is not discussed here. The focus of this work
is on the integral properties of the TKE production and dissipation, that is, the area
under the P+

k curve and E +k curve in figure 1(b).

3.2. Global integral of TKE production and dissipation
Using R12 and U data from four independent DNS studies of turbulent channel flows
by Abe et al. (2001), Iwamoto et al. (2002), Lee & Moser (2015) and Pirozzoli et al.
(2016), the global integrals

∫ δ+
0 P+

k dy+ and
∫ δ+

0 (∂U+/∂y+)2 dy+ are calculated and
presented in figure 2 as a function of Reynolds number. Also shown in the figures
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is the global integral
∫ δ+

0 E +k dy+ calculated from the DNS data of TKE dissipation
term. To illustrate the global integral identity equation (2.11) for channel flows, the
bulk mean velocity U+b from DNS is also plotted in figure 2. As a test of accuracy,
the experimental measurement of U+b by Wei & Willmarth (1989) is plotted in the
figure, and can be seen to agree well with the DNS data.

Figure 2 shows that the sum of
∫ δ+

0 (∂U+/∂y+)2 dy+ and
∫ δ+

0 P+

k dy+ (black open
squares in the plot) agrees very well with U+b (black × or star in the plot), and this
supports the validity of the global integral identity equation (2.11).

Figure 2 shows that in low Reynolds number turbulent channel flow,
∫ δ+

0 (∂U+/∂y+)2

dy+ >
∫ δ+

0 P+

k dy+ (in a laminar channel flow,
∫ δ+

0 (∂U+/∂y+)2 dy+ = U+b ). However,

as Reynolds number increases,
∫ δ+

0 (∂U+/∂y+)2 dy+ decreases to a constant value of
approximately 9.13 for Reτ > 300. This constant value is consistent with the results
of Laadhari (2007) and Abe & Antonia (2016). Thus, at sufficiently high Reynolds
number, the global integral of the TKE production and dissipation in turbulent channel
flows can be approximated as∫ δ+

0
P+

k dy+ =
∫ δ+

0
E +k dy+ ≈U+b − 9.13 or

∫ δ

0
Pk dy=

∫ δ

0
Ek dy≈Ubu2

τ − 9.13u3
τ .

(3.1a,b)
To date, the highest U+b obtained in superpipe experiments by Hultmark et al. (2012,
2013) is around U+b ∼ 35, so the contribution of

∫ δ+
0 (∂U+/∂y+)2 dy+ ≈ 9.13 is not

negligible in the identity equation (3.1). However, at infinite Reynolds number, U+b �
9.13 and

∫ δ+
0 P+

k dy+ =
∫ δ+

0 E +k dy+ ≈U+b .
To better show the Reynolds number dependence, figure 2(b) presents the data on

semilogarithmic axes. In figure 2(b) a logarithmic function is used to approximate
the Reynolds number dependence of the inner-scaled bulk mean velocity as U+b ≈
2.5 ln(Reτ )+ 2.5. From (3.1), the approximate function for the global integral of the
TKE production and dissipation becomes∫ δ+

0
P+

k dy+ =−
∫ δ+

0
E +k dy+ ≈ 2.5 ln(Reτ )− 6.6. (3.2)

Given the complicated nature of turbulent wall-bounded flows, it is unlikely that the
exact Reynolds number dependence of U+b is a simple logarithmic function, but it
is not the purpose of this work to determine the best fitting function or parameters
for the Reynolds number dependence. Figure 2(b) shows that the increase of U+b ,∫ δ+

0 P+

k dy+ and
∫ δ+

0 E +k dy+ with Reynolds number is in fact nearly logarithmic.
Similar logarithmic functions have been used by Laadhari (2007), Zanoun, Nagib &
Durst (2009) and Abe & Antonia (2016) to approximate the bulk mean velocity in
high Reynolds number turbulent channel flow.

Figure 3 presents the Reynolds number dependence of the global integral results in
turbulent pipe flows. As shown in the figures, the sum of (1/R+)

∫ R+

0 (∂U+/∂r+)2r+ dr+

and (1/R+)
∫ R+

0 P+

k r+ dr+ agrees excellently with the U+b data, and this strongly
supports the global integral identity equation (2.12). The deviation of the superpipe
data from the trend is caused by the spatial resolution in the near-wall region.
At such a high Reynolds number, the first data point is close to or beyond the
peak Reynolds shear stress location. In the superpipe experiments by Vallikivi et al.
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FIGURE 3. (Colour online) Reynolds number dependence of the global integral of
(1/R+)

∫ R+

0 (∂U+/∂r+)2r+ dr+ (magenta circles), (1/R+)
∫ R+

0 P+

k r+ dr+ (green circles) and

(1/R+)
∫ R+

0 E +k r+ dr+ (red circles) in turbulent pipe flows. Also shown are the sum of

(1/R+)
∫ R+

0 (∂U+/∂r+)2r+ dr+ and (1/R+)
∫ R+

0 P+

k r+ dr+ (black circles), U+b from DNS
(black ×) by El Khoury et al. (2013) and U+b from superpipe (black star) by Hultmark
et al. (2012, 2013). (a) On linear–linear axes. (b) On semilogarithmic axes.

(2015), the Reynolds shear stress R12 is not measured. For the calculation of Pk,
R12 is calculated indirectly using ∂U/∂y and the once-integrated mean momentum
balance equation (see appendix B).

Figure 4 shows the global integral results for ZPG TBL. Due to the advection term
(the last two integrals) in (2.13), the sum of

∫ δ+
0 (∂U+/∂y+)2 dy+ and

∫ δ+
0 P+

k dy+ will
be smaller than U+

∞
, as shown in the figure, but figure 4 shows that the difference is

small, indicating that the mean advection has a minor role in the global balance of
the TKE budget. The deviation of the experimental data at Reτ ≈ 10 000 is caused by
the spatial resolution of data points in the experiments of De Graaff & Eaton (2000).

To sum up, the global integral identity of the TKE production (2.11)–(2.13) has
been verified with high resolution experimental and DNS data from turbulent channel
flows, pipe flows and ZPG TBL. Next, we will present the partition of the integral
of the TKE production and dissipation in turbulent wall-bounded flows. We find
that at sufficiently high Reynolds number, the integrals of the TKE production and
dissipation are equally partitioned around the peak Reynolds shear stress location ym.
Given the importance of ym and meso-scaling in the partition of the integral of TKE
production and dissipation, we will briefly review the meso-layer and meso-scaling
before presenting the partition of the integrals.

3.3. Meso-layer, meso-length scale and peak location of Reynolds shear stress
The concept of a meso-layer has been proposed in a number of studies, including
Long & Chen (1981), Afzal (1982, 1984), Sreenivasan & Sahay (1997), Wosnik,
Castillo & George (2000) and Wei et al. (2005). For example, in Wei et al. (2005) a
four-layer structure is proposed for turbulent wall-bounded flows, based on the force
balance of the mean momentum balance equation. Their Layer III (the meso-layer)
centres around the peak Reynolds shear stress location ym.

A meso-length scale for turbulent channel/pipe and ZPG TBL flows has been
proposed as the geometric mean of the inner length scale lν = ν/uτ and the outer
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FIGURE 4. (Colour online) Reynolds number dependence of the global integral of∫ δ+
0 (∂U+/∂y+)2 dy+ (magenta triangles),

∫ δ+
0 P+

k dy+ (green triangles) and
∫ δ+

0 E +k dy+ (red

triangles) in ZPG TBL. Also shown are the sum of
∫ δ+

0 (∂U+/∂y+)2 dy+ +
∫ δ+

0 P+

k dy+
(black triangles), U+

∞
from DNS (black ×) and U+

∞
from experimental measurement (black

asterisk) by De Graaff & Eaton (2000), Vallikivi et al. (2015). (a) On linear–linear axes.
(b) On semilogarithmic axes. DNS data are from two independent studies by Simens et al.
(2009) and Schlatter & Örlü (2010).

length scale lo= δ, as lm=
√
δν/uτ (Fife et al. 2005a,b; Wei et al. 2005). Meso-length

scale lm has been advocated as a fundamental length scale in turbulent channel/pipe
flow and ZPG TBL, like the lν and lo (Fife et al. 2005a,b; Wei et al. 2005). It
has long been known that the peak Reynolds shear stress location ym scales as
ym=O(

√
δν/uτ ) (see, for example, Long & Chen 1981; Sreenivasan 1989; Sreenivasan

& Sahay 1997; Wei et al. 2005). Thus, the peak Reynolds shear stress location ym
scales as the meso-length scale.

The meso-length scaling is defined as

y
lm
=

y
√
δν/uτ

=
y+
√
δ+
. (3.3)

Given the spatial resolution limitation inherent in physical experiments, it has been
challenging to determine ym precisely. However, during the past thirty years, more
DNS data at higher Reynolds numbers, and higher resolution experimental data, have
made it possible to determine more precisely the Reynolds number dependence of ym.
Figure 5 shows the Reynolds number dependence of the meso-scaled peak location
ym/lm. The experimental and numerical data in figure 5 offer strong evidence that at
sufficiently high Reynolds number the peak Reynolds shear stress location ym scales
as the meso-length scale: ym =O(lm).

Figure 5 shows that the peak Reynolds shear stress location ym in turbulent channel
flows is approximately ym≈ 1.5lm or y+m ≈ 1.5

√
δ+ for Reτ > 2000. The peak Reynolds

shear stress location in ZPG TBL is slightly larger, at ym ≈ 2.4lm or y+m ≈ 2.4
√
δ+. In

the 1980s, Long & Chen (1981) proposed a similar scaling but with a numerical factor
of 1.87, and Sreenivasan (1989) suggested a numerical factor of 2.0. Given the spatial
resolution of the instrumentation available then, and the Reynolds number range of the
data, these predictions are remarkably close to the recent DNS and high resolution
experimental data shown in figure 5.

One motivation for the present work is to assess the role of the meso-layer and
meso-length scale in the partition of the integrals of TKE production and dissipation.
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FIGURE 5. Dependence of Reynolds shear stress peak location ym on Reynolds numbers.
Squares are channel flow data from DNS of Abe et al. (2001), Iwamoto et al. (2002), Lee
& Moser (2015), circles are pipe flow data from DNS of El Khoury et al. (2013) and
superpipe by Hultmark et al. (2012, 2013) and triangles are ZPG-TBL data from DNS
by Schlatter & Örlü (2010) (filled triangles) and Simens et al. (2009) (open triangles).
Note Reynolds shear stress R12 is not directly measured in the superpipe, but calculated
indirectly as R+12 = 1− y+/R+ − ∂U+/∂y+ (see appendix B for more details).

In figure 6 we present the distribution of the TKE production and dissipation versus
the meso-scaled distance from the wall, to complement the inner-scaled distance and
the outer-scaled distance presented in figure 1. The peak location of TKE production
in meso-scaling becomes smaller with increasing Reynolds number. This is not
surprising, as the peak location of the TKE production scales with inner scaling.

3.4. Pre-multiplied TKE production and dissipation
To better show the near-wall region, it is common to plot the wall-normal distance
on a logarithmic scale. For the convenience of depicting the area under the curve
(its integral) on semilogarithmic axes, the TKE production and dissipation have been
pre-multiplied by the wall-normal distance, because the derivative of a logarithmic
function has the following property:

d log10(y)=
1

ln(10)
1
y

dy. (3.4)

Thus the area under the pre-multiplied TKE production and dissipation curves on
semilogarithmic axes equals the integrals of TKE production and dissipation. For the
inner-scaled y+ and meso-scaled y/lm, the integrals of TKE production (or dissipation)
can be written, respectively, as∫ δ+

0
P+

k dy+ =
∫ log10(δ

+)

log10(y
+

1 )

[ln(10)]y+P+

k d(log10 y+), (3.5)
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FIGURE 6. TKE production and dissipation versus meso-scaled distance from the wall
y/lm. Data from DNS of channel flow Iwamoto et al. (2002) and Lee & Moser (2015).
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FIGURE 7. Pre-multiplied TKE production and dissipation versus distance from the wall
on semilogarithmic axes. (a) Distance from the wall is inner scaled y+. (b) Distance from
the wall is meso-scaled y/lm. The xticks on bottom denote values of y+ or y/lm and xticks
on top denote values of log10(y

+) or log10(y/lm).

∫ δ+

0
P+

k dy+ =
∫ log10(

√
δ+)

log10(y
+

1 /
√
δ+)

[ln(10)]y+P+

k d
(

log10

(
y+
√
δ+

))
, (3.6)

where y1 is the location of the first data point above the surface. As log(0) is
undefined, the first data point y1 should not be at the wall. In practice, the first data
point is at a small distance from the wall.

In figure 7(a) the pre-multiplied TKE production and dissipation are plotted versus
the inner-scaled distance from the wall y+ on semilogarithmic axes. For convenience,
the xticks on the bottom show values of y+ and the xticks on the top show values of
log10 y+. As in figure 1(a), the pre-multiplied TKE production also peaks within the
viscous buffer layer at y+ ≈ 12.
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FIGURE 8. (Colour online) Sketch approximating the integral of TKE production and
dissipation at high Reynolds number. Dashed curves approximate the area under the
pre-multiplied TKE production and dissipation curves of DNS data at Reτ = 5300 by Lee
& Moser (2015). The dot-dashed curves are approximations for a higher Reynolds number
at Reτ = 106. The trend will be similar as Reynolds number increases further. The vertical
dashed black line denotes the peak Reynolds shear stress location ym/lm ≈ 1.5, as shown
in figure 5.

Figure 7 shows that as Reynolds number increases the pre-multiplied TKE
production and dissipation approach a plateau away from the wall, before dropping
sharply towards the channel centre. It has been observed that at sufficiently high
Reynolds number, say Reτ > 20 000, a second bump appears away from the wall
in the pre-multiplied TKE production profile. For example, using a composite mean
velocity profile and the corresponding Reynolds shear stress profile proposed by Perry,
Marusic & Jones (2002), Marusic et al. (2010a) sketched the pre-multiplied TKE
production profiles y+P+

k for different Reynolds numbers. The value of the plateau
is approximately y+P+

k ≈ 2.5. Their sketch for Reτ = 106 shows a smaller second
bump away from the wall (Marusic et al. 2010a). The second bump is also observed
in the plot by Pirozzoli et al. (2016).

In figure 7(b), the pre-multiplied TKE production and dissipation are plotted versus
the meso-scaled distance from the wall y/lm on semilogarithmic axes. The advantage
of the meso-scaled length scale is shown in figure 8, in which the area under the
curves of the pre-multiplied TKE production and dissipation is approximated by a
rectangle.

In figure 8 the dashed rectangle approximates the integral of the TKE production
and dissipation at Reτ = 5300 of Lee & Moser (2015), and the dot-dashed rectangle
is an extrapolation for a higher Reynolds number at Reτ = 106. The height of the
rectangle is approximately ln(10)y+P+

k ≈ 5.7, which is consistent with the value used
in the sketch of Marusic et al. (2017), differing by a factor of ln(10).

The width of the rectangle in figure 8 can be approximated as log10(δ
+) (see the

xticks on the top of figure 8). Thus the area under the curves of the pre-multiplied
TKE production and dissipation can be approximated as 5.7 log10(δ

+) ≈ 2.5 ln(Reτ ).
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y1 ym δ

Inner scaling y+ 1
√
δ+ δ+

log10(y
+) 0

1
2

log10(δ
+) log10(δ

+)

Meso-scaling
y

√
δν/uτ

1
√
δ+

1
√
δ+

log10

(
y

√
δν/uτ

)
−

1
2

log10(δ
+) 0

1
2

log10(δ
+)

TABLE 1. Partition of boundary layer around the meso-layer. For convenience, the first
data point is taken as y+1 =1. (One can choose other values for y1. For example, if y+1 =0.1,
then log10(0.1)=−1, and log10(0.1/

√
δ+)≈−0.5 log10(δ

+)− 1. As δ+→∞, the constant
−1 becomes negligible. Furthermore, as y1 becomes smaller than 0.1, the pre-multiplied
TKE production and dissipation quickly approach 0.)

This approximation is consistent with the Reynolds number dependence in the global
integral identity equation

∫ δ+
0 P+

k dy+=
∫ δ+

0 E +k dy+≈U+b − 9.13 and the data for U+b ≈
2.5 ln(Reτ )+ 2.5, as shown in figure 2(b).

The vertical dashed line at y/lm= 1.5 in figure 8 indicates the peak Reynolds shear
stress location, as shown in figure 5. Figure 8 shows that the width of the rectangle
on both sides of ym is of the order of 0.5 log10(δ

+) (see the xticks on the top).
The equal partition of the integral of the TKE production and dissipation around

ym can also be explained using table 1. The ranges of boundary layer around ym, in
meso-scaling, are O((log10(δ

+))/2) on both sides. Assuming Ak for the height of the
rectangle that approximates the pre-multiplied TKE production or dissipation, the area
or the integral of TKE production and dissipation between the first data point y1 and
ym is O((log10(δ

+)Ak)/2), and the area between ym and δ is also O((log10(δ
+)Ak)/2).

Figure 8 and table 1 indicate that the integrals of the TKE production and
dissipation are equally partitioned around ym with a value of 1.25 ln(δ+). The
advantage and importance of meso-scaled length can be summarized simply: at
sufficiently high Reynolds number, the integrals of TKE production and dissipation
are equally partitioned around the peak Reynolds shear stress location ym.

The approximation of pre-multiplied TKE production or dissipation as a rectangle
is crude, but it is interesting that meso-scaled distance from the wall reveals that the
TKE production and dissipation seem to centre the integrals evenly across the meso-
layer. Next we will use DNS data to assess quantitatively the partition of the integral
of the TKE production and TKE dissipation around the peak Reynolds shear stress
location ym.

3.5. Partition of the TKE production and dissipation around ym

Using the TKE budget data from DNS by Abe et al. (2001), Iwamoto et al. (2002),
Lee & Moser (2015) and Pirozzoli et al. (2016), the integrals of TKE production from
0 to ym and from ym to δ are calculated and presented in figure 9(a). Also plotted is
the (U+b −9.13)/2 from (3.1). To better show the partition, the integrals are divided by
(U+b − 9.13) in figure 9(b), which clearly shows that at low Reynolds number, the
integral from 0 to ym is larger than that from ym to δ. For example, at Reτ = 100,
the value from 0 to ym (solid green square) is approximately 0.6, and the value from
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FIGURE 9. (Colour online) Partition of the integral of the TKE production about the
peak Reynolds shear stress location ym. (a) Integral of the TKE production from 0 to
ym and from ym to δ versus Reynolds number. (b) Integrals divided by (U+b − 9.13)
versus Reynolds number. The filled squares represent

∫ y+m
0 P+

k dy+ calculated from DNS of
turbulent channel flow by Abe et al. (2001), Iwamoto et al. (2002), Lee & Moser (2015).
The open squares represent

∫ δ+
y+m

P+

k dy+. Circles represent turbulent pipe flow data from
El Khoury et al. (2013).

ym to δ (open green square) is approximately 0.25. Note that they do not add up to
1 because

∫ δ+
0 (∂U+/∂y+)2 dy+ is larger than 9.13 at this low Reynolds number. The

dominance of the near-wall region at low Reynolds number is consistent with the
observation of Marusic et al. (2010a).

At sufficiently high Reynolds number, figure 9(b) shows that the integral of TKE
production indeed approaches an equal partition around ym, with

∫ y+m
0 P+

k dy+ ≈∫ δ+
y+m

P+

k dy+ ≈ 0.5(U+b − 9.13).
Partition of the integral of TKE dissipation is calculated from DNS data and

presented in figure 10. It can only be proven that the global integral of the TKE
production must equal the global integral of the TKE dissipation in turbulent channel
flows and turbulent pipe flows. Given the complicated roles of the transport terms in
the different layers, it is not known a priori that the partition of the integral of the
TKE dissipation will be the same as that of the TKE production. However, the DNS
data shown in figure 10 strongly suggest that the integral of the TKE dissipation
data is also equally partitioned around the peak Reynolds shear stress location ym at
sufficiently high Reynolds number,

∫ y+m
0 E +k dy+ ≈

∫ δ+
y+m

E +k dy+ ≈ 0.5(U+b − 9.13).

3.6. ‘Log layer’ in the integral profiles of TKE production and dissipation

Finally, we investigate the integral profiles of the TKE production and dissipation.
Denote the integral of TKE production and dissipation as

IPk(y)=
∫ y

0
Pk dy; IEk(y)=

∫ y

0
Ek dy. (3.7a,b)
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FIGURE 10. (Colour online) Partition of TKE production and dissipation around the peak
Reynolds shear stress location ym. Turbulent channel flows (squares), turbulent pipe flows
(circles), ZPG TBL (triangles). A value of a= 9.13 is used for turbulent channel and pipe
flows and a= 12 is used for ZPG TBL.

Using inner-scaled variables, the inner-scaled integral functions can be written as

I+Pk
(y)=

∫ y

0
Pk dy

u3
τ

; I+Ek
(y)=

∫ y

0
Ek dy

u3
τ

. (3.8a,b)

The integral profiles of TKE production and dissipation are calculated from the
DNS data of turbulent channel flow by Abe et al. (2001) and Lee & Moser (2015)
and presented in figure 11. Also plotted in the figure is the inner normalized mean
streamwise velocity U+ at Reτ = 5200 shifted downwards by 9.3 and the log-law
equation for U+, but with an additive constant of −4.3.

In the viscous sublayer and buffer layer, the integral of the TKE dissipation is
larger than the integral of the TKE production. For example, the integral of the TKE
production at y+ ≈ 5 (the end of the viscous sublayer) is

∫ 5
0 P+

k dy+ ≈ 0.06. The
integral of the TKE dissipation at the end of viscous sublayer is

∫ 5
0 E +k dy+ ≈ 0.8. As

shown in figure 1(a), in the viscous sublayer the TKE production term is small, and
the TKE dissipation is balanced by the viscous diffusion term.

Figure 12(a) shows the integral profiles of TKE production and dissipation for
turbulent pipe flows, and figure 12(b) shows the same profiles for ZPG TBL. To
facilitate comparison, the same logarithmic equation (1/0.4) ln(y+) − 4.3 is plotted
in all three figures. Notable features in figures 11 and 12 are as follows. (i) At
the channel or pipe centreline, the magnitude of the global integral of the TKE
production is the same as that of the dissipation. However, outside the boundary
layer of ZPG TBL, the magnitude of the global integral of TKE production is larger
than that of the dissipation, as shown in figure 12(b). (ii) Although all three types
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FIGURE 11. Integral profiles of the TKE production and dissipation versus y+. Data are
from DNS of turbulent channel flows by Iwamoto et al. (2002) and Lee & Moser (2015).
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FIGURE 12. Integral profiles of the TKE production and dissipation versus y+. (a)
Turbulent pipe flows at Reτ = 181, 550, 1000 by El Khoury et al. (2013). (b) ZPG TBL
at Reθ = 670, 2000, 3270 (Reτ = 252, 671, 1043) by Schlatter & Örlü (2010).

of turbulent wall-bounded flows exhibit a logarithmic-like layer at sufficiently high
Reynolds number, noticeable differences exist among the three flows, especially in
the wake region.

The logarithmic-like layer shown in figures 11 and 12 can be represented as

I+Pk
(y+)≈

1
κ

ln(y+)+CPk , (3.9)

−I+Ek
(y+)≈

1
κ

ln(y+)+CEk . (3.10)

The von Kármán ‘constant’ in the log law is approximately the same as the one in
the U+ profile. Discussions on the existence of the log layer and the ‘universality’ of
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the von Kármán constant can be found in the work of Nagib & Chauhan (2008). The
downward shift in the integral profiles of TKE production and dissipation is directly
related to the constant −9.13 in the global integral identity equation (3.1).

The logarithmic-like behaviour of the TKE production integral in turbulent channel
flow can be explained by (2.10):

I+Pk
(y+)=U+ −

{
y+U+ −

∫ y+

0 U+ dy+

δ+
+

∫ y+

0

(
∂U+

∂y+

)2

dy+
}
. (3.11)

Thus the integral of TKE production can be approximated by U+ with a downward
shift. It has been shown above that, at sufficiently high Reynolds number,∫ y+

0 (∂U+/∂y+)2 dy+ . 9.13. Moreover, outside the viscous sublayer and buffer

layer, it can be shown that (y+U+ −
∫ y+

0 U+ dy+)/δ+ is small. In other words,
the logarithmic-like behaviour of the TKE production is directly related to the
logarithmic-like behaviour of the mean velocity U+.

The logarithmic-like scaling for the global integrals of the TKE production and
dissipation, equation (3.1), is also directly related to the logarithmic-like behaviour of
the integral profiles of TKE production and dissipation, equations (3.9) and (3.10). At
sufficiently high Reynolds number, equations (3.9) and (3.10) indicate that∫ δ+

0
P+

k dy+ ≈
1
κ

ln(δ+)+CPk =O(ln(δ+)), (3.12)∫ δ+

0
−E +k dy+ ≈

1
κ

ln(δ+)+CEk =O(ln(δ+)). (3.13)

It is known that, at sufficiently high Reynolds number, ym=O(δν/uτ ) or y+m =O(
√
δ+).

From (3.9) and (3.10), the scaling for the integral of TKE production and dissipation
from wall to ym can be estimated as∫ y+m

0
P+

k dy+ ≈
1
κ

ln(
√
δ+)+CPk =O(0.5 ln(δ+))≈ 0.5

∫ δ+

0
P+

k dy+, (3.14)∫ y+m

0
−E +k dy+ ≈

1
κ

ln(
√
δ+)+CEk =O(0.5 ln(δ+))≈ 0.5

∫ δ+

0
−E +k dy+. (3.15)

Hence, the equal partition of TKE production around ym is also directly related to the
logarithmic-like behaviour of the integral profiles of TKE production and dissipation,
equation (3.9).

The noticeable difference among the integrals of the TKE production and dissipation
in channel flows, pipe flows and ZPG TBL is similar to the differences observed
in the low-order statistics on different types of turbulent wall-bounded flows, in
particular within the wake region, as discussed by Jiménez et al. (2009), Mathis
et al. (2009b), Monty et al. (2009) and Ng et al. (2011). The differences between
the internal flow (channel or pipe flows) and ZPG TBL are traced by Jiménez et al.
(2009) to an excess of production of the streamwise turbulent energy in the outer
part of the boundary layer.
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4. Discussion
The integral properties of the TKE production and dissipation revealed in the

present work may provide quantitative measures of the inner and outer interactions
and the emergence of the second peak in the streamwise variance. For example, it has
been reported by Marusic et al. (2017) that a second peak in the streamwise variance
appears when Reτ ' 15 000–20 000, which roughly corresponds to two decades
of scale separation on both sides of ym in figure 8, lm/lν ∼ 100 and δ/lm ∼ 100.
Furthermore, the reported location of the second 〈uu〉 peak scales as the meso-length
scale O(lm) as shown in Mathis, Hutchins & Marusic (2009a), Ng et al. (2011), and
Vincenti et al. (2013), not as the outer scale δ.

Interestingly, Tsuji (1999) has found that the peak position of the dissipation
spectrum in turbulent boundary layers scales the same as the peak Reynolds shear
stress location. In other words, both peak locations scale not with inner length scale
lν , nor with outer length scale lo, but with the meso-length scale lm.

The integrals of TKE production and dissipation exhibit a logarithmic-like layer in
turbulent wall-bounded flows, similar to that for the mean streamwise velocity U+. In
the viscous sublayer, the mean streamwise velocity grows almost linearly, U+ ≈ y+.
In contrast, the integrals of TKE production and dissipation grow much more slowly
in the viscous sublayer and buffer layer. As a result, the integral of TKE production
and dissipation approaches an equal partition at relatively moderate Reynolds numbers
of Reτ ≈ 1000–2000 (see figure 9). Wei et al. (2005) have shown that the velocity
increment 1U would establish an equal partition around the peak Reynolds shear
stress location at much higher Reynolds number. This is because U+c or U+

∞
grows

nearly logarithmically with Reynolds number, so the velocity increment within the
viscous sublayer and buffer layer of 1U+ ≈ 12 becomes negligible only at very high
Reynolds number. The partition of velocity increment reflects the distribution of mean
vorticity within the boundary layer, which is important in understanding the structure
and underlying physics in turbulent wall-bounded flows.

5. Conclusions
Direct numerical simulation and high resolution experimental data of turbulent

wall-bounded flows (channel, pipe, ZPG TBL) have been used to investigate the
integral properties of the turbulent-kinetic-energy production and dissipation. We first
verified the RD identity for the global integral of the TKE production for turbulent
channel flows, turbulent pipe flows and ZPG TBL. For channel flows, the global
integral identity for the TKE production is

∫ δ+
0 P+

k dy+=U+b −
∫ δ+

0 (∂U+/∂y+)2 dy+. At

low Reynolds number, the global integral
∫ δ+

0 (∂U+/∂y+)2 dy+ is larger than the global

integral of the TKE production. As Reynolds number increases,
∫ δ+

0 (∂U+/∂y+)2 dy+
decreases to a constant value of 9.13 for turbulent channel flows, and the global
integral of the TKE production can be approximated as

∫ δ+
0 P+

k dy+ ≈ U+b − 9.13
for turbulent channel flows. It is observed that at sufficiently high Reynolds number,
both U+b and the global integral of TKE production and dissipation can be well
approximated by a logarithmic function.

The partition of the TKE production and dissipation can be better shown if the
pre-multiplied TKE production and dissipation are plotted versus meso-scaled distance
from the wall y/lm on semilogarithmic axes. At sufficiently high Reynolds number, it
is found that the integrals of TKE production and dissipation are equally partitioned
around the peak Reynolds shear stress location ym. This equal partition underlines the
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important role of the meso-length scale lm in the dynamics of turbulent wall-bounded
flows.

At sufficiently high Reynolds number, the integral profiles of the TKE production
and dissipation are found to exhibit a logarithmic-like layer similar to that of the mean
streamwise velocity U+. The logarithmic-like behaviour of the integral profiles of TKE
production and dissipation, the equal partition of the integrals around ym, and the
logarithmic-like scaling for the global integrals of the TKE production and dissipation
are intimately related.
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Appendix A. Derivation of the global identity for TBL

The mean momentum balance (MMB) equation for two-dimensional incompressible
turbulent boundary layer flow reads

0=
[

U
∂V
dy
− V

∂U
dy

]
+ ν

∂2U
∂y2
+
∂R12

∂y
−

1
ρ

dP
dx
. (A 1)

Note that the mean continuity equation is used to replace ∂U/∂x by −∂V/∂y, so all
the derivatives are local. The corresponding boundary conditions are

y= 0 (wall): U = 0, V = 0, R12 = 0, ν
∂U
∂y
= u2

τ . (A 2a−d)

y= δ (boundary layer edge): U =Ue, V = Ve, R12 = 0. (A 3a−c)

Integrating the MMB equation (A 1) in the wall-normal direction and applying
boundary conditions produces a relation for the total shear stress as

ν
∂U
∂y
+ R12 = u2

τ −

∫ y

0

[
U
∂V
dy
− V

∂U
dy

]
dy+

1
ρ

dP
dx

y. (A 4)

Step one in obtaining integral of TKE production is to multiply the MMB
equation (A 1) by a weight function U:

0=
[

U
∂V
dy
− V

∂U
dy

]
U + ν

∂2U
∂y2

U +
∂R12

∂y
U −

1
ρ

dP
dx

U, (A 5)

then integration of the weighted equation (A 5) in the wall-normal direction yields

0 =
∫ y

0

[
U
∂V
dy
− V

∂U
dy

]
U dy+

{
ν
∂U
∂y

U − ν
∫ y

0

(
∂U
∂y

)2

dy

}

+

{
R12U −

∫ y

0
R12

∂U
∂y

dy
}
−

1
ρ

dP
dx

∫ y

0
U dy. (A 6)
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Note that integration by parts is applied to the second and third terms in (A 5).
Substituting the relation for the total shear stress in (A 4), the integral of TKE
production can be expressed as∫ y

0
Pk dy = u2

τU

+

{∫ y

0
U
[

U
∂V
dy
− V

∂U
dy

]
dy−U

∫ y

0

[
U
∂V
dy
− V

∂U
dy

]
dy
}

+
1
ρ

dP
dx

{
yU −

∫ y

0
U dy

}
− ν

∫ y

0

(
∂U
∂y

)2

dy, (A 7)

and the global integral identity for TKE production can be expressed as

∫ δ

0
Pk dy = u2

τUe

+

{∫ δ

0
U
[

U
∂V
dy
− V

∂U
dy

]
dy−Ue

∫ δ

0

[
U
∂V
dy
− V

∂U
dy

]
dy
}

+
1
ρ

dP
dx

{
δUe −

∫ δ

0
U dy

}
− ν

∫ δ

0

(
∂U
∂y

)2

dy. (A 8)

The integral of TKE production in inner scaling becomes

∫ y+

0
P+

k dy+ = U+ +

{∫ y+

0
U+
[

U+
∂V+

dy+
− V+

∂U+

dy+

]
dy+

− U+
∫ y+

0

[
U+

∂V+

dy+
− V+

∂U+

dy+

]
dy+
}

+

[
ν

u3
τ

1
ρ

dP
dx

]{
y+U+ −

∫ y+

0
U+ dy+

}
−

∫ y+

0

(
∂U+

∂y+

)2

dy+, (A 9)

and the global integral of TKE production in inner scaling becomes

∫ δ+

0
P+

k dy+ = U+e +

{∫ δ+

0
U+
[

U+
∂V+

dy+
− V+

∂U+

dy+

]
dy+

− U+e

∫ δ+

0

[
U+

∂V+

dy+
− V+

∂U+

dy+

]
dy+
}

+

[
ν

u3
τ

1
ρ

dP
dx

]{
δ+U+e −

∫ δ+

0
U+ dy+

}
−

∫ δ+

0

(
∂U+

∂y+

)2

dy+. (A 10)

In ZPG TBL, the mean pressure gradient is zero, so the terms involved dP/dx will
be zero in (A 9) and (A 10).
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Appendix B. Derivation of the global identity for turbulent pipe flows
The mean momentum balance equation for fully developed turbulent pipe flows

reads

0=
2u2

τ

R
+

1
r
∂

∂r

(
νr
∂U
∂r

)
+

1
r
∂

∂r
(rR12). (B 1)

Note that (2u2
τ/R) comes from the mean pressure gradient −(1/ρ)(dP/dx) (see Pope

2001). The corresponding boundary conditions are

r= 0 (centre): U =Uc, R12 = 0, ν
∂U
∂r
= 0; (B 2a−c)

r= R (wall): U = 0, R12 = 0, ν
∂U
∂r
=−u2

τ . (B 3a−c)

Integration of the MMB equation (B 1) along the r direction,
∫ r

0 (MMB)2πr dr, yields
a relation for the total shear stress as

ν
∂U
∂r
+ R12 =−

u2
τ

R
r. (B 4)

Note that in the cylindrical coordinate system r starts from the centreline. As a result,
both the viscous shear stress ν∂U/∂r and the Reynolds shear stress R12 are negative.
This equation is used to calculate R12 in the superpipe using the measured U data.

Step one in obtaining the integral of TKE production is to multiply the MMB
equation (B 1) by a weight function U

0=
2u2

τ

R
U +

1
r
∂

∂r

(
νr
∂U
∂r

)
U +

1
r
∂

∂r
(rR12)U. (B 5)

In step two, integration of the weighted equation (B 5),
∫ r

0 (MMB)U2πr dr, along the
r direction yields

0=
2u2

τ

R

∫ r

0
rU dr+

{
νr
∂U
∂r

U − ν
∫ r

0
r
(
∂U
∂r

)2

dr

}
+

{
rR12U −

∫ r

0
rR12

∂U
∂r

dr
}
.

(B 6)
Substituting the relation for the total shear stress in (B 4), the integral of TKE
production can be rearranged as∫ r

0
rR12

∂U
∂r

dr=
u2
τ

R

{
2
∫ r

0
rU dr− r2U

}
− ν

∫ r

0
r
(
∂U
∂r

)2

dr. (B 7)

Setting r = R in (B 7) yields the global integral identity of TKE production for pipe
flows ∫ R

0
rR12

∂U
∂r

dr= u2
τUbR− ν

∫ R

0
r
(
∂U
∂r

)2

dr. (B 8)

The integral equation (B 7) in inner scaling can be expressed as

∫ r+

0
r+R+12

∂U+

∂r+
dr+ =

(
2
∫ r+

0
r+U+ dr+ − r+2U+

)
R+

−

∫ r+

0
r+
(
∂U+

∂r+

)2

dr+, (B 9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

57
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.578


Integral properties of TKE production and dissipation 471

and the inner-scaled global integral identity for TKE production in pipe flow can be
expressed as ∫ R+

0
r+R+12

∂U+

∂r+
dr+ =U+b R+ −

∫ R+

0
r+
(
∂U+

∂r+

)2

dr+. (B 10)

For the convenience of comparison with channel flow and TBL flow, pipe flow data
are often presented versus distance from the pipe surface y= R− r. Hence, ∂U/∂y=
−∂U/∂r. From (B 4), it can be easily shown that the Reynolds shear stress in turbulent
pipe flows can be expressed as

R12 =−

(
u2
τ −

u2
τ

R
y− ν

∂U
∂y

)
. (B 11)

For turbulent channel flow, the Reynolds shear stress can be obtained from (2.5) as

R12 = u2
τ −

u2
τ

δ
y− ν

∂U
∂y
. (B 12)

Thus the Reynolds shear stress in turbulent pipe flow and turbulent channel flow have
the same function form, but opposite sign, due to the designation of the positive wall-
normal direction.
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