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Abstract In this short paper, we combine the representability theorem introduced in [Porta and Yu,

Representability theorem in derived analytic geometry, preprint, 2017, arXiv:1704.01683; Porta and Yu,
Derived Hom spaces in rigid analytic geometry, preprint, 2018, arXiv:1801.07730] with the theory of
derived formal models introduced in [António, p-adic derived formal geometry and derived Raynaud

localization theorem, preprint, 2018, arXiv:1805.03302] to prove the existence representability of the
derived Hilbert space RHilb(X) for a separated k-analytic space X . Such representability results rely on
a localization theorem stating that if X is a quasi-compact and quasi-separated formal scheme, then the

∞-category Coh−(Xrig) of almost perfect complexes over the generic fiber can be realized as a Verdier
quotient of the∞-category Coh−(X). Along the way, we prove several results concerning the∞-categories
of formal models for almost perfect modules on derived k-analytic spaces.
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1. Introduction

Let k be a non-archimedean field equipped with a non-trivial valuation of rank 1.

We let k◦ denote its ring of integers and m an ideal of definition. Given a separated

k-analytic space X , we are concerned with the existence of the derived moduli space

RHilb(X), which parametrizes flat families of closed subschemes of X . The truncation of

RHilb(X) coincides with the classical Hilbert scheme functor, Hilb(X), which has been

shown to be representable by a k-analytic space in [7]. On the other hand, in algebraic

geometry, the representability of the derived Hilbert scheme is an easy consequence of

the Artin–Lurie representability theorem. In this paper, we combine the analytic version

of Lurie’s representability obtained by T. Y. Yu and the second author in [16] together

with a theory of derived formal models developed by the first author in [2]. The only

missing step is to establish the existence of the cotangent complex.

Indeed, the techniques introduced in [17] allows us to prove the existence of the
cotangent complex at points x : S→ RHilb(X) corresponding to families of closed

subschemes j : Z ↪→ S× X , which are of finite presentation in the derived sense. However,

not every point of RHilb(X) satisfies this condition: typically, we are concerned with

families which are almost of finite presentation. The difference between the two situations

is governed by the relative analytic cotangent complex Lan
Z/S×X : Z is (almost) of finite

presentation if Lan
Z/S×X is (almost) perfect. We can explain the main difficulty as follows:

if p : Z → S denotes the projection to S, then the cotangent complex of RHilb(X) at

x : S→ RHilb(X) is computed by p+(Lan
Z/S×X ). Here, p+ is a (partial) left adjoint for the

functor p∗, which has been introduced in the k-analytic setting in [17]. However, in loc. cit.

the functor p+ has only been defined on perfect complexes, rather than on almost perfect

complexes. From this point of view, the main contribution of this paper is to provide an

extension of the construction p+ to almost perfect complexes. Our construction relies

heavily on the existence results for formal models of derived k-analytic spaces obtained

by the first author in [2]. Along the way, we establish three results that we deem to be

of independent interest, and which we briefly summarize below.

Let X be a derived formal k◦-scheme topologically almost of finite presentation. One

of the main constructions of [1–3] is the generic fiber Xrig, which is a derived k-analytic

space. The formalism introduced in loc. cit. provides as well an exact functor

(−)rig : Coh−(X) −→ Coh−(Xrig), (1.1)

where Coh− denotes the stable ∞-category of almost perfect complexes on X and on

Xrig, respectively. When X is underived, this functor has been considered at length in [8],

where in particular it has been shown to be essentially surjective, thereby extending the

classical theory of formal models for coherent sheaves on k-analytic spaces. In this paper,

we extend this result to the case where X is derived, which is a key technical step in our

construction of the plus pushforward. In order to do so, we will establish the following

descent statement, which is an extension of [8, Theorem 7.3].

Theorem 1. The functor Coh−loc : dAnk → Catst
∞, which associates with every derived

formal derived scheme

X ∈ dfDM 7→ Coh−(Xrig) ∈ Catst
∞,

satisfies Zariski hyperdescent.
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We refer the reader to Theorem 3.6 for the precise statement. We obtain as a

consequence of Theorem 1 above the following statement, concerning the properties of

∞-categories of formal models for almost perfect complexes on X ∈ dAnk .

Theorem 2 (Theorem 3.21). Let X ∈ dAnk be a derived k-analytic space and let F ∈
Coh−(X) be a bounded below almost perfect complex on X . For any derived formal model

X of X , there exist G ∈ Coh−(X) and an equivalence Grig
' F . Furthermore, the full

subcategory of Coh−(X)×Coh−(X) Coh−(X)/F spanned by formal models of F is filtered.

Theorem 2 is another key technical ingredient in the proof of the existence of a plus

pushforward construction. The third auxiliary result we need is a refinement of the

existence theorem for formal models for morphisms of derived analytic spaces proven

in [2]. It can be stated as follows.

Theorem 3 (Theorem 4.1). Let f : X → Y be a flat map between derived k-analytic spaces.

Then there are formal models X and Y for X and Y , respectively, and a flat map f : X→ Y

whose generic fiber is equivalent to f .

The classical analogue of Theorem 3 was proven by Bosch and Lutkëbohmert in [6].

The proof of this theorem is not entirely obvious: indeed the algorithm provided in [2]

proceeds by induction on the Postnikov tower of both X and Y , and at each step uses

[8, Theorem 7.3] to choose appropriately formal models for πi (Oalg
X ) and πi (Oalg

Y ). In the

current situation, however, the flatness requirement on f makes it impossible to freely

choose a formal model for πi (Oalg
X ). We circumvent the problem by proving a certain

lifting property for morphisms of almost perfect complexes.

Theorem 4 (Corollary 3.22). Let X ∈ dAnk be a derived k-analytic space and let f : F→G
be a morphism in Coh−(X). Let X denote a given formal model for X . Suppose,

furthermore, that we are given formal models F̃ , G̃ ∈ Coh−(X) for F and G, respectively.

Then, there exists a non-zero element t ∈ m such that the map tn f admits a lift

f̃ : F̃ → G̃, in the ∞-category Coh−(X).
Finally, the techniques of the current text allow us to prove the following generalization

of [17, Theorem 8.6].

Theorem 5 (Theorem 6.4). Let S be a rigid k-analytic space. Let X, Y be rigid k-analytic

spaces over S. Assume that X is proper and flat over S and that Y is separated over S.

Then the ∞-functor MapS(X, Y ) is representable by a derived k-analytic space separated

over S.

Notation and conventions. In this paper, we freely use the language of∞-categories.

Although the discussion is often independent of the chosen model for ∞-categories,

whenever needed we identify them with quasi-categories and refer to [10] for the necessary

foundational material.

The notations S and Cat∞ are reserved to denote the ∞-categories of spaces and

of ∞-categories, respectively. If C ∈ Cat∞, we denote by C' the maximal ∞-groupoid

contained in C. We let Catst
∞ denote the ∞-category of stable ∞-categories with
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exact functors between them. We also let PrL denote the ∞-category of presentable

∞-categories with left adjoints between them. Similarly, we let PrL
st denote the

∞-categories of stably presentable∞-categories with left adjoints between them. Finally,

we set

Catst,⊗
∞
:= CAlg(Catst

∞), PrL,⊗
st := CAlg(PrL

st).

Given an ∞-category C, we denote by PSh(C) the ∞-category of S-valued presheaves.

We follow the conventions introduced in [15, §2.4] for ∞-categories of sheaves on an
∞-site.

For a field k, we reserve the notation CAlgk for the ∞-category of simplicial

commutative rings over k. We often refer to objects in CAlgk simply as derived

commutative rings. We denote its opposite by dAffk , and we refer to it as the∞-category
of derived affine schemes. We say that a derived ring A ∈ CAlgk is almost of finite

presentation if π0(A) is of finite presentation over k and πi (A) is a finitely presented

π0(A)-module.1 We denote by dAffafp
k the full subcategory of dAffk spanned by derived

affine schemes Spec(A) such that A is almost of finite presentation. When k is either a

non-archimedean field equipped with a non-trivial valuation or is the field of complex

numbers, we let Ank denote the category of analytic spaces over k. We denote by Sp(k)
the analytic space associated with k.

2. Preliminaries on derived formal and derived non-archimedean geometries

Let k denote a non-archimedean field equipped with a rank 1 valuation. We let k◦ = {x ∈
k : |x | 6 1} denote its ring of integers. We denote by m an ideal of definition generated

by a specified pseudo-uniformizer t ∈ m.

Notation 2.1.

(1) Let R be a discrete commutative ring. Let Tdisc(R) denote the full subcategory of

R-schemes spanned by affine spaces An
R . We say that a morphism in Tdisc(R) is

admissible if it is an isomorphism. We endow Tdisc(R) with the trivial Grothendieck

topology.

(2) Let Tadic(k◦) denote the full subcategory of k◦-schemes spanned by formal schemes

that are formally smooth and topologically finitely generated over k◦. A morphism

in Tadic(k◦) is said to be admissible if it is formally étale. We equip the category
Tadic(k◦) with the formally étale topology, τ ét.

(3) Denote by Tan(k) the category of smooth k-analytic spaces. A morphism in Tan(k)
is said to be admissible if it is étale. We endow Tan(k) with the étale topology, τ ét.

In what follows, we will let T denote either one of the categories introduced above. We

let τ denote the corresponding Grothendieck topology.

Definition 2.2. Let X be an ∞-topos. A T -structure on X is a functor O : T → X ,

which commutes with finite products, pullbacks along admissible morphisms and takes

1Equivalently, A is almost of finite presentation if π0(A) is of finite presentation and the cotangent
complex LA/k is an almost perfect complex over A.
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τ -coverings in effective epimorphisms. We denote by StrT (X ) the full subcategory of

FunT (T ,X ) spanned by T -structures. A T -structured ∞-topos is a pair (X ,O), where

X is an ∞-topos and O ∈ StrT (X ).

We can assemble T -structured ∞-topoi into an ∞-category denoted by T opR (T ). We

refer to [12, Definition 1.4.8] for the precise construction.

Definition 2.3. Let X be an ∞-topos. A morphism of T -structures α : O→ O′ is said to

be local if for every admissible morphism f : U → V in T the diagram

O(U ) O(V )

O′(U ) O′(V )

O( f )

αU αV

O′( f )

is a pullback square in X . We denote by Strloc
T (X ) the (non-full) subcategory of StrT (X )

spanned by local structures and local morphisms between these.

Example 2.4.

(1) Let R be a discrete commutative ring. A Tdisc(R)-structure on an ∞-topos X is
simply a product preserving functor O : Tdisc(R)→ X . When X = S is the∞-topos

of spaces, we can therefore use [10, Proposition 5.5.9.2] to identify the ∞-category

StrTdisc(R)(X ) with the underlying ∞-category CAlgR of the model category of

simplicial commutative R-algebras. It follows that StrTdisc(R)(X ) is canonically

identified with the ∞-category of sheaves on X with values in CAlgR . For this

reason, we write CAlgR(X ) rather than Strloc
Tdisc(R)

(X ).
(2) Let X denote a formal scheme over k◦ complete along t ∈ k◦. Denote by Xfét the

small formal étale site on X and denote by X := Shv(Xfét, τ ét)∧ the hypercompletion

of the∞-topos of formally étale sheaves on X. We define a Tadic(k◦)-structure on X
as the functor that sends U ∈ Xfét to the sheaf O(U ) ∈ X defined by the association

V ∈ Xfét 7→ HomfSchk◦ (V,U ) ∈ S.

In this case, O(A1
k◦) corresponds to the sheaf of functions on X whose support is

contained in the (t)-locus of X. To simplify the notation, we write fCAlgk◦(X )
rather than Strloc

Tadic(k◦)
(X ).

(3) Let X be a k-analytic space and denote by X ét the associated small étale site on X .

Let X := Shv(X ét, τét)
∧ denote the hypercompletion of the∞-topos of étale sheaves

on X . We can attach to X a Tan(k)-structure on X as follows: given U ∈ Tan(k), we

define the sheaf O(U ) ∈ X by

X ét 3 V 7→ HomAnk (V,U ) ∈ S.

As in the previous case, we can canonically identify O(A1
k) with the usual sheaf of

analytic functions on X . We write AnRingk(X ) rather than Strloc
Tan(k)

(X ).
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Construction 2.5. Let X be an ∞-topos. We can relate the ∞-categories CAlgk◦(X ),
CAlgk(X ), fCAlgk◦(X ) and AnRingk(X ) as follows. Consider the following functors:

(1) The functor

−⊗k◦ k : Tdisc(k◦) −→ Tdisc(k)

induced by base change along the map k◦→ k.

(2) The functor

(−)∧t : Tdisc(k◦) −→ Tadic(k◦)

induced by the (t)-completion.

(3) The functor

(−)an
: Tdisc(k) −→ Tan(k)

induced by the analytification.

(4) The functor

(−)rig : Tadic(k◦) −→ Tan(k)

induced by Raynaud’s generic fiber construction (cf. [4, Theorem 8.4.3]).

These functors respect the classes of admissible morphisms and are continuous morphisms

of sites. It follows that precomposition with them induce well-defined functors

StrTdisc(k)(X ) −→ StrTdisc(k◦)(X ), (−)alg
: StrTadic(k◦)(X ) −→ StrTdisc(k◦)(X )

(−)+ : StrTan(k)(X ) −→ StrTadic(k◦)(X ), (−)alg
: StrTan(k)(X ) −→ StrTdisc(k)(X ).

The first functor simply forgets the k-algebra structure to a k◦-algebra one via the

natural map k◦→ k. We refer to the second and fourth functors as the underlying

algebra functors. The third functor is an analogue of taking the subring of power-bounded

elements in rigid geometry.

Using the underlying algebra functors introduced in the above construction, we can

at last introduce the definitions of derived formal scheme and derived k-analytic space.
They are analogous to each other.

Definition 2.6. A Tadic(k◦)-structured∞-topos X := (X ,OX) is said to be a derived formal

Deligne–Mumford k◦-stack if there exists a collection of objects {Ui }i∈I in X such that∐
i∈I Ui → 1X is an effective epimorphism and the following conditions are met:

(1) For every i ∈ I , the Tadic(k◦)-structured∞-topos (X/Ui , π0(OX|Ui )) is equivalent to

the Tadic(k◦)-structured ∞-topos arising from an affine formal k◦-scheme via the

construction given in Example 2.4.

(2) For each i ∈ I and each integer n > 0, the sheaf πn(Oalg
X |Ui ) is a quasi-coherent sheaf

over (X/Ui , π0(OX|Ui )).

We say that X = (X ,OX) is a formal derived k◦-scheme if it is a derived formal

Deligne–Mumford stack and furthermore its 0-truncation t0(X) := (X , π0(OX)) is

equivalent to the Tadic(k◦)-structured ∞-topos associated with a formal scheme via

Example 2.4.
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Definition 2.7. A Tan(k)-structured ∞-topos X := (X ,OX ) is said to be a derived

k-analytic space if X is hypercomplete and there exists a collection of objects {Ui }i∈I
in X such that

∐
i∈I Ui → 1X is an effective epimorphism and the following conditions

are met:

(1) For each i ∈ I , the Tan(k)-structured ∞-topos (X/Ui , π0(OX |Ui )) is equivalent to

the Tan(k)-structured ∞-topos arising from an ordinary k-analytic space via the

construction given in Example 2.4.

(2) For each i ∈ I and each integer n > 0, the sheaf πn(Oalg
X |Ui ) is a coherent sheaf on

(X/Ui ,OX |Ui ).

We shall denote by t0(X) := (X , π0(OX )) the 0-truncation of X . By construction, the

latter is always isomorphic to an ordinary k-analytic space.

Theorem 2.8 (cf. [2, 11, 14]). Derived formal Deligne–Mumford k◦-stacks and derived

k-analytic spaces assemble into ∞-categories, denoted respectively by dfDMk◦ and dAnk ,

which enjoy the following properties:

(1) Fiber products exist in both dfDMk◦ and dAnk .

(2) The constructions given in Example 2.4 induce full faithful embeddings from the
categories of ordinary formal Deligne–Mumford k◦-stacks fDMk◦ and of ordinary

k-analytic spaces Ank in dfDMk◦ and dAnk , respectively.

Following [9, §8.1], we let CAlgad
k◦ denote the ∞-category of simplicial commutative

rings equipped with an adic topology on their 0th truncation. Morphisms are morphisms

of simplicial commutative rings that are furthermore continuous for the adic topologies

on their 0th truncations. We set

CAlgad
k◦ := CAlgad

k◦/,

where we regard k◦ equipped with its m-adic topology. Thanks to [2, Remark 3.1.4], the

underlying algebra functor (−)alg
: fCAlgk◦(X )→ CAlgk◦(X ) factors through CAlgad

k◦(X ).
We denote by (−)ad the resulting functor:

(−)ad
: fCAlgk◦(X ) −→ CAlgad

k◦(X ).

Definition 2.9. Let A ∈ fCAlgk◦(X ). We say that A is topologically almost of finite

presentation over k◦ if the underlying sheaf of k◦-adic algebras Aad is (t)-complete,

π0(Aalg) is a sheaf of topologically finitely presented k◦-adic algebras and for each i > 0,
πi (A) is finitely generated as π0(A)-module.

We say that a derived formal Deligne–Mumford stack X := (X ,OX) is topologically

almost of finite presentation over k◦ if its underlying ∞-topos is coherent (cf. [13, §3])

and OX ∈ fCAlgk◦(X ) is topologically almost of finite presentation over k◦. We denote by

dfDMtafp (respectively, dfSchtafp) the full subcategory of dfDMk◦ spanned by those derived

formal Deligne–Mumford stacks X that are topologically almost of finite presentation over

k◦ (respectively and whose truncation t0(X) is equivalent to a formal k◦-scheme).
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The transformation of pregeometries

(−)rig : Tadic(k◦) −→ Tan(k)

induced by Raynaud’s generic fiber functor induces T opR (Tan(k))→ T opR (Tadic(k◦)).
[12, Theorem 2.1.1] provides a right adjoint to this last functor, which we still denote as

(−)rig : T opR (Tadic(k◦)) −→ T opR (Tan(k)).

We refer to this functor as the derived generic fiber functor or as the derived rigidification

functor.

Theorem 2.10 [2, Corollary 4.1.4, Proposition 4.1.6]. The functor (−)rig : T opR (Tadic(k◦))
→ T opR (Tan(k)) enjoys the following properties:

(1) It restricts to a functor

(−)rig : dfDMtafp
−→ dAnk .

(2) The restriction of (−)rig : dfDMtafp
→ dAnk to the full subcategory fSchtafp

k◦ is

canonically equivalent to Raynaud’s generic fiber functor.

(3) Every derived analytic space X ∈ dAnk whose truncation is an ordinary k-analytic

space2 lies in the essential image of the functor (−)rig.

Fix a derived formal Deligne–Mumford stack X := (X ,OX) and a derived k-analytic

space Y := (Y,OY ). We set

OX-Mod := Oalg
X -Mod, OY -Mod := Oalg

Y -Mod.

We refer to OX-Mod as the stable ∞-category of OX-modules. Similarly, we refer to

OY -Mod as the stable ∞-category of OY -modules. The derived generic fiber functor

induces a functor

(−)rig : OX-Mod −→ OXrig -Mod.

Definition 2.11. Let X ∈ dfDMk◦ be a derived k◦-adic Deligne–Mumford stack and let X ∈
dAnk be a derived k-analytic space. The∞-category Coh−(X) (respectively, Coh−(X)) of

almost perfect complexes on X (respectively, on X) is the full subcategory of OX-Mod
(respectively, of OX -Mod) spanned by those OX-modules (respectively, OX -modules) F
such that πi (F) is a coherent sheaf on t0(X) (respectively, on t0(X)) for every i ∈ Z and

πi (F) ' 0 for i � 0.

For later use, let us record the following result.

Proposition 2.12 ([9] & [17, Theorem 3.4]). Let X be a derived affine k◦-adic scheme. Let

A := 0(X;Oalg
X ). Then the functor 0(X;−) restricts to

Coh−(X) −→ Coh−(A),

2The ∞-category dAnk also contains k-analytic Deligne–Mumford stacks.
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and furthermore this is an equivalence. Similarly, if X is a derived k-affinoid space,3 and

B := 0(X;Oalg
X ), then 0(X;−) restricts to

Coh−(X) −→ Coh−(B),

and furthermore this is an equivalence.

Remark 2.13. Let X denote a derived affine k◦-adic scheme topologically almost of finite

presentation. Let X := Xrig and write

A := 0(X,Oalg
X ), B := 0(X,Oalg

X ).

There is a natural map A→ B, and Proposition 2.12 implies that the diagram

Coh−(X) Coh−(A)

Coh−(X) Coh−(B)

0

(−)rig −⊗A B

0

commutes. On the other hand, [2, Proposition 3.1.12] implies that the natural map A⊗k◦

k → B is an equivalence. In particular, A→ B is a Zariski open immersion and hence

[8, Theorem 2.12] implies that the functor (−)rig above is essentially surjective.

To complete this short review, we briefly discuss the notion of the k◦-adic and k-analytic

cotangent complexes. The two theories are parallel, and for the sake of brevity, we limit

ourselves to the first one. We refer to the introduction of [16] for a more thorough review

of the k-analytic theory.

In [2, §3.4], it was constructed a functor

�∞ad : OX-Mod −→ fCAlgk◦(X )/OX
,

which we refer to as the k◦-adic split square-zero extension functor. Given F ∈ OX-Mod,

we often write OX⊕F instead of �∞ad(F).

Remark 2.14. Although the ∞-category OX-Mod is not sensitive to the Tadic(k◦)-
structure on OX, the functor �∞ad depends on it in an essential way.

Definition 2.15. The functor of k◦-adic derivations is the functor

Derad
k◦(X;−) : OX-Mod −→ S

defined by

Derad
k◦(X;F) := MapfCAlgk◦ (X )/OX

(OX,OX⊕F).

For formal reasons, the functor Derad
k◦(X;−) is corepresentable by an object Lad

X ∈

OX-Mod. We refer to it as the k◦-adic cotangent complex of X. The following theorem

summarizes its main properties.

3By definition, X is a derived k-affinoid space if t0(X) is a k-affinoid space.
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Theorem 2.16 [2, Proposition 3.4.4, Corollary 4.3.5, Proposition 3.5.8]. Let X := (X ,OX)

be a derived k◦-adic Deligne–Mumford stack. Let t6nX := (X , τ6nOX) be the nth

truncation of X. Then

(1) the k◦-adic cotangent complex Lad
X belongs to Coh−(X);

(2) in Coh−(Xrig), there is a canonical equivalence

(Lad
X )

rig
' Lan

Xrig ,

where Lan
Xrig denotes the analytic cotangent complex of the derived k-analytic space

Xrig;

(3) the algebraic derivation classifying canonical map (X, τ6n+1OX)→ (X, τ6nOX) can
be canonically lifted to a k◦-adic derivation

Lad
t6nX
−→ πn+1(OX)[n+ 2].

3. Formal models for almost perfect complexes

3.1. Formal descent statements

We fix a pseudo-uniformizer t for m. We start by recalling the notion of m-nilpotent

almost perfect complexes.

Definition 3.1. Let X be a derived k◦-adic Deligne–Mumford stack topologically almost

of finite presentation. We let Coh−nil(X) denote the fiber of the generic fiber functor (1.1):

Coh−nil(X) := fib
(

Coh−(X)
(−)rig

−−−→ Coh−(Xrig)
)
.

We refer to Coh−nil(X) as the full subcategory of m-nilpotent almost perfect complexes

on X .

A morphism f : X→ Y in dfDMtafp
k◦ induces a commutative diagram

Coh−(Y) Coh−(X)

Coh−(Yrig) Coh−(Xrig).

f∗

(−)rig (−)rig

(frig)∗

(3.1)

In particular, we see that f∗ preserves the subcategory of m-nilpotent almost perfect

complexes on X . Moreover, as both Coh−(X) and Coh−(Xrig) satisfy étale descent, we

conclude that Coh−nil(X) satisfies étale descent as well.

Lemma 3.2. Let X be a derived k◦-adic Deligne–Mumford stack topologically almost of

finite presentation. Then an almost perfect sheaf F ∈ Coh−(X) is m-nilpotent if and only

if for every i ∈ Z, the coherent sheaf πi (F) is annihilated by some power of the ideal m.

Proof. Since X is assumed to be quasi-compact, we can find a finite formally étale covering∐
j∈J

U j → X,
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where for each j ∈ J , U j are formally affine. Suppose that the assertion of the lemma

holds for each restriction

F|U j ∈ Coh−(U j ), j ∈ J.

In other words, for every i ∈ Z, there exists ni j ∈ N such that

tni j ·πi (F|U j ) = 0.

Let ni = max j∈J ni j . Étale descent for Coh−(X) implies therefore that tni ·πi (F) = 0 in

Coh−(X). In particular, we can assume from the start that X is a derived formal affine

scheme. Write
A := 0(X,Oalg

X ).

Let X := Xrig. Then [2, Corollary 4.1.3] shows that

t0(Xrig) ' (t0(X))rig.

In particular, we deduce that X is a derived k-affinoid space. Write

B := 0(X,Oalg
X ).

We can therefore use Proposition 2.12 to obtain canonical equivalences

Coh−(X) ' Coh−(A), Coh−(X) ' Coh−(B).

Under these identifications, the functor (−)rig becomes equivalent to the base change

functor

−⊗A B : Coh−(A) −→ Coh−(B).

Moreover, it follows from [2, Proposition A.1.4] that there is a canonical identification

B ' A⊗k◦ k.

In particular, (−)rig : Coh−(X)→ Coh−(X) is t-exact. The conclusion is now

straightforward.

Definition 3.3. Let X be a derived k◦-adic Deligne–Mumford stack topologically almost

of finite presentation. Let F ∈ Coh−(Xrig). A formal model for F consists of a pair (F, α),

where F ∈ Coh−(X) and α : Frig ∼
−→ F is an equivalence in Coh−(Xrig). We let FM(F)

denote the full subcategory of

Coh−(X)/F := Coh−(X)×Coh−(Xrig) Coh−(Xrig)/F

spanned by formal models of F .

Our goal in this section is to study the structure of FM(F), and in particular to establish

that it is non-empty and filtered when X is a derived k◦-adic scheme topologically almost

of finite presentation. Note that saying that FM(F) is non-empty for every choice of

F ∈ Coh−(X) is equivalent to asserting that the functor (1.1)

(−)rig : Coh−(X) −→ Coh−(X)

is essentially surjective.
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To complete the proof of the non-emptiness of FM(F), it would be enough to know

that the essential image of the functor Coh−(X)→ Coh−(Xrig) satisfies descent. This is

analogous to [8, Theorem 7.3].

Definition 3.4. Let X be a derived k◦-adic Deligne–Mumford stack topologically almost

of finite presentation. We define the stable∞-category Coh−loc(X) of m-local almost perfect

complexes as the cofiber

Coh−loc(X) := cofib
(
Coh−nil(X) ↪→ Coh−(X)

)
.

We denote by L : Coh−(X)→ Coh−loc(X) the canonical functor. We refer to L as the

localization functor.

We summarize below the formal properties of m-local almost perfect complexes.

Proposition 3.5. Let X be a derived k◦-adic Deligne–Mumford stack topologically almost
of finite presentation. Then, we have the following:

(1) There exists a unique t-structure on the stable ∞-category Coh−loc(X) having the

property of making the localization functor

L : Coh−(X) −→ Coh−loc(X)

t-exact.

(2) The functor (−)rig : Coh−(X)→ Coh−(Xrig) factors through

3 : Coh−loc(X) −→ Coh−(Xrig).

Moreover, the essential images of (−)rig and 3 coincide.

(3) If X is affine, then the functor 3 is an equivalence.

Proof. We start by proving (1). Using [8, Corollary 2.9], we have to check that the

t-structure on Coh−(X) restricts to a t-structure on Coh−nil(X) and that the inclusion

i : Coh♥nil(X) ↪−→ Coh♥(X)

admits a right adjoint R whose counit i(R(F))→ F is a monomorphism for every F ∈
Coh♥(X). For the first statement, we remark that it is enough to check that the functor

(−)rig : Coh−(X)→ Coh−(Xrig) is t-exact. As both Coh−(X) and Coh−(Xrig) satisfy étale

descent in X, we can test this locally on X. When X is affine, the assertion follows

directly from Proposition 2.12. As for the second statement, we first observe that one as

an equivalence of abelian categories

Coh♥(X) ' Coh♥(t0(X)), Coh♥(Xrig) ' Coh♥(t0(Xrig)).

Moreover, Lemma 3.2 implies that the first equivalence is compatible with the inclusion

i of nilpotent almost perfect complexes. We can therefore assume that X is underived. At

this point, the functor R can be explicitly described as the functor sending F ∈ Coh♥(X)
to the subsheaf of F spanned by m-nilpotent sections. The proof of (1) is thus complete.
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We now turn to the proof of (2). The existence of 3 and the factorization (−)rig ' 3 ◦L
follow from the definitions. Moreover, L : Coh−(X)→ Coh−loc(X) is essentially surjective

(cf. [8, Lemma 2.3]). It follows that the essential images of (−)rig and of 3 coincide.

Finally, (3) follows directly from Proposition 2.12 and [8, Theorem 2.12].

The commutativity of (3.1) together with Proposition 3.5 implies that a morphism

f : X→ Y in dfDMtafp
k◦ induces a well-defined t-exact functor

f◦∗ : Coh−loc(Y) −→ Coh−loc(X).

It is a simple exercise in ∞-categories to promote this construction to an actual functor

Coh−loc :
(
dfDMtafp

k◦
)op
−→ Catst

∞.

Having Remark 2.13 and Proposition 3.5 at our disposal, the question of the
non-emptiness of FM(F) is essentially reduced to the following.

Theorem 3.6. Let dfSchtafp
k◦ denote the ∞-category of derived k◦-adic schemes, which are

topologically almost of finite presentation. Then the functor

Coh−loc :
(
dfSchtafp

k◦
)op
−→ Catst

∞

is a hypercomplete sheaf for the formal Zariski topology.

Proof. It is enough to prove that for every X ∈ dfSchtafp
k◦ , the restriction of Coh−loc to the

Zariski site XZar is a hypercomplete sheaf. Let Xs denote the special fiber of X. Then

there is a canonical equivalence

XZar ' (Xs)Zar,

and since X is quasi-compact and quasi-separated, the ∞-topos Sh((Xs)Zar, τZar) is

hypercomplete (combine Propositions 7.2.1.0, 7.2.4.7 and Corollary 7.2.4.17 in [10]). It
is therefore sufficient to deal with Zariski descent, rather than hyperdescent.

A standard argument reduces us to proving the following statement: let f• : U•→ X be

the Čech nerve of a derived affine k◦-adic Zariski cover. Then the canonical map

f◦∗• : Coh−loc(X) −→ lim
[n]∈1

Coh−loc(U•) (3.2)

is an equivalence. Using [8, Lemma 3.20], we can endow the right hand side with a

canonical t-structure. It follows from the characterization of the t-structure on Coh−loc(X)

given in Proposition 3.5 that f◦∗• is t-exact.

We will prove in Corollary 3.12 that f◦∗• is fully faithful. Assuming this fact, we can

complete the proof as follows. We only need to check that f◦∗• is essentially surjective. Let

C be the essential image of f◦∗• . We now make the following observations:

(1) The heart of lim1 Coh−loc(U•) is contained in C. Indeed, Remark 2.13 implies that

3n : Coh−loc(Un) −→ Coh−(Urig
n )

is an equivalence. These equivalences induce a t-exact equivalence

Coh−(Xrig) ' lim
[n]∈1

Coh−loc(U•). (3.3)
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Passing to the heart and using the canonical equivalences

Coh♥loc(X) ' Coh♥loc(t0(X)), Coh♥(Xrig) ' Coh♥(t0(Xrig)),

we can invoke the classical Raynaud theorem on formal models of coherent sheaves

(cf. [6, Theorem 4.1]) to deduce that the heart of the target of f◦∗• is contained in

its essential image.

(2) The subcategory C is stable. Indeed, let

F ′ F F ′′ϕ ψ

be a fiber sequence in Coh−(Xrig) ' lim1 Coh−loc(U•) and suppose that two among

F , F ′ and F ′′ belong to C. Without loss of generality, we can assume that F and

F ′′ belong to C. Then choose elements F and F′′ in Coh−loc(X) representing F and

F ′′. Since f◦∗• is fully faithful, we can find a morphism ψ̃ : F→ F′′ lifting ψ . Set

F′ := fib(ψ̃ : F→ F′′).

Then 3(F′) ' F ′ since 3 is an exact functor between stable ∞-categories. The

latter means that under equivalence (3.3), the object F ′ belongs to C.

These two points together imply that f◦∗• is essentially surjective on cohomologically

bounded elements. As both the t-structures on the source and the target of f∗• are left

t-complete and the functor t-exact, we conclude that f◦∗• commutes with the limit of

Postnikov towers. The conclusion follows.

Corollary 3.7. Let X ∈ dfSchtafp
k◦ . Then the canonical map

3 : Coh−loc(X) −→ Coh−(Xrig)

introduced in Proposition 3.5 is an equivalence.

Proof. Let f• : U•→ X be a derived affine k◦-adic Zariski hypercover. Consider the

induced commutative diagram

Coh−loc(X) lim[n]∈1 Coh−loc(Un)

Coh−(Xrig) lim[n]∈1 Coh−(Urig
n ),

f∗•

3 3•

f ∗•

where we set f• := (f•)rig. Since we chose an affine hypercover, Proposition 3.5(3) implies

that the right vertical map is an equivalence. On the other hand, Coh−(Xrig) satisfies

descent in X, and therefore the bottom horizontal map is also an equivalence. Finally,

Theorem 3.6 implies that the top horizontal map is an equivalence as well. We thus

conclude that 3 : Coh−loc(X)→ Coh−(Xrig) is an equivalence in this case.

Corollary 3.8. Let X ∈ dfSchtafp
k◦ and assume moreover that it is quasi-compact and

quasi-separated. For any F ∈ Coh−(Xrig), the ∞-category FM(F) is non-empty.
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Proof. The localization functor L : Coh−(X)→ Coh−loc(X) is essentially surjective by

construction. Since X is a quasi-compact and quasi-separated derived k◦-adic scheme

topologically of finite presentation, Corollary 3.7 implies that 3 : Coh−loc(X)→ Coh−(Xrig)

is an equivalence. The conclusion follows.

3.2. Proof of Theorem 3.6: full faithfulness

The only missing step in the proof of Theorem 3.6 is the full faithfulness of functor (3.2).

We will address this question by passing to the ∞-categories of ind-objects. Let X be a
quasi-compact and quasi-separated derived k◦-adic scheme locally topologically almost

of finite presentation. Let

f : U −→ X

be a formally étale morphism. Then f induces a commutative diagram

Ind(Coh−(X)) Ind(Coh−loc(X))

Ind(Coh−(U)) Ind(Coh−loc(U)).

f∗

LX

f◦∗

LU

The functors f∗ and f◦∗ commute with colimits, and therefore they admit right adjoints

f∗ and f◦∗. In particular, we obtain a Beck–Chevalley transformation

θ : LX ◦ f∗ −→ f◦∗ ◦LU. (3.4)

A key step in the proof of the full faithfulness of functor (3.2) is to verify that θ is

an equivalence when evaluated on objects in Coh♥(U). Let us start with the following

variation of [8, Lemma 7.14].

Lemma 3.9. Let

KC C QC

KD D QD

iC

FK

LC

F FQ

iD LD

(3.5)

be a diagram of stable ∞-categories and exact functors between them. Assume the

following:

(1) The functors iC and iD are fully faithful and admit right adjoints RC and RD,

respectively.

(2) The functors LC and LD admit fully faithful right adjoints jC and jD, respectively.

(3) The rows are fiber and cofiber sequences in Catst
∞.

(4) The functors F, FK and FQ admit right adjoints G, GK and GQ, respectively.

Let X ∈ D be an object. Then the following statements are equivalent:

(1) The Beck–Chevalley transformation

qX : LC(G(X)) −→ GQ(LD(X))

is an equivalence.

https://doi.org/10.1017/S1474748020000092 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000092


350 J. António and M. Porta

(2) The Beck–Chevalley transformation

κRD(X) : iC(GK(RD(X))) −→ G(iD(RD(X)))

is an equivalence.

Proof. Since jC and iC are fully faithful, it is equivalent to check that

jC(LC(G(X))) −→ jC(GQ(LD(X)))

is an equivalence if and only if κRD(X) is an equivalence. Using the natural equivalences

jC ◦G ' G jD, GK ◦ RD ' RC ◦G

, we obtain the following commutative diagram

iC(RC(G(X))) G(X) jC(LC(G(X)))

G(iD(RD(X))) G(X) G( jD(LD(X))).

Moreover, since the rows of diagram (3.5) are Verdier quotients, we conclude that the

rows in the above diagram are fiber sequences. Therefore, the leftmost vertical arrow is

an equivalence if and only if the rightmost one is.

Lemma 3.10. The Beck–Chevalley transformation (3.4) is an equivalence whenever

evaluated on objects in Coh♥(U).

Proof. Using Lemma 3.9, we see that it is enough to prove that the Beck–Chevalley

transformation associated with the square

Ind(Coh−nil(X)) Ind(Coh−(X))

Ind(Coh−nil(U)) Ind(Coh−(U))

f∗ f∗

is an equivalence when evaluated on objects of Coh♥nil(U). As the horizontal functors are

fully faithful, it is enough to check that the functor

f∗ : Ind(Coh−(U )) −→ Ind(Coh−(X))

takes Coh♥nil(U) to Ind(Coh−nil(X)). Let F ∈ Coh♥nil(U). We have to verify that (f∗(F))
rig
' 0.

Since F is coherent and in the heart and since U is quasi-compact, we see that there

exists an element a ∈ m such that the map µa : F→ F given by multiplication by a is

zero. Therefore f∗(µa) : f∗(F)→ f∗(F) is homotopic to zero. Since f∗(µa) is equivalent to

the endomorphism f∗(F) given by multiplication by a, we conclude that (f∗(F))
rig
' 0.

The conclusion follows.

Having these adjointability statements at our disposal, we turn to the actual study of

the full faithfulness of functor (3.2). Let

U• : 1
op
−→ dfSchtafp

k◦
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be an affine k◦-adic Zariski hypercovering of X and let f• : U•→ X be the augmentation

morphism. The morphism f• induces functors

f∗• : Ind(Coh−(X)) −→ lim
[n]∈1

Ind(Coh−(Un))

and

f◦∗• : Ind(Coh−loc(X)) −→ lim
[n]∈1

Ind(Coh−loc(Un)).

These functors commute by construction with filtered colimits, and therefore they admit

right adjoints, which we denote, respectively, as

f•∗ : lim
[n]∈1

Ind(Coh−(Un)) −→ Ind(Coh−(X))

and

f◦•∗ : lim
[n]∈1

Ind(Coh−loc(Un)) −→ Ind(Coh−loc(X)).

Moreover, the functors f∗• and f◦∗• fit in the following commutative diagram:

Ind(Coh−(X)) lim[n]∈1 Ind(Coh−(U•))

Ind(Coh−loc(X)) lim[n]∈1 Ind(Coh−loc(U•)).

L

f∗•

L•
f◦∗•

In particular, we have an associated Beck–Chevalley transformation

θ : L ◦ f•∗ −→ f◦•∗ ◦L•. (3.6)

Proposition 3.11. The Beck–Chevalley transformation (3.6) is an equivalence when

restricted to the full subcategory lim1 Coh♥(U•) of lim1 Ind(Coh−(U•)).

Proof. The discussion right after [15, Corollary 8.6] allows us to identify the functor

f•∗ : lim
[n]∈1

Ind(Coh−(Un)) −→ Ind(Coh−(X))

with

the functor informally described by sending a descent datum F• ∈ lim1 Ind(Coh−(U•))
to

lim
[n]∈1

fn∗Fn ∈ Ind(Coh−(X)).

Similarly, the functor f◦•∗ sends a descent datum F• ∈ lim1 Ind(Coh−loc(U•) to

lim
[n]∈1

f◦n∗Fn ∈ Ind(Coh−loc(X)).

We therefore have to show that the Beck–Chevalley transformation

θ : L
(

lim
[n]∈1

fn∗Fn

)
−→ lim

[n]∈1
f◦n∗(LnFn)
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is an equivalence whenever each Fn belongs to Coh♥(Un). First, note that the functors

f•∗ and f◦•∗ are left t-exact. In particular, if F• ∈ lim1 Ind(Coh♥(U•)), then both

Lf•∗(F•) and f◦•∗(F•) are coconnective. As the t-structures on lim1 Ind(Coh−(U•)) and

on lim1 Ind(Coh−loc(U•)) are right t-complete, we conclude that it is enough to prove that

πi (θ) is an isomorphism for every i ∈ Z. We now observe that for m > i + 2, we have

πi

(
lim
[n]∈1

f◦n∗(LnFn)

)
' πi

(
lim

[n]∈16m
f◦n∗(LnFn)

)
,

and similarly

πi

(
L
(

lim
[n]∈1

fn∗Fn

))
' L

(
πi

(
lim
[n]∈1

fn∗Fn

))
' L

(
πi

(
lim

[n]∈16m
fn∗Fn∗

))
.

It is therefore enough to prove that for every m > 0, the canonical map

L
(

lim
[n]∈16m

fn∗Fn

)
−→ lim

[n]∈16m
f◦n∗(LnFn)

is an equivalence. As L commutes with finite limits, we are reduced to showing that the

canonical map

L(fn∗Fn) −→ f◦n∗(LnFn)

is an equivalence whenever Fn ∈ Coh♥(Un), which follows from Lemma 3.10.

Corollary 3.12. Let X and f• : U•→ X be as in the above discussion. Then the functor

f◦∗• : Coh−loc(X) −→ lim
[n]∈1

Coh−loc(Un)

is fully faithful.

Proof. Observe that the t-structure on both categories is left complete. Since f◦∗• is
t-exact, it is therefore forced to commute with Postnikov towers. Furthermore, since

X is quasi-compact, the t-structure on both categories is right bounded as well. Let

F ,G ∈ Coh−loc(X). We have to prove that the natural map

MapCoh−loc
(F ,G) −→ lim

[n]∈1
MapCoh−loc(Un)

(f◦∗n F , f◦∗n G)

is an equivalence. Write

G ' lim
m∈N

τ6mG.

Using the fact that f◦∗n commutes with Postnikov towers and the fact that limits commute

with limits, we reduce ourselves to proving that the above morphism is an equivalence

when G is bounded. However, if G ∈ Coh6m
loc (X), then

MapCoh−loc
(F ,G) ' MapCoh−loc

(τ6mF ,G).

Using once more t-exactness of f◦∗• , we see that we can replace F by its truncation.

In other words, we are reduced to proving that f◦∗• is fully faithful when restricted to

Cohb
loc(X).
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Consider now the following commutative cube:

Coh−(X) lim
[n]∈1

Coh−(Un)

Ind
(
Coh−(X)

)
lim
[n]∈1

Ind
(
Coh−(Un)

)

Coh−loc(X) lim
[n]∈1

Coh−loc(Un)

Ind
(
Coh−loc(X)

)
lim
[n]∈1

Ind
(
Coh−loc(Un)

)
.

f∗•

f∗•

LX

LU•

f◦∗•

f◦∗•

(3.7)

First of all, we observe that the diagonal functors are all fully faithful. It is therefore

enough to prove that the functor

f◦∗• : Ind(Coh−loc((X)) −→ lim
[n]∈1

Ind(Coh−loc(Un))

is fully faithful when restricted to Coh−loc(X). As this functor admits a right adjoint f◦•∗,

it is in turn enough to verify that for every F ∈ Cohb
loc(X), the unit transformation

η : F −→ f◦•∗f
◦∗
• (F)

is an equivalence. Proceeding by induction on the number of nonvanishing homotopy

groups of F , we see that it is enough to deal with the case of F ∈ Coh♥loc(X).

As the functor LX : Coh−(X)→ Coh−loc(X) is essentially surjective and t-exact, we can

choose F ∈ Coh♥(X) and an equivalence

LX(F) ' F .

Moreover, the unit transformation

F −→ f•∗f
∗
•F

is an equivalence. It is therefore enough to check that the Beck–Chevalley transformation
associated with the front square is an equivalence when evaluated on objects in

lim1 Coh♥(Un). This is exactly the content of Proposition 3.11.

3.3. Categories of formal models

Let X ∈ dfSchtafp
k◦ be a quasi-compact and quasi-separated derived k◦-adic scheme

topologically almost of finite presentation. We established in Corollary 3.8 that for any

F ∈ Coh−(Xrig), the∞-category of formal models FM(F) is non-empty. Actually, we can

use Corollary 3.7 to be more precise about the structure of FM(F). We are in particular

interested in showing that it is filtered. We start by recording the following immediate

consequence of Corollary 3.7.
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Lemma 3.13. Let X ∈ dfSchtafp
k◦ be a derived k◦-adic scheme topologically almost of finite

presentation. Then the functor

(−)rig : Ind(Coh−(X)) −→ Ind(Coh−(Xrig))

admits a right adjoint

j : Ind(Coh−(Xrig)) −→ Ind(Coh−(X)),

which is furthermore fully faithful.

Proof. Corollary 3.7 implies that the functor (−)rig induces the equivalence

3 : Coh−loc(X)
∼
−→ Coh−(Xrig).

In other words, we see that the diagram

Coh−nil(X) Coh−(X)

0 Coh−(Xrig)

(−)rig

is a pushout diagram in Catst
∞. Passing to ind-completions, we deduce that Ind(Coh−(Xrig))

is a Verdier quotient of Ind(Coh−(X)). Applying [8, Lemma 2.5 and Remark 2.6] we

conclude that Ind(Coh−(Xrig)) is an accessible localization of Ind(Coh−(X)). As these

categories are presentable, we deduce that the localization functor (−)rig admits a fully

faithful right adjoint, as desired.

Notation 3.14. Let X ∈ dfDMk◦ . Given F ,G ∈ Ind(Coh−(X)), we write HomX(F ,G) ∈
Modk◦ for the k◦-enriched stable mapping space in Ind(Coh−(X)).

Lemma 3.15. Let X ∈ dfSchtafp
k◦ be a derived k◦-adic scheme topologically almost of finite

presentation. Let F ∈ Coh−(X) and G ∈ Coh−nil(X). Then

HomX(F ,G)⊗k◦ k ' 0.

In other words, HomX(F ,G) is m-nilpotent in Modk◦ .

Proof. Since X is quasi-compact, we can find a finite formal Zariski cover {Ui =

Spf(Ai )}i=0,...,n by formal affine schemes. Consider the Zariski site XZar as a poset and

let I be the subposet generated by the opens Ui and all their possible intersections. Note

that I is a finite category. Given m ∈ I we denote by Um the corresponding formal Zariski

open subset of X. Induction on n shows that

HomX(F ,G) ' lim
m∈I

HomUm (F |Um ,G|Um ).

Since the functor −⊗k◦ k : Modk◦ → Modk is exact, it commutes with finite limits.

Therefore, we see that it is enough to prove that the conclusion holds after replacing X by

Um . Since X is quasi-compact and quasi-separated, we see that each Um is quasi-compact
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and separated. In other words, we can assume from the very beginning that X is

quasi-compact and separated. In this case, each Um will be formal affine, and therefore

we can further reduce to the case where X is formal affine itself.

Assume therefore X = Spf(A). In this case, Coh−(X) ' Coh−(A) lives fully faithfully

inside ModA. Note that A→ A⊗k◦ k is a Zariski open immersion. Therefore,

HomA(F ,G)⊗k◦ k ' HomA(F ,G)⊗A (A⊗k◦ k) ' HomA(F ⊗A k◦,G⊗A k◦) ' 0.

Thus, the proof is complete.

Corollary 3.16. Let X be as in the previous lemma. Given F ,G ∈ Coh−(X), the canonical

map

HomX(F ,G)⊗k◦ k −→ HomXrig(F rig,Grig)

is an equivalence.

Proof. Denote by R : Ind(Coh−(X))→ Ind(Coh−nil(X)) the right adjoint to the inclusion

i : Ind(Coh−nil(X)) ↪→ Ind(Coh−(X)).

Then for any G ∈ Coh−(X), we have a fiber sequence

i R(G) −→ G −→ j (Grig).

In particular, we obtain a fiber sequence

HomX(F , i R(G)) −→ HomX(F ,G) −→ HomX(F , j (Grig)).

Now observe that

HomX(F , j (Grig)) ' HomXrig(F rig,Grig).

Note also that since k◦→ k is an open Zariski immersion, HomXrig(F rig,Grig)⊗k◦ k '
HomXrig(F rig,Grig). In particular, applying −⊗k◦ k : Modk◦ → Modk , we find a fiber

sequence

HomX(F , i R(G))⊗k◦ k −→ HomX(F ,G)⊗k◦ k −→ HomXrig(F rig,Grig).

It is therefore enough to check that HomX(F , i R(G))⊗k◦ k ' 0. Since i is a left adjoint,

we can write

i R(G) ' colim
α∈I

Gα,

where I is filtered and Gα ∈ Coh−nil(X). As F is compact in Ind(Coh−(X)), we find

HomX(F , i R(G))⊗k◦ k '
(

colim
α∈I

HomX(F ,Gα)
)
⊗k◦ k ' colim

α∈I
HomX(F ,Gα)⊗k◦ k.

Since each Gα belongs to Coh−nil(X), Lemma 3.15 implies that HomX(F ,Gα)⊗k◦ k ' 0.

The conclusion follows.
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Construction 3.17. Recall that t is a fixed pseudo-uniformizer for m. We consider N as a

poset with its natural ordering. Introduce the functor

K : N −→ Ind(Coh♥(Spf(k◦)))

defined as follows: K sends every integer to k◦, and it sends the morphism m 6 m′ to

multiplication by tm′−m . By abuse of notation, we still denote the composition of K with

the inclusion Ind(Coh♥(k◦))→ Ind(Coh−(k◦)) by K .

Let now X ∈ dfSchtafp
k◦ be a quasi-compact and quasi-separated derived k◦-adic scheme

topologically almost of finite presentation. Let F ∈ Coh−(X). The natural morphism

q : X→ Spf(k◦) induces a functor

q∗ : Ind(Coh−(Spf(k◦))) −→ Ind(Coh−(X)).

We define the functor KF as

KF := q∗(K (−))⊗F : N −→ Ind(Coh−(X)).

We let F loc denote the colimit of the functor KF .

Let G ∈ Coh−(Xrig) and let α : F rig
→ G be a given map. Note that the natural map

F rig
−→ colim

N
(KF (−))

rig

is an equivalence. Therefore α induces a cone

(KF (−))
rig
−→ G,

which is equivalent to the given of a natural transformation

KF (−) −→ j (G).

Specializing this construction for α = idF rig , we obtain a canonical map

γF : F loc
−→ j (F rig).

Lemma 3.18. Let X ∈ dfSchtafp
k◦ be a derived k◦-adic scheme topologically almost of finite

presentation. Let F ∈ Coh−nil(X). Then F loc
' 0.

Proof. For any G ∈ Coh−(X), we write HomX(G,F) ∈ Modk◦ for the k◦-enriched mapping

space. As G is compact in Ind(Coh−(X)), we have

HomX(G,F loc) ' colim
N

HomX(G, KF (−)) ' HomX(G,F)⊗k◦ k.

Corollary 3.16 implies that

HomX(G,F)⊗k◦ k ' HomXrig(Grig,F rig) ' 0.

It follows that F loc
' 0.

Lemma 3.19. Let X ∈ dfSchtafp
k◦ be a derived k◦-adic scheme topologically almost of finite

presentation. Let F ∈ Coh−(X). Then for any G ∈ Coh−nil(X), one has

MapInd(Coh−(X))(G,F loc) ' 0.
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Proof. It is enough to prove that for every i > 0, we have

πi MapInd(Coh−(X))(G,F loc) ' 0.

Up to replacing F by F[i], we see that it is enough to deal with the case i = 0. Let

therefore α : G → F loc be a representative for an element in π0 MapInd(Coh−(X))(G,F loc).

As G is compact in Ind(Coh−(X)), the map α factors as α′ : G → F , and therefore it

induces a map α̃ : Gloc
→ F loc making the diagram

G F

Gloc F loc

α′

α̃

commutative, where both compositions are equivalent to α. Now, Lemma 3.18 implies

that Gloc
' 0, and therefore α is null-homotopic, completing the proof.

Lemma 3.20. Let X ∈ dfSchtafp
k◦ be a derived k◦-adic scheme topologically almost of finite

presentation. Let F ∈ Coh−(X). Then the canonical map

γF : F loc
−→ j (F rig)

is an equivalence.

Proof. Let G ∈ Coh−nil(X). Then

MapInd(Coh−(X))(G, j (F rig)) ' MapInd(Coh−(Xrig))(Grig,F rig) ' 0.

Lemma 3.19 implies that the same holds true replacing j (F rig) with F loc. As Coh−nil(X)

is a stable full subcategory of Coh−(X), it follows that

HomX(G, j (F rig)) ' HomX(G,F loc) ' 0.

Let H := fib(γF ). Then for any G ∈ Coh−nil(X), one has

HomX(G,H) ' 0.

On the other hand,

Hrig
' fib(γ rig

F ) ' 0.

It follows that H ∈ Ind(Coh−nil(X)), and hence that H ' 0. Thus, γF is an equivalence.

Theorem 3.21. Let X ∈ dfSchk◦ be a derived k◦-adic scheme. Let F ∈ Coh−(Xrig). Then

the ∞-category FM(F) of formal models for F is non-empty and filtered.

Proof. We know that FM(F) is non-empty thanks to Corollary 3.8. Pick one formal

model F ∈ FM(F). Then Lemma 3.20 implies that the canonical map

γF : F
loc
−→ j (F)

is an equivalence. We now observe that FM(F) is by definition a full subcategory of

Coh−(X)/F := Coh−(X)×Ind(Coh−(X)) Ind(Coh−(X))/j (F).
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As this ∞-category is filtered, it is enough to prove that every object G ∈ Coh−(X)/F
admits a map to an object in FM(F). Let α : G → j (F) be the structural map. Using the

equivalence γF and the fact that G is compact in Ind(Coh−(X)), we see that α factors as

G → F, which belongs to FM(F) by construction.

Corollary 3.22. Let X ∈ dAnk and f : F → G be a morphism Coh−(X). Suppose we are

given a formal model X for X together with formal models F,G ∈ Coh−(X) for F and G,

respectively. Then there exists a morphism f : F→ G in the ∞-category Coh−(X) lifting

tm f : F → G, in Coh−(X)

for a suitable non-negative integer m > 0.

Proof. Any map F → G induces a map F→ j (F)→ j (G). Using the equivalence j (G) '
Gloc and the fact that F is compact in Ind(Coh−(X)), we see that the map F→ j (G) factors

as F→ G. Unraveling the definition of the functor KG(−), we see that the conclusion

follows.

For later use, let us record the following consequence of Lemma 3.20.

Corollary 3.23. Let X ∈ dfSchtafp
k◦ be a derived k◦-adic scheme topologically almost of finite

presentation. Let F ∈ Coh−(X). Then F is m-nilpotent if and only if F loc
' 0.

Proof. If F is m-nilpotent, the conclusion follows from Lemma 3.18. Suppose vice versa

that F loc
' 0. Then Lemma 3.20 implies that

j (F rig) ' F loc
' 0.

Now, Lemma 3.13 shows that j is fully faithful. In particular, it is conservative and

therefore F rig
' 0. In other words, F belongs to Coh−nil(X).

4. Flat models for morphisms of derived analytic spaces

Using the study of formal models for almost perfect complexes carried out in the previous

section, we can prove the following derived version of [5, Theorem 5.2].

Theorem 4.1. Let f : X → Y be a proper map of quasi-paracompact derived k-analytic

spaces. Assume the following:

(1) The truncations of X and Y are k-analytic spaces.4

(2) The map f is flat.

Then there exists a proper flat formal model f : X→ Y in dfSchtafp
k◦ for f .

Proof. We construct, by induction on n, the following data:

(1) Derived k◦-adic schemes Xn and Yn equipped with equivalences

X
rig
n ' t6n(X), Y

rig
n ' t6n(Y ).

4As opposed to k-analytic Deligne–Mumford stacks.
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(2) Morphisms Xn → Xn−1 and Yn → Yn−1 exhibiting Xn−1 and Yn−1 as (n−
1)-truncations of Xn and Yn , respectively.

(3) A proper flat morphism fn : Xn → Yn and homotopies making the cube

X
rig
n Y

rig
n

X
rig
n−1 Y

rig
n−1

t6n(X) t6n(Y )

t6n−1(X) t6n−1(Y )

f
rig
n

f
rig
n−1

commutative.

Having these data at our disposal, we set

X := colim
n

Xn, Y := colim
n

Yn,

and we let f : X→ Y be a map induced by the morphisms fn . The properties listed above

imply that f is proper and flat and that its generic fiber is equivalent to f .

We are therefore left to construct the data listed above. When n = 0, we can apply the

flattening technique of Raynaud–Gruson (see [5, Theorem 5.2]) to produce a proper flat

formal model f0 : X0 → Y0 for t0( f ) : t0(X)→ t0(Y ). Assume now that we constructed

the above data up to n and let us construct it for n+ 1. Set F := πn+1(OX )[n+ 2]
and G := πn+1(OY )[n+ 2]. Using [16, Corollary 5.44], we can find analytic derivations

dα : (t6n X)[F] → t6n X and dβ : (t6nY )[G] → t6nY making the following cube

(t6n X)[F] t6n X

t6n X t6n+1 X

(t6nY )[G] t6nY

t6nY t6n+1Y

d0

dα
fn

d0

dβ

fn+1
(4.1)

commutative. Here d0 denotes the zero derivation, and we set fn := t6n( f ), fn+1 :=

t6n+1( f ). The derivations dα and dβ correspond to morphisms α : Lan
t6n X → F and

β : Lan
t6nY → G, respectively. Moreover, the commutativity of the left side square in (4.1)
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is equivalent to the commutativity of

f ∗n Lan
t6nY f ∗n G

Lan
t6n X F

f ∗n β

α

in Coh−(t6n X). Note that, since f is flat, the morphism f ∗n F → G is an equivalence. Using

Theorem 2.16 and the induction hypothesis, we know that Lad
Yn

is a canonical formal

model for Lan
t6n X . Using Theorem 3.21, we can therefore find a formal model β : Lad

Yn
→ G

for the map β. We now set

F := f∗nG.

Using Corollary 3.22, we can find m ∈ N and a formal model α̃ : Lad
Xn
→ F for tmα together

with a homotopy making the diagram

f∗nLad
Yn

f∗nG

Lad
Xn

F

tmf∗nβ

α̃

commutative. Set β̃ := tmβ : Lad
Yn
→ G. Then α̃ and β̃ induce a commutative square

Xn[F] Xn

Yn[G] Yn .

dα̃

fn
d
β̃

(4.2)

We now define Xn+1 and Yn+1 as the square-zero extensions associated with α̃ and β̃. In

other words, they are defined by the following pushout diagrams:

Xn[F] Xn

Xn Xn+1

dα̃

d0

,

Yn[G] Yn

Yn Yn+1.

d0

d
β̃

The commutativity of (4.2) provides a canonical map fn+1 : Xn+1 → Yn+1, which is

readily verified to be proper and flat. We are therefore left to verify that fn+1 is

a formal model for fn+1. Unraveling the definitions, we see that it is enough to

produce equivalences a : (t6n X)[F] ∼−→ (t6n X)[F] and b : (t6nY )[G] ∼−→ (t6nY )[G] making

the following diagrams

(t6n X)[F] t6n X

(t6n X)[F] t6n X

dtmα

a

dα

,

(t6nY )[G] t6nY

(t6nY )[G] t6nY

dtmβ

b
dβ

(4.3)
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commutative. The situation is symmetric, so it is enough to deal with t6n X . Consider

the morphism

t−m
: F −→ F ,

which exists because all the elements ti ∈ m are invertible in k. For the same reason, it

is an equivalence, with inverse given by multiplication by tm . This morphism induces a

map

a : (t6n X)[F] −→ (t6n X)[F],
which by functoriality is an equivalence. We now observe that the commutativity of (4.3)

is equivalent to the commutativity of

Lan
t6n X F

Lan
t6n X F ,

tmα

t−m

α

which is immediate. The proof is therefore achieved.

5. The plus pushforward for almost perfect sheaves

Let f : X → Y be a proper map between derived k-analytic spaces of finite tor amplitude.

In [17, Definition 7.9], it is introduced a functor

f+ : Perf(X) −→ Perf(Y ),

and it is shown in Proposition 7.11 in loc. cit. that for every G ∈ Coh−(Y ), there is a

natural equivalence

MapCoh−(X)(F , f ∗G) ' MapCoh−(Y )( f+(F),G).

In this section, we extend the definition of f+ to the entire Coh−(X), at least under the

stronger assumption of f being flat.

Remark 5.1. In algebraic geometry, the extension of f+ to Coh−(X) passes through the

extension to QCoh(X) ' Ind(Perf(X)). This ultimately requires being able to describe

every element in Coh−(X) as a filtered colimit of elements in Perf(X), which in analytic

geometry is possible only locally.

Therefore, this technique cannot be applied in analytic geometry. When dealing with

non-archimedean analytic geometry, formal models can be used to circumvent this
problem.

Proposition 5.2. Let f : X→ Y be a proper map between derived k◦-adic schemes.

Assume that f has finite tor amplitude. Then the functor

f ∗ : Coh−(Y)→ Coh−(X)

admits a left adjoint

f+ : Coh−(X)→ Coh−(Y).
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Proof. Let Xn := X×Spf(k◦) Spec(k◦/mn) and define similarly Yn . Let fn : Xn → Yn be

the induced morphism. Then by the definition of k◦-adic schemes, we have

X ' colim
n∈N

Xn, Y ' colim
n∈N

Yn,

and therefore

Coh−(X) ' lim
n∈N

Coh−(Xn), Coh−(Y) ' lim
n∈N

Coh−(Yn).

Combining [9, Remark 6.4.5.2(b) and Proposition 6.4.5.4(1)], we see that each functor

f ∗n : Coh−(Yn) −→ Coh−(Xn)

admits a left adjoint fn+. Moreover, Proposition 6.4.5.4(2) in loc. cit. implies that these

functors fn+ can be assembled into a natural transformation, and that therefore they

induce a well-defined functor

f+ : Coh−(X) −→ Coh−(Y).

Now let F ∈ Coh−(X) and G ∈ Coh−(Y). Let Fn and Gn be the pullbacks of F and G to

Xn and Yn , respectively. Then

MapCoh−(X)(F , f ∗(G)) ' lim
n∈N

MapCoh−(Xn)
(Fn, f ∗n (Gn))

' lim
n∈N

MapCoh−(Yn)
( fn+(Fn),Gn)

' MapCoh−(Y)( f+(F),G),

which completes the proof.

Corollary 5.3. Let f : X → Y be a proper map between derived analytic spaces. Assume

that f is flat. Then the functor

f ∗ : Coh−(Y )→ Coh−(X)

admits a left adjoint
f+ : Coh−(X)→ Coh−(Y ).

Proof. Using Theorem 4.1, we can choose a proper flat formal model f : X→ Y for f .

Thanks to Proposition 5.2, we have a well-defined functor

f+ : Coh−(X) −→ Coh−(Y).

We claim that it restricts to a functor

f+ : Coh−nil(X) −→ Coh−nil(Y).

Using Corollary 3.23, it is enough to prove that

f+(F)loc
' 0.

Extending f+ to a functor f+ : Ind(Coh−(X))→ Ind(Coh−(Y)), we see that

f+(F)loc
' f+(F loc) ' 0.
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Using Corollary 3.7, we get a well-defined functor

f+ : Coh−(X) −→ Coh−(Y ).

We only have to prove that it is left adjoint to f ∗. Let F ∈ Coh−(X) and G ∈ Coh−(Y ).
Choose a formal model F ∈ Coh−(X). Then unraveling the construction of f+, we find a

canonical equivalence

f+(F) ' f+(F)
rig.

We now have the following sequence of natural equivalences:

MapCoh−(Y )( f+(F),G) ' MapCoh−(Y )((f+(F))
rig,Grig)

' MapCoh−(X)(f+(F),G)⊗k◦ k by Corollary 3.16

' MapCoh−(X)(F, f
∗G)⊗k◦ k

' MapCoh−(X)(F
rig, (f∗G)rig) by Corollary 3.16

' MapCoh−(X)(F , f ∗G).

The proof is therefore complete.

Corollary 5.4. Let f : X → Y be a proper and flat map between derived analytic spaces.

Let p : Z → Y be any other map and consider the pullback square

W X

Z Y.

q

g f

p

Then for any F ∈ Coh−(X), the canonical map

g+(q∗(F)) −→ p∗( f+(F))

is an equivalence.

Proof.

Using Theorem 4.1, we find a proper and flat formal model f : X→ Y for f : X → Y .

Choose a formal model p : Z→ Y for p : Z → Y , and form the pullback square

W X

Z Y.

q

g f

p

Choose also a formal model F ∈ Coh−(X) for F . It is then enough to prove that the

canonical map

g+(q
∗(F)) −→ p∗(f+(F))

is an equivalence. This follows at once by [9, Proposition 6.4.5.4(2)].
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6. Representability of RHilb(X)

Let p : X → S be a proper and flat morphism of underived k-analytic spaces. We define

the functor

RHilb(X/S) : dAfdop
S −→ S

by sending T → S to the space of diagrams

Y T ×S X

T

i

qT pT
(6.1)

where i is a closed immersion of derived k-analytic spaces, and qT is flat.

Proposition 6.1. Keeping the above notation and assumptions, RHilb(X/S) admits a

global analytic cotangent complex.

Proof. Let x : T → RHilb(X/S) be a morphism from a derived k-affinoid space T ∈ dAfdS .

It classifies a diagram of form (6.1). Unraveling the definitions, we see that the functor

Deran
RHilb(X/S),x (T ;−) : Coh−(T ) −→ RHilb(X/S)

can be explicitly written as

Deran
RHilb(X/S),x (T ;F) ' MapCoh−(Y )(L

an
Y/T×S X , q∗T (F)).

Since qT : Y → T is proper and flat, Corollary 5.3 implies the existence of a left adjoint

qT+ : Coh−(Y )→ Coh−(T ) for q∗T . Moreover, [16, Corollary 5.40] implies that Lan
Y/T×S X ∈

Coh> 0(Y ). Therefore, we find

Deran
RHilb(X/S),x (T ;F) ' MapCoh−(T )(qT+(Lan

Y/T×S X ),F),

and therefore RHilb(X/S) admits an analytic cotangent complex at x . Using Corollary 5.4,

we see that it admits as well a global analytic cotangent complex.

Proposition 6.2 (Conrad–Gabber; see [7, Theorem 5.3.2]). Keeping the above notation

and assumptions, the (underived) functor of points Hilb(X/S) is representable by a

k-analytic space.

Proof. In [7], this result is deduced from the representability of the Quot functor. Let

Y → S be a separated map of k-analytic spaces and let F ∈ Coh♥(Y ). Then Quot(Y/S,F)
is proven in Theorem B.1.2 in loc. cit. to be representable by an S-separated k-analytic

space. The proof goes in three major steps:

(1) Let Y→ S be a separated formal model for Y → S and let F ∈ Coh♥(Y) be a

formal model for F . Then it is shown that Quot(Y/S,F) is representable by formal

algebraic spaces. This is done by considering the reductions modulo the powers of

the pseudo-uniformizers, where the result of Artin applies.
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(2) It is next proven in §B.2.2 that the generic fiber of a quasi-compact and

quasi-separated formal algebraic space is a (quasi-compact and quasi-separated)

k-analytic space. The main idea is attributed to M. Temkin, and it relies on using

the Raynaud–Gruson theory to prove that up to an admissible blowup, every

quasi-compact and quasi-separated formal algebraic space is a formal scheme.

(3) It is finally proven in Proposition B.4.1 that Quot(Y/S,F)rig represents the functor

Quot(Y/S,F). This is once again achieved via the Raynaud–Gruson theory.

Theorem 6.3. Keeping the above notation and assumptions, RHilb(X/S) is a derived
k-analytic space.

Proof. We only need to check the hypotheses of [16, Theorem 7.1]. The representability

of the truncation is guaranteed by Proposition 6.2. The existence of the global analytic

cotangent complex has been dealt with in Proposition 6.1. Convergence and infinitesimal
cohesiveness are straightforward checks. The theorem follows.

As the second concluding application, let us mention that the theory of the plus

pushforward developed in this paper allows us to remove the lci assumption in [17,

Theorem 8.6].

Theorem 6.4. Let S be a rigid k-analytic space. Let X, Y be rigid k-analytic spaces over

S. Assume that X is proper and flat over S and that Y is separated over S. Then the

∞-functor MapS(X, Y ) is representable by a derived k-analytic space separated over S.

Proof. The same proof of [17, Theorem 8.6] applies. It is enough to observe that

Corollaries 5.3 and 5.4 allow us to prove Lemma 8.4 in loc. cit. by removing the

assumption of Y → S being locally of finite presentation.
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