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Abstract

The proportional hazards (PH) model and its associated distributions provide suitable
media for exploring connections between the Gini coefficient, Fisher information, and
Shannon entropy. The connecting threads are Bayes risks of the mean excess of a
random variable with the PH distribution and Bayes risks of the Fisher information of
the equilibrium distribution of the PH model. Under various priors, these Bayes risks
are generalized entropy functionals of the survival functions of the baseline and PH
models and the expected asymptotic age of the renewal process with the PH renewal time
distribution. Bounds for a Bayes risk of the mean excess and the Gini’s coefficient are
given. The Shannon entropy integral of the equilibrium distribution of the PH model is
represented in derivative forms. Several examples illustrate implementation of the results
and provide insights for potential applications.
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1. Introduction

Let Xα be a nonnegative random variable with the survival function F̄α(x) = P(Xα > x),

x ≥ 0. The proportional hazards (PH) model is defined by

F̄α(x) = F̄ α(x), x ≥ 0, α > 0, (1.1)

where F̄ is the survival function of the baseline hazard model and α is the proportional hazard
parameter. WhenXα has a probability density function (PDF) fα , its hazard function is defined
by λα(x) = fα(x)/F̄α(x), F̄α(x) > 0, and the PH model can be represented as λα(x) =
αλ(x), x ≥ 0, α > 0, where λ(x) is the baseline hazard. The cumulative hazard function of X
with survival function F̄ is defined by

�(x) =
∫ x

0
λ(t) dt = − log F̄ (x). (1.2)
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The PH model and its associated distributions provide a rich medium for exploring relationships
between the Gini measure of inequality, the Fisher measure of the steepness of a likelihood
function over the parameter space, and the Shannon entropy.

The equilibrium distribution (ED) of a nonnegative random variable X with distribution F
and a finite mean E(X) = μ < ∞ is defined by the following PDF:

p(x) = F̄ (x)∫ ∞
0 F̄ (x) dx

= F̄ (x)

μ
, x ≥ 0. (1.3)

The random variable AX associated with the ED is referred to as the asymptotic age by Shaked
and Shanthikumar [21] and E(AX) is the expected asymptotic age of the renewal process at the
age t (see [20]). The ED plays an important role in renewal processes.

The PDF of the ED ofXα with the PH model (1.1) is related to the ED of the baseline hazard
model F as follows:

pα(x) = F̄ α(x)

μα
= [p(x)]α

Cα
, x ≥ 0, α > 0, (1.4)

where Cα = μα/μ
α , α > 0, and μα = E(Xα) < ∞.

The connections between the Gini coefficient, Fisher information, and Shannon entropy are
via Bayes risks which appear in the form of a generalized entropy functional defined in the
next section. In addition to establishing the connections between these measures, we derive
the Shannon entropy of pα as the derivative of its hazard function with respect to the PH
parameter α. This result provides a derivative representation of the Shannon entropy which up
till now has been seen as integrals of the PDF and hazard function.

The paper is organized as follows. In Section 2 we define the generalized entropy measures
used in this paper. In Section 3 we present three Bayes risk measures of the mean excess
of the random variable distributed as the PH model, discuss some applications, and give
representations and bounds for one of the Bayes risks. The connections between the Bayes
risk and Gini measures are established in Section 4. In Section 5 we present a link between
Fisher information of the PH parameter and the Shannon entropy functional via the ED and the
generalized entropy functional of the survival function. In Section 6 we give representations
of the Shannon entropy of (1.4) in terms of a derivative. This section also contains a result
for computing the entropy of the PH model and comparing it with the entropy of the baseline
hazard model. In Section 7 we summarize the findings of the paper. Proofs can be found in
Appendix A.

2. Generalized entropy functional

The generalized entropy (GE) of order q of a continuous nonnegative random variable with
PDF f is defined by

Hq(X) = Hq(f ) = 1

1 − q

∫ ∞

0
f (x)[f q−1(x)− 1] dx, q ∈ �, (2.1)

= H(f ) = −
∫ ∞

0
f (x) log f (x) dx, q = 1, (2.2)

where � = (0, 1)∪ (1,∞) and H(f ) = limq→1Hq(f ) is the Shannon entropy, provided that
the integrals are finite.
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The GE is known as the Tsallis–Havrda–Charvat entropy or the Tsallis entropy in the statistics
literature. It was introduced by Havrda and Charvát [14] and popularized by Tsallis [23]. Maa-
soumi [16] proposed a discrete version of (2.1) for measuring multivariate income inequality.
Abe [1] provided an axiomatic derivation of the discrete version of (2.1).

The GE has been represented more compactly as

Hq(f ) = −
∫ ∞

0
f q(x)Lq(f (x)) dx, q > 0,

where

Lq(z) =
⎧⎨
⎩
z1−q − 1

1 − q
, z > 0, q ∈ {0} ∪�,

log z, z > 0, q = 1,
(2.3)

is known as the generalized logarithm function with Lq(z) → log z as q → 1.
The generalized logarithm (2.3) provides the following generalizations of the cumulative

hazard function and the hazard function (1.2):

�∗
q(x) = −Lq(F̄ (x)) =

⎧⎨
⎩

1

q − 1

[
1 − F̄ q−1(x)

F̄ q−1(x)

]
, q ∈ �,

�(x), q = 1,

λ∗
q(x) = −dLq(F̄ (x))

dx
= f (x)

[F̄ (x)]q , q > 0, (2.4)

where �∗
q(x) and λ∗

q(x) are known as the generalized odds ratio and the generalized odds
rate of the nonnegative random variable X, respectively (see [10]). The cumulative hazard
function �(x) is the limiting case of �∗

q(x) as q → 1.
The generalized logarithm function Lq(z) is pseudo-additive, in that,

Lq(yz) = Lq(y)+ Lq(z)+ (1 − q)Lq(y)Lq(z), y, z > 0, q > 0. (2.5)

The solution to Lq(yz) = 0 is y = z−1 and Lq(z−1) = −Lq(z), where

Lq(z) =
⎧⎨
⎩
zq−1 − 1

q − 1
, q ∈ �,

log z, q = 1.
(2.6)

We will use two properties of Lq(z) given by the following lemma.

Lemma 2.1. (i) Let φi(x) ≥ 0 such that
∫ ∞

0 φi(x) dx = μi < ∞, i = 1, 2, and Lq(z) be as
defined in (2.6). Then

Dq(φ1 : φ2) =
∫ ∞

0
φ1(x)Lq

(
φ1(x)

φ2(x)

)
dx ≥ μ1Lq

(
μ1

μ2

)
.

(ii) For all values of q > 0 and z > 0, Lq(z) ≥ 1 − 1/z.

Proof. The proofs of all results can be found in Appendix A. �
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Lemma 2.1(i) is a generalization of the log-sum inequality proved by Borland et al. [9].
For functions with equal measures such as PDFs, where μ1 = μ2 = 1, Dq(φ1 : φ2) ≥ 0 is a
divergence function and provides a generalization of the Kullback–Leibler information, which
is given by q = 1.

The GE is suitable for the nonextensive system where the distribution of a random variable
is given by the escort distribution of order q defined as the qth power of another distribution.
Discrete escort distributions are prevalent in nonextensive statistical mechanics and source
coding (see [8]) and nanothermodynamics (see [24]). The second equality in (1.4) representspα
as the escort PDF of order α of p. This makes the GE suitable for the ED of X. For q = α,
(2.1) yields

Hα(p) = Cα − 1

1 − α
, α ∈ �.

In (1.1), the survival function of Xα is represented as the escort survival function of order α
of F̄ . This makes the PH model similar to the nonextensive systems of statistical mechanics
where the escort distributions are discrete and defined in terms of probability. We define the
GE functional of the survival function of order α by

hα(F̄ ) = −
∫ ∞

0
F̄ α(x)Lα(F̄ (x)) dx, α > 0. (2.7)

The limiting case hα(F̄ ),α → 1 yields the Shannon entropy functional of the survival function
h1(F̄ ) = h(F̄ ). Rao et al. [19] introduced the α = 1 case in terms of P(|X| > x) and
referred to it as the cumulative residual entropy. Zografos and Nadarajah [28] defined some
other generalizations of h(F̄ ) and referred to them as the survival exponential entropies. Asadi
et al. [6] referred to h(F̄ ) as the entropy functional of the survival function.

The GE functional (2.7) is a measure of the concentration of the distribution. That is,
hα(F̄ ) ≥ 0 where the equality holds if and only if the distribution is degenerate. This can be
seen by noting that, for 0 < z ≤ 1, Lα(z) ≤ 0 and the equality holds if and only if z = 1.
This property implies that hα(F̄ ) ≥ 0 which further implies that hα(F̄ ) = 0 if and only if the
integrand in (2.7) is 0; i.e. F̄ α(x)Lα(F̄ (x)) = 0, which holds if and only if F̄ (x) = 0 or 1.

The pseudo-additive property (2.5) implies that for two independent random variables X
and Y ,Hq(X, Y ) and hq(X, Y ) are pseudo-additive as in (2.5). For two independent continuous
nonnegative random variables with survival functions F̄X and F̄Y , F̄X,Y (x, y) = F̄X(x)F̄Y (y).
The survival function integrates to the mean and (2.5) yields

hα(F̄XF̄Y ) = E(Yα)hα(F̄X)+ E(Xα)hα(F̄Y )+ (1 − α)hα(F̄X)hα(F̄Y ), α > 0, (2.8)

provided that all measures exist. For α < (>)1, the last term in (2.8) is positive (negative),
thus,

hα(F̄XF̄Y ) ≥ (≤)E(Yα)hα(F̄X)+ E(Xα)hα(F̄Y ), α ≤ (≥)1. (2.9)

That is, hα(F̄XF̄Y ) is super-additive for α < 1, sub-additive for α > 1, and additive for α = 1.
For α = 1, (2.9) yields the bivariate version of Theorem 4 of [19].

3. Bayes risk of PH mean excess

The residual or excess of a nonnegative random variable, given that it exceeds a threshold τ ,
denoted as X − τ | X > τ , is of interest in various fields. The PDF of the residual random
variable is

f (x; τ) = f (x)

F̄ (τ )
, x > τ. (3.1)
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The mean residual life (MRL) function of X with a finite mean μ is defined as

m(τ) = EX>τ (X − τ | X > τ), τ ≥ 0, (3.2)

where EX>τ denotes the expectation with respect to the residual PDF (3.1).
The MRL of Xα , denoted as mα(τ), is given by (3.2) with Xα in place of X. Under the

quadratic loss function L(d,Xα | τ) = (Xα−τ−d)2, Xα > τ , the MRLmα(τ) is the optimal
decision for prediction of the excess:

d∗(τ ) = arg min
d

EXα>τ [L(d,Xα | τ)] = mα(τ), α > 0.

The MRL mα(τ) is a local risk measure, conditional on the threshold τ . Its global risk is
the Bayes risk E(mα) = Eπ [mα(τ)], where π(τ) is a prior distribution (weight function) for
the threshold. Ardakani et al. [2] proposed ranking models by the Bayes risk of the mean
excess of the absolute error of the forecast model E [m(τ)] with π(τ) = f (τ), τ ≥ 0. Asadi
and Zohrevand [4] have shown that, for π(τ) = f (τ), τ ≥ 0, E(m1) = h1(F̄ ). Owing to
F̄ (x; τ) < 1 for all x > τ , the MRL function mα is decreasing in α, α > 0. Thus, under any
prior for the threshold, E(mα) is a decreasing function of α.

In the following theorem we state E(mα) under three priors for the threshold τ .

Theorem 3.1. Let Xα be a nonnegative continuous random variable with survival function
F̄ α, α > 0, and MRL function mα(τ).

(i) Under the baseline prior π1(τ ) = f (τ), τ ≥ 0, the Bayes risk of mα(τ) is given by the
GE functional of the baseline survival function, E1(mα) = hα(F̄ ), α > 0.

(ii) Under the PH prior π2(τ | α) = fα(τ), τ ≥ 0, the Bayes risk of mα(τ) is given by the
Shannon entropy functional of the PH survival function, E2(mα) = h(F̄α), α > 0.

(iii) Under the ED of the PH prior π3(τ | α) = pα(τ), τ ≥ 0, the Bayes risk of mα(τ)
is given by the expected asymptotic age of the renewal process with the arrival time
distribution Fα ,

E3(mα) = E(AXα ) = E(X2
α)

2E(Xα)
, α > 0.

In the following corollary we provide comparisons of the three Bayes risks in Theorem 3.1
and their connections to the Shannon entropy.

Corollary 3.1. Under the conditions of Theorem 3.1, we have the following.

(i) The Bayes risk of Theorem 3.1(i) is related to the Bayes risk of the baseline MRL under
the PH prior for τ as follows:

E1(mα) = Eπ1(τ )[mα(τ)] = 1

α
Eπ2(τ |α)[m(τ)] = 1

α
E2,α(m), α > 0, (3.3)

where E2,α(m) = ∫ ∞
0 fα(τ)m(τ) dτ .

(ii) The Bayes risks of Theorem 3.1(ii) and 3.1(iii) are related to the Shannon entropy of the
ED of the PH model as follows:

E2(mα) = μα[H(pα)− logμα] ≤ E3(mα), α > 0. (3.4)

Clearly, for α = 1, E1(mα) = E2(mα), which connects the Bayes risk of Theorem 3.1(i) to
the Shannon entropy of the ED of the baseline model. The connection of H(pα) with E2(mα)

is direct. But H(pα) together with μα provide a lower bound E3(mα).
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3.1. Application examples

Application areas of Theorem 3.1 and Corollary 3.1 include wealth inequality, reliability,
and actuarial science, among others. Applications to wealth inequality will be discussed in
Section 4. In this section we present examples of potential applications in reliability and
actuarial science. We use the following notions.

Definition 3.1. (i) A random variable X with survival function F̄X is said to be stochastically
smaller than or equal to random variable Y with survival function F̄Y , denoted by X ≤st Y , if
F̄X(x) ≤ F̄Y (x) for all x.

(ii) A lifetime model with survival function F̄ and mean μ is said to be new better (worse) than
used, NBUE (NWUE) if m(τ) ≤ (≥)μ for all τ > 0.

We also use the following expressions for E1(mα). From (2.1), we have

E1(mα) = 1

α − 1

[∫ ∞

0
F̄ (x) dx −

∫ ∞

0
F̄ α(x) dx

]
, α ∈ �, (3.5)

= 1

α − 1
(μ− μα), α ∈ �. (3.6)

3.1.1. Weibull renewal process. Consider the Weibull renewal processes (see [15] and [25])
where the distribution of the renewal timeXα is PH with WeibullW(β, 1) baseline and survival
function

F̄ (x) = e−xβ , x > 0, β > 0. (3.7)

For 0 < β < 1, the process is a Cox process (see [25] and [26]). In Table 1 we present the
Bayes risks Ej (mα), j = 1, 2, 3, of the MRL given in Theorem 3.1 for this model.

The entries are found as follows. The PH model is W(β, λα), λα = α−1/β . Using (3.7)
and F̄α in (3.5), we obtain E1(mα). In the left panel of Figure 1 we present the plot of E1(mα)

for W(β, 1), β ∈ (0.5, 3), and α ∈ (0.5, 3). The expression for E2(mα) is found as follows:

h(F̄α) = α

∫ ∞

0
xβF̄α(x) dx = α

β + 1
E(Xβ+1

α ),

where the moments of the PH models are given by

E(Xkα) = λkα


(
1 + k

β

)
= α−k/β

E(Xk), α, k > 0.

Table 1: Expressions for Ej (mα), j = 1, 2, 3, of Theorem 3.1 for the Weibull baseline model.

Prior Bayes risk Ej (mα)

πj (τ ), τ ≥ 0 W(β, 1) W(2, 1)

π1(τ ) = f (τ)

(1 + 1/β)(α1/β − 1)

(α − 1)α1/β

√
π

2(
√
α + 1)

√
α

π2(τ ) = fα(τ)

(2 + 1/β)

(β + 1)α1/β

√
π

4
√
α

π3(τ ) = pα(τ)

(1 + 2/β)

2
(1 + 1/β)α1/β

1√
πα
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Figure 1: The plot of E1(mα) for the Weibull distribution (left) and plots of Ej (mα) for β = 2 based on
three priors πj (τ ), j = 1, 2, 3, in Theorem 3.1 (right).

Letting k = β + 1 yields E2(mα) shown in Table 1. The expression E3(mα) is found using

E(AXα ) = E(X2
α)

2E(Xα)
= E(X2)

2α1/βE(X)
.

In the last column of Table 1, we have Ej (mα), j = 1, 2, 3, for W(2, 1). In the right panel of
Figure 1, we present the plots of these three measures. We note that E2(mα) ≤ (≥)E1(mα), α ≤
(≥)1. It can be shown that these inequalities hold for all distributions with decreasing mα(τ)
and are reversed for distributions with increasing mα(τ).

3.1.2. System lifetime. Three potential reliability applications of Theorem 3.1 are as follows.

(i) For α ≥ (≤)1, Xα ≤st (≥st)X implying that μα ≤ (≥)μ. It is clear that if F is NBUE
(NWUE), under any prior for τ , the Bayes risk E(mα) ≤ (≥)μ for α ≥ (≤)1.

(ii) Consider a system with n components whose lifetimes X1, . . . , Xn are independent and
identically distributed (i.i.d.) with survival function F̄ . The series system lifetime is
Xmin = min{X1, . . . , Xn} with survival function F̄1(t) = F̄ n(t). The MRL of the
system, given that Xmin > τ , is

mn(τ) = arg min
d

= EXmin>τ [L(d,X1, . . . , Xn | τ)], (3.8)

where L(d,X1, . . . , Xn | τ) = (Xmin − τ − d)2, Xmin > τ . The Bayes risk of (3.8) is
E(mn). This formulation extends to the case when the PH parameter is a rational number
α = n/b andX1, . . . , Xn are i.i.d. with the survival function F̄ 1/b; see [10]. Using (3.6),
we find the Bayes risk of the series system under the prior of Theorem 3.1(i) in terms of
the difference between the mean lifetimes of a component and the system as follows:

E1(mn) = 1

n− 1
[μ− E(Xmin)]. (3.9)

Thus, for large series systems the Bayes risk E1(mn) is negligible. The lifetime of the
parallel system isXmax with the survival function F̄n(t) = 1 − Fn(t). Using the binomial
expansion of (1 − F̄ (t))n and (3.9), we find the following linear function of the Bayes
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risks of the series systems E1(mk), k = 2, . . . , n in terms of the difference between the
mean lifetimes of a component and the parallel system:

n∑
k=2

cn,kE1(mk) = E(Xmax)− μ, (3.10)

where cn,k = (
n
k

)
(k − 1)(−1)k . Equations (3.9) and (3.10) provide the range of the

expected times to failure of k-out-of-n systems in terms of a linear function of the Bayes
risk of the series systems E1(mk), k = 2, . . . , n. For example, for n = 3, 4, the ranges
are as follows:

n = 3, E(Xmax)− E(Xmin) = 3E1(m2),

n = 4, E(Xmax)− E(Xmin) = 6E1(m2)− 8E1(m3)+ 6E1(m4).

(iii) Consider a series system that starts operating at time 0 and fails at some point of time. It is
reasonable to reuse the operating components for other systems. Under the condition that
Xmin = x, the conditional distribution of the ordered lifetimes of remaining components
X2 : n, . . . , Xn : n, is the same as the distribution function of ordered random variables
from the distribution function F which is truncated at time x (see [7]). Let Y (1)i , i =
1, 2, . . . , n−1, denote the randomly ordered values ofX2 : n, . . . , Xn : n. Then Bairamov
and Arnold [7] showed that the residual lifetime of X2 : n, . . . , Xn : n can be represented
as

X
(1)
i = Y

(1)
i −Xmin, i = 1, . . . , n− 1,

and

E(X
(1)
1 ) =

∫ ∞

0

[∫ ∞

0

F̄ (τ + x)

F̄ (τ )
dτ

]
fmin(x) dx.

Thus, we have E2,n(m) = nE1(mn) = E(X
(1)
1 ).

3.1.3. Insurance deductible. In applications to the insurer loss, the deductible amount on the
policy is bounded, τ ≤ τ0. A prior such as π0(τ ) = cf (τ), 0 ≤ τ ≤ τ0, where c = [F(τ0)]−1,
serves the purpose. This yields

E0(mα) = E(mα)

F (τ0)
, α > 0.

Note that this measure is decreasing in τ0. As the upper bound (for the amount of deductible)
increases, the risk (the insurer’s expected loss) decreases. This maps the practice of insurers
decreasing their average costs by increasing the maximum amount of deductible. The measure
of Theorem 3.1(i) is the limit as τ0 → ∞, hence a conservative estimate of the risk (the insurers
cost). The priors in Theorem 3.1(ii) and 3.1(iii) with 0 ≤ τ ≤ τ0 yield results analogous to
E0(mα).

3.2. Representations and bounds.

In this section we present representations and bounds for E1(mα). In the following theorem
we represent E1(mα) in terms of the GE of the ED of the baseline model.

Theorem 3.2. LetX be a nonnegative continuous random variable with the survival function F̄ .
Then

E1(mα) = μα[Hα(p)− Lα(μ)], α > 0,

where Hα(p) is the GE of the ED of the baseline model.
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From the following theorem we obtain the covariance representation of E1(mα), which will
be used to develop an upper bound.

Theorem 3.3. LetX be a nonnegative continuous random variable with the survival function F̄ .
Then under the condition that the expectations exist,

E1(mα) = α

1 − α
cov(X, F̄ α−1(X)), α ∈ �, (3.11)

where � is defined in (2.1).

In the following corollary we obtain an upper bound for E1(mα) in terms of the standard
deviation.

Corollary 3.2. Let X be a nonnegative continuous random variable with survival function F̄ ,
mean μ, and standard deviation (SD) σx < ∞. Then

E1(mα) ≤ σx√
2α − 1

, α >
1

2
, α 
= 1. (3.12)

Remark 3.1. The bound (3.12) holds for α = 1 and the inequality becomes an equality if and
only if F is exponential (see [3, Theorem 3.1]).

The SD bound in (3.12) is decreasing in α, but it is applicable when α > 1
2 . Next we obtain

a bound for E1(mα) which is defined for 0 < α < 2, α 
= 1, and will be referred to as the GPD
bound because it is based on the generalized Pareto distribution with survival function

F̄Y (y) =
(

1 + (α − 1)y

c

)1/(1−α)
, y ∈ Sα, c > 0, (3.13)

where

Sα =
⎧⎨
⎩

{
y : 0 ≤ y ≤ b = c

1 − α
, 0 < α < 1

}
,

{y : y ≥ 0, 1 < α < 2}.
(3.14)

Theorem 3.4. LetX be a nonnegative continuous random variable with the survival function F̄ .
If the support of F̄ is contained in Sα defined in (3.14) and E(X) and E(X2

α) are finite, then

E1(mα) ≤ να

(
E(X2

α)

Eα(X)

)1/(2−α)
+ωα[E1−α(X2

α)E
α(X)]1/(2−α)−E(X), 0 < α < 2, α 
= 1,

(3.15)
where να = [2(2 − α)]1/(α−2) and ωα = [2(2 − α)να]−1, 0 < α < 2.

Note that, for 0 < α < 1, the support of F̄ (also F̄α) is bounded as follows:

0 ≤ x ≤ b∗ = c∗

1 − α
,

where

c∗ = (2 − α)να

(
E(X2

α)

Eα(X)

)1/(2−α)
,

and E
1−α(X2

α)E
α(X) is the geometric mean of E(X2

α) and E(X).
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Figure 2: The SD and GPD bounds for the beta model (left) and the Weibull model (right).

In general, neither of the two bounds (3.12) and (3.15) uniformly dominates the other.
However, as α → 1 from the right, the bound in (3.15) remains finite and as α → 2, the first
term in (3.15) goes to 0 and the second term goes to ∞. This is in contrast with the fact that
E1(mα) is a decreasing function of α. So, the bound in (3.15) can be a useful alternative for the
α < 1

2 case where the bound in (3.12) is not defined. In the following example we illustrate
these points.

Example 3.1. (i) Beta baseline. Let the baseline distribution be the one-parameter beta with
the survival function F̄ (x) = 1 − x2, 0 ≤ x ≤ 1. Then

E(Xα) =
∫ 1

0
F̄ α(x) dx =

∫ 1

0
(1 − x2)α dx =

√
π
(α + 1)

2
(α + 3/2)
.

From (3.6), we obtain

E1(ma) = 1

α − 1

(
2

3
−

√
π
(α + 1)

2
(α + 3/2)

)
.

The variance is σ 2
x = 1

18 and (3.12) yields

E1(mα) ≤ 1√
18(2α − 1)

, α >
1

2
.

The distributional ingredients of the upper bound (3.15) are as follows: E(X) = 2
3 and E(X2

α) =
1/(α + 1). For 0 < α < 1, b∗ > 1, so F̄X(x)/F̄Y (x) > 0 for 0 ≤ x ≤ 1 and (3.15) is well
defined. In the left panel of Figure 2 we present the plots of the SD and GPD bounds along
with the plot of E1(mα). For this model, the bound (3.15) is preferred for α < 0.63 and the
bound (3.12) is preferred for α > 0.63.

(ii) Weibull renewal process. Consider the baseline survival function (3.7) with β = 2. The
variance of X is σ 2

x = 1 − π/4. Thus,

E1(mα) ≤
√

1 − π/4

2α − 1
, α >

1

2
.

In the right panel of Figure 2 we present the plots of the SD and GPD bounds given in (3.12)
and (3.15) along with the plot of E1(mα) given in Table 1. For this model, the GPD bound is not
defined for α < 1 because the support of the GPD is bounded and the support of the Weibull
distribution is not. For α > 1, the SD bound is close to E1(mα).
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4. Gini measures

The Gini coefficient of a wealthX with distribution F , PDF f , and mean μ < ∞ is defined
by the expected distance between pairs of random draws X1 and X2 from X:

G(X) = 1

2μ

∫ ∞

0

∫ ∞

0
f (x1)f (x2)|x1 − x2| dx1 dx2.

This measure is also referred to as the relative Gini index, and 0 ≤ G(X) ≤ 1, whereG(X) = 0
when the wealth is distributed uniformly and G(X) = 1 indicates full concentration of the
wealth at a single point P(X = x0) = 1. We use the following well-known representation of
G(X) (see [27]):

G(X) = 1

μ

∫ ∞

0
F(x)F̄ (x) dx.

It is easy to see that

G(X) = 1

μ
h2(F̄ ) = 1

μ
h2(F ), (4.1)

where hα(F ) is the GE functional of the distribution function. The reversed PH model is defined
by F ∗

α (x) = Fα(x), x ≥ 0. It can be shown that E1(m
∗
α) = hα(F ), where

m∗
α(τ ) = E(τ −Xα | Xα ≤ τ) =

∫ τ
0 F

α(x) dx

Fα(τ)

is the mean inactivity time of Xα; see [11] and [12] for results on the past lifetime. From (4.1)
and Theorem 3.1(i) with α = 2, we have

G(X) = 1

μ
E1(m2) (4.2)

= 1

2μ
[E1(m2)+ E1(m

∗
2)]. (4.3)

Equation (4.2) represents the Gini index in terms of the Bayes risk of the minimum of two
wealths Xmin = min{X1, X2} that exceeds a threshold τ :

G(X) = 1

μ
Eπ {EXmin>τ [Xmin − τ | Xmin > τ ]}.

Equation (4.3) represents the Gini index in terms of the Bayes risks of the MRL function of the
PH model and the mean inactivity time of the reversed PH model with α = 2.

From (4.2), (3.3), and Theorem 3.2, we obtain the following representations of G(X).

Corollary 4.1. The Gini coefficient of the wealth X with a mean μ < ∞ is related to the GE
of the ED of X2 as follows:

G(X) = 1

2μ
E2,2(m) = μ

2
[H2(p)− μ+ 1],

where E2,α(m) is defined in Corollary 3.1.

Remark 4.1. (i) Corollary 4.1 establishes a relationship between the Gini coefficient and the
GE used by Maasoumi [16] for measuring multivariate wealth inequality. Letting α = γ + 1
in the result of Corollary 4.1 and multiplying by k = −γ yields the result for Maasoumi’s
measure.
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(ii) The absolute Gini index, also known as Gini’s mean difference, is defined without the scaling
byμ, which has various representations including in terms of cov(X, F (X)) and the expectation
of the difference between the maximum and minimum of two random draws X; see [22] and
[27] and the references therein. Shalit and Yitzhaki defined the extended Gini as Gν(X) =
−v cov (X, F̄ ν−1), ν > 1 (see [22, Equation (4)]. Clearly, Gν(X) = E1(mν/(ν−1)), ν > 1.

In the next theorem we state a class of bounds for the Gini coefficient.

Theorem 4.1. Let X and Y be continuous random variables with finite means μx,μy and
survival functions F̄X and F̄Y such that X ≤st Y .

(i) The GE functionals of F̄X is bounded as

hα(F̄X) ≤ hα(F̄Y )− μxLα

(
μx

μy

)
, (4.4)

where Lα is defined in (2.6).

(ii) The Gini coefficient of X is bounded as

G(X) ≤ 1

ρ
G(Y )− ρ + 1, ρ ≤ 1, (4.5)

where ρ = μx/μy .

Note that X ≤st Y implies μx ≤ μy which implies that Lα(μx/μy) < 0. Hence, the bound
in (4.4) is greater than hα(F̄Y ). In particular, if we let α → 1 then the inequality in (4.4) yields
the result of Navarro et al. [17, Proposition 2.1].

In the following example we present some applications of Theorem 4.1.

Example 4.1. (Bounds for wealth inequality.) In Table 2 we present the ingredients for
computing the upper bound (4.5) for the Gini coefficients of all distributions stochastically
dominated by each distribution shown in the table. The Gini coefficient for these distributions
is known and for given μx , the mean ratio ρ can easily be computed. For example, for any

Table 2: Ingredients for computing the upper bound (4.5) for the Gini index G(X). Note that B(·, ·) is
the beta function and erf(·) is the error function.

Wealth Gini coefficient

distribution fY (y) G(Y ) ρ = μx/μy

Weibull
β

λβ
yβ−1e−(y/λ)β 1 − 2−1/β μx

λ
(1 + 1/β)

gamma
1

λβ
(β)
yβ−1e−y/λ 1

βB(β, 1/2)

μx

λβ

Pareto
βy

β
0

yβ+1 , y ≥ y0 > 0
y0

2β − 1
, β > 1

(β − 1)μx
y0

, β > 1

lognormal
1

yσ
√

2π
exp

(
− 1

2σ 2 (log(y)− μ)2
)

erf

(
σ

2

)
μxe−(μ+σ/2)
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distribution FX stochastically dominated by the exponential distribution with λ = 1, using the
entries in the third and fourth columns of the first row of Table 2 with β = 1 in (4.5) yields

G(X) ≤ 1

μx
− μx + 1, 0 ≤ μx ≤ 1.

5. Bayes risk of Fisher information

In the following theorem we state the Fisher information of the ED (1.4) about α.

Theorem 5.1. The Fisher information provided by the PDF of the ED of the PH model about α
is given by

Ipα (α) = Epα

[
∂ logpα(X)

∂α

]2

= varpα [�(X)], (5.1)

where Epα and varpα denote the expectation and variance with respect to the ED (1.4) and
�(x) is the baseline cumulative hazard function (1.2).

In (5.1), Ipα (α) is represented as the minimum of the quadratic loss function for estimating
�(X) by Epα [�(X)]. In the following theorem, we state the Bayes risk of Ipα (α) under two
proper prior distributions and an improper uniform prior. Without loss of generality, we consider
the α ≥ 1 case. For the α ≤ 1 case the results apply to α′ = 1/α in place of α.

Theorem 5.2. The Bayes risks of Fisher information (5.1) under three prior distributions for α
are as follows.

(i) Under the Pareto prior πθ(α) = θα−(θ+1), α ≥ 1, θ > 0, if, for all x,

lim
α→∞α

θ+1pα(x) → 0,

then the Bayes risk is

Eπ [Ipα (α)] = θ{Ep∗ [�(X)] + Ep[�(X)]},
where Ep∗ denotes the expectation with respect to the PDF of the prior predictive
distribution given by p∗(x) = ∫

pα(x)πθ+1(α) dα.

(ii) Under the proper uniform prior π(α) = 1/(a − 1), 1 ≤ α ≤ a, the Bayes risk is

Eπ [Ipα (α)] = 1

a − 1
{Epa [�(X)] + Ep[�(X)]}.

(iii) If limα→∞ pα(x) → 0 for all x then under the improper uniform prior π(α) ∝ 1, α ≥ 1,
the Bayes risk is

Eπ [Ipα (α)] ∝ Ep[�(X)].
In the following corollary we connect the Shannon entropy of the ED of the baseline hazard

model, p, to the Bayes risk of Fisher information of its escort distribution pα about the PH
parameter.

Corollary 5.1. In Theorem 5.2,

Ep[�(X)] = 1

μ
h1(F̄ ) = 1

μ
E1(m),
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and under the condition of part (iii), the Bayes risk of Fisher information is related to the
Shannon entropy of the ED of the baseline model as follows:

Eπ [Ipα (α)] ∝ 1

μ
h1(F̄ ) = H(p)− logμ. (5.2)

In the following example we give some applications of Theorem 5.2 for a renewal process.

Example 5.1. (Weibull renewal process.) Consider the baseline survival function (3.7). The
ED of Xα is the generalized gamma GG(1/β, β, λα), λα = α−1/β with PDF

pα(x) = 1

λα
(1/β)
e−(x/λα)β , x > 0, α, β, λα > 0.

Using the expression for the moments of this distribution,

Epα (X
k) = 
(1/β + k/β)

αk/β
(1/β)
,

we find that

Ipα (α) = varpα [log F̄ (X)] = 1

α2β
.

Under the Pareto and uniform priors given in Theorem 5.2(i)–(iii), we obtain, respectively,

Eπ [Ipα (α)] = θ

(θ + 2)β
, Eπ [Ipα (α)] = 1

β
, Eπ [Ipα (α)] ∝ 1

β
.

The assumption of Theorem 5.2(iii) is met, hence, the relationship (5.2) holds.

6. Shannon measures

In the following theorem we state the Shannon entropy of the residual distribution of the ED
of Xα , denoted by H(pα; τ), and a representation of (5.2).

Theorem 6.1. Let λpα (τ ) denote the hazard rate function of the ED (1.4). Then

H(pα; τ) = α2 ∂

∂α

(
log λpα (τ )

α

)
(6.1)

= −α2 ∂

∂α

(
logmα(τ)

α

)
; (6.2)

and under the improper uniform prior π(α) ∝ 1, α ≥ 1,

Eπ [Ipα (α)] ∝ H(p, 0)− logμ.

Thus far, the Shannon entropy and Fisher information of a continuous PDF are defined and
computed by integration. Representations of these measures in terms of a derivative is novel.

The final issue that we address is the comparison of the entropies of the PH and baseline
models given by the following theorem.
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Theorem 6.2. (i) The Shannon entropy of PH model is given by

H(fα) = H(f )−K(fα : f )− α cov(log f (X), F̄ α−1(X)), (6.3)

where K(fα : f ) is the Kullback–Leibler divergence between the PH and baseline models,

K(fα : f ) =
∫ ∞

0
fα(x) log

fα(x)

f (x)
dx = logα + 1

α
− 1. (6.4)

(ii) It holds that H(fα) ≤ (≥)H(f ) if and only if

cov(log f (X), F̄ α−1(X)) ≥ (≤) 1

α

(
1 − logα − 1

α

)
. (6.5)

(iii) It holds that log f (X) and F̄ α−1(X) are uncorrelated if and only if

K(fα : f ) = H(f )−H(fα). (6.6)

Some important consequences of Theorem 6.2 are as follows. Equation (6.6) provides a
new condition for the Kullback–Leibler divergence between two distributions to be equal to
the difference between the respective entropies. Thus far, it is known that such an equality
holds for K(f : f ∗) when f is in a class of distributions with given moments, where f ∗ is the
maximum entropy model. Theorem 6.2(ii) provides a new condition. For example, (6.6) holds
for α = 2 when f is in a class of models where log f (x) is a symmetric function of x.

For some baseline models the entropies of the baseline and the PH models are available in
closed form. But such cases are exceptional rather than being general. For many models
the entropy expression for many baseline models are available, but the entropies for the
corresponding PH models are not available in closed form. Yet, for a third class of models
neither the entropy of the baseline model nor the entropy of the PH model is available in closed
form. The order between the entropies of the baseline and PH models may be obtained using
known results such as the dispersive order (see [18]) and the hazard rate and stochastic orders
with an additional monotone PDF condition (see [5] and [13]). The covariance condition (6.5)
applies to any baseline hazard model. When the entropy of the baseline model is available in
closed form, and computation of the PH entropy requires a numerical integration procedure,
(6.3) offers a simple procedure in order to compute the PH entropy. When the baseline entropy
cannot be computed so easily, such as the case of a mixture model, (6.5) provides a comparison
between the entropies of the baseline and PH models. In the following example we illustrate
some applications of Theorem 6.2.

Example 6.1. (Uncertainties of the PH model.) Consider baseline models shown in Table 3.
The entropies for the PH models with the Weibull, Pareto, and uniform baseline distributions
are computed using the entropy expressions for the Weibull, Pareto, and symmetric beta
distributions beta(β, β). The expressions for the entropy of the gamma, lognormal, and beta
baseline models are available, but not for the corresponding PH models. The entropies of these
PH models can be easily computed using (6.3) with the entropy expressions for these models,
H(f ), and computing the covariance term by simulating large samples from the baseline model.

In the upper panels of Figure 3 we present the plots of the entropies of the PH models
listed in Table 3, with the exception of the mixture model for which the entropy of the baseline
model is not available in closed form. For the PH models whose entropies are not available in
closed form the covariance term is computed using n = 100, 000 data points simulated from
the baseline model.
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Table 3: Comparison of Shannon entropies of the baseline and PH models of Example 6.1. Note that
B(·, ·) is the beta function, ψ(·) is the digamma function, and γ = ψ(1) is the Euler number.

Baseline model f (x) H(f ) H(fα)

Weibull(2,1) 2xe−x2
, x ≥ 0 1 − log 2 + γ

2
H(f )+ logα

2

Pareto(2)
2

(1 + x)3
, x ≥ 0 3

2 − log 2 1 − log(2α)+ 1

2α

Uniform 1, 0 ≤ x ≤ 1 0
1

α
− logα + 1

gamma(2,1) xe−x, x ≥ 0 γ Not available

Lognormal(0,1)
1

x
√

2π
e−(log x)2/2, x ≥ 0 1

2 + 1
2 log(2π) Not available

beta(β, β),
1

B(β, β)
xβ−1(1 − x)β−1, logB(β, β)

β = 0.5, 2, 6 0 ≤ x ≤ 1 −2(β − 1)[ψ(β)− ψ(2β)] Not available

Mixture 1
2 e−x + 3

2x
2e−x3

, x ≥ 0 Not available Not available

Figure 3: Plots of the covariance condition (6.5) for several baseline models.
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In the lower panels of Figure 3 we present the plots of the bound and the covariance term
in (6.5) against α for the baseline models listed in Table 3 for which the entropy of the PH
model is not available in closed form. The left panel pertains to PH models with the gamma,
lognormal, and mixture baseline models. All plots intersect at (1, 0), which is the trivial case for
the covariance being 0. For these models, condition (6.5) corresponds to the order ofH(f ) and
H(fα) within each family by α. But across the families and the bound, the order is reversed
for α ≤ (≥)1. The right panel pertains to PH models with three symmetric beta baseline
distributions. These models are examples of distributions where Y = log f (X) is a symmetric
function ofX which is uncorrelated with the monotone functionU = F̄ (X). For these models,
the plots of the covariance intersect for α = 1, 2, hence, (6.6) is applicable for α = 2.

7. Conclusions

The PH model is used in various applications in many fields. We showed that the PH
model and the associated distributions also provide a rich medium for studying some important
measures used in statistics, reliability and survival analysis, information theory, and related
fields. The MRL function of the ED of the PH model is the optimal prediction of the excess of a
random variable over a given threshold τ under the quadratic loss. We derived and compared the
Bayes risks of the MRL under three priors (weight functions) for τ , showed their relationships
with Shannon entropy of the ED of the PH model, and presented some potential applications
in reliability and insurance.

When the prior for τ is the density of the baseline distribution, the Bayes risk of the MRL
function is the GE functional of the baseline survival function. We derived two upper bounds
for this Bayes risk. For α = 2, this Bayes risk is related to the Gini coefficient of the wealth
inequality and, in turn, gives the connection between the Gini coefficient and the GE. A bound
for this Bayes risk provides upper bounds for the Gini coefficients of wealth distributions
stochastically dominated by some known families of distributions.

We computed the Bayes risks of the Fisher information of the ED of the PH model about the
PH parameter α under three priors for α. These measures are linear functions of the Shannon
entropy functional of the baseline survival function. Under an improper uniform prior, the Bayes
risk is proportional to a linear function of the Shannon entropy of the ED of the baseline model.

Thus far, the Shannon entropy of a random variable with continuous density is seen in
the integral forms of the density and hazard rate functions. We presented two derivative
representations for the Shannon entropy of the residual distribution of the ED ofXα in terms of
the hazard rate and MRL functions. We also provided a covariance condition for comparison
of the entropies of the PH and baseline models. This result gives the necessary and sufficient
condition for ordering of the entropies of the baseline and PH models.

Appendix A. Proofs

Proof of Lemma 2.1. (i) This result is a continuous analog of the following generalized log-
sum inequality:

n∑
i=1

aiLα

(
ai

bi

)
≥

( n∑
i=1

ai

)
Lα

(∑n
i=1 ai∑n
i=1 bi

)
.

This inequality was obtained by Borland et al. [9] using Jensen’s inequality
n∑
i=1

πiϕ(zi) ≥ ϕ

( n∑
i=1

πizi

)
,
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where ϕ(z) = zLα(z) is a convex function, zi = ai/bi , and πi = bi/
∑n
j=1 bj , i = 1, . . . , n.

The continuous version is obtained by letting z = φ1(x)/φ2(x) and π(x) = φ2(x)/μ2, and
using

∫ ∞
0 φi(x) dx = μi, i = 1, 2.

(ii) We show that Lα(z) is an increasing function of α for all values of z. Differentiating in
terms of α yields

dLα(z)

dα
= zα−1 log zα−1 − zα−1 + 1

(α − 1)2
≥ 0;

the inequality is implied by log u ≥ 1 − 1/u for all u = zα−1 > 0. �
Proof of Theorem 3.1. For any π(τ), τ ≥ 0, and α > 0, we have

Eπ (mα) =
∫ ∞

0
mα(τ)π(τ) dτ

=
∫ ∞

0

(∫ ∞
τ
F̄ α(x) dx

F̄ α(τ )

)
π(τ) dτ

=
∫ ∞

0
F̄ α(x)

(∫ x

0

π(τ)

F̄ α(τ )
dτ

)
dx. (A.1)

The results are obtained by letting π(τ) = πj (τ ), j = 1, 2, 3, in (A.1) as follows.

(i) With π1(τ ) = f (τ), τ ≥ 0, in (A.1), for α ∈ � as defined in (2.1), we obtain

E1(mα) =
∫ ∞

0
F̄ α(x)

(∫ x

0

f (τ)

F̄ α(τ )
dτ

)
dx = −

∫ ∞

0
F̄ α(x)Lα(F̄ (x)) dx = hα(F̄ ),

where the second equality is obtained by noting that the inner integrand in the double
integral is in the form of (2.4). See [4] for the proof for α = 1.

(ii) With π2(τ ) = fα(τ) = αf (τ)F̄ α−1(τ ), τ ≥ 0, in (A.1), we obtain

E2(mα) =
∫ ∞

0
αF̄ α(x)

(∫ x

0

f (τ)

F̄ (τ )
dτ

)
dx

= −
∫ ∞

0
F̄ α(x) log(F̄ α(x)) dx

= h(F̄α), α > 0.

(iii) With π3(τ ) = pα(τ), τ ≥ 0, in (A.1), we obtain

E3(mα) =
∫ ∞

0
F̄ α(x)

(∫ x

0

F̄ α(τ )

μαF̄ α(τ )
dτ

)
dx

= 1

μα

∫ ∞

0
xF̄ α(x) dx

= E(X2
α)

2E(Xα)

= E(AXα ), α > 0;
the last equality is well known (see [20]). �
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Proof of Corollary 3.1. (i) With the PH prior π2(τ ) = αf (τ)F̄ α−1(τ ), we can write

E2,α(m) =
∫ ∞

0
m(τ)αf (τ)F̄ α−1(τ ) dτ

=
∫ ∞

0

(∫ ∞

τ

F̄ (x) dx

)
αf (τ)F̄ α−2(τ ) dτ

= α

α − 1

∫ ∞

0
F̄ (x)

∫ x

0
(α − 1)f (τ )F̄ α−2(τ ) dτ dx

= α

α − 1

∫ ∞

0
F̄ (x)(1 − F̄ α−1(x)) dx

= αE1(mα),

where the last equality is obtained from (3.5).

(ii) The equality in (3.4) is seen by using the PDF (1.4) in (2.2) and Theorem 3.1(ii). The
inequality in (3.4) is obtained by applying the bound given by Rao et al. [19, Theorem 10] to
h1(F̄α). �

Proof of Theorem 3.2. Using (3.6), for α ∈ �, we obtain

E1(mα) = μα

α − 1

[
μ1−α − μα

μα

]

= μα

α − 1
[μ1−α − Cα]

= μα
[
μ1−α − 1

α − 1
− Cα − 1

1 − α

]

= −μαLα(μ)+ μαHα(p).

The α = 1 case is easily seen by taking the log of the two sides of (1.4). �

Proof of Theorem 3.3. Noting that the first integral in (3.5) yields E(X) and the second
integral yields αE(XF̄ α−1(X)), we have

E1(mα) = 1

α − 1
(E(X)− αE(XF̄ α−1(X)))

= 1

α − 1
(E(X)E(αF̄ α−1(X))− αE(XF̄ α−1(X)))

= −α
α − 1

(E(XF̄ α−1(X))− E(X)E(F̄ α−1(X))),

where the second equality follows from the fact that E(αF̄ α−1(X)) = 1. �

Proof of Corollary 3.2. Let U = F̄ α−1(X). Then E(Uk) = 1/(k(α − 1)+ 1). For k =
1, 2, this yields

σ 2
u = (α − 1)2

α2(2α − 1)
, α >

1

2
.
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Applying the Cauchy–Schwarz inequality to (3.11) yields

E1(mα) = α

1 − α
cov(X,U), α 
= 1,

≤ α

1 − α
σxσu, α >

1

2
, α 
= 1. �

Proof of Theorem 3.4. For two survival functions with a common support, z= F̄X(x)/F̄Y (x)
is well defined except for sets of measure 0. Then∫

Sα

F̄X(x)Lα

(
F̄X(x)

F̄Y (x)

)
dx

=
∫

Sα

F̄X(x)

(
F̄ α−1
X (x)− 1

α − 1

)
dx +

∫
Sα

F̄ αX(x)

(
F̄ 1−α
Y (x)− 1

α − 1

)
dx

= −hα(F̄X)+
∫

Sα

F̄ αX(x)

(
F̄ 1−α
Y (x)− 1

α − 1

)
dx.

That is,

hα(F̄X) = −
∫

Sα

F̄ αX(x)

(
1 − F̄Y (x)

1−α

α − 1

)
dx −

∫
Sα

F̄X(x)Lα

(
F̄X(x)

F̄Y (x)

)
dx.

Using Lemma 2.1(i) with φ1(x) = F̄X(x) and φ2(x) = F̄Y (x),

hα(F̄X) ≤ −
∫

Sα

F̄ αX(x)

(
1 − F̄Y (x)

1−α

α − 1

)
dx − μxLα

(
μx

μy

)
. (A.2)

With F̄Y as in (3.13), μy = c/(2 − α). Then (A.2) implies that

−hα(F̄ ) ≥ −1

c

∫
Sα

xF̄ αX(x) dx + μxLα

(
(2 − α)μx

c

)
.

The integral yields E(X2
α)/2. Thus, for all values of c > 0,

−hα(F̄ ) ≥ − 1

2c
E(X2

α)+ μxLα

(
(2 − α)μx

c

)
= ϕ(c), c > 0. (A.3)

That is,
−hα(F̄ ) ≥ max

c>0
φ(c) = ϕ(c∗).

Setting ϕ′(c) = 0 and noting that ϕ′′(c) = [(2 − α)/c]α+1 > 0, we find that c∗ = (2 −
α)ναQα(X), where

Qα(X) =
(

E(X2
α)

Eα(X)

)1/(2−α)
, 0 < α < 2.

Substituting the value of c∗ in (A.3) and then applying Lemma 2.1(ii), we obtain

−hα(F̄ ) ≥ − E(X2
α)

2(2 − α)ναQα(X)
+ μxLα

(
μx

ναQα(X)

)

≥ −ωαSα(X)+ μx

(
1 − ναQα(X)

μx

)

= −ωαSα(X)− ναQα(X)+ μx,
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where

Sα(X) = E(X2
α)

Qα(X)
= [E1−α(X2

α)E
α(X)]1/(2−α), 0 < α < 2.

Hence, we obtain (3.15). �
Proof of Theorem 4.1. (i) Applying the stochastic assumption to the integral in (A.2), we

obtain

hα(F̄X) ≤ −
∫ ∞

0
F̄ αY (x)

(
1 − F̄Y (x)

1−α

α − 1

)
dx − μxLα

(
μx

μy

)

= −
∫ ∞

0
F̄ αY (x)

(
F̄Y (x)

1−α − 1

1 − α

)
dx − μxLα

(
μx

μy

)

= hα(F̄Y )− μxLα

(
μx

μy

)
.

(ii) From (4.2), we have h2(F̄X) = μxG(X) and h2(F̄Y ) = μyG(Y ). Substituting into (4.4)
and noting that L2(ρ) = ρ − 1 yields the result. The restriction ρ ≤ 1 is implied by the
stochastic order assumption. �

Proof of Theorem 5.1. This result can be obtained as a corollary of [8, Theorem 9]. In order
to avoid additional definitions and notation we state the following proof. The score function of
pα is as follows:

∂ logpα(X)

∂α
= ∂(log F̄α(x)− log

∫ ∞
0 F̄α(x) dx)

∂α

= log F̄ (x)−
∫ ∞

0 F̄ α(x) log F̄ (x) dx∫ ∞
0 F̄ α(x) dx

= log F̄ (x)−
∫ ∞

0
log F̄ (x)pα(x) dx

= log F̄ (x)− Epα [log F̄ (X)].
The expectation of the square of the partial derivative yields the result. �

Proof of Theorem 5.2. First note that

Ipα (α) =
∫ ∞

0

(
∂ logpα(x)

∂α

)2

pα(x) dx

=
∫ ∞

0

(
∂pα(x)

∂α

)
(log F̄ (x)− Epα [log F̄ (X)]) dx

=
∫ ∞

0

(
∂pα(x)

∂α

)
log F̄ (x) dx − Epα [log F̄ (X)]

∫ ∞

0

∂pα(x)

∂α
dx

=
∫ ∞

0

(
∂pα(x)

∂α

)
log F̄ (x) dx,

where the last equality follows from the regularity conditions, implying that
∫ ∞

0

∂pα(x)

∂α
dx = 0.
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Thus,

Eπ [Ipα (α)] =
∫ ∞

1

[∫ ∞

0

(
∂pα(x)

∂α

)
log F̄ (x) dx

]
π(α) dα

=
∫ ∞

0

[∫ ∞

1

(
∂pα(x)

∂α

)
π(α) dα

]
log F̄ (x) dx. (A.4)

(i) In (A.4), let u = π(α) = θα−(θ+1), α ≥ 1, and dv = (∂pα(x)/∂α) dα. Then du =
−θπθ+1(α) dθ and v = pα(x). Integration by parts yields

Eπ [Ipα (α)] =
∫ ∞

0

(∫ ∞

1

(
∂pα(x)

∂α

)
π(α) dα

)
log F̄ (x) dx

=
∫ ∞

0
[pα(x)θα−(θ+1)]∞1 log F̄ (x) dx

+
∫ ∞

0

[∫ ∞

1
pα(x)θπθ+1(α) dα

]
log F̄ (x) dx

= −θ
∫ ∞

0
p1(x) log F̄ (x) dx + θ

∫ ∞

0
p∗(x) log F̄ (x) dx

= θ{Ep∗ [log F̄ (X)] − Ep1 [log F̄ (X)]}.
(ii) In (A.4), let π(α) = 1/(a − 1), 1 ≤ α ≤ a. Then

Eπ [Ipα (α)] = 1

a − 1

∫ ∞

0

[∫ a

1

(
∂pα(x)

∂α

)
dα

]
log F̄ (x) dx

= 1

a − 1

∫ ∞

0
[pa(x)− p1(x)] log F̄ (x) dx

= 1

a − 1
{Epa [log F̄ (X)] − Ep1 [log F̄ (X)]}.

(iii) In (A.4), let π(α) ∝ 1, α ≥ 1. Then

Eπ [Ipα (α)] ∝
∫ ∞

0

[∫ ∞

1

(
∂pα(x)

∂α

)
dα

]
log F̄ (x) dx

∝
∫ ∞

0
[p∞(x)− p1(x)] log F̄ (x) dx

∝ −Ep1 [log F̄ (X)],
where the last expression is obtained from the assumption that limα→∞ pα(x) → 0 for
all x.

The result follows by noting that p1(x) = p(x) given in (1.3). �
Proof of Theorem 6.1. We have

∂

∂α
λpα (τ ) = F̄ α(τ ) log F̄ (τ )

∫ ∞
τ
F̄ α(u) du− F̄ α(τ )

∫ ∞
τ

log F̄ (τ )F̄ α(u) du

(
∫ ∞
τ
F̄ α(u) du)2

= λpα (τ )

(
log F̄ (τ )−

∫ ∞
τ

log F̄ (τ )F̄ α(u) du∫ ∞
τ
F̄ α(u) du

)
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= λpα (τ )

α

(
logpα(τ)−

∫ ∞
τ

logpα(τ)pα(u) du∫ ∞
τ
pα(u) du

)

= λpα (τ )

α

(
logpα(τ)+H(pα; τ)− log

∫ ∞

τ

pα(u) du

)

= λpα (τ )

α
(log λpα (τ )+H(pα; τ)).

That is,

H(pα; τ) = α
∂

∂α
log λpα (τ )− log λpα (τ ),

which is equivalent to (6.1). Representation (6.2) is obtained using the following reciprocal
relationship between the hazard function of the ED of the PH model and λpα (τ ) = 1/mα(τ).
This completes the proof. �

Proof of Theorem 6.2. Using the PDF of the PH fα(x) = αf (x)[F̄ (x)]α−1, we obtain

H(fα) = −
∫ ∞

0
αf (x)[F̄ (x)]α−1 log(αf (x)[F̄ (x)]α−1) dx

= −α
∫ ∞

0
f (x)[F̄ (x)]α−1 log f (x) dx −K(fα : f )

= −K(fα : f )− αEf ([F̄ (X)]α−1 log f (X))

= −K(fα : f )− α cov(log f (X), [F̄ (X)]α−1)− αEf [log f (X)]Ef ([F(X)]α−1)

= −K(fα : f )− α cov(log f (X), [F̄ (X)]α−1)+ αH(f )

∫ 1

0
uα−1 du

= −K(fα : f )− α cov(log f (X), [F̄ (X)]α−1)+H(f ).

This yields (6.3). Letting u = F̄ (x), we obtain

K(fα : f ) =
∫ 1

0
αuα−1 log(αuα−1) du = logα + 1

α
− 1.

This yields (6.4) and (6.5). �
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