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Abstract

We study the iteration of transcendental self-maps of C
∗:=C \ {0}, that is, holomorphic

functions f :C∗ →C
∗ for which both zero and infinity are essential singularities. We use

approximation theory to construct functions in this class with escaping Fatou components,
both wandering domains and Baker domains, that accumulate to {0, ∞} in any possible way
under iteration. We also give the first explicit examples of transcendental self-maps of C

∗

with Baker domains and with wandering domains. In doing so, we developed a sufficient
condition for a function to have a simply connected escaping wandering domain. Finally,
we remark that our results also provide new examples of entire functions with escaping
Fatou components.

2010 Mathematics Subject Classification: 37F10 (Primary); 30D05 (Secondary)

1. Introduction

Complex dynamics concerns the iteration of a holomorphic function on a Riemann sur-
face S. Given a point z ∈ S, we consider the orbit of z under f , which is the sequence
given by its iterates f n(z) = ( f ◦ n· · · ◦ f )(z), and study the possible behaviours as n tends
to infinity. We partition S into the Fatou set, or stable set,

F( f ) := {
z ∈ S : ( f n)n∈N is a normal family in some neighbourhood of z

}
and the Julia set J ( f ) := S \ F( f ), where the chaotic behaviour takes place. We refer to
each connected component of F( f ) as a Fatou component of f . If S ⊆ Ĉ, f : S → S is
holomorphic and Ĉ \ S consists of essential singularities, then conjugating by a Möbius
transformation, we can reduce to one of the following three cases:

(i) S = Ĉ :=C∪ {∞} and f is a rational map;
(ii) S =C and f is a transcendental entire function;

(iii) S =C
∗:=C \ {0} and both zero and infinity are essential singularities.

We study this third class of maps, which we call transcendental self-maps of C∗. Such maps
are all of the form

f (z) = zn exp
(
g(z) + h(1/z)

)
, (1·1)
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where n ∈Z and g, h are non-constant entire functions. We define the index of f , denoted
by ind( f ), as the index (or winding number) of f (γ ) with respect to the origin for any
positively oriented simple closed curve γ around the origin; note that ind( f ) = n in (1·1).
Transcendental self-maps of C

∗ arise in a natural way in many situations, for example,
when you complexify analytic circle maps, like the so-called Arnol’d standard family:
fα,β(z) = zeiαeβ(z−1/z)/2, 0 � α � 2π, β � 0 [Fag99]. Note that if f has three or more
omitted values, then, by Picard’s theorem, f is constant and, consequently, a non-constant
holomorphic function f :C∗ →C

∗ has no omitted values. The book [Mil06] is a basic ref-
erence on the iteration of holomorphic functions in one complex variable. See [Ber93] for a
survey on transcendental entire and meromorphic functions. Although the iteration of tran-
scendental (entire) functions dates back to the times of Fatou [Fat26], Rådström [Råd53]
was the first to consider the iteration of transcendental self-maps of C∗. An extensive list of
references on this topic can be found in the thesis [Mar16].

We recall the definition of the escaping set of an entire function f,

I ( f ) := {z ∈C : f n(z) → ∞ as n → ∞},
whose investigation has provided important insight into the Julia set of entire functions. For
polynomials, the escaping set consists of the basin of attraction of infinity and its boundary
equals the Julia set. For transcendental entire functions, Eremenko [Ere89] showed that
I ( f ) ∩ J ( f ) �= ∅, J ( f ) = ∂ I ( f ) and the components of I ( f ) are all unbounded. If f is a
transcendental self-map of C∗, then the escaping set of f is given by

I ( f ) := {z ∈C
∗ : ω(z, f ) ⊆ {0, ∞}},

where ω(z, f ) is the classical omega-limit set ω(z, f ) := ⋂
n∈N { f k(z) : k � n} with the

closure being taken in Ĉ. In [Mar18], we studied the basic properties of I ( f ) for transcen-
dental self-maps of C∗ and introduced the following notion. We define the essential itinerary
of a point z ∈ I ( f ) as the sequence e = (en) ∈ {0, ∞}N0 defined by

en :=
{

0, if | f n(z)|� 1,

∞, if | f n(z)| > 1,

for all n ∈N0 :=N∪ {0}. Then, for each sequence e ∈ {0, ∞}N0 , we consider the set of points
whose essential itinerary is eventually a shift of e, that is,

Ie( f ) := {z ∈ I ( f ) : ∃�, k ∈N0, ∀n ∈N0, | f n+�(z)| > 1 ⇔ en+k = ∞}.
Observe that if e, e′ ∈ {0, ∞}N0 satisfy σ m(e) = σ n(e′) for some m, n ∈N0, where σ is the
Bernoulli shift map (we say that e and e′ are equivalent), then Ie( f ) = Ie′( f ) and, oth-
erwise, the sets Ie( f ) and Ie′( f ) are disjoint. Hence, the concept of essential itinerary
provides a partition of I ( f ) into uncountably many non-empty sets of the form Ie( f )

for some e ∈ {0, ∞}N0 . In [Mar18], we also showed that, for each e ∈ {0, ∞}N0 , we have
Ie( f ) ∩ J ( f ) �= ∅, J ( f ) = ∂ Ie( f ) and the components of Ie( f ) are all unbounded in C

∗,
that is, their closure in Ĉ contains zero or infinity. We say that U is an escaping Fatou
component of f if U is a component of F( f ) ∩ I ( f ).

As usual, the set of singularities of the inverse function, sing( f −1), which consists of the
critical values and the finite asymptotic values of f , plays an important role in the dynamics
of f . In [FM17] we studied the class

B∗ := { f transcendental self-map of C
∗ : sing( f −1) is bounded away from 0, ∞},
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which is the analogue of the Eremenko–Lyubich class B considered in [EL92]. We proved
that if f ∈B∗, then I ( f ) ⊆ J ( f ) or, in other words, functions in the class B∗ have no
escaping Fatou components.

In this paper, we are concerned with transcendental self-maps of C
∗ that have escaping

Fatou components. By normality, if U is a Fatou component of a transcendental self-
map f of C

∗ and U ∩ I ( f ) �= ∅, then U ⊆ I ( f ). Moreover, note that every pair of points in
an escaping Fatou component U have, eventually, the same essential itinerary, and hence we
can associate an essential itinerary to U , which is unique up to equivalence. We mentioned
before that Ie( f ) ∩ J ( f ) �= ∅ for each sequence e ∈ {0, ∞}N0 (see [Mar18, Theorem 1·1]).
Therefore it is a natural question whether for each e ∈ {0, ∞}N0 , there exists a transcendental
self-map of C

∗ with a Fatou component in Ie( f ).
For both transcendental entire functions and transcendental self-maps of C

∗, escaping
Fatou components can be classified into the following two kinds: let U be a Fatou compo-
nent of f and denote by Un , n ∈N, the Fatou component of f that contains f n(U ), then we
say that:

(i) U is a wandering domain if Um ∩ Un = ∅ for all m, n ∈N such that m �= n;
(ii) U is a Baker domain (or a preimage of it) if U ⊆ I ( f ) and U is (pre)periodic, that

is, Up+m = Um for some p ∈N, the period of U , and m = 0 (m > 0).

Note that not all wandering domains are in I ( f ). For instance, Bishop [Bis15,
Theorem 17·1] constructed an entire function in the class B with a wandering domain
whose orbit is unbounded but it does not escape.

The first example of a transcendental entire function with a wandering domain was given
by Baker [Bak63, Bak76] and was an infinite product that had a sequence of multiply
connected Fatou components escaping to infinity; see [BRS13] for a detailed study of the
properties of such functions. For holomorphic self-maps of C

∗, Baker [Bak87] showed that
all Fatou components, except possibly one, are simply connected, and hence this kind of
wandering domains cannot occur. Further examples of simply connected wandering domains
of entire functions are due, for example, to Herman [Bak84, Example 2] or Baker [Bak84,
Example 5·3].

Baker [Bak87] also constructed the first holomorphic self-map of C
∗ (which is entire)

with a wandering domain that escapes to infinity. The first examples of transcendental self-
maps of C

∗ with a wandering domain are due to Kotus [Kot90], where the wandering
domain accumulates to zero, infinity or both of them. In the same paper, Kotus also con-
structed an example with an infinite limit set (by adapting the techniques from [EL92]).
Mukhamedshin [Muk91] used quasiconformal surgery to create a transcendental self-map
of C

∗ with a Herman ring and two wandering domains, one escaping to zero and the other
one to infinity. Finally, Baker and Domínguez [BD98, Theorem 6] gave an example of a dou-
bly connected wandering domain that is relatively compact in C

∗ and all of whose images
are simply connected and escape to infinity.

In our notation, all the previous examples of wandering domains of transcendental self-
maps of C

∗ had essential itinerary e ∈ {∞, 0, ∞0}, where e1e2 . . . ep, p ∈N, denotes the
p-periodic sequence that repeats e1e2 . . . ep. The following result provides examples of
transcendental self-maps of C

∗ that have a wandering domain with any prescribed essen-
tial itinerary e ∈ {0, ∞}N0 . Observe that, in particular, we obtain functions with wandering
domains whose essential itinerary is not necessarily a periodic sequence.
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THEOREM 1·1. For each sequence e ∈ {0, ∞}N0 and n ∈Z, there exists a transcen-
dental self-map f of C

∗ such that ind( f ) = n and the set Ie( f ) contains a wandering
domain.

The other type of escaping Fatou component is a Baker domain. The first example of a
transcendental entire function with a Baker domain was already given by Fatou [Fat26]:
f (z) = z + 1 + e−z . See [Rip08] for a survey on Baker domains.

A result of Cowen [Cow81] on holomorphic self-maps of the unit disc D whose Denjoy–
Wolff point lies on ∂D led to the following classification of Baker domains by Fagella and
Henriksen [FH06], where U/ f is the Riemann surface obtained by identifying points of U
that belong to the same orbit under f :

(i) a Baker domain U is hyperbolic if U/ f is conformally equivalent to the finite
cylinder {z ∈C : −s < Im z < s}/Z for some s > 0;

(ii) a Baker domain U is simply parabolic if U/ f is conformally equivalent to the one-
sided infinite cylinder {z ∈C : Im z > 0}/Z;

(iii) a Baker domain U is doubly parabolic if U/ f is conformally equivalent to the two-
sided infinite cylinder C/Z.

Note that this classification does not require f to be entire and is valid also for Baker
domains of transcendental self-maps of C

∗. König [Kön99] provided a geometric character-
isation for each of these types (see Lemma 3·2). It is known that if U is a doubly parabolic
Baker domain, then f|U is not univalent, but if U is a hyperbolic or simply parabolic Baker
domain, then f|U can be either univalent or multivalent. Several examples of each type had
been constructed and recently Bergweiler and Zheng completed the table of examples by
constructing a transcendental entire function with a simply parabolic Baker domain in which
the function is not univalent [BZ12, Theorem 1·1].

The only previous examples of Baker domains of transcendental self-maps of C
∗ that the

author is aware of are due to Kotus [Kot90]. She used approximation theory to construct
two functions with invariant hyperbolic Baker domains whose points escape to zero and
to infinity respectively. The following theorem provides functions with Baker domains that
have any periodic essential itinerary e ∈ {0, ∞}N0 and, in particular, Baker domains whose
points accumulate to both zero and infinity.

THEOREM 1·2. For each periodic sequence e ∈ {0, ∞}N0 and n ∈Z, there exists a trans-
cendental self-map f of C

∗ such that ind( f ) = n and Ie( f ) contains a hyperbolic Baker
domain.

Remark 1. We observe that our method can be modified to produce doubly parabolic
Bakers domains as well. However, the construction of simply parabolic Baker domains using
approximation theory seems more difficult.

We also give the first explicit examples of transcendental self-maps of C∗ with wandering
domains and Baker domains. They all have the property that in a neighbourhood of infinity
they behave like known examples of transcendental entire functions with wandering domains
and Baker domains.

Example 1·3. The following transcendental self-maps of C
∗ have escaping Fatou

components:
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(i) the function f (z) = z exp
(
sin z/z + 2π/z

)
has a bounded wandering domain that

escapes to infinity (see Example 2·1);
(ii) the function f (z) = 2z exp

(
e−z/z

)
has an invariant hyperbolic Baker domain that

contains a right half-plane and whose points escape to infinity (see Example 3·3).

It seems hard to find explicit examples of functions with Baker domains and wandering
domains with any given essential itinerary, but it would be interesting to have a concrete
example of a function with an escaping Fatou component that accumulates to both zero and
infinity. It also seems difficult to find explicit examples of functions with simply and doubly
parabolic Baker domains.

We remark that in order to show that the function from Example 1·3 (i) has a simply con-
nected escaping wandering domain we introduced a new criterion (see Lemma 2·2) which
is of more general interest.

Let f be a transcendental self-map of C
∗, then there exists a transcendental entire

function f̃ such that exp ◦ f̃ = f ◦ exp; we call f̃ a lift of f . If the function f has a wan-
dering domain, then f̃ has a wandering domain, while if f has a Baker domain, then f̃ has
either a Baker domain (of the same type) or a wandering domain; see Lemmas 2·4 and 3·4.

It is important that in both Theorems 1·1 and 1·2 we can choose the index of the function
since, for example, if ind( f ) �= 1, then f does not have Herman rings. In [Mar] the author
compares the escaping set of f with that of a lift f̃ of f according to ind( f ).

Finally, observe that our constructions using approximation theory can also produce
holomorphic self-maps of C

∗ of the form f (z) = zn exp(g(z)), with n ∈Z and g a non-
constant entire function. In particular, they can provide new examples of transcendental
entire functions with no zeros in C

∗ that have wandering domains and Baker domains.

Structure of the paper. In Sections 2 and 3 we prove that the functions from Example 1·3
have the properties that we state. In Section 4 we introduce the tools from approximation
theory that we will use in Sections 5 and 6 to construct functions with escaping wan-
dering domains and Baker domains respectively. Theorem 1·1 is proved in Section 5 and
Theorem 1·2 is proved in Section 6.

Notation. In this paper N0 :=N∪ {0} = {0, 1, 2, . . . } and, for z0 ∈C and r > 0, we define

D(z0, r) := {z ∈C : |z − z0| < r} and Hr := {z ∈C : Re z > r}.
We will also use D := D(0, 1).

2. Explicit functions with wandering domains

As mentioned before in the Introduction, the author is not aware of any previous explicit
examples of transcendental self-maps of C∗ with wandering domains nor Baker domains as
all such functions were constructed using approximation theory.

Kotus [Kot90] showed that transcendental self-maps of C
∗ can have escaping wandering

domains by constructing examples of such functions using approximation theory. Here we
give an explicit example of such a function by modifying a transcendental entire function
that has a wandering domain.

Example 2·1. The function f (z) = z exp
(
sin z/z + 2π/z

)
is a transcendental self-map

of C
∗ which has a bounded wandering domain that escapes to infinity (see Figure 1).
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Fig. 1. Phase space of the function f (z) = z exp(sin z/z + 2π/z) from Example 2·1. The grey sets are
wandering domains. On the right, the wandering domains for large values of Re z.

Baker [Bak84, Example 5·3] (see also [RS08, Example 2]) studied the dynamics of
the transcendental entire function f1(z) = z + sin z + 2π that has a wandering domain
containing the origin that escapes to infinity. Observe that the function f from Example 2·1
satisfies that

f (z) = z + sin z + 2π + o(1) as Re z → +∞ (2·1)

in a horizontal band defined by |Im z| < K for some K > 0.
We first prove a general result which gives a sufficient condition that implies that a func-

tion has a bounded wandering domain (see Figure 2) using some of the ideas from [RS08,
Lemma 7(c)]. Given a doubly connected set A ⊆C, we define the inner boundary, ∂in A,
and the outer boundary, ∂out A, of A to be the boundary of the bounded and unbounded
complementary components of A respectively.

LEMMA 2·2. Let f be a function that is holomorphic on C
∗, let M be an affine map, let

A be a doubly connected closed set in C
∗ with bounded complementary component B, and

let C ⊆ B be compact. Put

An := Mn(A), Bn := Mn(B) and Cn := Mn(C), for n ∈N0,

and suppose that:

(i) An ∪ Bn ⊆C
∗ for n ∈N0;

(ii) the sets {Bn}n∈N0 are pairwise disjoint;
(iii) f (∂in An) ⊆ Cn+1 for n ∈N0;
(iv) f (∂out An) ⊆C

∗ \ (An+1 ∪ Bn+1) for n ∈N0.

Then f has bounded simply connected wandering domains {Un}n∈N0 such that

∂in An ⊆ Un and ∂Un ⊆ An, for n ∈N0.

In order to prove this lemma, we first need the following result on limit functions of
holomorphic iterated function systems by Keen and Lakic [KL03, Theorem 1].
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Fig. 2. Sketch of the construction in Lemma 2·2.

LEMMA 2·3. Let X be a subdomain of the unit disc D. Then all limit functions of any
sequence of functions (Fn) of the form

Fn := fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1, for n ∈N,

where fn :D→ X is a holomorphic function for all n ∈N, are constant functions in X if and
only if X �=D.

We now proceed to prove Lemma 2·2.

Proof of Lemma 2·2. Since f (Bn) ⊆ Cn+1 ⊆ Bn+1, the iterates of f on each set Bn omit
more than three points and hence, by Montel’s theorem, the sets {Bn}n∈N0 are all contained in
F( f ). For n ∈N0, let Un denote the Fatou component of f that contains Bn . We now show
that the functions


k(z) := M−k( f k(z)), for k ∈N0,

form a normal family in Un for all n ∈N0.
Suppose first that the Fatou components {Un}n∈N0 are not distinct. Then there are two sets

Bm and Bm+p with m ∈N0 and p > 0 which lie in the same Fatou components Um = Um+p.
Then, since f p(Bm) ⊆ Bm+p and Bn → ∞ as n → ∞, Um must be periodic and in I ( f ), and
hence a Baker domain.

Let zm ∈ Bm and let K be any compact connected subset of Um such that K ⊇ Bm . Then
by Baker’s distortion lemma (see [Mar18, Lemma 6·2] or [Mar16, Lemma 2·22] for a proof
of the version of this result that we use here), there exist constants C(K ) > 1 and n0 ∈N0

such that

| f k(z)|� C(K )| f k(zm)|, for z ∈ K , k � n0.

Since M , and hence M−k , is an affine transformation, M−k preserves the ratios of
distances, so

|
k(z)| = |M−k( f k(z))|� C(K )|M−k( f k(zm))| = C(K )|z′
m|,

where z′
m ∈ Bm satisfies Mk(z′

m) = f k(zm). Hence the family {
k}k∈N0 is locally uniformly
bounded on Um , and hence is normal on Um .
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Suppose next that the Fatou components {Un}n∈N0 are disjoint. In this case we consider
the sequence of functions

ϕk(z) := M−(k+1)( f (Mk(z))), for k ∈N0,

which are defined on Un , for n ∈N0. Then


k(z) = (ϕk−1 ◦ · · · ◦ ϕ1 ◦ ϕ0)(z) = M−k( f k(z)), for k ∈N0. (2·2)

Since the Fatou components {Un}n∈N0 are pairwise disjoint and

f k(Un) ⊆ Un+k,

we deduce that

f k(Un) ∩ Bn+k+1 = ∅,

and hence


k(Un) ∩ Bn+1 = ∅, for k, n ∈N0.

Thus {
k}k∈N0 is normal on each Un , by Montel’s theorem, as required.
Now take n ∈N0, and let {
k j } j∈N0 be a locally uniformly convergent subsequence of

{
k}k∈N0 on Bn . Note that

Mk(Bn) = Bn+k so f (Mk(Bn)) ⊆ Cn+k+1

and hence, for k ∈N0,

ϕk(Bn) = M−(k+1)( f (Mk(Bn))) ⊆ M−(k+1)(Cn+k+1) = Cn.

We now apply Lemma 2·3, after a Riemann mapping from Bn to the open unit disc D, to
deduce from (2·2) that there exists αn ∈ Bn such that, for all z ∈ Un ,


k j (z) → αn as j → ∞.

To complete the proof that Un is bounded by ∂out An for all n ∈N, suppose to the contrary
that there is a point z0 ∈ ∂out An that lies in Un for some n ∈N. Let γ ⊆ Un be a curve that joins
z0 to a point z1 ∈ Bn . Since γ is compact, 
k j (γ ) → α as j → ∞ which contradicts the fact
that f k(γ ) ∩ ∂out An+k �= ∅ for all k ∈N (this follows from the hypothesis that f (∂out An) ⊆
(An+1 ∪ Bn+1)

c for n ∈N0). Thus, ∂Un ⊆ An for all n ∈N, and so the proof is complete.

We now use Lemma 2·2 to show that the function f from Example 2·1 has a bounded
wandering domain that escapes to infinity along the positive real axis.

Proof of Example 2·1. The transcendental entire function g(z) = z + sin z has superattract-
ing fixed points at the odd multiples of π . For n ∈N0, take Bn := D((2n + 1)π, r) and
Cn := D((2n + 1)π, r/2) for some r > 0 sufficiently small that g(Bn) ⊆ Cn and put

Rn := {z ∈C : |Re z − (2n + 1)π |� 3π/2, |Im z|� 3}.
It follows from a straightforward computation that g(∂ Rn) ⊆ Rc

n for all n ∈N0 (see Figure 3).
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Fig. 3. The rectangle R0 and its image under g(z) = z + sin z.

Then, by (2·1), there exists N ∈N0 such that f (Bn) ⊆ Cn+1 and f (∂ Rn) ⊆ Rc
n+1 for all

n > N . Thus, we can apply Lemma 2·2 to f with M(z) = z + 2π and An := Rn \ Bn for
n > N and conclude that the function f has wandering domains Un that contain Bn and
whose boundary is contained in Rn .

The next lemma relates the wandering domains of a transcendental self-map of C∗ and a
lift of it.

LEMMA 2·4. Let f be a transcendental self-map of C∗ and let f̃ be a lift of f . Then, if
U is a wandering domain of f , every component of exp−1(U ) is a wandering domain of f̃
which must be simply connected.

Proof. By a result of Bergweiler [Ber95], every component of exp−1(U ) is a Fatou compo-
nent of f̃ . Let U0 be a component of exp−1(U ) and suppose to the contrary that there exist
m, n ∈N0, m �= n, and a point z0 ∈ f̃ m(U0) ∩ f̃ n(U0). Then, there exists points z1, z2 ∈ U0

such that

f m(ez1) = exp f̃ m(z1) = exp z0 = exp f̃ n(z2) = f n(ez2).

Since ez1, ez2 ∈ U , this contradicts the assumption that U is a wandering domain of f . Hence
U0 is a wandering domain of f̃ .

Finally, by [Bak87, Theorem 1], the Fatou component U is either simply connected or
doubly connected and surrounds the origin. Since the exponential function is periodic, taking
a suitable branch of the logarithm one can show that the components of exp−1(U ) are simply
connected.

Remark 2. Observe that the converse of Lemma 2·4 does not hold. If f is a transcendental
self-map of C

∗ with an attracting fixed point z0 and A is the immediate basin of attraction
of z0, then there is a lift f̃ of f such that a component of exp−1(A) is a wandering domain.
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If a transcendental self-map of C
∗ has an escaping wandering domain, then we can use

the previous lemma to obtain automatically an example of a transcendental entire function
with an escaping wandering domain.

Example 2·5. The transcendental entire function f̃ (z) = z + sin(ez)/ez + 2π/ez , which is
a lift of the function f from Example 2·1, has infinitely many grand orbits of bounded
wandering domains that escape to infinity.

3. Explicit functions with Baker domains

We now turn our attention to Baker domains. As we mentioned in the Introduction, Baker
domains can be classified into hyperbolic, simply parabolic and doubly parabolic according
to the Riemann surface U/ f obtained by identifying the points of the Baker domain U that
belong to the same orbit under iteration by the function f . König [Kön99] introduced the
following notation.

Definition 3·1 (Conformal conjugacy). Let U be a domain and let f : U → U be ana-
lytic. Then a domain V ⊆ U is absorbing (or fundamental) for f if V is simply connected,
f (V ) ⊆ V and for each compact set K ⊆ U , there exists N = NK such that f N (K ) ⊆ V . Let
H := {z ∈C : Re z > 0}. The triple (V, φ, T ) is called a conformal conjugacy (or eventual
conjugacy) of f in U if:

(a) V is absorbing for f ;
(b) φ : U → 
 ∈ {H,C} is analytic and univalent in V ;
(c) T : 
 → 
 is a bijection and φ(V ) is absorbing for T ;
(d) φ( f (z)) = T (φ(z)) for z ∈ U .

In this situation we write f ∼ T .

Observe that properties (b) and (d) imply that f is univalent in V . König also provided
the following geometrical characterisation of the three types of Baker domains [Kön99,
Theorem 3] (see Figure 4).

LEMMA 3·2. Let U be a p-periodic Baker domain of a meromorphic function f in which
f np → ∞ and on which f p has a conformal conjugacy. For z0 ∈ U, put

cn = cn(z0) = | f (n+1)p(z0) − f np(z0)|
dist( f np(z0), ∂U )

.

Then exactly one of the following cases holds:

(a) U is hyperbolic and f p ∼ T1(z) := λz with λ > 1, which is equivalent to

cn > c for z0 ∈ U, n ∈N, where c = c( f ) > 0;
(b) U is simply parabolic and f p ∼ T2(z) := z ± i , which is equivalent to

lim inf
n→∞ cn > 0 for z0 ∈ U, but inf

z0∈U
lim sup

n→∞
cn = 0;

(c) U is doubly parabolic and f p ∼ T3(z) := z + 1, which is equivalent to

lim
n→∞ cn = 0, for z0 ∈ U.
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(a) (b) (c)

Fig. 4. Classification of Baker domains with their absorbing domains.

Fig. 5. Phase space of the function f2(z) = 2z exp(e−z/z) from Example 3·3. The grey set is the hyperbolic
Baker domain of f2, and the different shades of grey indicate the number of iterates required for a point to
enter an absorbing right half-plane. On the right, a zoom of a neighbourhood of zero.

We now give a family of explicit examples of transcendental self-maps of C
∗ with a

hyperbolic Baker domain.

Example 3·3. For every λ� 2, the function fλ(z) = λz exp(e−z/z) is a transcendental self-
map of C

∗ which has an invariant hyperbolic Baker domain U in which points escape to
infinity (see Figure 5). The Baker domain U is simply connected and contains both zero and
infinity in its boundary. The function fλ is not univalent on U .

Proof of Example 3·3. We will prove that the function fλ maps the right half-plane
H2 := {z ∈C : Re z > 2} into itself and for z ∈H2, Re f n

λ (z) → +∞ as n → ∞, so H2 is
contained in an invariant Baker domain of fλ. More precisely, we will show that there is a
constant C > 1 such that

Re fλ(z) = λ
(
Re z · Re exp(e−z/z) − Im z · Im exp(e−z/z)

)
> C · Re z for z ∈H2.

https://doi.org/10.1017/S0305004119000409 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000409


276 D. MARTÍ-PETE

To that end, we need to estimate the following quantities:

Re exp(e−z/z) = exp(Re e−z/z) cos(Im e−z/z),

Im exp(e−z/z) = exp(Re e−z/z) sin(Im e−z/z).
(3·1)

First, observe that ∣∣∣∣e−z

z

∣∣∣∣ <
e−2

|z| , for z ∈H2, (3·2)

and e−2/2 < 0.07. Thus, it follows from (3·1) and (3·2) that

Re exp(e−z/z) > exp(−e−2/2) cos(e−2/2) > 0.93,

|Im exp(e−z/z)| < exp

(
e−2

|z|
)

e−2

|z| <
0.15

|z| .

It is then easy to check that

Re fλ(z) > λ
(
0.93 Re z − 0.15

)
> 0.85λ Re z, for z ∈H2,

and so fλ(H2) ⊆H2, as required.
Let U be the Baker domain of fλ containing H2. Observe that U contains the positive

real line (see Figure 5). This follows from the fact that for x > 0, e−x/x > 0 and there-
fore fλ(x) > λx > x , so f n

λ (x) → +∞ as n → ∞. Note that fλ is not univalent in U as the
positive real axis contains a critical point. Let z0 ∈ U . Then, dist( f n

λ (z0), ∂U )� | f n
λ (z0)|

for n ∈N. Since Re f n
λ (z0) → +∞ as n → ∞, we have

f n+1
λ (z0) − f n

λ (z0) = (λ − 1) f n
λ (z0) + o(1) as n → ∞,

and therefore there exists n0 ∈N such that

cn = | f n+1
λ (z0) − f n

λ (z0)|
dist( f n

λ (z0), ∂U )
� (λ − 1)| f n

λ (z0)| + o(1)

| f n
λ (z0)| >

λ − 1

2
, for all n > n0.

Thus, there exists 0 < c( fλ)� (λ − 1)/2 such that cn > c( fλ) for all n ∈N and, by
Lemma 3·2, the Baker domain U is hyperbolic.

Finally, observe that the negative real line is invariant under fλ, so (−∞, 0) ∩ U = ∅.
Since doubly connected Fatou components must surround zero, U is simply connected. This
concludes the proof of the properties of Example 3·3.

LEMMA 3·4. Let f be a transcendental self-map of C
∗ and let f̃ be a lift of f . Then,

if U is a Baker domain of f , every component Uk, k ∈Z, of exp−1(U ) is either a (preimage
of a) Baker domain or a wandering domain of f̃ . Moreover, if Uk is a Baker domain, then
Uk is hyperbolic, simply parabolic or doubly parabolic if and only if U is hyperbolic, simply
parabolic or doubly parabolic, respectively.

Proof. By [Ber95], every component of exp−1(U ) is a Fatou component of f̃ . Moreover,
since exp−1(I ( f )) ⊆ I ( f̃ ), Uk is either a Baker domain, a preimage of a Baker domain or
an escaping wandering domain of f̃ .

Suppose that U has period p � 1 and Uk is periodic, then the Baker domain Uk has
period q with p | q. Let (V, φ, T ) be a conformal conjugacy of f q in U . Note that although
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U may be doubly connected, the absorbing domain V is simply connected. Then (Ṽ , φ̃, T )

is a conformal conjugacy of f̃ q in Uk , where Ṽ is the component of exp−1 V that lies in Uk

and φ̃ = φ ◦ exp. Thus, the Baker domains U and Uk are of the same type.

As before, we use Lemma 3·4 to provide examples of transcendental entire functions with
Baker domains using the explicit examples of transcendental self-maps of C

∗ with Baker
domains that we studied.

Example 3·5. For every λ� 2, the transcendental entire function f̃λ(z) = ln λ + z +
exp(−ez − z), which is a lift of the function fλ from Example 3·3, has an invariant
hyperbolic Baker domain that contains the real line.

4. Preliminaries on approximation theory

In this section we state the results from approximation theory that will be used in
Sections 5 and 6 to construct functions with wandering domains and Baker domains, respec-
tively. We follow the terminology from [Gai87, Chapter IV], and introduce Weierstrass and
Carleman sets. Recall that if F ⊆C is a closed set, then A(F) denotes the set of continuous
functions f : F →C that are holomorphic in the interior of F .

Definition 4·1 (Weierstrass set). We say that a closed set F ⊆C is a Weierstrass set in C

if each f ∈ A(F) can be approximated by entire functions uniformly on F ; that is, for every
ε > 0, there is an entire function g for which

| f (z) − g(z)| < ε, for all z ∈ F.

The next result is due to Arakelyan and provides a characterisation of Weierstrass sets
[Ara64]. In the case that F ⊆C is compact and C \ F is connected, then it follows from
Mergelyan’s theorem [Gai87, Theorem 1 on p. 97] that functions in A(F) can be uniformly
approximated on F by polynomials.

LEMMA 4·2 (Arakelyan’s theorem). A closed set F ⊆C is a Weierstrass set if and only
if the following two conditions are satisfied:

(K1) Ĉ \ F is connected;
(K2) Ĉ \ F is locally connected at infinity.

If in addition both the set F and the function f ∈ A( f ) are symmetric with respect to
the real line, then the approximating function g can be chosen to be symmetric as well (see
[Gau13, Section 2]).

Sometimes we may want to approximate a function in A( f ) so that the error is bounded
by a given strictly positive function ε :C→R+ that is not constant, and ε(z) may tend to
zero as z → ∞.

Definition 4·3 (Carleman set). We say that a closed set F ⊆C is a Carleman set in C if
every function f ∈ A(F) admits tangential approximation on F by entire functions; that is,
for every strictly positive function ε ∈ C(F), there is an entire function g for which

| f (z) − g(z)| < ε(z), for all z ∈ F.
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It is clear that Carleman sets are a special case of Weierstrass sets and hence conditions
(K1) and (K2) are necessary. Nersesyan’s theorem gives sufficient conditions for tangential
approximation [Ner71].

LEMMA 4·4 (Nersesyan’s theorem). A closed set F is a Carleman set in C if and only if
conditions (K1), (K2) and

(A) for every compact set K ⊆C there exists a neighbourhood V of infinity in Ĉ such
that no component of int F intersects both K and V ,

are satisfied.

Note that there is also a symmetric version of this result: if the set F and the functions f
and ε are in addition symmetric with respect to R then the entire function g can be chosen
to be symmetric with respect to R [Gau13, Section 2].

In some cases, depending on the geometry of the set F and the decay of the error
function ε, we can perform tangential approximation on Weierstrass sets without needing
condition (A); the next result can be found in [Gai87, Corollary, p.162].

LEMMA 4·5. Suppose F ⊆C is a closed set satisfying conditions (K1) and (K2) that lies
in a sector

Wα := {z ∈C : |arg z|� α/2},
for some 0 < α � 2π . Suppose ε̃(t) is a real function that is continuous and positive for t � 0
and satisfies ∫ +∞

1
t−(π/α)−1 log ε̃(t)dt > −∞.

Then every function f ∈ A(F) admits ε-approximation on the set F with ε(z) = ε̃(|z|) for
z ∈ F.

5. Construction of functions with wandering domains

To prove Theorem 1·1, we modify Baker’s construction of a holomorphic self-map of C
∗

with a wandering domain escaping to infinity [Bak87, Theorem 4] to create instead a tran-
scendental self-map of C∗ with a wandering domain that accumulates to zero and to infinity
according to a prescribed essential itinerary e ∈ {0, ∞}N0 and with index n ∈Z.

Proof of Theorem 1·1. We construct two entire functions g and h using Nersesyan’s theorem
so that the function f (z) = zn exp

(
g(z) + h(1/z)

)
, which is a transcendental self-map of C∗,

has the following properties:

(i) there is a bi-infinite sequence of annuli sectors {Am}m∈Z\{0} that accumulate at zero
and infinity and integers s(m) ∈Z \ {0}, for m ∈Z \ {0}, such that f (Am) ⊆ As(m)

for all m ∈Z;
(ii) the discs B+ := D(2, 1/4) and B− := 1/B+ = D(32/63, 4/63) both map strictly

inside themselves under f , f (B+) ⊆ int B+ and f (B−) ⊆ int B−;
(iii) there is a bi-infinite sequence of closed discs {Bm}m∈Z\{0} with f (Bm) ⊆ int B+, if

m > 0, and f (Bm) ⊆ int B−, if m < 0.
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Fig. 6. Sketch of the construction in the proof of Theorem 1·1.

Here s(m) := π(π−1(m) + 1) and the map π :N→Z \ {0} is an ordering of the sets
{Am}m∈N according to the sequence e; that is, π(k) is the position of the kth component
in the orbit of the wandering domain. More formally, we define

π(k) :=
{

#{� ∈N0 : e� = ∞ for � < k} + 1, if ek = ∞,

− #{� ∈N0 : e� = 0 for � < k} − 1, if ek = 0,
(5·1)

for k ∈N (see Figure 6).
By Montel’s theorem, the domains {Am}m∈Z\{0}, {Bm}m∈Z\{0} and B+, B− are all contained

in the Fatou set. Since f (B+) ⊆ int B+, the function f has an attracting fixed point in B+
and the sets {Bm}m∈N are contained in the preimages of the immediate basin of attraction of
this fixed point. Likewise, the sets {B−m}m∈N belong to the basin of attraction of an attracting
fixed point in B−. Observe that in order to show that A1 is contained in a wandering domain
that escapes following the essential itinerary e we need to prove that every Am is contained
in a different Fatou component.

Now let us construct the entire functions g and h that satisfy that the function given by
f (z) = zn exp

(
g(z) + h(1/z)

)
has the properties stated above. Note that in this construction

log z denotes the principal branch of the logarithm with −π < arg z < π . Let 0 < R < π/2
and set, for m > 0, define

Am := {z ∈C : −R � arg(z)� R, km � |z|� kme2R},
Bm := D

(
(km+1 − km)/2, 1/8

)
,

where km is any sequence of positive real numbers satisfying that for m ∈N, km> 5/2 and
km+1 > km + 1/4. We define A−m := 1/Am and B−m := 1/Bm for all m ∈N. Note that log Am

is a square of side 2R centred at a point that we denote by am ∈R. Hence, log Am contains
the disc D(am, R) for all m ∈Z \ {0}. The set

F :=D∪ B+ ∪
⋃
m>0

(Am ∪ Bm)
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which consists of a countable union of disjoint compact sets is a Carleman set.
Let δ+, δ− > 0 be such that |w − ln 2|<δ+ and |w − ln 32/63|<δ− imply, respectively,

that |ew − 2| < 1/8 and |ew − 32/63| < 2/63. Let K := min{R/4, δ±/4}. By Lemma 4·4,
there is an entire function g that satisfies the following conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|g(z) − as(m) − n log z| < R/4, if z ∈ Am with m > 0,

|g(z) − ln 2 − n log z| < δ+/4, if z ∈
⋃
m>0

Bm ∪ B+,

|g(z)| < K , if z ∈D.

Similarly, there is an entire function h that satisfies the following conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|h(z) − as(−m) − n log(1/z)| < R/4, if z ∈ Am with m > 0,

|h(z) − ln 32/63 − n log(1/z)| < δ−/4, if z ∈
⋃
m>0

Bm ∪ B+,

|h(z)| < K , if z ∈D.

Therefore, since the sets B− and Am , m < 0, are contained in D and the sets B+ and Am ,
m > 0, are contained in C \D, the function log f (z) = g(z) + h(1/z) + n log z satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

| log f (z) − as(m)| < R/2, if z ∈ Am with m �= 0,

| log f (z) − ln 2| < δ+/2, if z ∈
⋃
m>0

Bm ∪ B+,

| log f (z) − ln 32/63| < δ−/2, if z ∈
⋃
m<0

Bm ∪ B−,

and hence f has the required mapping properties.
Finally, note that this construction is symmetric with respect to the real line and hence all

Fatou components of f that intersect the real line will be symmetric too. Thus, since tran-
scendental self-maps of C∗ cannot have doubly connected Fatou components that do not sur-
round the origin [Bak87, Theorem 1], the Fatou components containing the sets {Am}m∈Z\{0}
are pairwise disjoint and Aπ(0) is contained in a wandering domain that lies in Ie( f ).

6. Construction of functions with Baker domains

In this section, we construct holomorphic self-maps of C
∗ with Baker domains. The

construction is split into two cases: first, we deal with the cases that the function f is a
transcendental entire or meromorphic function, that is, f (z) = zn exp(g(z)) where n ∈Z

and g is a non-constant entire function (see Theorem 6·3), and then we deal with the case
that f is a transcendental self-map of C∗, that is, f (z) = zn exp(g(z) + h(1/z)) where n ∈Z

and g, h are non-constant entire functions (see Theorem 1·2). For transcendental self-maps
of C∗, we are able to construct functions with Baker domains that have any given periodic
essential itinerary e ∈ {0, ∞}N0 .

To that end, we use Lemma 4·5 to obtain entire functions g and, if necessary, h so that the
function f has a Baker domain. After this approximation process, the resulting function f
will behave as the function Tλ(z) = λz, λ > 1, in a certain half-plane W . We first require the
following result that estimates the asymptotic distance between the boundaries of log W and
log Tλ(W ) ⊆ log W .
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Fig. 7. Definition of the function δ(r).

LEMMA 6·1. Let W = {z ∈C : Re z � 2} and, for λ > 1, let Tλ(z) = λz. For r > 0,
let δ(r) denote the vertical distance between the curves ∂ log W and ∂ log Tλ(W ) ⊆ log W
along the vertical line Vr := {z ∈C : Re z = r}. Then δ(r) ∼ 2(λ − 1)e−r as r → +∞.

Proof. Since log z = ln |z| + i arg(z), the quantity δ(r) equals the difference between the
arguments of the points z1, z2 with Im zk > 0, k ∈ {1, 2}, where the vertical lines ∂W and
∂T (W ) intersect the circle exp Vr of radius er (see Figure 7).

Since arg z1, arg z2 → π/2 as r → +∞, we have

δ(r) = arccos
2

er
− arccos

2λ

er
∼

(
π

2
− 2

er

)
−

(
π

2
− 2λ

er

)
= 2(λ − 1)

er
,

as r → +∞, as required.

Given N ∈N and a periodic sequence e = e0e1 · · · eN−1 ∈ {0, ∞}N0 , let p, q ∈N denote

p = p(e) := #{k ∈N0 : ek = ∞ for k < N },
q = q(e) := #{k ∈N0 : ek = 0 for k < N }, (6·1)

so that p + q = N . We want to construct a holomorphic function f :C∗ →C
∗ with an

N -cycle of Baker domains that has components U∞
i , 0 � i < p, and U 0

i , 0 � i < q, in which

f Nn
|U∞

i
→ ∞ and f Nn

|U 0
i

→ 0 locally uniformly as n → ∞.

In the case that zero is not an essential singularity of f , then q = 0 and N = p. Note that the
closure of a Baker domain in Ĉ may contain both zero and infinity.

For p ∈N and X ⊆C
∗, we define

p
√

X := {z ∈C
∗ : z p ∈ X, |arg z| < π/p}.

In order to construct a function with an N -periodic Baker domain that has p components
around zero or infinity, we will semiconjugate the function Tλ that we want to approximate
in the half-plane W by the pth root function:

W
Tλ �� W

p
√

W

z p

��

Tλ,p

�� p
√

W .

z p

��

Next we look at the effect of this semiconjugation on the function δ.
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LEMMA 6·2. Let W and Tλ, λ > 1, be as in Lemma 6·1. For p ∈N and λ > 1, define
the function Tλ,p(z) := p

√
Tλ(z p) on p

√
W and, for r > 0, let δp(r) denote the vertical dis-

tance between the curves ∂ log p
√

W and ∂ log Tλ,p(
p
√

W ) ⊆ log p
√

W along the vertical line
Vr := {z ∈C : Re z = r}. Then δp(r) ∼ 2(λ − 1)e−pr/p as r → +∞.

Proof. The function z �→ z p maps the circle of radius er to the circle of radius epr while the
function z �→ p

√
z divides the argument of points on that circle by p, so

δp(r) = δ(pr)

p
,

and hence, by Lemma 6·1, δp(r) ∼ 2(λ − 1)e−pr/p as r → +∞.

In the following theorem, we construct transcendental entire or meromorphic functions
that are self-maps of C

∗ and have Baker domains in which points escape to infinity. These
functions are of the form f (z) = zn exp(g(z)) where n ∈Z and g is a non-constant entire
function.

THEOREM 6·3. For every N ∈N and n ∈Z, there exists a holomorphic self-map f
of C

∗ with ind( f ) = n that is a transcendental entire function, if n � 0, or a transcendental
meromorphic function, if n < 0, and has a cycle of hyperbolic Baker domains of period N.

Proof. Let ωN := e2π i/N and define

Vm := ωm
N

N
√

W ⊆C \D, for 0 � m < N ,

where W is the closed half-plane from Lemma 6·1. We denote by V the union of all Vm for
0 � m < N , and let R :=R−, if N is odd, or R := {z ∈C

∗ : arg z = π(1 − 1/N )}, if N is
even. Then put

d := min{( N
√

2 − 1)/3, dist(V, R)/4} (6·2)

and define the closed connected set

B := {z ∈C : dist(z, V )� d and dist(z, R)� d}, (6·3)

which satisfies B ′ := D(1, d) ⊆ int B (see Figure 8).
Observe that the closed set F := B ∪ V satisfies the hypothesis of Lemma 4·5; namely

Ĉ \ F is connected and Ĉ \ F is locally connected at infinity, and F ⊆ Wα with α = 2π . We
now define a function ĝ on F :

ĝ(z) :=
{

log
(
ωm+1

N
N
√

λ(z/ωm
N )N

)− n log z, for z ∈ Vm, 0 � m < N ,

−n log z, for z ∈ B,
(6·4)

where we have taken an analytic branch of the logarithm defined on C
∗ \ R and hence on F .

Then ĝ ∈ A(F).
For r > 0, we define the positive continuous function

ε(r) := min{d ′, k−(N+1), r−(N+1)}, (6·5)
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Fig. 8. Sketch of the construction in the proof of Theorem 6·3 with N=3. The sets B and Vm , 0 � m < N ,
are shaded in grey.

where the constant d ′ > 0 is so small that |ez − 1| < d for |z| < d ′ and the constant k > 0
is so large that, for all z ∈ log Tλ(W ) with Re z < k, the disc D(z, k−(N+1)) is compactly
contained in log W and, moreover, if δN (r) is the function from Lemma 6·2, then

ε(r) < δN (ln(λr)), for r � k, (6·6)

which is possible since

δN (ln(λr)) ∼ 2(λ − 1)

NλN r N
, as r → +∞.

Since ε satisfies ∫ +∞

1
r−3/2 ln ε(r)dt = C − (N + 1)

∫ +∞

r ′
0

ln r

r 3/2
dr > −∞

for some constants C ∈R and r ′
0 � r0, by Lemma 4·5 (with α = 2π), there is an entire

function g such that

|g(z) − ĝ(z)| < ε(|z|), for all z ∈ F. (6·7)

We put

f (z) := zn exp(g(z)) = zn exp(ĝ(z)) exp(g(z) − ĝ(z)). (6·8)

By Lemma 6·2 and (6·4-6·7), f (Vm) ⊆ Vm+1 for 0 � m < N − 1 and f (VN−1) ⊆ V0 and, by
(6·2-6·7), f (B) ⊆ D(1, d). Hence each set Vm is contained in an N -periodic Fatou com-
ponent Um for 0 � m < N and B is contained in the immediate basin of attraction of an
attracting fixed point that lies in B ′. It follows that the Fatou components Um are all simply
connected.

To conclude the proof of Theorem 6·3, it only remains to check that the Fatou compo-
nents Um , 0 � m < N , are hyperbolic Baker domains. Due to symmetry, it suffices to deal
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with the case m = 0. Let z0 ∈ U0. Since V0 ⊆ U0 is an absorbing region, we can assume
without loss of generality that z0 ∈ V0 and |z0| is sufficiently large. For n ∈N, let

εn := g( f n−1(z0)) − ĝ( f n−1(z0)),

which, by (6·7), satisfies

|εn| < ε(| f n−1(z0)|), as n → ∞.

For n ∈N, define

Cn :=
∏

0<k�n

exp εk = exp
∑

0<k�n

εk,

which represents the quotient f n(z0)/
(
zn exp(ĝ(z0))

)
. Using the triangle inequality, we

obtain

|Cn|� exp
∑

0<k�n

|εk | < exp
∑

0<k�n

ε(| f k−1(z0)|). (6·9)

Next, we are going to show that |Cn| is bounded above for all n ∈N. To that end, we find a
lower bound for | f k(z0)| for k ∈N assuming, if necessary, that |z0| = r0 is sufficiently large.
Put K := (

N
√

λ − 1)/2 > 0. Then |C1| > 1/K for r0 > 0 sufficiently large and, by (6·8) and
(6·4),

| f (z0)| = N
√

λ|z0||C1|�
N
√

λ

K
r0 = μr0,

with μ := N
√

λ/K > 1. Hence, by induction and the symmetry properties of the sets Vm ,
0 � m < N ,

| f k(z0)|�μkr0, for k ∈N. (6·10)

In particular, z0 ∈ I ( f ) so, by normality, the periodic Fatou components Um , 0 � m < N ,
are Baker domains. We deduce by (6·9), (6·5) and (6·10) that |Cn| < eS for all n ∈N, where
S < +∞ is the sum of the following geometric series

S :=
∞∑

k=0

1

(μkr0)N+1
= 1

r N+1
0

∞∑
k=0

(
1

μN+1

)k

= μN+1

r N+1
0 (μN+1 − 1)

.

Next we use the characterisation of Lemma 3·2 to show that the Baker domains are
hyperbolic. For n ∈N, define

cn = cn(z0) = | f (n+1)N (z0) − f nN (z0)|
dist( f nN (z0), ∂U )

.

We have

f nN (z0) = CnN
N

√
λnN zN

0 = CnN λnz0, for n ∈N,

and therefore

| f (n+1)N (z0) − f nN (z0)| ∼ C∞λn(λ − 1)|z0|, as n → ∞,
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where C∞ := limn→∞ Cn . Also, dist( f nN (z0), ∂U0)� eSλn|z0| and hence if we define
c := (λ − 1)/2 > 0, we have cn(z0) > c for all n ∈N. Thus, by Lemma 3·2, the Baker domain
U0 is hyperbolic. This completes the proof of Theorem 6·3.

Finally we prove Theorem 1·2 in which we construct a function f that is a transcendental
self-map of C

∗ with ind( f ) = n that has a cycle of hyperbolic Baker domains in Ie( f ),
where e is any prescribed periodic essential itinerary e ∈ {0, ∞}N0 .

Proof of Theorem 1·2. Let N ∈N be the period of e and let p, q ∈N0 denote, respectively,
the number of symbols 0 and ∞ in the sequence e0e1 . . . eN−1, where p + q = N ; see (6·1).
We modify the proof of Theorem 6·3 to obtain a transcendental self-map of C

∗ of the form

f (z) := zn exp(g(z)zN+1 + h(1/z)/zN+1)

that has a hyperbolic Baker domain U in Ie( f ), where the entire functions g, h will be
constructed using approximation theory.

We start by defining a collection of p sets {V ∞
m }0�m<p, whose closure in Ĉ contains

infinity. Put ωp := e2π i/p once again and define

V ∞
m := ωm

p
p
√

W ⊆C \ D(0, ρ), for 0 � m < p,

where W is the half-plane from Lemma 6·1 and ρ := 1 + (
N
√

2 − 1)/6. We denote by V∞ the
union of all V ∞

m , 0 � m < p.
As before, we define a set B∞ that will be contained in an immediate basin of attraction

of f and put R∞ =R−, if p is odd, or R∞ = {z ∈C
∗ : arg z = π(1 − 1/p)}, if p is even.

Then, let

d∞ := min{( N
√

2 − 1)/6, dist(V∞, R∞)/4},
and define the closed connected set

B∞ := {z ∈C : dist(z, V∞)� d∞ and dist(z, R∞)� d∞} \ D(0, ρ),

which compactly contains the disc B ′
∞ := D((1 + N

√
2)/2, (

N
√

2 − 1)/6). Finally, we define
the disc D := D(0, 1/ρ), which is contained in D. We will construct the function g by
approximating it on the closed set F∞ := V∞ ∪ B∞ ∪ D, which satisfies the hypothesis of
Lemma 4·5; namely Ĉ \ F∞ is connected and Ĉ \ F∞ is locally connected at infinity, and
F∞ ⊆ Wα with α = 2π (see Figure 9).

Similarly, we define a set B0 and a collection of q unbounded sets {V 0
m}0�m<q by using

the same procedure as above, just replacing p by q, and then, if V0 is the union of all V 0
m ,

0 � m < q, we put F0 := V0 ∪ B0 ∪ D. The Fatou set of the function f will contain all the
sets V ∞

m , 0 � m < p, and all the sets Ṽ 0
m := 1/V 0

m , 0 � m < q, which are unbounded in C
∗.

In order to define the functions ĝ ∈ A(F∞) and ĥ ∈ A(F0), we first introduce some nota-
tion to describe how ĝ and ĥ map the components of V∞ and V0, respectively; we use
the same notation as in Theorem 1·1. Let π : {0, . . . , N − 1} → {−q, . . . , −1, 1, . . . , p}
denote the function given by, for 0 � k < N ,

π(k) :=
{

#{� ∈N0 : e� = ∞ for � < k} + 1, if ek = ∞,

− #{� ∈N0 : e� = 0 for � < k} − 1, if ek = 0.
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Fig. 9. Sketch of the construction of the entire function g in the proof of Theorem 1·2 with e = ∞∞00∞.
The sets D, B∞ and V ∞

m , 0 � m < p, are shaded in grey.

The function π is an ordering of the components of V∞ ∪ 1/V0 according to the sequence e.
Suppose that V is the starting component; that is, V = Ṽ 0

0 , if e0 = 0, and V = V ∞
0 , if e0 = ∞.

Then

f k(V ) ⊆
{

V ∞
π(k), if π(k) > 0,

Ṽ 0
−π(k), if π(k) < 0.

For m ∈ {−q, . . . , −1, 1, . . . , p}, we define the function

s(m) := π(π−1(m) + 1 (mod N )),

which describes the image of the component V ∞
m , if m > 0, and Ṽ 0

m , if m < 0, so that the
function f to be constructed has a Baker domain that has essential itinerary e. More formally,
for 0 � m < p,

f (V ∞
m ) ⊆

{
V ∞

s(m), if s(m) > 0,

Ṽ 0
−s(m), if s(m) < 0;

and, for 0 � m < q,

f (Ṽ 0
m) ⊆

{
V ∞

s(−m), if s(−m) > 0,

Ṽ 0
−s(−m), if s(−m) < 0.

We now give the details of the construction of the entire function g from the function
ĝ ∈ A(F∞). For z ∈ V ∞

m , 0 � m < p, we put

ĝ(z) :=

⎧⎪⎨⎪⎩
(

log
(
ωs(m)

p
p

√
λ(z/ωm

p )p
)

− n log z
)

/zN+1, if s(m) > 0,(
log

(
ωs(m)

p / p

√
λ(z/ωm

p )p
)

− n log z
)

/zN+1, if s(m) < 0,

https://doi.org/10.1017/S0305004119000409 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000409


Escaping Fatou components of transcendental self-maps of C
∗ 287

Fig. 10. Sketch of the construction of the function f in the proof of Theorem 1·2 with e = ∞∞00∞.

for z ∈ B∞, we put ĝ(z) := (log(1 + (
n
√

2 − 1)/2) − n log z)/zN+1 and, for z ∈ D, we put
ĝ(z) := 0, where we have taken an analytic branch of the logarithm defined on C

∗ \ R∞
and hence on V∞ ∪ B∞ (see Figure 10). Then ĝ ∈ A(F∞). For r > 0, we define the positive
continuous function ε∞ by

ε∞(r) := min{d ′
∞, k−(N+1)

∞ , r−(N+1)}/(2r N+1),

where the constant d ′
∞ > 0 is so small that |ez − 1| < d∞ for |z| < d ′

∞ and the constant
k∞ > 0 is so large that, for all z ∈ log Tλ(W ) with Re z < k∞, the disc D(z, k−(N+1)

∞ ) is
compactly contained in log W and, moreover, if δN (r) is the function from Lemma 6·2, then

ε∞(r) · 2r N+1 < δN (ln(λr)), for r � k∞,

which, as before, is possible since

δN (ln(λr)) ∼ 2(λ − 1)

NλN r N
, as r → +∞.

Since ε∞ satisfies ∫ +∞

1
r−3/2 ln ε∞(r)dt > −∞,

by Lemma 4·5 (with α = 2π), there is an entire function g such that

|g(z) − ĝ(z)| <
{

ε∞(|z|), for z ∈ V∞ ∪ B∞,

1/2, for z ∈ D.
(6·11)

Similarly, we can construct an entire function h that approximates a function ĥ ∈ A(F0)

so that the function

https://doi.org/10.1017/S0305004119000409 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000409


288 D. MARTÍ-PETE

f (z) := zn exp(g(z)zN+1 + h(1/z)/zN+1)

= zn exp(ĝ(z)zN+1) exp(ĥ(1/z)/zN+1) ·
· exp((g(z) − ĝ(z))zN+1) exp((h(z) − ĥ(z))/zN+1)

has the desired properties. Note that if z ∈ V∞ ∪ B∞, then 1/z ∈ D and if 1/z ∈ V0 ∪ B0,
then z ∈ D. Thus, ĥ(1/z) = 0 for z ∈ V∞ ∪ B∞ and

|ĥ(1/z)/zN+1 + (g(z) − ĝ(z))zN+1 + (h(z) − ĥ(z))/zN+1|
� 0 + 1/(2|z|N+1) + 1/(2|z|N+1) = 1/|z|N+1

for z ∈ V∞ ∪ B∞.
Finally, a similar argument to that in the proof of Theorem 6·3 shows that these Fatou

components are hyperbolic Baker domains; we omit the details.

Acknowledgements. This research was supported by The Open University and by the
grant-in-aid 16F16807 from the Japan Society for the Promotion of Science. The author
would like to thank his supervisors Phil Rippon and Gwyneth Stallard for their support and
guidance in the preparation of this paper, and also Dave Sixsmith for discussions about
Example 3·3.

REFERENCES

[Ara64] N. U. ARAKELYAN. Uniform approximation on closed sets by entire functions. Izv. Akad. Nauk
SSSR Ser. Mat. 28 (1964), 1187–1206.

[Bak63] I. N. BAKER. Multiply connected domains of normality in iteration theory. Math. Z. 81 (1963),
206–214.

[Bak76] I. N. BAKER. An entire function which has wandering domains. J. Austral. Math. Soc. Ser. A
22 (1976), no. 2, 173–176.

[Bak84] I. N. BAKER. Wandering domains in the iteration of entire functions. Proc. London Math. Soc.
(3) 49 (1984), no. 3, 563–576.

[Bak87] I. N. BAKER. Wandering domains for maps of the punctured plane. Ann. Acad. Sci. Fenn. Ser. A
I Math. 12 (1987), no. 2, 191–198.

[BD98] I. N. BAKER and P. DOMÍNGUEZ-SOTO. Analytic self-maps of the punctured plane. Complex
Variables Theory Appl. 37 (1998), no. 1-4, 67–91.

[Ber93] W. BERGWEILER. Iteration of meromorphic functions. Bulletin Amer. Math. Soc. 29 (1993),
no. 2, 151–188.

[Ber95] W. BERGWEILER. On the Julia set of analytic self-maps of the punctured plane. Analysis
15 (1995), no. 3, 251–256.

[Bis15] C. J. BISHOP. Constructing entire functions by quasiconformal folding. Acta Math. 214 (2015),
no. 1, 1–60.

[BRS13] W. BERGWEILER, P. J. RIPPON and G. M. STALLARD. Multiply connected wandering domains
of entire functions. Proc. Lond. Math. Soc. (3) 107 (2013), no. 6, 1261–1301.

[BZ12] W. BERGWEILER and J.-H. ZHENG. Some examples of Baker domains. Nonlinearity 25 (2012),
no. 4, 1033–1044.

[Cow81] C. C. COWEN. Iteration and the solution of functional equations for functions analytic in the unit
disk. Trans. Amer. Math. Soc. 265 (1981), no. 1, 69–95.

[EL92] A. E. EREMENKO and M. YU. LYUBICH. Dynamical properties of some classes of entire
functions. Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020.

[Ere89] A. E. EREMENKO. On the iteration of entire functions. Dynamical systems and ergodic theory
(Warsaw, 1986), Banach Center Publ., vol. 23. (PWN, Warsaw, 1989), pp. 339–345.

[Fag99] N. FAGELLA. Dynamics of the complex standard family. J. Math. Anal. Appl. 229 (1999), no. 1,
1–31.

[Fat26] P. FATOU. Sur l’itération des fonctions transcendantes entières. Acta Math. 47 (1926), no. 4,
337–370.

https://doi.org/10.1017/S0305004119000409 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000409


Escaping Fatou components of transcendental self-maps of C
∗ 289

[FH06] N. FAGELLA and C. HENRIKSEN. Deformation of entire functions with Baker domains. Discrete
Contin. Dyn. Syst. 15 (2006), no. 2, 379–394.

[FM17] N. FAGELLA and D. MARTÍ-PETE. Dynamic rays of bounded-type transcendental self-maps of
the punctured plane. Discrete Contin. Dyn. Syst. 37 (2017), 3123–3160.

[Gai87] D. GAIER. Lectures on Complex Approximation (Birkhäuser Boston, Inc., Boston, MA, 1987),
Translated from the German by Renate McLaughlin.

[Gau13] P. M. GAUTHIER, Approximating the Riemann zeta-function by strongly recurrent functions.
Blaschke products and their applications. Fields Inst. Commun., vol. 65 (Springer, New York,
2013), pp. 31–42.

[KL03] L. KEEN and N. LAKIC. Forward Iterated Function Systems. Complex dynamics and related
topics: lectures from the Morningside Center of Mathematics. New Stud. Adv. Math., vol. 5 (Int.
Press, Somerville, MA, 2003), pp. 292–299.

[Kön99] H. KÖNIG. Conformal conjugacies in Baker domains. J. London Math. Soc. (2) 59 (1999), no. 1,
153–170.

[Kot90] J. KOTUS. The domains of normality of holomorphic self-maps of C∗. Ann. Acad. Sci. Fenn. Ser.
A I Math. 15 (1990), no. 2, 329–340.

[Mar] D. MARTÍ-PETE. Escaping points and semiconjugation of holomorphic self-maps of the
punctured plane, in preparation.

[Mar16] D. MARTÍ-PETE. Structural theorems for holomorphic self-maps of the punctured plane. PhD.
thesis. The Open University (2016).

[Mar18] D. MARTÍ-PETE. The escaping set of transcendental self-maps of the punctured plane. Ergod.
Dynam. Sys. 38 (2018), no. 2, 739–760.

[Mil06] J. W. MILNOR. Dynamics in One Complex Variable, third ed. Ann. Math. Stud. vol. 160
(Princeton University Press, Princeton, 2006).

[Muk91] A. N. MUKHAMEDSHIN. Mapping of a punctured plane with wandering domains. Sibirsk. Mat.
Zh. 32 (1991), no. 2, 184–187, 214.

[Ner71] A. A. NERSESYAN. Carleman sets. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), no. 6,
465–471.

[Råd53] H. RÅDSTRÖM. On the iteration of analytic functions. Math. Scand. 1 (1953), 85–92.
[Rip08] P. J. RIPPON. Baker domains. Transcendental Dynamics and Complex Analysis, London Math.

Soc. Lecture Note Ser., vol. 348 (Cambridge University Press, Cambridge, 2008), pp. 371–395.
[RS08] P. J. RIPPON and G. M. STALLARD. On multiply connected wandering domains of meromorphic

functions. J. Lond. Math. Soc. (2) 77 (2008), no. 2, 405–423.

https://doi.org/10.1017/S0305004119000409 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000409


https://doi.org/10.1017/S0305004119000409 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000409

	Escaping Fatou components of transcendental self-maps of the punctured plane
	Introduction
	Explicit functions with wandering domains
	Explicit functions with Baker domains
	Preliminaries on approximation theory
	Construction of functions with wandering domains
	Construction of functions with Baker domains


