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This paper describes analyses of the nonlinear dynamics of harmonically forced,
turbulent premixed flames. A key objective of this work is to analyse the ensemble-
averaged dynamics of the flame front position, 〈ξ〉, excited by harmonic forcing
of amplitude ε, in the presence of stochastic flow fluctuations of amplitude µ.
Low-amplitude and/or near-field effects are quantified by a third-order perturbation
analysis, while the more general case is analysed computationally by solving the
three-dimensional level-set equation, extracting the instantaneous flame position, and
ensemble averaging the results. We show that different mechanisms contribute to
smoothing of flame wrinkles, manifested as progressive decay in the magnitude of
〈ξ〉. Near the flame holder, random phase jitter, associated with stochastic velocity
fluctuations tangential to the flame, is dominant. Farther downstream, propagation of
the ensemble-averaged front normal to itself at the time-averaged turbulent burning
velocity, ST,eff , leads to destruction of wrinkles, analogous to the laminar case, an
effect that scales with µ. A second, new result is the demonstration that the ensemble-
averaged turbulent burning velocity, ST,eff (s, t), is modulated by the harmonic forcing,
i.e. ST,eff (s, t) = ST,eff (s) + S′T,eff (s, t), where S′T,eff has an inverse dependence upon the
instantaneous, ensemble averaged-flame curvature, an effect that scales with ε and µ.
We show that this curvature dependence follows from basic application of Huygens
propagation to flames with stochastic wrinkling superimposed upon base curvature.
This effect also leads to smoothing of flame wrinkles and is analogous to stretch
processes in positive-Markstein-length, laminar flames.

Key words: combustion, reacting flows, turbulent reacting flows

1. Introduction
This paper describes the spatio-temporal characteristics of harmonically forced

turbulent, premixed flames, in order to understand the influence of stochastic flow
fluctuations upon the ensemble-averaged dynamics of the front. Its focus upon
harmonic oscillations is motivated by the problem of combustion instabilities (Lieuwen
& Yang 2005), which have emerged as one of the most important operability
issues associated with low-emissions combustion technology. While approaches for
analysing the combustor system dynamics have been developed (Dowling 1999),
more understanding is required on the physical processes controlling the response
of turbulent flames to harmonic flow perturbations (Huang & Yang 2009). This
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FIGURE 1. (Colour online) Instantaneous image of the flame front location and vorticity field.
Reproduced from Shanbhogue (2008).
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FIGURE 2. (Colour online) Measured dependence of flame front fluctuation magnitude for
a circular bluff body with 12.7 mm diameter. ◦, u′a = 0.033 m s−1; �, u′a = 0.026 m s−1; +,
u′a = 0.018 m s−1; C, u′a = 0.015 m s−1. Conditions: ω0/2π = f0 = 180 Hz, ux,0 = 2.27 m s−1

and λc = ux,0/f0 (Shanbhogue 2008).

understanding is needed to develop rational approaches to prevent the occurrence
of undesirable combustion instability, either in the design phase or through active
control (McManus, Poinsot & Candel 1993). This paper closely follows a recent study
analysing the relative roles of flame stretch and kinematic restoration processes in
harmonically forced, laminar flames (Shin & Lieuwen 2012).

The key objective of the present study is to consider the effect of broadband
turbulent forcing on the ensemble-averaged flame response at the excitation frequency.
We briefly summarize the key flame features motivating this study next, summarizing
the presentation from Shin & Lieuwen (2012), and then discuss the effects of
simultaneous discrete frequency and stochastic flow excitation.

Figure 1 illustrates a typical image of the instantaneous edge of a flame forced by
axial acoustic oscillations at a frequency, ω0. These acoustic fluctuations excite vortical
disturbances whose influence on the flame is evident from the periodic wrinkling on
the flame, quantified with the variable ξ(x, t).

Figure 2 shows the Fourier transform of ξ(x, t) at the forcing frequency, ω = ω0

(denoted as |ξ(x, ω0)|), for different upstream acoustic velocity amplitudes, u′a. The
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FIGURE 3. (Colour online) Instantaneous snapshots of an initially wrinkled flame front
propagating into a quiescent flow with a constant burning velocity.

plot labels several generic features of the flame response, |ξ(x, ω0)|. First, |ξ(x, ω0)|
starts near zero and grows monotonically with downstream distance. This near-flame-
holder behaviour is controlled by flame anchoring, and its growth rate is proportional
to the velocity component normal to the time-averaged flame (Shanbhogue et al.
2009a). Next, after this initial wrinkle amplitude growth region, the flame response
exhibits a peak, or even multiple local maxima. The data shown in figure 2 show a
single peak. This peak is due to interference effects that occur due to the difference in
propagation velocity in vortical flow disturbances exciting the flame, and the velocity
with which these excited wrinkles propagate along the flame front.

Downstream of this peak, the flame wrinkle amplitude decays either monotonically
or in an oscillatory fashion. It is this ‘far-field’ decay process which is the key focus
of this study. Prior studies have demonstrated quantitative success in predicting the
flame wrinkle gain and phase behaviour in the growth and peaking region (Shin et al.
2011). However, the decay region is much more complex because, as discussed next,
it is intrinsically nonlinear and influenced by nonlinear coupling between narrowband
and stochastic processes. Indeed, the nonlinear effects, which are negligible or weak
in the initial ‘rise’ and ‘peak’ region of the flame response envelope, dominate the
far-field decay region.

This decay region is influenced by both wrinkle excitation and destruction processes
(Shanbhogue et al. 2009a). First, the decay rate in the excitation velocity source
disturbing the flame is important; i.e. if the disturbance velocity persists indefinitely
downstream, flame wrinkles are excited continually. This disturbance decay process
is often associated with the dissipation rate of vortical disturbances in the shear
layers. Second, the flame wrinkles themselves are dissipated by flame propagation
mechanisms, which lead to a decrease in |ξ(x, ω0)| once the excitation source has
been removed. Flame wrinkles are smoothed out by two effects: kinematic restoration
and stretch processes in thermo-diffusively stable flames (Law & Sung 2000; Shin &
Lieuwen 2012).

We next summarize the characteristics of these two processes in laminar, iso-density
flames, summarizing numerical and theoretical results from Shin & Lieuwen (2012).
Kinematic restoration leads to an amplitude-dependent (i.e. nonlinear) smoothing of
flame wrinkles. The reason for this smoothing is illustrated in figure 3, which shows
an initially wrinkled flame that is propagating in a quiescent flow. These instantaneous
snapshots illustrate that the leading parts of the flame propagate outward and consume
the trailing-edge portions of the flame. This leads to a progressive change in wrinkle
scale size and a monotonic decrease in wrinkle height.
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FIGURE 4. (a) Instantaneous computed flame front position, ξ , at four instances during
a forcing period, T . (b) Dependence of laminar flame position magnitude on downstream
distance at different excitation amplitudes. (c) Dependence of scaled flame position
magnitude on scaled downstream distance for the same excitation amplitudes as in (b).
Dashed lines denote asymptotic solutions for near and far fields, respectively (Shin &
Lieuwen 2012).

This process can be understood from the following exact solution of the level-set
equation in an iso-density flow using the Hopf–Lax formula (Evans 1997), where
a wrinkled flame front, ξinit, propagates in a quiescent flow (the governing equation
which this solution is derived from is presented in (2.2)) as a function of the transverse
coordinate, s and time, t, as:

ξ(s, t)= min
s−SLt<s∗<s+SLt

(ξinit(s
∗)−

√
(SLt)2− (s− s∗)2), (1.1)

where SL the laminar burning velocity and s∗ is a variable ranging between the
indicated values. This solution describes Huygens propagation (Huygens 1962), where
the flame position is defined by the leading edge of a series of arcs originating from
the initial flame front. To illustrate, the evolution in flame positions from time t = 0 to
t = dt is drawn in figure 3 that shows this flame area destruction.

To illustrate this kinematic restoration effect in an anchored flame with tangential
flow, us,0, figure 4(a) plots computations of the spatial dependence of ξ(s, t) for a
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flame that is anchored to an oscillatory flame holder, where ξ(s = 0, t) = ε sin(ω0t),
emulating the experiments from Petersen & Emmons (1961).

Figure 4(a) shows the harmonic excitation in flame position near the flame holder
and the axial convection of these wrinkles. Farther downstream, the propagation of the
front normal to itself becomes increasingly evident, manifested in the cusping of the
trailing edge of the front due to merging of the two flame branches. Note how the
height of the flame wrinkle decreases with downstream distance.

One measure for quantifying the rate of decrease in wrinkle size is the dependence
of the flame wrinkle amplitude at the forcing frequency, |ξ(s, ω0)| upon downstream
distance, s, where |ξ(s, ω)| denotes the gain of Fourier transform of ξ(s, t).
Calculations showing this dependence are plotted in figure 4(b) for five disturbance
amplitudes, and in a scaled fashion in figure 4(c).

Figure 4(b) clearly shows the decay in magnitude of the flame wrinkle with
downstream distance. Note also how |ξ(s, ω0)| exhibits two different behaviours
near and far from the attachment point. Near the flame holder, the decay rate
in |ξ(s, ω0)| increases nonlinearly with forcing amplitude, ε; e.g. the flame wrinkle
amplitude with ε = 0.63(us,0/ω0) decays much faster than that with ε = 0.13(us,0/ω0).
Farther downstream, however, note how all the results converge to a common curve,
independent of forcing amplitude. In this region, the flame response, |ξ(s, ω0)|/ε,
decays inversely with εSLs as shown in figure 4(c), where the same data are plotted
with scaled parameters. Here, the flame wrinkle is controlled by the leading points
that are indicated in figure 4(a), and the decay rate is independent of initial excitation
amplitude. These two asymptotic tendencies are given by Shin & Lieuwen (2012):

|ξ(s, ω0)|
ε

=


1− ω4

0

8u6
s,0

(εSLs)2 for s� 1,

2u3
s,0

ω2
0

1
εSLs

for s� 1.
(1.2)

Consider next the second process responsible for smoothing of flame wrinkles: flame
stretch. Flame wrinkles are also smoothed by stretch processes in thermo-diffusively
stable flames, an effect which can be understood from linear analysis (Wang, Law &
Lieuwen 2009). As shown in Shin & Lieuwen (2012), the linearized, weak stretch
solution for the flame wrinkle behaviour for the oscillatory flame holder problem
considered above is given by:

|ξ(s, ω0)|
ε

= exp
(
− ω

2
0

u3
s,0

σSLs

)
, (1.3)

where σ is the Markstein length. Although this paper will focus on stretch-insensitive
flames, we will show that one of the impacts of stochastic fluctuations on the
ensemble-average flame dynamics is analogous to a stretch effect and will return
to this equation later.

With this as background, we next consider stretch-free flame dynamics in flows with
both harmonic and turbulent flow components. These disturbances nonlinearly interact
and introduce new effects (Creta & Matalon 2011). For example, both deterministic
and stochastic processes contribute to smoothing of the ensemble-averaged harmonic
flame wrinkle (Lieuwen 2003; Hemchandra, Peters & Lieuwen 2011). We will show in
this paper that this occurs through both stochastic kinematic restoration and phase jitter
effects which do not average to zero.
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(a) (b)

FIGURE 5. (a) Four instantaneous phase-locked Mie scattering images from a turbulent
propane Bunsen flame excited by a longitudinal acoustic disturbance. (b) Overlay of
instantaneous flame edges showing flame brush and coherent wrinkling on the flame induced
by the harmonic forcing (Thumuluru 2010).

To illustrate the problem of interest, figure 5 shows experimental Mie scattering
images of a harmonically excited, turbulent Bunsen flame, illustrating the simultaneous
presence of the coherent and broadband wrinkling on the flame front. The four
instantaneous images in figure 5(a) show significant turbulent wrinkling of the flame
front. Figure 5(b) overlays a number of flame edges extracted from these instantaneous
images at the same phase, clearly showing the coherent wrinkling on the flame
induced by the harmonic forcing. This coupling between harmonic and stochastic
processes on turbulent flames is not well understood (Lee & Santavicca 2003; Ayache
et al. 2010; Kim & Hochgreb 2011). The specific objective of this work is to
analyse this problem and determine the interactions and relative significance of the
deterministic and stochastic components of this problem in controlling the dynamics of
harmonically excited flame wrinkles, such as their decay rate.

2. Formulation
In this section we consider a harmonically oscillating flame holder, emulating

the experimental study of Petersen & Emmons (1961) shown in figure 6, in the
presence of a stochastically oscillatory background flow. This is a useful problem
for this study as the amplitude of flame wrinkling, within an iso-density, stretch-
free and linear analysis framework, is constant and independent of axial location;
i.e. |ξ(x, ω0)| = |ξ(x = 0, ω0)|. In contrast, the harmonic-velocity-forced flame has a
spatially modulated flame wrinkling character, as shown in figure 2, leading to a
complex modulation of nonlinear processes (Huang et al. 2009; Karimi et al. 2009;
Hemchandra et al. 2011). This oscillating flame holder problem allows us to develop
relatively simple expressions for the key dimensionless parameters controlling the
problem, and thus, to isolate the critical processes controlling the far-field evolution of
harmonically forced flames.

The investigated geometry is shown in figure 7. The coordinate system is aligned
with the unperturbed flame position, so that the s and n coordinates are tangential
and normal to the unperturbed flame respectively, with the z coordinate pointing in
the third orthogonal direction out of the page. The flow field is prescribed and the
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490 D.-H. Shin and T. Lieuwen

FIGURE 6. (Colour online) Visualization of a propane flame stabilized on a transversely
oscillating flame holder at 625 Hz (φ = 1, ux,0 = 4.8 m s−1) (Petersen & Emmons 1961).
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FIGURE 7. (Colour online) Diagram of flame/flow configuration and the coordinates
(ξ : flame front location).

flame holder vibrates in the n-direction, creating wrinkles on the flame at s = 0 which
propagate downstream.

The principal assumptions regarding the flame dynamics made in this analysis are
that: (i) the flame is a thin, two-dimensional interface, dividing reactants and products;
(ii) there is a negligible density jump across the flame; (iii) the flame speed, SL,
is constant; and (iv) the flame remains attached to the flame holder. Following
assumption (i), the instantaneous location of the flame front is determined from the
G-equation (Williams 1985), given by:

∂G

∂t
+ us

∂G

∂s
+ un

∂G

∂n
+ uz

∂G

∂z
= SL

[(
∂G

∂s

)2

+
(
∂G

∂n

)2

+
(
∂G

∂z

)2
]1/2

. (2.1)

The key effect of assumption (ii) is that the stochastic velocity fluctuations
(us, un, uz) are prescribed – an oscillatory flame sheet with a finite density change
otherwise influences the approach flow. As this is an important assumption, we
next discuss how the results are influenced by it. This issue has been discussed
by a number of workers (Kuramoto & Tsuzuki 1976; Sivashinsky 1977; Matalon &
Matkowsky 1982; Lee & Lieuwen 2003; Creta, Fogla & Matalon 2011). In general,
flames have finite density jumps, although the weak density jump across flames is
an important limit in its own right, as many practical applications utilizing highly
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compressed (and therefore preheated, such as modern aircraft engines), vitiated (such
as in afterburners), or flows with significant regenerative heat transfer (Tsuji et al.
2002; Dally, Riesmeier & Peters 2004) have small density jumps. An important
qualitative effect introduced by the density jump is the Darrieus–Landau flame
instability, where the approach flow field is altered in such a way as to cause
amplification of flame wrinkles (Matalon & Matkowsky 1982). The character of this
hydrodynamic instability is altered by harmonic forcing as well. For example, low-
amplitude harmonic excitation leads to stabilization of the hydrodynamic instability,
while large-amplitude forcing introduces a new parametric instability, resulting in
oscillation of the flame sheet at the subharmonic of the forcing frequency (Searby &
Rochwerger 1991). In addition, Creta & Matalon (2011) have analysed the interactions
of broadband flow fluctuations and a hydrodynamically unstable flame, showing the
augmentation of the turbulent flame brush thickness and the turbulent flame speed by
flame instability.

The key focus of this paper is the effect of nonlinear interactions between harmonic
and broadband flow disturbances on the ensemble-averaged flame dynamics. As such,
while these additional physics can be included in computations (e.g. see Rastigejev &
Matalon 2006; Moureau, Fiorina & Pitsch 2009), analytical results such as presented
in this paper are extremely challenging due to the coupling of the flame and flow at
the moving flame boundary. We have tried to focus on a problem that brings out these
points with maximum clarity, and thus consider the iso-density limit. However, an
important follow-on to this work should be to include these effects and the additional
physics they introduce.

Returning to the assumptions, we next consider assumption (iii) and its implications
on the results. In general, flames are stretch sensitive, implying that flame curvature
and flow strain cause modification of the burning velocity in space and time (Matalon
1983). This is a stabilizing and destabilizing influence in positive- and negative-
Markstein-length flames, respectively. Thus, as shown by Wang et al. (2009) and
discussed in the previous section, flame stretch processes in thermo-diffusively stable
flames lead to smoothing of flame wrinkles. In contrast, turbulent flow fluctuation
influences on flame wrinkling can be amplified in thermo-diffusively unstable flames.
Again, it is appropriate to consider the zero stretch sensitive case as a starting point for
this analysis because this is a good descriptor of flames with small Markstein lengths,
as well as enabling development of a problem whose results can be analysed with
maximum clarity.

For small velocity fluctuations, the flame front position is single-valued, an
approximation that breaks down at high-amplitude fluctuations. We will utilize this
assumption for the analytical calculations presented in this paper, but not for the
computations. For a single-valued flame position, a substitution, G = n − ξ(s, z, t),
leads to the following equation for the flame position, ξ(s, z, t):

∂ξ

∂t
+ us

∂ξ

∂s
− un + uz

∂ξ

∂z
= SL

[
1+

(
∂ξ

∂s

)2

+
(
∂ξ

∂z

)2
]1/2

. (2.2)

The velocity field shown in figure 7 is written in terms of mean and perturbation
quantities as:

us = us,0 + µ fs(s, n, z, t)|n=ξ , (2.3a)

un =−SL + µ fn(s, n, z, t)|n=ξ , (2.3b)

uz = µ fz(s, n, z, t)|n=ξ , (2.3c)
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where µ and fi denote the magnitude of the velocity fluctuation and the shape function,
respectively. The turbulence intensity is

√
3µ with 〈f 2

i 〉 = 1.
With the velocity expressions (2.3), the single-valued flame dynamics equation (2.2)

is rewritten as:

∂ξ

∂t
+ us,0

∂ξ

∂s
= SL


[

1+
(
∂ξ

∂s

)2

+
(
∂ξ

∂z

)2
]1/2

− 1

︸ ︷︷ ︸
Kinematic restoration

+ µ
[
−fs

∂ξ

∂s
+ fn − fz

∂ξ

∂z

]
︸ ︷︷ ︸

Turbulent flow forcing

. (2.4)

Here, the first and the second terms on the right-hand side describe changes to the
convecting flame wrinkle, ξ(t − s/us,0), through kinematic restoration and turbulent
flow forcing, respectively. Because of nonlinearities associated with convection (e.g.
fs∂ξ/∂s) and kinematic restoration (e.g. [1+ (∂ξ/∂s)2+ (∂ξ/∂z)2]1/2), these two terms
interact.

Two boundary conditions are needed. First, it is assumed that the flame is attached
to the flame holder which oscillates in the n-direction as:

ξ(s= 0, z, t)= ε sin(ω0t), (2.5)

where ε and ω0 denote the magnitude and angular frequency of the flame holder
oscillation, respectively. Second, a non-reflecting boundary condition is applied at the
downstream end of the calculation domain, so that information only propagates along
the flame in the flow direction.

The stochastic flow fluctuations in (2.3) are assumed to be: (i) isotropic;
(ii) incompressible; (iii) Gaussian distributed; (iv) propagating with the flow as
per Taylor’s hypothesis; and (v) have Eulerian space/time correlations that decay
exponentially over a longitudinal length scale, L11, as (Hinze 1975):

〈fs(s, n, z, t) fs(s+ r, n, z, t)〉 = exp

(
−π

4

(
r

L11

)2
)
. (2.6)

Taylor’s hypothesis with the specified velocities in (2.3) implies:

fi(s, n, z, t +1t)= fi(s− us,01t, n+ SL1t, z, t) for i= s, n, z. (2.7)

Based on (2.6) and (2.7), all two-point correlations can be derived from isotropy
relations (Pope 2000) as listed in appendix A. For Gaussian random variables,
all higher-order correlations can be derived from sum and products of two-point
correlations and all odd-order correlations are zero (Frenkiel & Klebanoff 1967;
Bendat & Piersol 2011). Similar procedures have been used in other studies of
this nature (Aldredge & Williams 1991; Creta et al. 2011). These stochastic
fluctuations will be referred to in this paper as ‘turbulent flow fluctuations’, but
it should be kept in mind that they actually describe random flow fluctuations
that emulate certain, but not all, features of Navier–Stokes turbulence. For example,
assumptions (i)–(v) above are common features of Navier–Stokes turbulence, but the
stochastic fluctuations do not emulate other features, such as the phase characteristics
between different frequency/wavenumber spectral components. Lastly, the following
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non-dimensionalization scheme is used for simplification:

s̃= s/(us,0/ω0), z̃= z/(us,0/ω0), ñ= n/(us,0/ω0), (2.8a)

ξ̃ = ξ/(us,0/ω0), L̃11 = L11/(us,0/ω0), ε̃ = ε/(us,0/ω0), (2.8b)

t̃ = ω0t, S̃L = SL/us,0, µ̃= µ/us,0. (2.8c)

The solutions to the full G-equation (2.1) are analysed computationally. Solutions
of the single-valued ξ -equation (2.4) are analysed asymptotically. This asymptotic
analysis is performed up to third-order in the oscillating amplitude, ε̃, and the
turbulence intensity, µ̃. The computational procedure is described next.

2.1. Numerical simulation
This section describes the computational approach used to solve the level-set equation
(2.1). These computations closely follow previously reported work detailed in Sethian
(1999) and Osher & Fedkiw (2003), and in Hemchandra & Lieuwen (2010) for
this particular application. The level-set equation is solved using the semi-Lagrangian
Courant–Isaacson–Rees scheme together with the back-and-forth error compensation
and correction (BFECC) technique (Dupont & Liu 2007). This is a second-order
scheme with low numerical dissipation and dispersion errors. The local level-set
method is adopted to achieve significant reduction in computation time (Peng et al.
1999). The level-set field is reset to a signed distance function by solving an auxiliary
re-distancing equation using the prescription of Dupont & Liu (2007).

The computational domain consists of 201 × 201 × 801 grid cells with a spatial
resolution of (us,0/f0)/100, L11/10, and a time step of 1/1000f0. Several grid
convergence studies were performed. First, a grid study was performed for a laminar
case with the baseline and factor-of-ten increased grid density, showing less than a
1 % difference in flame position at s̃ = 25. A similar comparison of calculations using
the baseline and factor-of-two increased density for the µ̃ = 0.04 case showed a 3 %
difference in ensemble-averaged flame position at s̃= 15.

The instantaneous flame position is evaluated numerically from the level-set field
using numerical approximations for the Heaviside function (Osher & Fedkiw 2003)
and the delta function (Peter 2006). The numerical results are then phase-averaged
over 160 ensembles to produce one time series in the forcing period.

In order to compare these computations with analytical results, it is necessary to
calculate the ensemble-averaged flame positions, 〈ξ̃〉. At lower turbulence intensities,
the instantaneous flame position is a single-valued function of (s̃, z̃) for the majority
of time instants; e.g. the flame is multi-valued in less than 1 % of realizations for
µ̃ = 0.04. However, the occurrence of multi-valuedness increases significantly with
increasing turbulent intensity (see figure 8); e.g. in ∼25 % of the realizations for
µ̃= 0.20.

Different approaches can be used to specify the ensemble-averaged flame position
in these cases. One approach is to turn each realization into a field of binarized
values, with zero and unity denoting reactants and products, respectively. These
fields can then be averaged and the ensemble-averaged value associated with some
progress variable,

_
C, such as 〈 _C〉 = 0.5 (Driscoll 2008). This is a fairly standard

way in which ensemble-averaged flame characteristics are presented in experimental
turbulent combustion studies. The problem with this binarization approach, however,
is that it is a nonlinear operation. Consequently, even for a single-valued flame
front, the 〈 _C〉 = 0.5 iso-contour describes the median (Shin 2012), not the mean,
of the flame position. However, the asymptotic analysis quantifies the mean, so the
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(a) (b)

(c) (d)

FIGURE 8. (Colour online) Instantaneous realizations of the flame sheet extracted from
solution of the full level-set equation, (2.1) at t̃ = π/2 and π. (a,b) µ̃ = 0.04, (c,d) µ̃ = 0.20
(S̃L = 0.25, ε̃ = 0.65, L̃11 = 0.65).

two calculation approaches cannot be quantitatively compared. Therefore, we did not
utilize this progress variable approach. Rather, we extracted the instantaneous flame
position coordinates and defined 〈ξ̃〉 as the average of each transverse value at a given
axial location. This result leads to a consistent comparison approach for single-valued
flames where the asymptotic analysis can be performed. Practically speaking, the
difference between the two calculation approaches does not appear to be significant,
as appendix B compares the 〈 _C〉 = 0.5 iso-contour and 〈ξ̃〉 for a typical case showing
that they are nearly identical.

2.2. Asymptotic analysis
Asymptotic analyses of the governing equations were performed to obtain insight
into key parameters controlling the flame wrinkle decay rate. Since the objective of
this analysis is to analyse nonlinear corrections to the flame response at the forcing
frequency, the analysis must be obtained up to the third-order in ε̃ and µ̃. The flame
position, ξ̃ , is expanded using the following two-parameter expansion in harmonic
excitation amplitude, ε̃, and turbulence intensity, µ̃, as:

ξ̃ (s̃, z̃, t̃)= ε̃ ξ̃ε(s̃, z̃, t̃)+ µ̃ ξ̃µ(s̃, z̃, t̃)

+ ε̃2 ξ̃εε(s̃, z̃, t̃)+ ε̃µ̃ ξ̃εµ(s̃, z̃, t̃)+ µ̃2 ξ̃µµ(s̃, z̃, t̃)

+ ε̃3 ξ̃εεε(s̃, z̃, t̃)+ ε̃2µ̃ ξ̃εεµ(s̃, z̃, t̃)+ ε̃µ̃2 ξεµµ(s̃, z̃, t̃)

+ µ̃3 ξ̃µµµ(s̃, z̃, t̃)+ O((ε̃, µ̃)4). (2.9)
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The corresponding boundary conditions for each function are:

ξ̃Θ(s̃= 0, z̃, t̃)=
{

sin(t̃) ifΘ = ε
0 otherwise.

(2.10)

After inserting the expansion (2.9) into (2.4) and matching terms with the same
order, we obtain a series of partial differential equations for each function, ξ̃Θ . For
example, the equation for ξ̃εµµ is:

∂ξ̃εµµ

∂ t̃
+ ∂ξ̃εµµ

∂ s̃
= S̃L

(
∂ξ̃µ

∂ s̃

∂ξ̃εµ

∂ s̃
+ ∂ξ̃µ
∂ z̃

∂ξ̃εµ

∂ z̃
+ ∂ξ̃ε
∂ s̃

∂ξ̃µµ

∂ s̃
+ ∂ξ̃ε
∂ z̃

∂ξ̃µµ

∂ z̃

)

− fs
∂ξ̃εµ

∂ s̃
− ∂fz

∂ ñ

∂ξ̃ε

∂ z̃
ξ̃µ − ∂fz

∂ ñ

∂ξ̃µ

∂ z̃
ξ̃ε − ∂fs

∂ ñ

∂ξ̃ε

∂ s̃
ξ̃µ

− ∂fs

∂ ñ

∂ξ̃µ

∂ s̃
ξ̃ε − fz

∂ξ̃εµ

∂ z̃
+ ∂ f̃n

∂ ñ
ξ̃εµ + ∂

2 f̃n

∂ ñ2
ξ̃ε ξ̃µ. (2.11)

Then, these equations are solved sequentially with the boundary condition (2.10). For
example, the first-order solutions are:

ξ̃ε = sin(t̃ − s̃), (2.12a)

〈ξ̃µ〉 = 0, (2.12b)

where 〈 〉 represents the ensemble average. Thus, the flame wrinkle amplitude is
constant at the first-order; i.e. it does not decay in the absence of stretch or nonlinear
effects, as discussed earlier. The solution, ξ̃ε, mimics the forcing and convects
downstream as a travelling wave at the tangential velocity, us,0.

The full solutions of these equations are quite lengthy and are presented in the lead
author’s thesis (Shin 2012). The particular focus of this study is the ensemble-averaged
dynamics of ξ̃ . Solutions for the ensemble-averaged flame position are:

〈ξ̃εε〉 = 1
4

S̃L [s̃+ s̃ cos(2(t̃ − s̃))], (2.13)

〈ξ̃εεε〉 = −1
8

S̃2
L [s̃2 sin(t̃ − s̃)+ 3s̃ cos(t̃ − s̃)

+ s̃2 sin(3(t̃ − s̃))+ s̃ cos(3(t̃ − s̃))], (2.14)

〈ξ̃εµ〉 = 〈ξ̃εεµ〉 = 〈ξ̃µµµ〉 = 0, (2.15)

〈ξ̃µµ〉 =
(

S̃L

2
− 5

S̃L

)
s̃+

(
3L̃11

S̃2
L

+ πs̃2

L̃11

)
erf

(√
π

2
S̃Ls̃

L̃11

)

+ 2s̃

S̃L

exp

−π
4

(
S̃Ls̃

L̃11

)2
 , (2.16)
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〈ξ̃εµµ〉 =



−2
3

s̃2 − 2
3π

(
L̃11

S̃L

)2
 exp

−π
4

(
S̃Ls̃

L̃11

)2


−
(
π

3
S̃Ls̃3

L̃11

+ L̃11s̃

S̃L

)
erf

(√
π

2
S̃Ls̃

L̃11

)
+
(

1− 1
2

S̃2
L

)
s̃2 + 2

3π
L̃2

11

S̃2
L


sin(t̃ − s̃) (2.17)

+
−4s̃ exp

−π
4

(
S̃Ls̃

L̃11

)2
−(2πS̃Ls̃2

L̃11

+ L̃11

S̃L

)

× erf

(√
π

2
S̃Ls̃

L̃11

)
+ 4s̃− 3

2
S̃2

Ls̃

}
cos(t̃ − s̃). (2.18)

As shown in (2.15), the ensemble average of several of the terms in the expansion
is zero. The terms contributing to either the ensemble or time average are 〈ξ̃ε〉, 〈ξ̃εε〉,
〈ξ̃µµ〉, 〈ξ̃εεε〉 and 〈ξ̃εµµ〉. Note that the non-zero time-averaged terms reflect a shift in
flame position from its unperturbed location, due to the augmentation of the turbulent
burning velocity by flow fluctuations, both narrowband and stochastic. This solution is
discussed further and compared with computations in the next section.

3. Results and analysis
This section presents analyses of the computational and asymptotic flame results to

understand the factors controlling the ensemble-averaged dynamics of flame wrinkles.
Figures 8(a,b) and 8(c,d) display a typical sequence of instantaneous computational
results at two turbulence intensities. They show the presence of randomly distributed
flame wrinkles with variation in both s- and z-directions; variations in the z-direction
disappear with ensemble averaging. Also evident in the images is the progressive
decay in the coherent, sinuous flame sheet fluctuations with downstream distance, as
discussed in § 1. As we will show in this section, these wrinkles decay even in the
absence of turbulence, but the decay rate is accelerated by turbulent fluctuations.

3.1. Ensemble-averaged near-field characteristics
This section presents results illustrating the role of turbulent fluctuations in smoothing
the excited flame wrinkles near the flame holder, where the asymptotic results can also
be used. These results are a generalization of those shown in figure 4, that illustrated
the role of kinematic restoration in evolving the flame wrinkle shape in a laminar flow.

Figure 9(a) plots the ensemble-averaged flame position at four phases during a
forcing period. For reference, the laminar case (i.e. µ̃ = 0) is also indicated by
the dashed lines. Several observations can be made from this. First, it shows that
harmonically oscillating flame wrinkles convect downstream while decaying as damped
sinusoids. Second, note that the overall turbulent flame position shifts upward relative
to the laminar one with downstream distance, due to the increase of the turbulent
burning velocity by the random fluctuations (Hemchandra & Lieuwen 2010). Third,
the ensemble average of the turbulent case shows a smoothing of the trailing edges,
in contrast to the discontinuity in slope that occurs in the constant-burning-velocity,
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FIGURE 9. (Colour online) (a) Ensemble-averaged flame position, 〈ξ̃ (s̃, t̃)〉, at four times
during a forcing period obtained from level-set computations, and compared to the laminar
case (µ̃ = 0). (b) Corresponding Fourier coefficients of ensemble-averaged flame front
(solid) and corresponding asymptotic solutions (dashed). Conditions are S̃L = 0.25, ε̃ = 0.65,
µ̃= 0.04, L̃11 = 0.65.

laminar case. This smoothing of the very short-wavelength trailing edge resembles the
effect of stretch in laminar flames with positive Markstein lengths, an observation that
will be quantified and fleshed out later. Finally, the peak-to-peak amplitude of the
flame wrinkle is clearly different between the two curves, showing the accelerating
smoothing of the flame wrinkle in the turbulent case.

These observations are further quantified in figure 9(b), which plots the axial
dependence of the ensemble-averaged flame response at the forcing frequency, ω0, and
the time-averaged position. The figure shows the monotonic decay in flame wrinkle
amplitude, as well as the shift outward in average flame position, due to the rise in
turbulent burning velocity. The asymptotic solutions, presented in (2.13)–(2.17) are
also indicated in figure 9(b) by the dashed lines, which show good agreement in
the near field. These asymptotic solutions can be interpreted more easily by being
expanded in powers of tangential coordinate, s̃, as:

ξ̃ (s̃, t̃)= µ̃2

(
S̃L

2
s̃+ π

4
S̃L

L̃2
11

s̃3 + O(s̃5)

)
+ 1

4
ε̃2S̃Ls̃+ O((µ̃, ε̃)4), (3.1)

|〈ξ̃ (s̃, ω0)〉|
ε̃

= 1− 1
8
ε̃2S̃2

Ls̃2 − 1
2
µ̃2s̃2 − 1

2
µ̃2S̃2

Ls̃2 − 5π
48
µ̃2S̃2

L

L̃2
11

s̃4 + O(s̃5, µ̃3), (3.2)

where the overbar represents the time average. Note that the second term on the
right-hand side of (3.2) describes the decrease in laminar flame wrinkle size due to
kinematic restoration, which was presented in Shin & Lieuwen (2012). We will next
focus on the remaining terms that are multiplied by µ̃2 and, thus, are due to stochastic
forcing effects. This equation shows that the flame wrinkle size decays quadratically
with downstream distance, s̃2, and turbulence intensity, µ̃2, in the near field. There
are two terms, −µ̃2s̃2/2 and −µ̃2S̃2

Ls̃2/2, due to two fundamentally different processes
leading to this smoothing effect in the leading-order terms. The first of these terms,
−µ̃2s̃2/2, is independent of burning velocity or equivalently, kinematic restoration
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FIGURE 10. (Colour online) Illustration of the reduction of ensemble-averaged flame wrinkle
size by random tangential motions of the flame wrinkle, or ‘phase jitter’.

effects. Since, S̃L � 1 in high-velocity flows, this term is actually the dominant near-
field effect for the turbulent flow field used in this study.

This dominant smoothing effect (−µ̃2s̃2/2) is due to phase jitter associated with the
µfs ∂ξ/∂s term on the right side of (2.4); i.e. fluctuations in tangential flow velocity
cause the axial position of the flame wrinkle to fluctuate randomly. As shown in
figure 10, this leads to a reduction in ensemble-averaged flame wrinkle amplitude, as
the ensemble average of a harmonic quantity subjected to phase jitter is reduced in
magnitude.

To illustrate, consider the ensemble average of a harmonically oscillating
disturbance, sin(2πs), subjected to a Gaussian phase noise, N(t), with a mean of
zero and a variance of Σ2. The ensemble average of the disturbance is written as:

〈sin(2πs+ N(t))〉 = sin(2πs) 〈cos(N(t))〉 + cos(2πs) 〈sin(N(t))〉. (3.3)

Note that 〈cos(N(t))〉 = exp(−Σ2/2) and 〈sin(N(t))〉 = 0 for Gaussian noise.
Therefore, (3.3) becomes:

〈sin(2πs+ N(t))〉 = exp(−Σ2/2) sin(2πs). (3.4)

This equation indicates that the ensemble average of the disturbance decreases
exponentially in magnitude with increases in variance, Σ2, of the noise. Note that
this effect is only due to tangential velocity fluctuations, u′s. In contrast, velocity
fluctuations normal to the flame, u′n, do not alter the ensemble average by convection
effects. This is analogous to additive noise addition to a harmonic disturbance:

〈sin(2πs)+ N(t)〉 = sin(2πs). (3.5)

Related phase jitter effects have been well documented in the general turbulent flow
and flame literature (Cardell 1993; Coats 1996; Shanbhogue, Seelhorst & Lieuwen
2009b).

Returning to (3.2), consider the next quadratic term, −µ̃2S̃2
Ls̃2/2. The fact that it

is proportional to µ̃S̃L indicates that it is influenced by kinematic restoration and
stochastic forcing, but note that it is completely independent of turbulent length scale,
L̃11. This term reflects the effects of random flame angle changes at the attachment
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point by the stochastic velocity fluctuation normal to the front. To see this, note that
the kinematic restoration term in (2.4) can be rewritten as (SL/ cos θ(t) − SL) by using
the equality

√
1+ (∂ξ/∂s)2+ (∂ξ/∂z)2 = 1/ cos θ(t), where θ(t) is the instantaneous

local flame angle measured relative to the s–z plane. Since the flame angle (θ ) consists
of deterministic (θD) and random (θN) parts, i.e. θ = θD + θN , the kinematic restoration
effect is expanded for small θD and θN as:

SL

cos(θD + θN)
− SL = SL (θD + θN)

2 /2+ O((θD, θN)
3). (3.6)

Ensemble averaging this expression:〈
SL

cos(θD + θN)
− SL

〉
= SLθ

2
D

2
+ SL〈θ 2

N〉
2
+ O((θD, θN)

3). (3.7)

This equation indicates the leading-order effects of kinematic restoration. The first
term, SLθ

2
D/2, is the laminar kinematic restoration term, corresponding to −ε̃2S̃2

Ls̃2/8 in
(3.2). Similarly, the second term, SL〈θ 2

N〉/2, corresponds to −µ̃2S̃2
Ls̃2/2 in (3.2).

Lastly, kinematic restoration effects associated with random wrinkles excited in
the domain itself first appear in the expansion (3.2) at fourth-order in distance, but
second-order in turbulence intensity, through the term (5π/48)(µ̃2S̃2

L/L̃
2
11)s̃

4. Note that
this includes terms proportional to S̃L and L̃11, indicating that it is influenced by
kinematic restoration and turbulence length scale. This is the leading-order near-field
term describing the turbulent destruction of wrinkles in the domain itself. It shows
that turbulent fluctuations of shorter length scale lead to more rapid dissipation of
flame wrinkles, scaling as 1/L̃2

11, an effect which would be expected given the scale-
dependent nature of kinematic restoration.

This asymptotic expansion shows how three fundamentally different effects come
into play in the near field, with completely different dependences on location (e.g.
s̃2 or s̃4), flame propagation (e.g. 1 or S̃2

L), and turbulence characteristics (e.g. L̃11).
However, as shown in figure 9(b), this expansion loses validity with downstream
distance, s̃ > ∼3 in this example, where the coupled effects of kinematic restoration
and stochastic excitation must be studied numerically.

An additional important result from the asymptotic analysis is that the deterministic
and stochastic effects are decoupled up to third-order, as 〈ξ̃εεµ〉 = 0 in (2.15). As a
result, to this order, the leading-order correction to the flame response can be obtained
from the following linear sum of deterministic and stochastic effects in isolation:

near field : |〈ξ̃ (s̃, ω0)〉|
ε̃

= 1− 1
8
(ε̃S̃Ls̃)

2− µ̃
2

2
(1+ S̃2

L)s̃
2 + O(s̃4, (ε̃, µ̃)

4
). (3.8)

However, this result is limited to the near field as the asymptotic solution in
(2.15)–(2.17) quickly loses accuracy further downstream.

In order to illustrate the combined effects of harmonic and stochastic excitation,
figure 11 plots the results of several computations showing the axial dependence of
the flame wrinkle fluctuation amplitude at the forcing frequency at several turbulence
intensities. The µ̃ = 0 curve shows the laminar result, showing the monotonic decay
in flame wrinkle amplitude with downstream distance, for reasons discussed previously.
In addition, curves are shown for µ̃ = 0.04 and 0.10, showing the increased decay
rate of |〈ξ̃ (s̃, ω0)〉| with increasing turbulence intensity. The plot clearly shows how
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FIGURE 11. (Colour online) Comparison of the flame responses at different turbulence
intensities and two different forcing amplitudes (S̃L = 0.25 and L̃11 = 0.65).

both deterministic and stochastic processes lead to a decay in flame wrinkle size. Their
relative significance is a function of the values of ε̃ and µ̃.

The rest of this paper considers these downstream characteristics in more detail. In
order to understand the factors controlling the far-field region, it is first necessary to
understand the effects of stochastic forcing on the ensemble-averaged, time-varying
turbulent burning velocity, which is treated next.

3.2. Ensemble-averaged turbulent burning velocity

In the laminar case, it is the propagation of the flame normal to itself that leads
to smoothing of flame wrinkles, as illustrated in figure 4; thus the wrinkle decay
rate is directly proportional to the laminar burning velocity, SL, as shown in (1.2).
Important insights into the turbulent case can be obtained by considering analogies to
the laminar problem and considering the ensemble-averaged turbulent burning velocity.
An important generalization from the laminar problem, however, is that even in the
case where the flame has no stretch sensitivity, the turbulent burning velocity is time
varying and modulated harmonically.

To follow this point, consider an equation for the ensemble-averaged flame
dynamics, motivated in form by the actual level-set equation (2.2) (this expression
is similar to those proposed heuristically in prior studies, e.g. Lipatnikov & Sathiah
2005; Palies et al. 2011; Shin et al. 2011):

∂〈ξ̃〉
∂ t̃
+ 〈ũs〉∂〈ξ̃〉

∂ s̃
− 〈ũn〉 + 〈ũz〉∂〈ξ̃〉

∂ z̃
= S̃T,eff

1+
(
∂〈ξ̃〉
∂ s̃

)2

+
(
∂〈ξ̃〉
∂ z̃

)2
1/2

, (3.9)

where (∼) represents a non-dimensional variable defined as in (2.8) – velocities,
lengths, and time are normalized by us,0, us,0/ω0 and ω0, respectively. Note that
this equation is not derived by ensemble averaging (2.2), as nonlinear terms lead
to similar closure problems as arise in Reynolds time-averaging the Navier–Stokes
equation. Rather, this equation is essentially a definition for the ensemble-averaged
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FIGURE 12. (Colour online) Dependence of (a) S̃T,eff and (b) S̃T,disp on downstream distance
for the same intensities and amplitudes as in figure 11 (S̃L = 0.25 and L̃11 = 0.65).

turbulent burning velocity, S̃T,eff , obtained by rearranging (3.9) as:

S̃T,eff (s̃, z̃, t̃)≡
∂〈ξ̃〉
∂ t̃
+ 〈ũs〉∂〈ξ〉

∂ s̃
− 〈ũn〉 + 〈ũz〉∂〈ξ̃〉

∂ z̃[
1+ (∂〈ξ̃〉/∂ s̃)

2+ (∂〈ξ̃〉/∂ z̃)
2
]1/2 . (3.10)

It is important to note that the turbulent flame speed can be defined in different
ways for this problem, leading to different results. The typical definition of
displacement flame speed, S̃T,disp, used in flows without harmonic forcing is (Driscoll
2008):

S̃T,disp(s̃, z̃)≡
¯̃us ∂
¯̃
ξ/∂ s̃− ¯̃un + ¯̃uz ∂

¯̃
ξ/∂ z̃

[1+ (∂ ¯̃ξ/∂ s̃)
2+ (∂ ¯̃ξ/∂ z̃)

2]
1/2 . (3.11)

The time average of S̃T,eff , S̃T,eff , differs from S̃T,disp because of the non-zero
time average produced by the multiplication of two harmonically oscillating terms.

For example, ũs ∂
¯̃
ξ/∂ s̃ does not equal ũs ∂ξ̃/∂ s̃ in the presence of harmonic flow

perturbations. This difference can be explicitly shown from the asymptotic solutions

for S̃T,eff and S̃T,disp at s̃= 0:

S̃T,eff (s̃= 0)

S̃L

= 1+ µ̃
2

2
+ O((ε̃, µ̃)4), (3.12)

S̃T,disp(s̃= 0)

S̃L

= 1+ 1
4
ε̃2 + 1

2
µ̃2 + O((ε̃, µ̃)4). (3.13)

Note that these equations converge to the same result when ε̃ = 0, but otherwise, S̃T,disp

has an ε̃ sensitivity while S̃T,eff does not. Similar points can be seen more generally

in figure 12(a,b), which plots the computed dependence of S̃T,eff and S̃T,disp upon
downstream distance, s̃, for different ε̃ and µ̃ values.

At a fixed axial location, both S̃T,eff and S̃T,disp are an increasing function of µ̃,

as might be expected. However, S̃T,eff is essentially independent of harmonic forcing
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FIGURE 13. Dependence of ensemble-averaged flame position (a) and extracted S̃T,eff value
(b) on downstream distance at two time instants (S̃L = 0.25, ε̃ = 0.65, L̃11 = 0.65, µ̃= 0.04).

amplitude, ε̃, for all cases shown, as suggested by (3.12). As shown later, S̃T,eff does
vary in time, however, as it is modulated by the harmonic forcing.

Having discussed some basic differences from typical definitions used in the
turbulent combustion literature in the absence of harmonic forcing, we next consider

its characteristics further. The space–time dependence of S̃T,eff can be directly extracted
from computed results using (3.10). To illustrate, figure 13 plots the extracted
dependence of S̃T,eff at two time instants for the calculation shown in figure 9(a),
where the instantaneous flame position is also plotted for ease of comparison.

This figure shows that S̃T,eff is a function of both space and time. The rest of
this section briefly revisits its time-averaged characteristics, and then focuses on its

time-varying features. The axial evolution of S̃T,eff shown in figure 12(a) indicates an
initial development in the near field followed by saturation far from the flame holder,
similar to other observations in spatially or temporally evolving flames (Abdel-Gayed,

Bradley & Lawes 1987; Lipatnikov & Chomiak 2002). The fact that S̃T,eff exceeds S̃L,
such as shown in figure 12, is important and directly responsible for the increasing
decay rate of flame wrinkles shown in figure 11. The results in figure 11 show that
increasing µ̃ at a fixed ε̃ leads to a monotonically increasing rate at which flame
wrinkles are smoothed out. In other words, a faster average burning rate leads to
faster smoothing of the ensemble-averaged flame wrinkles, directly analogous to the
sensitivity of laminar flames to S̃L. This point can also be seen by noting that (2.2)
and (3.9) are identical if S̃T,eff is a constant, and replacing ξ̃ and S̃L with 〈ξ̃〉 and S̃T,eff ,
respectively.

Having considered the effects of S̃T,eff upon the decay rate of flame wrinkles,
we next consider its space–time modulation, illustrated in figure 13. In comparing
figures 13(a) and 13(b) note how S̃T,eff instantaneously rises at points where the
ensemble-averaged front is concave to the reactants and falls at points that are convex.
This point is quantified in figure 14(a) which plot values of S̃T,eff extracted from
calculations at points through the harmonic forcing cycle, as a function of ensemble-
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FIGURE 14. (Colour online) Correlation of the curvature of the ensemble-averaged flame

front and the turbulent flame speed defined in (3.9): (a) scaled by S̃T,eff (s̃) at selected
downstream locations and (b) scaled by the laminar flame speed at downstream locations

where S̃T,eff has approached a constant value. Values of S̃T,eff /S̃L|s̃=20, S̃T,disp/S̃L|s̃=20, S̃T,0/S̃L

and σ̃T S̃T,0/S̃L are indicated for reference, and are 1.14, 1.15, 1.14 and −0.102, respectively
(conditions are ε̃ = 0.65, µ̃= 0.04, L̃11 = 0.65, S̃L = 0.25).

averaged radius of curvature of the flame, 〈c̃〉, defined as:

〈c̃〉 = ∂2〈ξ̃ (s̃, t̃)〉/∂ s̃2

[1+ (∂〈ξ̃ (s̃, t̃)〉/∂ s̃)
2]3/2

. (3.14)

Note the clear negative correlation of burning velocity with ensemble-averaged
curvature. In other words, locations with ensemble-averaged negative curvatures are
associated with augmentation of the unsteady, ensemble-averaged burning velocity
and vice-versa. This behaviour is analogous to stretch-sensitive flames with positive
Markstein lengths; i.e. where σ > 0. In the laminar case, this stretch sensitivity is due
to convective–diffusive flux imbalances in the finite-thickness flame (Matalon 1983),
while the analogous behaviour in the turbulent case is due to the effect of stochastic
flame wrinkling on the ensemble-averaged flame wrinkle position. However, it is
important to emphasize that while the Markstein length concept applies instantaneously
in the laminar case, this turbulent analogue applies only to the ensemble average.

The fact that the curves trace out an ellipse suggests that the relationship between
instantaneous curvature and S̃T,eff is not quasi-steady; i.e. there is a phase lag between
the two, but this lag is not large for this condition. Note also how the S̃T,eff and
〈c̃〉 correlation becomes nearly independent of position at s̃ = 10 and 20, which

corresponds to locations where S̃T,eff has approached a constant value.
For the rest of this section, we focus on this relationship at downstream locations

where S̃T,eff is approximately spatially constant. Figure 14(b) plots S̃T,eff at a range of
such positions, showing that we can write the following approximate expression for
S̃T,eff in the far field:

S̃T,eff = S̃T,0(1− σ̃T 〈c̃〉), (3.15)

where S̃T,0 and σ̃T are the effective turbulent flame speed at zero curvature and
the ‘turbulent Markstein length’, respectively. This effect of global curvature on the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

67
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.67


504 D.-H. Shin and T. Lieuwen

1.5

1.4

1.3

1.2

1.1

1.6

1.5

1.4

1.3

1.2

1.1

1.0
–1.5 –1.0 –0.5 0 0.5 –1.5 –1.0 –0.5 0 0.5

1.6

1.0

(a) (b)

FIGURE 15. (Colour online) Correlation of the curvature of the ensemble-averaged flame
front and the turbulent flame speed defined in (3.9). (a) ε̃ = 0.32; (b) ε̃ = 0.65 (other
conditions are L̃11 = 0.65, S̃L = 0.25).

turbulent burning velocity has been previously discussed in spherically expanding
flame studies in a turbulent flow field (Lipatnikov & Chomiak 2004). They showed
that with increasing time/flame radius, the turbulent flame speed increases. Other
studies suggest that this effect is due to the increasing range of wrinkling scale sizes,
and therefore flame surface area (Abdel-Gayed et al. 1987; Groff 1987). In addition,
Lipatnikov & Chomiak (2007) analysed the characteristics of a curved turbulent flame
using the Reynolds-averaged progress variable equation and the closure model from
Zimont & Lipatnikov (1995) (a model developed from Prudnikov 1964; Zimont 1977).
They showed that the turbulent burning velocity was curvature dependent in that
formulation as well. They denoted the burning velocity curvature sensitivity coefficient
as the ‘turbulent Markstein length’, noting its analogy to the Markstein length for
laminar flamelets. In their analysis, this curvature sensitivity is proportional to the gas
expansion across the flame.

Note that S̃T,0 and S̃T,eff have different definitions in general, but are similar in
value as shown by figure 14(b). Also, a more accurate representation of the ensemble-
averaged burning velocity would be to include the phase delay between S̃T,eff and 〈c̃〉,
which we will not do here for simplicity. A more detailed characterization of the
effects of harmonic modulation on S̃T,eff is outside the scope of this study.

The same behaviour was observed for all computed cases. To illustrate, figure 15
plots similar calculation results for several turbulence intensities, showing that σ̃T is an
increasing function of turbulence intensity, as might be expected. The larger scatter in
the µ̃ = 0.1 case is likely a reflection of noise introduced in calculation of the second
derivative of flame position, needed for the curvature. Although the 160 ensemble
averages are sufficient for calculation of 〈ξ̃〉, the small amount of noise present in
these ensemble average estimates is amplified significantly in estimates of the second
derivative. Results are shown for two ε̃ values, showing the larger range of ensemble-
averaged flame curvatures that are present with increased harmonic forcing amplitude.
Note also the diminished range of negative curvature values for the highest µ̃ case, a
reflection of the very rapid destruction of high-curvature regions by stochastic flame
wrinkling.

While the Markstein length analogy has been quantified in figure 14 based on
post-processing calculations, the physical reasons why this behaviour occurs can
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Flame
propagation

direction

Positively curved flame Negatively curved flameZero curvature flame

FIGURE 16. (Colour online) Illustration of change of curvatures on trailing edges of the
flames with different large-scale curvatures (solid lines: instantaneous flame front, thick
dotted lines: space-averaged flame front).

be understood from consideration of Huygens propagation. To illustrate, figure 16
illustrates three instantaneous notational images of flames with ensemble-averaged
positive, negative, and zero curvatures with superposed wrinkles from t = 0 to dt. The
solid lines denote instantaneous flame fronts, while the thick dotted lines are spatially
averaged flame fronts.

As shown in figure 16, the effect of kinematic restoration is most prominent at
the trailing edges of the flame, where the two opposing flame branches propagate
into each other and annihilate each other. As the trailing edges are destroyed, the
averaged flame position shifts toward the reactants sides, which also manifests itself as
an increase in the turbulent displacement speed; i.e. the distance between two dotted
lines is proportional to the turbulent displacement speed, which is larger than the
laminar flame speed. Similarly, the interaction of opposing flame branches is reduced
for fronts with positive ensemble-averaged curvature, a point that can also be seen
from application of Huygens propagation as shown in figure 3.

This flame–flame interaction and annihilation process is strongly dependent upon the
ensemble-averaged curvature of the flame, as it is suppressed in outwardly propagating,
positively curved flames (see the different degrees of change of mean flame position
from t = 0 to t = dt marked by dashed lines in figure 16). It is augmented in inwardly
propagating, negatively curved flames.

To summarize then, S̃T,eff can be written as S̃T,eff = S̃T,eff + S̃′T,eff , where S̃′T,eff is a
periodic function of time, that can also be approximately parameterized as a function
of the local curvature, i.e.

S̃T,eff = S̃T,eff (1− σ̃T 〈c̃〉). (3.16)

Following from the analogies of the solution to the laminar flame problem, this latter
effect has a term that is linear in harmonic perturbation amplitude, |〈ξ̃ (s̃, ω0)〉|; i.e.
expanding the curvature in (3.14) in a Taylor series, the leading-order term is given

by 〈c̃〉 = ∂2〈ξ̃ (s̃, ω0)〉/∂s2 + O(〈ξ̃ (s̃, ω0)〉2). This point has important implications for
the functional dependence of ξ̃ upon downstream distance, as elaborated in the next
section.

3.3. Ensemble-averaged far-field characteristics
In this section, we analyse the flame response in the far field, using results from the
level-set computations. Figure 11 clearly shows the faster smoothing of ensemble-
averaged flame wrinkles in the far field with increasing µ̃ values. As discussed
in the context of figure 12, this observation is expected based upon the increasing
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FIGURE 17. Downstream dependence of scaled slope in flame position, illustrating laminar
flame scaling (conditions are ε̃ = 0.65, µ̃= 0 and S̃L = 0.25).

value of ST,eff with turbulence intensity, leading to faster propagation of the ensemble-
averaged flame front normal to itself.

While this qualitative behaviour is expected, we can use the results from § 3.2 to
better understand the functional dependence of |〈ξ̃ (s̃, ω0)〉| upon downstream distance.
To illustrate, we briefly return to the laminar flame problem where, as discussed in § 1,
two processes lead to flame wrinkle decay: kinematic restoration and flame stretch.

Consider first the decay rate of laminar flames dominated by kinematic restoration
effects, using the s̃� 1 solution from (1.2). This equation can be differentiated and
rewritten in the following form that eliminates the explicit dependence on downstream
distance:

∂|ξ̃ (s̃, ω0)|
∂ s̃

=− S̃L

2
|ξ̃ (s̃, ω0)|2 . (3.17)

This equation quantifies the decay rate in flame wrinkle amplitude in terms of the local
magnitude, showing that the ratio, −((∂|ξ̃ (s̃, ω0)|/∂ s̃)/|ξ̃ (s̃, ω0) |2), reaches a constant
value in the far field, where this expression is valid. To illustrate, figure 17 plots the
results of a calculation for µ̃= 0, i.e. a laminar flame, confirming this result. This plot
also indicates that this ratio varies with distance in the near field due to the two-zone
behaviour of a laminar flame as pointed out earlier ((1.2) indicates that it varies as
ε̃S̃2

Ls̃/4).
In a similar manner, the decay rate of stretch-dominated laminar flames can be

obtained from (1.3) and written as:

∂|ξ̃ (s̃, ω0)|
∂ s̃

=−σ̃ S̃L|ξ(s̃, ω0)|. (3.18)

Therefore, this ratio is proportional to the product of the flame speed and normalized
Markstein length, σ̃ .

These laminar solutions can be used to understand the functional dependence
of ∂|〈ξ̃ (s̃, ω0)〉|/∂ s̃ upon |〈ξ̃ (s̃, ω0)〉|, since the laminar instantaneous and ensemble-
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FIGURE 18. (Colour online) Ratios of ensemble-averaged flame slope and position, using
two different scalings derived from kinematic restoration and stretch-dominated solutions.
(a) µ̃= 0.02 and (b) µ̃= 0.08 (conditions are ε̃ = 0.65, S̃L = 0.25 and L̃11 = 0.65).

averaged turbulent flame characteristics are described by analogous equations in the far
field; i.e.

laminar instantaneous equation:

∂ξ̃

∂ t̃
+ ũs

∂ξ̃

∂ s̃
− ũn + ũz

∂ξ̃

∂ z̃
= S̃L(1− σ̃ c̃)

1+
(
∂ξ̃

∂ s̃

)2

+
(
∂ξ̃

∂ z̃

)2
1/2

; (3.19)

turbulent ensemble-averaged equation:

∂〈ξ̃〉
∂ t̃
+ 〈ũs〉∂〈ξ̃〉

∂ s̃
− 〈ũn〉 + 〈ũz〉∂〈ξ̃〉

∂ z̃

= S̃T,eff (1− σ̃T〈c̃〉)
1+

(
∂〈ξ̃〉
∂ s̃

)2

+
(
∂〈ξ̃〉
∂ z̃

)2
1/2

. (3.20)

Increases in turbulence intensity, µ̃, lead to two effects: increases in S̃T,eff and the
fluctuation magnitude of S̃′T,eff , because of the increases in ‘turbulent Markstein length’.
Again, using the previously developed laminar flame solutions as a guide, both effects
lead to destruction of flame wrinkles. However, the first effect is nonlinear in harmonic
disturbance amplitude, |〈ξ̃ (s̃, ω0)〉|, while the second has a leading-order linear term
in |〈ξ̃ (s̃, ω0)〉|. Thus, the dependence of the far-field solution characteristics upon
|〈ξ̃ (s̃, ω0)〉| are a nonlinear function of µ̃.

The increase of S̃T,eff enhances the kinematic restoration process and the decay
of flame wrinkles. Consider the case where µ̃ = 0 and ε̃ is non-zero. In this limit,
only deterministic kinematic restoration processes lead to flame wrinkle destruction,
with a decay rate that is a nonlinear function of ε̃, as quantified in (1.2). As µ̃

increases, increases in S̃T,eff augment this effect, causing even faster increases in
flame wrinkle decay rate, as shown by figure 11. In order to illustrate that the same
basic scaling described in (3.17) applies in the low turbulence intensity case as well,
figure 18 plots the axial dependence of ratios of −∂|〈ξ̃ (s̃, ω0)〉|/∂ s̃ to powers of
|〈ξ̃ (s̃, ω0)〉|. In the low turbulent intensity case (µ̃ = 0.02 in figure 18a), the ratio,
−((∂|〈ξ̃ (s̃, ω0)〉|/∂ s̃)/|〈ξ̃ (s̃, ω0)〉 |2) (solid line), approaches a roughly constant value,
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FIGURE 19. (Colour online) Relationship between local flame position and slope, illustrating
transition from kinematic-restoration dominated to ‘stretch’-dominated with increasing
turbulence intensity. (a) ε̃ = 0.32; (b) ε̃ = 0.65 (S̃L = 0.25 and L̃11 = 0.65).

while the ratio −((∂|〈ξ̃ (s̃, ω0)〉|/∂ s̃)/|〈ξ̃ (s̃, ω0)〉|) (dashed line), continues to evolve
with downstream distance. This quadratic scaling indicates that the decaying process is
similar to the kinematic restoration process in laminar flames. For reference, note from

figure 12(a) that S̃T,eff approaches a spatially constant value for s̃>∼10.
However, these increases in µ̃ introduce the additional modulated flame speed effect

as well, an effect that, in isolation, has a completely different amplitude scaling.
Moreover, this effect is also a function of ε̃, as larger modulations in 〈c̃〉 occur
as ε̃ increases. This dependence of S̃T,eff upon ensemble-averaged curvature leads to
wrinkle smoothing that is linear in |〈ξ̃ (s̃, ω0)〉|, as opposed to the nonlinear mechanism
through which S̃T,eff exerts an influence. For |〈ξ̃ (s̃, ω0)〉|/ε̃� 1 then, this linear effect
dominates the nonlinear effect for large enough µ̃.

This linear scaling can be seen from the µ̃ = 0.08 result in figure 18(b), where

the axial dependence of the ratio, −((∂|〈ξ̃ (s̃, ω0)〉|/∂ s̃)/ |〈ξ̃ (s̃, ω0)〉|2) (solid line), looks
quite different from figure 18(a). Rather than approaching a roughly constant value,

it increases monotonically with downstream distance, even at locations where S̃T,eff is
nearly constant. In contrast, the ratio, −((∂|〈ξ̃ (s̃, ω0)〉|/∂ s̃)/|〈ξ̃ (s̃, ω0)〉|) (dashed line),
which would be expected to approach a constant for the ‘stretch-dominated’ scaling
approaches a nearly constant value.

In both the µ̃ = 0.02 and 0.08 cases, the scaling is not perfect as increases in µ̃

influence both processes. However, the basic argument can be made more precise
by replotting these data. Specifically, figure 19 plots the far-field dependence of
−∂|〈ξ̃ (s̃, ω0)〉|/∂ s̃ upon |〈ξ̃ (s̃, ω0)〉| for several µ̃ values, where downstream distance
is used as a parameter. Because |〈ξ̃ (s̃, ω0)〉| monotonically decreases with downstream
distance, axial location decreases in the positive axial direction.

In the near field, (3.17) shows that for µ̃ = 0, the relationship between slope and
position is described by the asymptotic result from (1.2) and (3.17), which is given by:

∂|〈ξ̃ (s̃, ω0)〉|
∂ s̃

≈ S̃L |〈ξ̃ (s̃, ω0)〉|2
√
(1− |〈ξ̃ (s̃, ω0)〉|)/2. (3.21)
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In the far field, the variation in functional dependence of −∂|〈ξ̃ (s̃, ω0)〉|/∂ s̃ upon
|〈ξ̃ (s̃, ω0)〉| clearly transitions from the quadratic ‘kinematic-restoration-dominated’

scaling (i.e. dominated by the S̃T,eff effect) to the linear-stretch-dominated scaling (i.e.
dominated by the time varying S̃′T,eff ) with increases in µ̃. Thus, these results show that
the downstream decay of ensemble-averaged flame wrinkling in the high turbulence
intensity case is dominated by the modulation in the turbulent burning velocity, a
result that is analogous to that associated with smoothing of thermo-diffusively laminar
flames.

4. Concluding remarks
The paper has described the relative contributions of deterministic and turbulent

effects upon the ensemble-averaged dynamics of the flame front position, 〈ξ〉, with
particular focus on the rate at which wrinkles excited by harmonic forcing are
smoothed out and destroyed. Level-set computations and third-order perturbation
analyses were used to illustrate different aspects of the problem. In the near
field, asymptotic results show the three leading-order contributors, with phase jitter
associated with random tangential convection of flame wrinkles being the leading-order
effect.

Farther downstream, additional processes become important. First, the time-averaged
turbulent burning velocity, ST,eff , increases with downstream distance, s, and turbulence
intensity, µ. This faster average turbulent displacement speed of the front leads to
increases in destruction of flame wrinkles. For example, the value of |〈ξ(s, ω0)〉|
decays progressively faster with downstream distance as µ increases.

In addition, the ensemble-averaged turbulent burning velocity is modulated by the
harmonic forcing, i.e. ST,eff = ST,eff + S′T,eff , with an inverse dependence upon ensemble-
averaged flame curvature. This effect is analogous to positive-Markstein-length flames
in the laminar flame case, but applies even to the ensemble-averaged characteristics of
stretch-insensitive turbulent flames. The degree of modulation of ST,eff is a function of
the modulation amplitude in the flame curvature and, thus, is a function of wrinkle
amplitude, ε. It is also a function of turbulence intensity, µ, as the effect disappears
in the laminar, µ = 0, case. We show that, depending upon turbulence intensity, the
far-field evolution of 〈ξ(s, ω0)〉 can be dominated by either ST,eff or S′T,eff . These
two characteristics are analogous to those of stretch-sensitive laminar flames, whose
downstream wrinkle decay rate can be controlled by either kinematic restoration or
stretch effects.

An important result from this paper relates to the utilization of the level-set model in
analytical and/or Reynolds-averaged simulations in turbulent flow fields. While several
prior studies have utilized (3.9) in a somewhat heuristic fashion, the results of this
paper show that such a description of the ensemble-averaged front dynamics can be
used with an appropriate incorporation of the modulation of the turbulent burning
velocity that harmonic forcing introduces.
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FIGURE 20. (Colour online) Comparison of ensemble average of instantaneous flame
position and progress variable contour of 0.5 at one phase of the forcing period, i.e. t̃ = 0
(conditions are ε̃ = 0.65, µ̃= 0.04, S̃L = 0.25 and L̃11 = 0.65).

Appendix A
From (2.6) and (2.7) the full correlation functions can be derived as:

Ruiuj(s1, s2, s3, τ )≡ 〈fi(x1, x2, x3, t)fj(x1 + s1, x2 + s2, x3 + s3, t + τ)〉√
〈f 2

i 〉〈f 2
j 〉

=
(
π

4
σiσj

L2
11

+
(

1− π
4

(
r

L11

)2
)
δij

)
exp

(
−π

4

(
r

L11

)2
)
, (A 1)

where ( )1 : s-direction, ( )2 : n-direction, ( )3 : z-direction,

σ1 = s1 − us,0τ, σ2 = s2 + SLτ, σ3 = s3, (A 2a)

r=
√
σ 2

1 + σ 2
2 + σ 2

3 , δij =
{

1 if i= j
0 otherwise.

(A 2b)

Appendix B

The progress variable,
_
C, is defined as:

_
C =

{
1 in the product side
0 in the reactant side.

(B 1)

Then, 〈 _C〉 is the ensemble average of the progress variable. Figure 20 shows
the comparison of the ensemble average of the flame position and 0.5-contour of
ensemble-averaged progress variable, showing that they are nearly identical.
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