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For wave loads on cylinders constituting a long but finite array in the presence of
incident waves, variations in the magnitude of the load with the non-dimensional
wavenumber exhibit interesting features. Towering spikes and nearby secondary
peaks (troughs) associated with trapped modes have been studied extensively.
Larger non-trapped regions other than these two are termed Region III in this
study. Studies of Region III are rare. We find that fluctuations in Region III are
regular; the horizontal distance between two adjacent local maximum/minimum points,
termed fluctuation spacing, is constant and does not change with non-dimensional
wavenumbers. Fluctuation spacing is related only to the total number of cylinders in
the array, identification serial number of the cylinder concerned and wave incidence
angle. Based on the interaction theory and constructive/destructive interference, we
demonstrate that the fluctuation characteristics can be predicted using simple analytical
formulae. The formulae for predicting fluctuation spacing and the abscissae of every
peak and trough in Region III are proposed. We reveal the intrinsic mechanism of the
fluctuation phenomenon. When the diffraction waves emitted from the cylinders at
the ends of the array and the cylinder concerned interfere constructively/destructively,
peaks/troughs are formed. The fluctuation phenomenon in Region III is related to
solutions of inhomogeneous equations. By contrast, spikes and secondary peaks
are associated with solutions of the eigenvalue problem. This study of Region III
complements existing understanding of the characteristics of the magnitude of wave
load. The engineering significances of the results are discussed as well.

Key words: surface gravity waves, wave scattering, wave–structure interactions

1. Introduction
There are some interesting phenomena in the context of water waves associated with

a long but finite array of circular cylinders. Near trapping of waves by a finite periodic
straight-line array of cylinders, closely related pure trapping of waves and Rayleigh–
Bloch waves for an infinite array have been studied extensively.

Motivated by the work of Maniar & Newman (1997), we computed the wave
loads (i.e. the integrals of pressure over the wetted surface) on any cylinder in many
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FIGURE 1. Regions I, II and III for the curve of the variation of magnitude of wave
load acting on the middle cylinder of an array consisting of 17 cylinders, with diameter-
to-spacing ratio a/d= 1/6. The incident waves propagate parallel to the array (β = 0).

arrays of bottom-mounted circular cylinders in the context of linear water waves.
Each array consists of N identical cylinders spaced equally along the array. The
total number of cylinders and the diameter-to-spacing ratio are different for each
array. In addition to the cases of number of cylinders N = 9, 100 and 101 in Maniar
& Newman (1997), we investigated many other cases such as N = 11, 21, 31, 51
and 301 for diameter-to-spacing ratios a/d = 1/2, 1/4, 1/6 and 1/8, where 2a is
the cylinder diameter and 2d the spacing between the axes of adjacent cylinders.
For a wave load acting on any cylinder in these arrays along the array, variations
in the magnitude of the load with the non-dimensional wavenumber Kd/π (K is
the wavenumber) were observed to have the following distinct features in common.
(1) Several towering spikes occur when the wavenumber Kd/π is slightly lower than
the integer multiple of 1/2. In the present study, the region containing the spikes
is termed Region I. (2) A sequence of secondary peaks and intermediate troughs
occur at wavenumbers slightly lower than the wavenumbers corresponding to the
spikes. These secondary peaks are lower than the spikes. The region containing the
secondary peaks and troughs is termed Region II in the present study. (3) Apart from
Regions I and II, the remainder of the load–wavenumber curve is termed Region III
in the present study. Most parts of the curve belong to this region. In Region III,
fluctuation of the load–wavenumber curve is very regular. A schematic diagram
of Regions I, II and III is shown in figure 1. This figure shows the variation in
magnitude of the load with the non-dimensional wavenumber for the middle cylinder
of an array with N = 17, a/d= 1/6, in head waves (i.e. incidence angle β = 0). The
magnitude of load is normalized by the corresponding result for a single isolated
cylinder. Many studies of the behaviours and the physical meanings of Regions I and
II have been published. However, there are few studies of Region III. We investigate
the fluctuation characteristics of Region III in the following sections. As shown in
figure 1, for the load–wavenumber curve, the horizontal spacing between two adjacent
local maximum points ∆pp and that between two adjacent local minimum points ∆tt
in Region III are equal and constant. For this example, ∆pp=∆tt, and they are almost
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always 0.0586. Let ∆ (= ∆pp = ∆tt) be the fluctuation spacing. It is observed that
for any straight-line array of cylinders, ∆ remains unchanged in Region III (i.e. ∆ is
independent of Kd/π) and depends only on N, k and β. Here k is the identification
number of a cylinder in the array that indicates cylinder position. In the present
study, we find that the fluctuations in Region III are regular and propose formulae
for determining the fluctuation spacing in this region.

Maniar & Newman (1997) studied the near-trapping of waves in a finite periodic
straight-line array of cylinders. They associated the wavenumber at which an unusually
large load occurs with the wavenumber corresponding to the homogeneous solutions
(trapped waves) for an infinite array of cylinders or a cylinder confined between two
parallel walls. The trapped modes near a vertical cylinder standing between the walls
of a channel and the proof of existence have been investigated by Callan, Linton
& Evans (1991), Linton & Evans (1992a), Evans, Levitin & Vassiliev (1994) and
Newman (2017). The unusually large load referred to as towering spikes in Region I
in the present study can be explained by the aforementioned studies.

More general problems include the trapped modes near a finite number of cylinders
spaced periodically across a channel and Rayleigh–Bloch waves along an infinite
periodic array of cylinders. Rayleigh–Bloch waves are surface waves which propagate
along the array and decay exponentially with distance from the array. Porter & Evans
(1999), based on using an appropriate Green function, studied Rayleigh–Bloch waves
travelling along an infinite array of identical bottom-mounted cylinders of uniform
cross-section. They studied the association of Rayleigh–Bloch waves with the trapped
modes about multiple cylinders spanning a channel. Utsunomiya & Eatock Taylor
(1999) studied trapped modes around multiple cylinders spanning across a channel
using the multipole expansion method. Their results are consistent with those of
Porter & Evans (1999). Linton & McIver (2002a) provided the proof of existence
for the trapped modes around N periodic structures placed across a channel. This
corresponds to the proof provided by Evans et al. (1994) for N = 1. They proved
the existence of at least N (N − 1) trapped modes for the Neumann (Dirichlet) cases.
Their results are consistent with those of Porter & Evans (1999) and Utsunomiya &
Eatock Taylor (1999). Moreover, Linton & McIver (2002b) proved the existence of
Rayleigh–Bloch waves for a wide class of periodic structures. Evans & Porter (1999)
proposed a method to predict the wavenumber at which a spike load occurs in a finite
array using the Rayleigh–Bloch theory. For an array of N cylinders, Utsunomiya &
Eatock Taylor (1999) investigated the wavenumbers of the second and other highest
modes in a channel and those at which the spike load and secondary peak/trough
loads occur in the open sea. The results show that they coincide with each other.
This reveals the relationship between the secondary peaks/troughs in the case of a
finite array in the open sea and the first several trapped modes around the array in
a channel. The phenomenon of secondary peaks and intermediate minima in a long
array of cylinders was discovered by Maniar and Newman and subsequently discussed
by Newman (1997). This phenomenon can be understood in depth by referring to the
work of Thompson, Linton & Porter (2008). The secondary peaks and intermediate
minima referred to as Region II in the present study can be explained by the results
obtained in these studies.

The abovementioned works associate Regions I and II of the curve of magnitude of
wave load, as in figure 1, with the Rayleigh–Bloch waves along an infinite straight-
line array and the trapped modes around an array of N cylinders in a channel. In
other words, Regions I and II can be explained by the non-trivial solutions of the
homogeneous equations without incident waves.
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On the other hand, physical insight into Regions I and II can also be obtained
by investigating the diffraction by a long finite array of cylinders in the presence of
incident waves. The diffraction by a finite array of a large number of cylinders in the
presence of incident waves is closely connected to the diffraction by an infinite array
or a semi-infinite array of cylinders.

There have been many studies of diffraction by an infinite array (or of the closely
related problem of diffraction by a cylinder in a channel), or by a semi-infinite array.
Thomas (1991) studied the diffraction by a cylinder at the centreline of a channel
or by an offset cylinder based on the integral equation method. Linton & Evans
(1992a), based on a similar method using channel Green’s functions, considered
the diffraction by an obstacle in a channel. Linton & Evans (1992b) examined the
diffraction of incident waves by a cylinder in a channel using multipole expansions.
Linton & Evans (1993) studied the diffraction of an obliquely incident wave by a
row of cylinders using the same method. The far-field behaviour of the solution can
be computed simply in terms of the contributions of a finite number of multipoles.
Another well-known method is the direct method based on the separation of variables
and using Graf’s addition theorem for Bessel functions. An important advantage
of the method is that it is easy to obtain information near the cylinders. Spring &
Monkmeyer (1974) first used this method in the context of water waves. A major
simplification of the method by Linton & Evans (1990) led to an extremely simple
formula in the vicinity of a cylinder. They presented such a simplification for the
infinite-array case (Linton & Evans 1993). Based on the interaction theory presented
by Kagemoto & Yue (1986) and developed by Goo & Yoshida (1990), Peter, Meylan
& Linton (2006) studied the diffraction of an obliquely incident wave by an infinite
array of arbitrary bodies. Linton & Thompson (2007) studied the diffraction by an
infinite array of circles for oblique incidence using a similar approach. They focused
on the situation at the cut-off point at which the diffracted waves propagate along
the array and presented an efficient method for computing the solution. In the present
study, the main physical quantity of interest is the hydrodynamic force on a cylinder,
which is easy to obtain using the method based on the separation of variables.
Therefore, in §§ 2 and 3 of the present study, we conduct the study based on this
method.

For diffraction of waves by a semi-infinite array, the infinite spatial sum converges
extremely slowly. Peter & Meylan (2007) and Linton, Porter & Thompson (2007)
developed their works on the diffraction by infinite arrays (Peter et al. 2006; Linton
& Thompson 2007). They set the differences between semi-infinite arrays and
infinite arrays as unknowns and derived a system of equations for determining these
unknowns. The work of Peter & Meylan (2007) can be applied to arrays of arbitrary
bodies. Linton et al. (2007) studied arrays of circular cylinders and examined several
resonant cases.

The conventional method is challenged if it is used to solve wave diffraction by a
great number of cylinders because of its massive requirement of computer memory
and computation time. Kashiwagi (2000, 2017) presented a hierarchical interaction
theory by developing the interaction theory of Kagemoto & Yue (1986). In this
hierarchical scheme, a great number of cylinders are grouped into several fictitious
bodies at different levels. Then, the equation scale is reduced, and the problem can
be solved efficiently. For a finite straight-line array consisting of many cylinders,
another method dealing with diffraction of waves is based on the known solutions to
infinite arrays and semi-infinite arrays. The aforementioned studies of infinite arrays
and semi-infinite arrays serve as powerful tools for analysing the diffraction by a
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long finite array. Thompson et al. (2008) decomposed the problem for a finite array
into a set of problems formulated on infinite and semi-infinite arrays. Their study
completely revealed the physical meaning of the spikes in Region I and the secondary
peaks and troughs in Region II. Bennetts, Peter & Montiel (2017) studied the effects
of cylinder perturbations on the spike loads of the finite arrays using a method based
on plane-wave integral representation, which was adapted from the method outlined
by Montiel, Squire & Bennetts (2015, 2016).

Although the aforementioned works offered physical insights for an in-depth
understanding of the characteristics of Regions I and II, there are very few thorough
studies on the fluctuation phenomenon in Region III. In fact, fluctuations in Region III
can be consistently observed in the results of several previous studies, although the
parameters are different. Fluctuations appear in Region III of the curve of magnitude
of wave load on an array of nine cylinders obtained by Maniar & Newman (1997)
and Walker & Eatock Taylor (2005), as shown in figures 1 and 2 of their papers,
respectively. Moreover, these fluctuations can be observed in the curves of magnitude
of wave load on an array of 19 cylinders obtained by Walker & Eatock Taylor
(2005), as shown in figure 3 of their paper, and on an array of 36 cylinders obtained
by Evans & Porter (1998), as shown in figure 5 of their paper. Even for cylinders
with non-circular cross-section, such fluctuations appear, as shown in figure 8 of the
paper by Linton et al. (2002). More than 30 years ago, similar fluctuations were
observed for the damping coefficients of an array of wave-energy devices by Simon
(1982). He reported that ‘the graphs become increasingly intricate, with a lot of
fine structure, as the number of devices increases, and this does not add to one’s
understanding’. In-depth understanding of Regions I and II has been gained over the
years. However, the fluctuations in Region III have scarcely been noticed even in
previous reports in which such fluctuations can be observed. In the present study, we
reveal that fluctuation characteristics in Region III are regular and propose formulae
for predicting fluctuation spacing and the abscissae of every peak and trough in
this region. In addition, we show that the fluctuations have physical meanings and
engineering significances.

Detailed observations of the fluctuations in Region III are presented in § 2, which
clearly display the regularity of the fluctuations. In § 3, we derive the formulae for
determining fluctuation spacing in Region III for both head waves and oblique waves
by following the interaction theory based on separation of variables. We then reveal
the physical meanings and re-derive the formulae for fluctuation spacing based on
constructive/destructive interference in § 4. In § 5, the engineering significance of our
findings is discussed and conclusions are summarized.

2. Detailed observations of fluctuations in Region III for different cases

Following the interaction theory of Linton & Evans (1990), we performed many
computations for water wave diffraction by different long straight-line finite arrays
consisting of vertical bottom-mounted circular cylinders spaced equally along the array.
A schematic diagram of an array of cylinders and its coordinate system are shown
in figure 2. In the presence of incident waves, the wave load acting on each cylinder
in the array in the direction along the array was obtained, and then variations in the
magnitude of the load with the non-dimensional wavenumber Kd/π were examined.
It was observed from the computations (some of them are shown in figures 3–5,
where the wave load is normalized against that of a single isolated cylinder) that
∆ is independent of Kd/π and depends on N, k and β. A few illustrations are
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FIGURE 2. (a) Schematic diagram of a long finite array of cylinders and (b) the
coordinate system.

presented in this section. Here ∆̃N,k
β is introduced to denote the measured value of

the fluctuation spacing ∆ for the kth cylinder of an array consisting of N cylinders
in waves with an incidence angle β. In most cases, extreme points can be clearly
observed from the figures. In addition, there are other uncommon cases. A less
common case can be observed in figure 3. For such a case where the local extremum
points are somewhat ambiguous (e.g. the blue curve and the pink curve in figure 3f ),
we first filter such curves to remove the slowly varying components, and then take
the horizontal spacing between the adjacent local maximum/minimum points of the
rapidly oscillating function obtained after filtering as the fluctuation spacing. When
the incidence angle is not zero (β 6= 0), a more rare shape will appear in the curve,
as shown in figure 11(E). The fluctuation spacing in this scenario will be discussed
in § 3.3.

Examples of the wave load on the middle cylinder of arrays consisting of different
numbers of cylinders are examined first. The magnitudes of dimensionless wave loads
in the x-direction are shown in figure 3. Four magnitude variation curves of the wave
load with Kd/π are shown for different arrays with total number of cylinders N = 11,
21, 31 and 51. The diameter-to-spacing ratio a/d = 1/4. We started with an entire
curve, as shown in figure 3(a), to present the entire landscape. For this case, N =
11, k = 6 and β = 0. The fluctuation spacing ∆̃

11,6
0 in Region III was obtained by

measuring the spacing between the adjacent maximum/minimum points on the curve.
The measurement results show that ∆̃11,6

0 is almost 0.0905 in Region III for any Kd/π.
Figure 3(b–g) are the subfigures corresponding to subintervals between spikes of the
same wave load curves. In figure 3(b–g), only Region III is shown. Regions I and II
were removed from the graphs because the spikes and secondary peaks/troughs are
not objects of interest in this study. In every case, the fluctuation spacing did not
change with Kd/π in Region III: ∆̃21,11

0 = 0.0475, ∆̃31,16
0 = 0.0321 and ∆̃51,26

0 = 0.0195;
it decreased with an increase in the total number of cylinders N in the array.

Then, the wave load on different cylinders in the same array was examined. Four
magnitude variation curves of wave load with Kd/π are shown in figure 4 for different
cylinders in the same array when k= 1, 6, 13 and 17; N = 21; a/d= 1/4; and β = 0.
Similar to figure 3, figure 4 shows that for different cylinders in the same array, the
fluctuation spacing does not change with Kd/π in Region III either; ∆̃21,1

0 = 0.0243,
∆̃

21,6
0 = 0.0321, ∆̃21,13

0 = 0.0586, ∆̃21,17
0 = 0.1143. It increases with the identification

number k of the cylinder in the array.
To comprehensively display variations in the fluctuation spacing ∆̃N,k

β with the total
number of cylinders N, the identification number k and the diameter-to-spacing ratio
a/d, ∆̃N,k

0 is shown for different N, k and a/d in figure 5. The discrete points in the
figure were obtained as follows: for wave load curves (e.g. figures 1, 3 and 4), we
first calculated the average value and difference of the abscissae of two adjacent local
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FIGURE 3. Magnitudes of wave loads on the middle cylinder of four different arrays
consisting of 11, 21, 31 and 51 cylinders in head waves (β = 0). The diameter-to-spacing
ratio a/d= 1/4.

maxima (or minima) points (i.e. the mean and the difference of the values of Kd/π
corresponding to two adjacent local maxima (or minima) points). Second, we took the
mean as the abscissae and the difference in the same pair of Kd/π as the ordinate of
a discrete point in figure 5. Subsequently, we obtained the scatter plot of ∆̃N,k

0 versus
Kd/π. The variations in fluctuation spacing of the kth (k= 1, 30, 42, 51, 58 and 64)
cylinder in a long array (N = 101) in head waves (β = 0) are shown in figure 5(a).
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FIGURE 4. Magnitudes of wave loads acting on cylinders 1, 6, 13 and 17 of an array
(N = 21) in head waves (β = 0). The diameter-to-spacing ratio a/d= 1/4.

Spacing ∆̃
N,k
0 is almost constant in Region III for each cylinder. The constants are

shown by solid lines of different colours in the figure. By contrast, ∆̃N,k
0 decreases

with Kd/π in Region II. The examples pertaining to N = 301 and k = 1, 60, 101,
130, 151 and 171 are shown in figure 5(b). The examples of the first and the middle
cylinder of two different arrays (N = 101, 301) are shown in figure 5(c). The same
observation can be made from figure 5(b,c). To summarize, figure 5(a–c) shows that
the fluctuation spacing does not change with Kd/π in Region III; it decreases with
an increase in the total number of cylinders N; and it increases with the identification
number k. The plot of ∆̃N,k

0 versus Kd/π for different diameter-to-spacing ratios a/d
is shown in figure 5(d), where a/d=1/4, 1/6, 1/8; N=101, k=1, 51; N=301, k=1,
151. Figure 5(d) shows that, in Region III, the fluctuation spacing is independent of
diameter-to-spacing ratio.
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FIGURE 5. Measured value of fluctuation spacing ∆̃N,k
0 for the kth cylinder of an array

consisting of N cylinders in head waves (β = 0).

The phenomenon discussed above is not a special case. Many cases of arrays with
different parameter combinations of N, a/d and β have been calculated (examples
pertaining to β 6= 0 are given in the following sections). The computations strongly
suggest that in Region III, the fluctuation spacing ∆ depends only on the total
number of cylinders N, cylinder position (identification number k) and incidence
angle β; ∆ was found to be independent of the non-dimensional wavenumber Kd/π
and diameter-to-spacing ratio a/d. This seems to be a general phenomenon. To
the authors’ knowledge, this phenomenon has not been reported previously. In the
following sections, we show that the mechanism associated with the phenomenon of
constant fluctuation spacing in Region III is radically different from that associated
with the spikes and secondary peaks/troughs in Regions I and II.
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3. Derivation of formulae for fluctuation spacings in Region III based on
interaction theory
The present study is conducted in the context of the linearized theory of time-

harmonic water waves. Assuming a time factor e−iωt with angular frequency ω, the
velocity potential can be expressed as Φ(x, y, z, t)=Re{φ(x, y)f (z)e−iωt

}. Plane Oxy is
the still water surface; the positive z-axis points vertically upwards; and −h < z < 0
is the fluid domain, where h is the depth. Linton & Evans (1990) devised simple
formulae for determining the wave field near a cylinder and the wave force on the
cylinder in an array of bottom-mounted cylinders with arbitrary geometric arrangement.
Their coordinate system is shown in figure 2(b). Following Linton & Evans (1990),
we consider the diffraction by a straight-line array of N identical bottom-mounted
circular cylinders and list a few major formulae used in this study. The spatial factor
of velocity potential near cylinder k is expressed as follows:

φ(rk, θk)=

∞∑
n=−∞

Ak
neinθk [ZnHn(Krk)− Jn(Krk)], (3.1)

where rk, θk are shown in figure 2(b). Wavenumber K satisfies the dispersion
relationship ω2

= gK tanh Kh, where g denotes gravitational acceleration. Function Hn
is the nth-order Hankel function of the first kind, Jn the nth-order Bessel functions of
the first kind and Zn= J′n(Ka)/H′n(Ka). Here Ak

n is an unknown coefficient of cylinder
k. The linear system of equations for solving Ak

n is

Ak
n +

N∑
j=1
j6=k

∞∑
m=−∞

Aj
mZmHm−n(KRjk)ei(m−n)αjk =−Ikein((π/2)−β). (3.2)

Here, Ik = ei2d(k−1)K cos β is a phase factor associated with the kth cylinder, Rjk is the
distance between the axes of cylinders j and k and αjk is the angle between the x-axis
and the line connecting the points of intersection of the axes of cylinders and the plane
Oxy, as shown in figure 2(b). The time-independent factor of the wave force acting
on cylinder k is

Fk
=

{
Fk

x

Fk
y

}
=−

2ρgÃ tanh Kh
K2H′1(Ka)

{
i(Ak
−1 − Ak

1)

Ak
−1 + Ak

1

}
, (3.3)

where ρ is the fluid density and Ã the amplitude of the incident wave. The
dimensionless wave force Xk normalized against that of a single isolated cylinder
is

Xk
=

{
Xk

x

Xk
y

}
=−

1
2

{
i(Ak
−1 − Ak

1)

Ak
−1 + Ak

1

}
. (3.4)

Here, the subscripts x and y refer to the force along the x and y directions, respectively.
We can investigate fluctuations in the magnitude of the wave force by studying the
coefficients Ak

1 and Ak
−1. To understand the characteristics of the unknown coefficients

holistically, calculations were performed for determining Ak
n. Our computations show

that variations in |Ak
n| with Kd/π are similar to those in the magnitude of wave loads;

|Ak
n| fluctuates with Kd/π, and the fluctuation spacing in Region III is constant. All

fluctuation characteristics of |Ak
n| are identical, as shown in the following subsection.
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3.1. Fluctuations of |Ak
n|, |cD

k
n| and Dk

n

We rewrite (3.2) in matrix form, as follows:

DA=B, (3.5)

where

A =
[
. . . , A1

−n, . . . , A1
−1, A1

0, A1
1, . . . , A1

n, . . . , A2
−n, . . . , A2

−1, A2
0, A2

1, . . . , A2
n, . . . ,

Ak
−n, . . . , Ak

−1, Ak
0, Ak

1, . . . , Ak
n, . . . , AN

−n, . . . , AN
−1, AN

0 , AN
1 , . . . , AN

n , . . .
]T

(3.6)

and D(B) is the coefficient matrix (column vector) of the left (right)-hand side
of (3.2).

According to Cramer’s rule,

Ak
n = cDk

n/D, (3.7)

where D is the determinant of D, cDk
n is the determinant of the matrix Dk

n and Dk
n

is obtained from D by replacing the corresponding column with B. We executed a
large number of computation runs with different parameter combinations. The results
show that the fluctuation spacings of |Ak

n| and |cDk
n| are independent of n, and a few

examples are shown in figure 6(a,b). Moreover, the results show that the fluctuation
phenomenon of |Ak

n| can be attributed completely to |cDk
n|, as examples show in

figure 6(b). In figure 6, the notation ∆̃N,k
β for the fluctuation spacing of the magnitude

of wave load is also used to denote the measured value of fluctuation spacing for |Ak
n|

and |cDk
n|; the total number of cylinders in the array is N = 101, diameter-to-spacing

ratio a/d = 1/4 and incidence angle β = 0. Similar to figure 5, the abscissae and
ordinates of the discrete points and solid lines in figure 6 are the mean and the
difference of the values of Kd/π corresponding to two adjacent local maximum (or
minimum) points. Computations suggest that the fluctuation spacing of |Ak

n| is equal
to that of |cDk

n|. As shown in figure 6(a,b), the fluctuation spacings of |Ak
±1|, |A

k
n| and

|cDk
n| are identical. Then, we study the fluctuation of |cDk

n|, although it is adequate
to consider |Ak

±1| for the sake of understanding the fluctuation characteristics of wave
loads.

According to the definition of determinant based on Laplace expansion (or
equivalently expressed in terms of the Levi-Civita symbol), cDk

n can be expressed
as the sum of many terms:

cDk
n = 0Dk

n + 1Dk
n + hDk

n. (3.8)

Here 0Dk
n is the term without Hankel function, 1Dk

n is the sum of all terms containing
only one Hankel function and hDk

n is the sum of all terms containing the products
of multiple Hankel functions. Our computations show that hDk

n has little effect on the
fluctuation spacing of |cDk

n| in Region III. A few examples are shown in figure 6(c).
It can be observed that in Region III, the fluctuation spacing of |cDk

n| is consistent
with that of |lDk

n|, where lDk
n = 0Dk

n + 1Dk
n. The inconsistencies in fluctuation spacing

between |cDk
n| and |lDk

n| occur only in Regions I and II, which are not objects of
interest in this study. Therefore, it is adequate to study |lDk

n| if the fluctuation spacing
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FIGURE 6. Fluctuation spacings of |Ak
n|, |cD

k
n|, |lD

k
n|, |laDk

n| and Dk
n for different Fourier

modes n against non-dimensional wavenumber Kd/π. Here N = 101, k = 1, β = 0 and
a/d= 1/4.

of |cDk
n| in Region III alone is of concern. The expression of lDk

n is

lDk
n(κ)=−Ikein((π/2)−β)

+

N∑
j=1
j6=k

∞∑
m=−∞

Ijeim((π/2)−β)ZmHm−n(KRjk)ei(m−n)αjk , (3.9)

where κ = Kd/π. To obtain the analytical solution, substituting the asymptotic
expression of Hankel function into (3.9), then lDk

n(κ) can be changed into laDk
n(κ) as

follows:

laDk
n(κ) = −exp

[
i
(

2(k− 1)πκ cos β + n
(π

2
− β

))]
+

N∑
j=1
j 6=k

∞∑
m=−∞

{√
1/(κπ2|j− k|)

× Zmexp
[

i
(

2( j− 1)πκ cos β + 2|j− k|πκ +m
(π

2
− β

)
+ (m− n)αjk

−
(m− n)π

2
−

π

4

)]}
. (3.10)

For large KRjk, it is obvious that the asymptotic expression of Hankel function
can give very accurate results. If this is not the case, the use of the asymptotic
expression will affect the numerical accuracy of (3.9). However, this does not affect
the fluctuation spacing of concern in this paper. Our computations show that the
fluctuation spacing of |lDk

n(κ)| is consistent with that of |laDk
n(κ)|, as illustrated

by several examples shown in figure 6(d). Figure 6(d) uses two ordinate axes with
different starting points on the left- and right-hand sides of the graph. The comparison
of fluctuation spacing between |lDk

n(κ)| and |laDk
n(κ)| is shown in the upper half of

figure 6(d) (the part marked with (d1)) and the ordinate values of the corresponding
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points are obtained from the left-hand vertical axis. Therefore, it is adequate to study
|laDk

n(κ)|. It will be shown in the following sections that the formulae for fluctuation
spacing derived using the asymptotic expression of Hm−n(KRjk) can be applied to
almost all Kd/π in Region III.

It is evident that the abscissa of the local extreme points of |laDk
n(κ)| corresponds

to that of |laDk
n(κ)|

2 if |laDk
n(κ)| is not zero. Our computations show that |laDk

n(κ)| is
always greater than zero, and there is no indication that |laDk

n(κ)| is equal to zero in
Region III. Then, to facilitate the derivation process, we consider |laDk

n(κ)|
2 instead of

|laDk
n(κ)|.

Here |laDk
n(κ)|

2 can be expressed as |laDk
n(κ)|

2
=Dk

n + hDk
n. In Region III, omitting

higher-order quantity hDk
n from |laDk

n(κ)|
2, we can get Dk

n as follows:

Dk
n(κ) = ξ(κ)−

N∑
j=1
j6=k

∞∑
m=−∞

2
√

1/(κπ2|j− k|)Re(Zm) cos ν

+

N∑
j=1
j6=k

∞∑
m=−∞

2
√

1/(κπ2|j− k|)Im(Zm) sin ν, (3.11)

where

ξ(κ)= 1+
N∑

j=1
j6=k

∞∑
m=−∞

[1/(κπ2
| j− k|)]{[Re(Zm)]

2
+ [Im(Zm)]

2
}, (3.12)

ν = 2( j− k)πκ cos β + 2|j− k|πκ − (m− n)β + (m− n)αjk −
π

4
. (3.13)

Here hDk
n is the sum of the following three types of expressions:

Υi

√
1/
[
(κπ2)2|j1 − k||j2 − k|

]
sin(ν2 − ν1 +Θi) (i= 1, 2, 3), (3.14)

where Υ1 = Re(Zm1)Im(Zm2), Υ2 = Re(Zm1)Re(Zm2), Υ3 = Im(Zm1)Im(Zm2); Θ1 = 0,
Θ2 = Θ3 = π/2; m1 and m2 ( j1 and j2) are summation indices, and their lower and
upper bounds of summation are the same, −∞ and ∞ (1 and N), respectively. Also,
ν1 (ν2) is determined by substituting m1 and j1 (m2 and j2) into (3.13).

Nearly all the terms represented by these three types of expressions are obviously
smaller than those in the series of (3.11). In Region III, the sum of the three types
of terms is a higher-order small quantity and does not affect the fluctuation spacing,
which is confirmed by our computations. As illustrated by several examples shown
in figure 6(d), the fluctuation spacing of |laDk

n(κ)| is consistent with that of Dk
n(κ).

The comparison of fluctuation spacing between |laDk
n(κ)| and Dk

n(κ) is shown in the
lower half of figure 6(d) (the part marked with (d2)) and the ordinate values of the
corresponding points are obtained from the right-hand vertical axis. Therefore, it is
adequate to study Dk

n(κ) for the fluctuation spacing of concern in this paper.
It is apparent that the term related to the fluctuation with κ is 2( j− k)πκ cos β +

2|j− k|πκ , which does not contain n. The term containing n is −(m−n)β+ (m−n)αjk,
which is independent of κ . This term does not contribute to the fluctuation with κ .
Therefore, the fluctuation spacings of Dk

n(κ) for different n are identical, provided the
same cylinder k is considered. This agrees with the results mentioned earlier in this
subsection.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.195


Fluctuation of magnitude of wave loads 257

3.2. Formula for predicting fluctuation spacing in head waves
3.2.1. Formulation

In this subsection, we consider the situation of a cylinder array in head waves
(β = 0). It is an important operating condition and can provide insights into rules
for variations in the fluctuation of wave loads. A simple formula is presented for
determining the fluctuation spacing of the magnitude of wave loads.

Evidently, the wave force in the y-direction is Xk
y = 0 in head waves (β = 0),

which gives Ak
−1=−Ak

1. Then, the wave load on the kth cylinder in the x-direction is
Xk

x = iAk
1. The fluctuation of |Xk

x | is equivalent to that of |Ak
1|. As shown in § 3.1, the

fluctuation spacings of |Ak
±1|, |A

k
n|, |cD

k
n| and Dk

n are identical. Therefore, we analysed
the fluctuation spacing of the magnitude of wave load by studying the horizontal
distance between the two adjacent maximum/minimum points of Dk

n(κ).
The substitution of β = 0 into (3.11) yielded

Dk
n(κ)= ξ̃ (κ)±

√
(ξπ

1 )
2 + (ξπ

2 )
2

N∑
j=k+1

√
1

j− k
cos
[
4( j− k)πκ + α(κ)

]
, (3.15)

‘+’ for ξπ
1 < 0, ‘−’ for ξπ

1 > 0, where

α(κ)= arctan
ξπ

2

ξπ
1
, −

π

2
<α(κ) <

π

2
, (3.16a,b)

ξ̃ (κ)= ξ(κ)− ξ 0
1 (κ)

k−1∑
j=1

√
1

k− j
, (3.17)

ξ
αjk
1 (κ) =

2
π

√
1
κ

∞∑
m=−∞

{
Re(Zm) cos

[
(m− n)αjk −

π

4

]
− Im(Zm) sin

[
(m− n)αjk −

π

4

]}
, (3.18)

ξ
αjk
2 (κ) =

2
π

√
1
κ

∞∑
m=−∞

{
Re(Zm) sin

[
(m− n)αjk −

π

4

]
+ Im(Zm) cos

[
(m− n)αjk −

π

4

]}
. (3.19)

In the series of expression (3.15), k= 1, 2, . . . ,N − 1. For k=N, Dk
n(κ)= ξ̃ (κ). The

lower and upper bounds of summation in (3.15) are k + 1 and N, respectively. This
means that only the cylinders downstream of cylinder k contribute to Dk

n(κ) for β = 0.
A large number of calculations for cases with different parameter combinations

were performed. An example is shown in figure 7, where N = 21, k = 11 and n= 1.
The results show that ξ̃ (κ) only changes the numerical value of Dk

n(κ), but it does
not change the positions of the extremum points of Dk

n(κ). The horizontal distance
between the two adjacent local maxima/minima points of Dk

n(κ) depends entirely on
the second term of (3.15). Figure 7(a) shows the numerical values of ξ̃ (κ), Dk

n(κ)

and Dk
n(κ) − ξ̃ (κ). It is apparent that ξ̃ (κ) is a slowly varying function. Functions

Dk
n(κ) and Dk

n(κ) − ξ̃ (κ) are rapidly oscillating functions that are responsible for
the fluctuation phenomenon studied in the present work. Figure 7(b) shows the
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FIGURE 7. (a) Numerical values of ξ̃ (κ),
√
(ξπ

1 )
2 + (ξπ

2 )
2, τ1(κ), τ2(κ), Dk

n(κ) − ξ̃ (κ)

and Dk
n(κ). (b) Values of Kd/π corresponding to each local maximum point for Dk

n(κ),
Dk

n(κ)− ξ̃ (κ), τ2(κ) and τ1(κ). Here N = 21, k= 11 and n= 1.

abscissa of each local maximum point of Dk
n(κ) and Dk

n(κ) − ξ̃ (κ). The ordinate of
figure 7(b) is the value of Kd/π corresponding to each local maximum point, and the
abscissa of figure 7(b) is the serial number of each local maximum point. The linear
relationship shown in figure 7(b) will be explained in § 4. Figure 7(b) shows that
the abscissae of the local maximum points of Dk

n(κ) − ξ̃ (κ) coincide with those of
Dk

n(κ). In addition, it is observed that the abscissae of the local minimum points of
Dk

n(κ)− ξ̃ (κ) coincide with those of Dk
n(κ). For brevity, the plot for local minimum

points similar to figure 7(b) is not shown. This suggests that ξ̃ (κ) has no effect on
the fluctuation spacing of Dk

n(κ). Similarly, as shown in figure 7(a),
√
(ξπ

1 )
2 + (ξπ

2 )
2

is a slowly varying function and does not affect the fluctuation spacing. Ignoring√
(ξπ

1 )
2 + (ξπ

2 )
2, we consider the expression

τ2(κ)=±

N∑
j=k+1

√
1

j− k
cos
[
4( j− k)πκ + α(κ)

]
. (3.20)

The numerical values of τ2(κ) are shown in figure 7(a). The value of Kd/π
corresponding to each local maximum point of τ2(κ) is shown in figure 7(b). The
plot for the local minimum points is not shown for brevity. It is observed that the
abscissae of the extremum points of τ2(κ) coincide with those of Dk

n(κ). It remains
difficult to find the analytical solution of the horizontal spacing between the two
adjacent local maximum/minimum points for τ2(κ). Our computations show that
|α(κ)| � 4( j− k)πκ , where α(κ) can be regarded a constant relative to 4( j− k)πκ ,
which increases rapidly with κ . If α(κ) is ignored, cos[4( j− k)πκ + α(κ)] becomes
cos[4( j− k)πκ]. The two functions cos[4( j− k)πκ] and cos[4( j− k)πκ + α(κ)] have
the same shape, except for a small translation. The horizontal spacing between the
two adjacent local maximum/minimum points of cos[4( j− k)πκ] coincides with that
of cos[4( j− k)πκ + α(κ)]. Then, we consider the expression

τ1(κ)=

N∑
j=k+1

√
1

j− k
cos[4( j− k)πκ]. (3.21)
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The value of Kd/π corresponding to each local maximum point of τ1(κ) is shown
in figure 7(b). The plot for the local minimum points is not shown for brevity. It
is observed that the abscissae of the extremum points of τ1(κ) almost coincide with
those of τ2(κ) and Dk

n(κ). Therefore, the fluctuation spacing of Dk
n(κ) can be studied

by considering τ1(κ).
The problem studied herein is the fluctuation in Region III, where Kd/π 6= µ/2

(µ is an integer) and sin 2πκ 6= 0. Therefore, based on the product-to-sum identities
of trigonometric functions, equation (3.21) can be re-expressed as

τ1(κ) =
1

2 sin 2πκ

N∑
j=k+1

√
1

j− k
{sin[(4( j− k)+ 2)πκ] − sin[(4( j− k)− 2)πκ]}

= −
1
2
+

1
2 sin 2πκ

{√
1

N − k
sin[(4(N − k)+ 2)πκ]

+

N−k∑
j=2

(√
1

j− 1
−

√
1
j

)
sin[(4( j− 1)+ 2)πκ]

}
. (3.22)

Let (√
1

j− 1
−

√
1
j

)
sin[(4( j− 1)+ 2)πκ] = ε( j, κ). (3.23)

The quantity of interest is the horizontal distance between the two adjacent
local maximum/minimum points (i.e. minimum fluctuation spacing). The minimum
fluctuation spacing of τ1(κ) is mainly determined by

√
1/(N − k) sin[(4(N − k) +

2)πκ]. The reasons are as follows. When N − k and j are large, it is apparent that
ε( j, κ)→ 0 and ε( j, κ) does not contribute to τ1(κ). When N− k is large and j is not
large (i.e. j− 1 is much smaller than N− k), sin[(4( j− 1)+ 2)πκ] is a slowly varying
function relative to the rapidly oscillating function sin[(4(N− k)+ 2)πκ]. Then ε( j, κ)
hardly affects the minimum fluctuation spacing of τ1(κ), although it contributes to the
value of τ1(κ). Therefore, ε( j, κ) can be ignored if the only concern is the minimum
fluctuation spacing. For N − k= 2, 3, ignoring ε( j, κ) will lead to errors. The errors
in fluctuation spacing for N − k= 2, 3 are 9.4 % and 5.7 %, respectively, if ε( j, κ) is
ignored. When N − k > 4, the errors are smaller than 1 %. Therefore, it is acceptable
to ignore ε( j, κ) in most cases (N − k > 4). In other words, it is adequate to consider
τ(κ)= τ1(κ)−

∑N−k
j=2 ε( j, κ) :

τ(κ)=−
1
2
+

1
2 sin 2πκ

√
1

N − k
sin{[4(N − k)+ 2]πκ}, (3.24)

if we focus on the minimum fluctuation spacing. A few examples pertaining to τ1(κ)

and τ(κ) are shown in figure 8 for N − k= 4, 10 and 20. The abscissae of the local
extreme point coincide with each other, which suggests that the minimum fluctuation
spacing of τ(κ) is equal to that of τ1(κ).

The lower and upper bounds of summation in τ1(κ) (3.21) imply that all cylinders
downstream of cylinder k contribute to the fluctuation spacing. However, based on
the abovementioned derivation and discussion, it is shown that τ(κ) is adequate if the
fluctuation spacing alone is of concern. The expression for τ(κ) (3.24) implies that
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FIGURE 8. Comparisons of τ1(κ) and τ(κ): (a) N − k = 4, (b) N − k = 10 and
(c) N − k= 20.

only the contribution of the last cylinder in the array (cylinder N) is significant when
the focus is on the fluctuation spacing of cylinder k.

Setting the first derivative dτ(κ)/dκ of function τ(κ) to zero and solving for κ gives

[2(N − k)+ 1] tan(2πκ)= tan{[4(N − k)+ 2]πκ}. (3.25)

For brevity, we define γ (κ) = [2(N − k) + 1] tan(2πκ) and χ(κ) = tan{[4(N − k) +
2]πκ}. Solutions to (3.25) correspond to the intersection points of curves γ (κ) and
χ(κ). These two curves have multiple intersection points, which means that formula
(3.25) has multiple solutions. Because [4(N − k)+ 2]π is considerably larger than 2π
in the interval 2πκ ∈ [pπ, (p + 1)π] (p = 0, 1, 2, . . .), multiple intersection points
are close to [4(N − k)+ 2]πκ = qπ+π/2 (q= 0, 1, 2, . . .). For example, figure 9(a)
shows γ (κ), χ(κ) and their intersections in one period of γ (κ) for N = 7 and k= 1.
It is apparent that the intersection points are close to the asymptote of χ(κ), that is,
[4(N− k)+ 2]πκ = qπ+π/2. To obtain the analytical expressions for the abscissae of
intersection points, we expand χ(κ) about qπ+π/2. Then, near [4(N − k)+ 2]πκ =
qπ+π/2 (q= 0, 1, 2, . . .), we get

tan{[4(N − k)+ 2]πκ} ≈ χ̃ap(κ)=
1

(qπ+π/2)− [4(N − k)+ 2]πκ
. (3.26)

The notation χ̃ap(κ) denotes the expansion of χ(κ) near qπ+π/2. Second, we expand
γ (κ)= [2(N − k)+ 1] tan(2πκ) about pπ+π/2 and pπ (p= 0, 1, 2, . . .). Then, near
2πκ = pπ+π/2 (p= 0, 1, 2, . . .), we get

[2(N − k)+ 1] tan(2πκ)≈ γ̃ap(κ)=
2(N − k)+ 1

(pπ+π/2)− 2πκ
. (3.27)
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FIGURE 9. (a) Schematic diagram of γ (κ), χ(κ) and their multiple intersections in
interval 2πκ ∈ [0, π]. (b) Partially enlarged view of upper branches of (a). (c) Partially
enlarged view of (b).

Near 2πκ = pπ (p= 0, 1, 2, . . .), we get

[2(N − k)+ 1] tan(2πκ)≈ γ̃0(κ)= [2(N − k)+ 1] (2πκ − pπ). (3.28)

For brevity, two notations γ̃ap(κ) and γ̃0(κ) are introduced to denote the expansion of
γ (κ) near pπ+π/2 and pπ, respectively.

Let Aq be the qth intersection point of γ (κ) and χ(κ), Bq the qth intersection point
of γ̃ap(κ) and χ(κ), Cq the qth intersection point of γ̃0(κ) and χ(κ). Point Aq can
also be regarded as the qth intersection point of γ (κ) and χ̃ap(κ) because χ̃ap(κ) and
χ(κ) are almost completely coincident near Aq. For Bq and Cq, the situations are the
same. The intersection points with χ(κ) can be regarded as the intersection points with
χ̃ap(κ). Notations κA

q , κ
B
q and κC

q are the abscissae of Aq, Bq and Cq. These notations
are illustrated in figure 9(b,c) taking the upper branches as examples. The difference in
ordinates between Aq and Bq (or between Aq and Cq) may be large if 2πκ is not close
to pπ+ π/2 (or pπ). The difference in abscissae between Aq and Bq (Cq), however,
is small because the intersection points are close to the asymptote of χ(κ), where the
derivative values are very large. In other words, we can study κB

q and κC
q first if κA

q is
sought. Point Aq lies between Bq and Cq because |γ̃ap(κ)|> |γ (κ)|> |γ̃0(κ)|. Therefore,
κB

q >κ
A
q >κ

C
q (or κC

q >κ
A
q >κ

B
q for the other branch). The upper and lower bounds of

κA
q can be obtained if we get the values of κB

q and κC
q .
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Substituting (3.26) and (3.27) into (3.25), we get

1
(qπ+π/2)− [4(N − k)+ 2] πκ

=
2(N − k)+ 1

(pπ+π/2)− 2πκ
. (3.29)

Then, κB
q is obtained by solving (3.29):

κB
q =

(qπ+π/2)[2(N − k)+ 1] − (pπ+π/2)
2[2(N − k)+ 1]2π− 2π

. (3.30)

Similarly, by substituting (3.26) and (3.28) into (3.25) and solving the equation, the
following real solution is obtained if κ 6= p/2:

κC
q =

(qπ+π/2)+ pπ[2(N − k)+ 1] +
√
{(qπ+π/2)− pπ[2(N − k)+ 1]}2 − 4

4[2(N − k)+ 1]π
.

(3.31)
Because κ = p/2 and its neighbourhood belong to Regions I and II but not to
Region III, expression (3.31) can be applied to all of Region III. Here κB

q and κC
q

given by (3.30) and (3.31), respectively, are the upper and lower bounds of κA
q , which

denotes the abscissa values of the qth extreme point (local maximum or minimum
point) of τ(κ).

Without loss of generality, considering the upper branches, as shown in figure 9(c)
(i.e. κB

q > κ
A
q > κ

C
q ), it is apparent that

κB
q+1 − κ

C
q > κA

q+1 − κ
A
q > κC

q+1 − κ
B
q . (3.32)

Using formulae (3.30) and (3.31), and omitting small quantities, we get

κB
q+1 − κ

C
q =
[2(N − k)+ 1] − (p+ 1/2)

2[2(N − k)+ 1]2
. (3.33)

For the wavenumber range of interest in this study, p is not large. For instance, p6 6
if κ 6 3. Equation (3.33) can be simplified to

κB
q+1 − κ

C
q =

1
2[2(N − k)+ 1]

. (3.34)

Similarly, we can obtain

κC
q+1 − κ

B
q =

1
2[2(N − k)+ 1]

. (3.35)

According to (3.32), (3.34) and (3.35),

κA
q+1 − κ

A
q =

1
2[2(N − k)+ 1]

. (3.36)

Therefore, the formula for predicting the fluctuation spacing ∆ (the horizontal distance
between two adjacent local maximum/minimum points) can be obtained as

∆
N,k
0 = 2(κA

q+1 − κ
A
q )=

1
2(N − k)+ 1

. (3.37)

Here, ∆N,k
0 is introduced to denote the fluctuation spacing ∆ of the kth cylinder in an

array of N cylinders in head waves.
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FIGURE 10. (a) Comparisons of measured value ∆̃
N,k
0 with predicted value ∆

N,k
0 given

by formula (3.37) for arrays consisting of 11, 21, 51 or 101 cylinders in head waves
(β = 0). The diameter-to-spacing ratio a/d = 1/4. (b) Comparisons of the results given
by formula (3.37) with the experimental and computational results of a cylinder array of
another arrangement (16× 4 array of truncated cylinders).

3.2.2. Verification
To verify formula (3.37), first, a large number of calculations were performed

to determine the wave load based on the interaction theory of Linton & Evans
(1990). Then, we obtained the fluctuation spacing of the magnitude of wave load by
measuring the numerical results of the wave load (i.e. ∆̃N,k

0 ). Thereafter, we obtained
the fluctuation spacing using formula (3.37) (i.e. ∆N,k

0 ). Finally, we compared the
measured value ∆̃N,k

0 with the predicted value ∆N,k
0 . Most results of ∆̃N,k

0 and ∆
N,k
0

show good agreement. In all the cases we calculated, for most cylinders in the array
(N− k> 4), the errors are smaller than 2 %. Only for the last few cylinders (N− k6 4)
are the errors noticeable (∼5 %), and the maximum error is smaller than 10 %. These
comparisons verify formula (3.37). The formula is very accurate for most cylinders.
A few examples involving arrays consisting of 11, 21, 51 or 101 cylinders are shown
in figure 10(a).

We also verified formula (3.37) by the experimental and computational results
of a cylinder array of another arrangement. In figure 5 of Kashiwagi (2017), the
magnitudes of wave elevation at positions along the centreline of 16 × 4 truncated
cylinder arrays are shown both numerically and experimentally, and the fact that
fluctuation spacing in the curve of wave elevation depends on the position can
be observed. We obtained the fluctuation spacings δ̃, δ1, δ2 and δ0 in Region III by
measuring the computational and experimental results in figure 5 of Kashiwagi (2017).
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Spacing δ̃ is the value obtained by measuring the computational results. Spacings δ1
and δ2 are the maximum and minimum fluctuation spacings obtained by measuring
the experimental results, respectively. The fluctuation spacing is large for downstream
positions of the cylinder array. Therefore, it is evident that only half-spacing (i.e. the
horizontal spacing between adjacent local maximum point and minimum point) can
be measured in the eighth (no. 15) and ninth (between no. 15 and no. 16) graphs
in figure 5 of Kashiwagi (2017). In order to facilitate subsequent comparisons, we
multiplied the half-spacing by 2 to indicate the fluctuation spacing. For these cases,
only one fluctuation spacing δ0 can be obtained by measuring the experimental
results. For the positions on the centreline where the results of wave amplitude
are not given in figure 5 of Kashiwagi (2017), we calculated the wave elevation
based on interaction theory of Kagemoto & Yue (1986) and measured the fluctuation
spacing δ̃∗. Thereafter we obtained ∆

N,k
0 by substituting N = 16 into formula (3.37).

Spacings δ̃, δ̃∗, δ1, δ2 and δ0 are the fluctuation spacings of wave amplitude, while
∆

N,k
0 is the fluctuation spacing of magnitude of wave loads. In addition, δ̃, δ̃∗, δ1, δ2

and δ0 are the results at positions on the centreline of a 16 × 4 array of truncated
cylinders, while ∆

N,k
0 is the result for a certain cylinder of a straight-line array of

bottom-mounted cylinders. Given these obvious differences, the agreement can be
said to be quite good, as shown in figure 10(b).

3.3. Formula for fluctuation spacing in oblique waves
In this subsection, a cylinder array in obliquely incident waves (β 6= 0) is discussed,
which is more complex than the situation of a cylinder array in head waves (β = 0).
It is difficult to obtain the formula of fluctuation spacing for β 6= 0 by following the
same method as that for β = 0, which was presented in § 3.2. However, the work on
β = 0 presents significant insights that can be applied to the situation in which β 6= 0.
The analysis of Dk

n(κ) for β = 0 in § 3.2 helped us consider Dk
n(κ) for β 6= 0.

According to (3.11)–(3.13), for β 6= 0,

Dk
n(κ)= ξ(κ)− ξ

0
1 (κ)Λ

0
1(κ)+ ξ

0
2 (κ)Λ

0
2(κ)− ξ

π
1 (κ)Λ

π
1 (κ)+ ξ

π
2 (κ)Λ

π
2 (κ), (3.38)

where

Λ0
1(κ)=

k−1∑
j=1

√
1

k− j
cos[2πκ(k− j)(1− cos β)], (3.39)

Λ0
2(κ)=

k−1∑
j=1

√
1

k− j
sin[2πκ(k− j)(1− cos β)], (3.40)

Λπ
1 (κ)=

N∑
j=k+1

√
1

j− k
cos[2πκ( j− k)(1+ cos β)], (3.41)

Λπ
2 (κ)=

N∑
j=k+1

√
1

j− k
sin[2πκ( j− k)(1+ cos β)]. (3.42)

Here ξ 0
1 (κ)Λ

0
1(κ) and ξ 0

2 (κ)Λ
0
2(κ) are the contributions of the cylinders upstream of

cylinder k and ξπ
1 (κ)Λ

π
1 (κ) and ξπ

2 (κ)Λ
π
2 (κ) are the contributions of the cylinders
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downstream of cylinder k. In contrast to the situation of β = 0, both upstream and
downstream cylinders affect Dk

n(κ) when β 6= 0.
Similar to (3.22), based on the product-to-sum identities of trigonometric functions,

excluding the cases where the denominators are equal to zero, equations (3.39)–(3.42)
can be rewritten as

Λ0
1(κ)=

1
2 sin[(1− cos β)πκ]

{
− sin[(1− cos β)πκ] +

√
1

k− 1
sin [(2(k− 1)+ 1)

× (1− cos β)πκ]+
k−1∑
j=2

(√
1

j− 1
−

√
1
j

)
sin[(2( j− 1)+ 1)(1− cos β)πκ]

}
,

(3.43)

Λ0
2(κ)=

1
2 sin [(1− cos β)πκ]

{
cos [(1− cos β)πκ]−

√
1

k− 1
cos [(2(k− 1)+ 1)

× (1− cos β)πκ]−
k−1∑
j=2

(√
1

j− 1
−

√
1
j

)
cos[(2( j− 1)+ 1)(1− cos β)πκ]

}
,

(3.44)

Λπ
1 (κ)=

1
2 sin[(1+ cos β)πκ]

{
− sin[(1+ cos β)πκ] +

√
1

N − k
sin [(2(N − k)+ 1)

× (1+ cos β)πκ]+
k−1∑
j=2

(√
1

j− 1
−

√
1
j

)
sin[(2( j− 1)+ 1)(1+ cos β)πκ]

}
,

(3.45)

Λπ
2 (κ)=

1
2 sin [(1+ cos β)πκ]

{
cos [(1+ cos β)πκ]−

√
1

N − k
cos [(2(N − k)+ 1)

× (1+ cos β)πκ]−
k−1∑
j=2

(√
1

j− 1
−

√
1
j

)
cos[(2( j− 1)+ 1)(1+ cos β)πκ]

}
.

(3.46)

For reasons similar to those mentioned in the discussion related to formula (3.23),
(3.43)–(3.46) can be simplified as

Λ0
1(κ)=

− sin[(1− cos β)πκ] +
√

1
k− 1

sin{[2(k− 1)+ 1](1− cos β)πκ}

2 sin[(1− cos β)πκ]
, (3.47)

Λ0
2(κ)=

cos[(1− cos β)πκ] −
√

1
k− 1

cos{[2(k− 1)+ 1](1− cos β)πκ}

2 sin[(1− cos β)πκ]
,

(3.48)
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Λπ
1 (κ)=

− sin[(1+ cos β)πκ] +
√

1
N − k

sin{[2(N − k)+ 1](1+ cos β)πκ}

2 sin[(1+ cos β)πκ]
,

(3.49)

Λπ
2 (κ)=

cos[(1+ cos β)πκ] −
√

1
N − k

cos{[2(N − k)+ 1](1+ cos β)πκ}

2 sin[(1+ cos β)πκ]
.

(3.50)
Both upstream and downstream cylinders affecting Dk

n(κ) when β 6= 0 impede
derivation of the formula for fluctuation spacing according to the method presented
in § 3.2. Hence, a heuristic approach is adopted in this subsection to obtain the said
formula. We derive the formula more rigorously for β 6= 0 in the next section based
on the constructive/destructive interference of diffraction waves.

The discussions pertaining to τ(κ) in § 3.2 show that only the contribution of the
last cylinder in the array (cylinder N) is significant in the situation of β= 0. However,
after observing (3.47)–(3.50), we realized that both the first cylinder (cylinder 1) and
the last cylinder (cylinder N) in the array contribute to the fluctuation spacing in the
situation of β 6= 0. This was confirmed by our computations.

Our computation indicates three possible scenarios for the curve of magnitude
of wave load. (1) Similar to the situation for β = 0, there is one obvious constant
fluctuation spacing in Region III, which is considerably less than the spacing between
two spikes (i.e. ∼0.5). (2) There are two obvious constant fluctuation spacings in
Region III, and both are considerably smaller than 0.5. (3) There seems to be no
obvious constant fluctuation spacing in the plot of magnitude of wave load versus
Kd/π curves, but if the curves are analysed using fast Fourier transform (FFT), two
distinct peaks close to each other can be observed, suggesting the existence of two
constant fluctuation spacings that are considerably smaller than 0.5 in the curve of
magnitude of wave load.

The contributions of the first and the last cylinder in the array are different for
each N, k and β combination. Thus, scenarios (1) and (2) can be further divided
into four scenarios. The computations show that scenario (1) can be divided into two
sub-scenarios. One is for the case [2(N− k)+1](1+ cosβ)�[2(k−1)+1](1− cosβ),
and the other is for the case [2(k − 1) + 1](1 − cos β)� [2(N − k) + 1](1 + cos β).
Scenario (2) can be divided into two sub-scenarios as well. One is for the case [2(N−
k) + 1](1 + cos β) > [2(k − 1) + 1](1 − cos β) � 4, and the other is for the case
[2(k − 1)+ 1](1− cos β) > [2(N − k)+ 1](1+ cos β)� 4. Therefore, for β 6= 0, we
discuss five scenarios.

Scenario 1: [2(N − k)+ 1](1+ cos β)� [2(k− 1)+ 1](1− cos β). In this scenario,
Λ0

1(κ) and Λ0
2(κ), defined by expressions (3.47) and (3.48), respectively, are slowly

varying functions, and Λπ
1 (κ) and Λπ

2 (κ), defined by expressions (3.49) and (3.50),
are rapidly oscillating functions. Given our focus on the minimum fluctuation spacing
of the wave load, only the terms containing [2(N − k) + 1](1 + cos β) need to be
considered. In other words, it is adequate to consider only the contributions obtained
using expressions (3.49) and (3.50). Using a technique similar to that employed in
the process of derivation from (3.25) to (3.37), the formula for minimum fluctuation
spacing in scenario 1 can be obtained as follows:

∆
N,k
β,ds =

2
[2(N − k)+ 1](1+ cos β)

, (3.51)
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Fluctuation of magnitude of wave loads 267

where the subscript ‘ds’ denotes downstream, showing that only the last cylinder in
the array contributes to the fluctuation spacing of cylinder k in this scenario.

Figure 11(A) shows an example (N = 301, k = 15 and β = π/6) of scenario 1,
where the fluctuation spacing ∆ can be determined using formula (3.51). The
value of fluctuation spacing obtained by measuring the curve in figure 11(A) is
∆̃

301,15
π/6,ds = 0.001868. The corresponding value obtained using the prediction formula

(3.51) is ∆
301,15
π/6,ds = 0.001870. Figure 11(a) shows the result of FFT analysis of

figure 11(A), which indicates that the fluctuation spacing is ∆̄
301,15
π/6,ds = 0.001865.

Hence, the theoretical value ∆301,15
π/6,ds agrees well with ∆̃301,15

π/6,ds and ∆̄301,15
π/6,ds.

Scenario 2: [2(k− 1)+ 1](1− cos β)� [2(N − k)+ 1](1+ cos β). In this scenario,
Λ0

1(κ) and Λ0
2(κ) are rapidly oscillating functions, and Λπ

1 (κ) and Λπ
2 (κ) are slowly

varying functions. Thus, only the terms containing [2(k − 1)+ 1](1− cos β) need to
be considered. Similar to the discussion for scenario 1, the formula for the minimum
fluctuation spacing in scenario 2 is

∆N,k
β,us =

2
[2(k− 1)+ 1](1− cos β)

, (3.52)

where the subscript ‘us’ denotes upstream, indicating that only the first cylinder in the
array contributes to the fluctuation spacing of cylinder k in this scenario.

Similar to scenario 1, we show an example (N = 301, k = 299 and β = 4π/9)
of scenario 2 in figure 11(B,b). The three results of fluctuation spacing (∆N,k

β,us,
∆̃

N,k
β,us, ∆̄

N,k
β,us) obtained using formula (3.52), measuring the curve in figure 11(B),

and performing FFT analysis on the curve are shown in table 1. They are in good
agreement.

Our computations show that the majority of the cases we calculated can be
categorized as scenarios 1 and 2, and most of them can be categorized as scenario 1.
For the other small numbers of cases, there are two (or there seems even no)
constant fluctuation spacings in Region III. Scenarios 1 and 2 are two simple
scenarios. For other scenarios, it is difficult to obtain the formula using the same
technique. Equations (3.38) and (3.47)–(3.50) show that Dk

n(κ) is superposed by
multiple trigonometric functions with slowly varying amplitudes. Then, it can be
inferred that for scenarios other than scenarios 1 and 2, the fluctuation spacing in
Region III can possibly be determined using (3.51) and (3.52). The difference is that
the value should be calculated first using (3.51) and (3.52), and the smaller value
should be taken as the minimum fluctuation spacing. By FFT analysis, we confirmed
that in each scenario, the smaller of the values obtained using formulas (3.51) and
(3.52) can be considered the minimum fluctuation spacing.

Scenario 3: [2(N − k) + 1](1 + cos β) > [2(k − 1) + 1](1 − cos β) � 4. In this
scenario, although Λ0

1(κ) and Λ0
2(κ) oscillate more slowly than Λπ

1 (κ) and Λπ
2 (κ),

[2(k − 1) + 1](1 − cos β)� 4 implies that the fluctuation spacing given by formula
(3.52) is considerably smaller than the spacing between two adjacent spikes (multiple
Regions III are separated by several spikes, where the spacing between two adjacent
spikes is about 0.5). Hence, there are two distinct fluctuation spacings in Region III,
where the smaller value is given by (3.51) and the larger value by (3.52). The
minimum fluctuation spacing is the smaller value, which can be predicted using (3.51).
An example (N = 301, k = 90 and β = π/3) is shown in figure 11(C,c) and table 1
for scenario 3.
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0.74 0.76 0.78 0.80 0.82 0.84

0.22 0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

0.180
0.175
0.170
0.165
0.160
0.155
0.150

0.15

0.16

0.17

0.18

0.46

0.156

0.810

0.815

0.820

0.825

0.830

0.160

0.164

0.168

0.44
0.42
0.40
0.38
0.36
0.34

0.004

0.003

0.002

0.001

0

0.005
0.004
0.003
0.002
0.001

0

0.006
0.005
0.004
0.003
0.002
0.001

0

0.04

0.03

0.02

0.01

0

0.006

0.004

0.002

0

Kd/π Frequency

f1

f1

f1

f1

f2

f2

f2

f2

N = 301, k = 210, ı = 4π/9 N = 301, k = 210, ı = 4π/9

N = 301, k = 280, ı = 4π/9N = 301, k = 280, ı = 4π/9

N = 301, k = 90, ı = π/3 N = 301, k = 90, ı = π/3

N = 301, k = 299, ı = 4π/9N = 301, k = 299, ı = 4π/9

N = 301, k = 15, ı = π/6 N = 301, k = 15, ı = π/6

Î¡ π/6,ds = 0.001868301,15

Î¡ 4π/9,ds  : null, Î¡ 4π/9,us  : null301,210 301,210

Î¡ 4π/9,us = 0.004043301,299

Î¡ 4π/9,ds = 0.038905301,280

Î¡ 4π/9,us = 0.004131301,280Î    4π/9,ds = 0.039630301,280

Î    4π/9,us = 0.004330301,280

Î    4π/9,ds = 0.009312301,210

Î    4π/9,us = 0.005776301,210

Î4π/9,us = 0.004054301,299

Î¡ π/3,us = 0.021772301,90

Î    π/3,ds = 0.003152301,90

Î    π/3,us = 0.022346301,90
Î¡ π/3,ds = 0.003077301,90

Î    4π/9,us = 1/f2 = 0.004025301,299

Î    π/6,ds = 0.001870301,15

Î    π/6,ds = 1/f1 = 0.001865301,15

Frequency f1 obtained by FFT is 536.10

Frequency f2 obtained by FFT is 248.45

Frequencies f1 and f2 obtained by FFT are 324.87
and 46.21

Frequencies f1 and f2 obtained by FFT are 25.54
and 230.23

Frequencies f1 and f2 obtained by FFT are 106.73
and 173.44

Î    π/3,ds = 1/f1 = 0.003078,301,90

Î    π/3,us = 1/f2 = 0.021640301,90

Î    4π/9,ds = 1/f1 = 0.039154,301,280

Î    4π/9,us = 1/f2 = 0.004343301,280

Î    4π/9,ds = 1/f1 = 0.009369,301,210

Î    4π/9,us = 1/f2 = 0.005766301,210
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FIGURE 11. Five scenarios of the curve of magnitude of wave load on the kth cylinder
(A–E) and the corresponding results of FFT analysis (a–e). Here N = 301 and a/d= 1/4.

Scenario 4: [2(k − 1) + 1](1 − cos β) > [2(N − k) + 1](1 + cos β) � 4. This
scenario is similar to scenario 3. There are two distinct fluctuation spacings in
Region III, where the smaller spacing is given by (3.52) and the larger spacing by
(3.51). The minimum fluctuation spacing is the smaller value, which can be predicted
using formula (3.52). An example (N = 301, k = 280 and β = 4π/9) is shown in
figure 11(D,d) and table 1 for scenario 4.
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Different scenarios Fluctuation spacing
∆

N,k
β,ds ∆

N,k
β,us ∆̃

N,k
β,ds ∆̃

N,k
β,us ∆̄

N,k
β,ds ∆̄

N,k
β,us

Scenario 1
1.870 — 1.868 — 1.865 —(3.51), figures 11(A) and 11(a)

N = 301, k= 15 and β =π/6
Scenario 2

— 4.054 — 4.043 — 4.025(3.52), figures 11(B) and 11(b)
N = 301, k= 299 and β = 4π/9
Scenario 3

3.152 22.346 3.077 21.772 3.078 21.640(3.51) and (3.52), figures 11(C) and 11(c)
N = 301, k= 90 and β =π/3
Scenario 4

39.630 4.330 38.905 4.131 39.154 4.343(3.51) and (3.52), figures 11(D) and 11(d)
N = 301, k= 280 and β = 4π/9
Scenario 5

9.312 5.776 Null Null 9.369 5.766(3.51) and (3.52), figures 11(E) and 11(e)
N = 301, k= 210 and β = 4π/9

TABLE 1. Examples for different scenarios when β 6= 0. The fluctuation spacings shown
here are 1000 times the real values. Spacings ∆

N,k
β,ds and ∆

N,k
β,us are obtained using

formulae (3.51) and (3.52). Spacings ∆̃N,k
β,ds and ∆̃

N,k
β,us are obtained by measuring curves

in figure 11(A–D). Spacings ∆̄N,k
β,ds and ∆̄

N,k
β,us are obtained using results of FFT analysis

for figure 11(A–E), as shown in figure 11(a–e).

Scenario 5: [2(N − k)+ 1](1+ cos β) and [2(k− 1)+ 1](1− cos β) are of the same
order of magnitude and are significantly greater than 4. This scenario is rare. In this
scenario, the differences between the fluctuation characteristics of Λ0

1(κ) (Λ
0
2(κ)) and

Λπ
1 (κ) (Λ

π
2 (κ)) are not large. Thus, the superposition of these functions no longer

exhibits distinct regular fluctuation. It seems that the rules valid for scenarios 1–4
no longer apply to this scenario. It is difficult to identify clear fluctuation spacings
directly from the curve of magnitude of wave load. However, FFT analysis will yield
results similar to those obtained in scenarios 3 and 4. This suggests that the intrinsic
mechanism for the irregular appearance of the curve of magnitude of wave load in
scenario 5 is identical to those of scenarios 3 and 4. The fluctuation spacing in this
scenario is redefined as the reciprocal of the frequency corresponding to the peaks in
the results curve of FFT analysis. Such fluctuation spacing can still be predicted using
formulae (3.51) and (3.52) if the results of FFT analysis are considered instead of the
corresponding curves of magnitude of wave load. An example (N = 301, k= 210 and
β = 4π/9) is shown in figure 11(E,e) and table 1 for scenario 5.

In fact, the differences in appearance among the curves of magnitude of wave load
in all five scenarios are caused only by the relative size of [2(N − k)+ 1](1+ cos β)
and [2(k − 1) + 1](1 − cos β). In other words, the differences in appearance stem
from the differences in the contributions of the last cylinder and the first cylinder in
the array. Our computations show that scenario 1 is the most frequently encountered
scenario, while scenario 5 is the least frequently encountered scenario. This suggests
that the contribution of the last cylinder in the array is significant in most of the cases,
and the contribution of the first cylinder is manifested in a few of the cases. Therefore,
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FIGURE 12. Curved surface for fluctuation spacing obtained using formulae (3.51) and
(3.52), where N = 301.

occasionally, there are two distinct fluctuation spacings in Region III for β 6= 0. The
smaller one is termed the minimum fluctuation spacing. It should be noted that for
β = 0, as mentioned in § 3.2, only the contributions of the last cylinder are significant.
There is only one fluctuation spacing, which is considerably smaller than the spacing
between two adjacent spikes (∼0.5). In other words, there is only one scenario for
β = 0, which is similar to scenario 1 for β 6= 0.

Considering the discussions of all scenarios and synthesizing formulae (3.51) and
(3.52), the minimum fluctuation spacing in Region III for β 6= 0 can be determined
using the following formula:

∆N,k
β =min

{
2

[2(N − k)+ 1](1+ cos β)
,

2
[2(k− 1)+ 1](1− cos β)

}
. (3.53)

An example (N=301) of the fluctuation spacing obtained using formulae (3.51) and
(3.52) is shown in figure 12. The orange surface denotes the contributions of the last
cylinder in the array, and the cyan surface denotes the contribution of the first cylinder
in the array. In the majority of the cases, the orange surface is under the cyan surface.

4. Derivation of formulae for fluctuation spacings based on constructive/
destructive interference and understanding of physical mechanism

In this section, we consider the constructive/destructive interference of waves.
Then, we derive the formulae for predicting fluctuation spacings and reveal the
underlying physical mechanism. Wave interference is encountered widely in many
domains, for instance Young’s double-slit interference experiment for light waves in
optics and Bragg diffraction in solid-state physics when X-rays are incident on the
atoms of a crystalline system. When the diffraction waves interfere constructively
(or destructively), the phase difference between the two waves is equal to an
integer multiple of 2π (or odd multiple of π), and the difference in path lengths
between the two waves is an integer multiple of the wavelength (or odd multiple of
half-wavelength); and vice versa.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.195


Fluctuation of magnitude of wave loads 271

4.1. Formula for the fluctuation spacing in head waves
In this subsection, we consider the constructive/destructive interference of diffracted
waves for arrays of cylinders in head waves (β = 0). We rewrite Kd/π as follows:

Kd
π
=

R
λ
, (4.1)

where R = 2d is the spacing between adjacent cylinders, and λ and K = 2π/λ are
the wavelength and wavenumber of water waves, respectively. Then, the curves of the
magnitude of wave load versus the non-dimensional wavenumber Kd/π transform into
the curves of wave load versus R/λ. The diagram in figure 13 is of the same type as
those shown in figures 1, 3 and 4. The abscissa Kd/π in figures 1, 3 and 4 is replaced
by R/λ in figure 13. Without loss of generality, it can be interpreted from figure 13
that the magnitude of wave loads fluctuates with the cylinder spacing R when the
wavelength remains unchanged.

Similar to the cases of Young’s double-slit interference of light waves and Bragg
diffraction of X-rays, the magnitude of wave loads on cylinder k reaches the local
maximum/minimum when the diffraction waves emitted from cylinder j and cylinder k
constructively/destructively interfere near cylinder k. Hereinafter, we use the term
peak/trough to denote the local maximum/minimum for brevity. Let Rp(1) (Rv(1))
denote the cylinder spacing corresponding to the first peak (trough) point. Its value
can be determined as follows:

2(N − k)Rp(1) = λ, (4.2)

where subscripts ‘p’ and ‘1’ denote a peak and the first peak, and

2(N − k)Rv(1) =
λ

2
, (4.3)

where subscripts ‘v’ and ‘1’ denote the trough and the first trough.
The reasons for obtaining (4.2) and (4.3) are as follows.
It is well known that for large KR, the diffraction waves with curved wave crests

can be regarded as plane waves of the same amplitude and wavelength (Simon
1982; McIver & Evans 1984). Each cylinder is distributed along the x-axis in the
present study. Thus, near cylinder k, the cylindrical diffraction waves from other
upstream/downstream cylinders can be regarded as progressive plane waves travelling
in the positive/negative x-direction when these cylindrical waves reach cylinder k.
Hereinafter, the abbreviations ‘PWpx’ and ‘PWnx’ are used for ‘progressive plane
waves travelling in the positive x-direction’ and ‘progressive plane waves travelling
in the negative x-direction’, respectively.

We first consider the path difference between PWnx of cylinder k and that of
other cylinders downstream of cylinder k. When 2(N − k)R < λ/2, even the path
difference between the PWnx of the furthest cylinder downstream of cylinder k
(i.e. cylinder N) and the PWnx of cylinder k is less than half a wavelength. As
shown in figure 13, the path difference between PN and Pk is smaller than half
a wavelength if 2(N − k)R < λ/2. In other words, all PWnxs of the cylinders
downstream of cylinder k do not interfere with the Pwnx of cylinder k constructively
or destructively. When 2(N − k)Rv(1)= λ/2, the path difference between the PWnx of
cylinder N and that of cylinder k (i.e. path difference between PN and Pk) is identical
to half a wavelength, and destructive interference occurs. This case corresponds to the
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FIGURE 13. Schematic diagram of constructive/destructive interference of diffraction
waves in head waves.

first trough v(1) in the curve of magnitude of wave load; the corresponding cylinder
spacing is Rv(1), as shown in figure 13. When 2(N − k)Rp(1) = λ, the path difference
between PN and Pk is equal to one wavelength, and constructive interference occurs.
This case corresponds to the first peak p(1) in the curve of magnitude of wave load;
the corresponding cylinder spacing is Rp(1), as shown in figure 13. As the cylinder
spacing R increases, constructive and destructive interferences occur alternately. This
explains the alternation of peaks and troughs in the curve of magnitude of wave load,
as shown in figures 1, 3, 4 and 13.

Second, the effects of cylinders upstream of cylinder k are considered. Regardless
of how R changes, the path differences between the PWpx of cylinder k and those
of the other cylinders upstream of cylinder k do not change. The path differences are
always zero. Therefore, alternations of constructive interference (peak) and destructive
interference (trough) do not occur. This shows that for β = 0, the diffraction waves
originating from cylinders upstream of cylinder k do not contribute to the fluctuation
of magnitude of wave loads on cylinder k. This phenomenon can be attributed entirely
to the effects of diffraction waves originating from downstream cylinders.

Among all downstream cylinders, cylinder N (the cylinder furthest downstream of
cylinder k) plays a key role in the fluctuation phenomenon. The simplest explanation
is that cylinder N is the furthest from cylinder k, and the maximum path difference
can be reached (2(N − k)R > 2( j − k)R, k < j < N) for a given cylinder spacing R.
The path difference between PN and Pk first satisfies the constructive/destructive
interference condition. Thus, investigation of the variations in path difference
between PN and Pk with the cylinder spacing can help understand the alternation
of constructive/destructive interference. The fluctuation spacing can then be obtained.
The above explanation omits the contributions originating from cylinder k + 1 to
cylinder N − 1, which, as we will demonstrate later, has little effect on the outcome.

Now, we derive the formulae for determining the fluctuation characteristics. As
shown in figure 13, Rp(s) and Rp(s+1) denote the cylinder spacings corresponding to
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the sth and the (s + 1)th peaks in Region III, respectively. Symbol δRp denotes the
difference between Rp(s+1) and Rp(s), that is, δRp = Rp(s+1) − Rp(s). Symbols Rv(s) and
Rv(s+1) denote the cylinder spacings corresponding to the sth and the (s+ 1)th troughs
in Region III, respectively. Symbol δRv denotes the difference between Rv(s+1) and
Rv(s), that is, δRv = Rv(s+1) − Rv(s). The peaks indicate the occurrence of constructive
interference. It is easy to recognize that the path differences corresponding to the sth
and the (s+ 1)th peaks are equal to the s and the s+ 1 multiples of the wavelength.
Consideration of the path difference between PN and Pk leads to

2(N − k)Rp(s) = sλ, (4.4)
2(N − k)

(
Rp(s) + δRp

)
= (s+ 1)λ. (4.5)

Subtracting (4.4) from (4.5) gives

δRp

λ
=

1
2(N − k)

. (4.6)

Similarly, the occurrence of destructive interference at the sth and the (s+1)th troughs
leads to

2(N − k)Rv(s) = (2s− 1)
λ

2
, (4.7)

2(N − k)
(
Rv(s) + δRv

)
= (2s+ 1)

λ

2
, (4.8)

δRv
λ
=

1
2(N − k)

. (4.9)

It is apparent that

δRp

λ
=
δRv
λ
=
δR
λ
= δ

(
Kd
π

)
=

1
2(N − k)

. (4.10)

This means the horizontal distance between any pair of adjacent peaks (or troughs)
is the constant 1/[2(N − k)]. Here δ(Kd/π) is the horizontal distance in terms of the
non-dimensional wavenumber, which is the fluctuation spacing ∆̂N,k

0 :

∆̂
N,k
0 =

1
2(N − k)

. (4.11)

Equation (4.11) is slightly different from (3.37), so ∆̂N,k
0 is used here instead of ∆N,k

0
in (3.37). The reasons underlying the differences between the two equations will be
explained in § 4.3.

Furthermore, the abscissae of every peak and trough in Region III can be obtained.
The abscissae of the first trough and the first peak, given by (4.3) and (4.2), are
Rv(1)/λ = 1/[4(N − k)] and Rp(1)/λ = 1/[2(N − k)], respectively. Considering (4.10),
the abscissae of the sth peak and the sth trough can be obtained as

Rp(s)

λ
=

s
2(N − k)

, (4.12)

Rv(s)
λ
=

2s− 1
4(N − k)

. (4.13)
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4.2. Formula for the fluctuation spacing in oblique waves
Unlike the situation of β = 0, the situation of β 6= 0 is more complex. The path
differences between the PWpx of cylinder k and those of the other cylinders upstream
of cylinder k are not equal to zero. Thus, the cylinders upstream of cylinder k
contribute to the fluctuation spacing.

The cylinder spacings corresponding to the sth and the (s + 1)th peaks are Rβp(s)
and Rβp(s+1), respectively. Symbol δRβp denotes the difference between Rβp(s+1) and Rβp(s),
that is, δRβp = Rβp(s+1) − Rβp(s). The cylinder spacings corresponding to the sth and the
(s+ 1)th troughs are Rβv(s) and Rβv(s+1), respectively. Symbol δRβv denotes the difference
between Rβv(s+1) and Rβv(s), that is, δRβv = Rβv(s+1) − Rβv(s). The superscript β denotes
the incidence angle. Because both the PWpx of the cylinders upstream of cylinder k
and the PWnx of the cylinders downstream of cylinder k are considered below, the
superscripts or subscripts ‘us’ and ‘ds’ (‘upstream’ and ‘downstream’) are added to
denote the variables related to PWpx and PWnx, respectively. For example, Rβ,us

p(s)
denotes the cylinder spacing corresponding to the sth peak determined by considering
the path difference between the PWpx of cylinder k and that of the other cylinders
upstream of cylinder k; Rβ,ds

p(s) denotes the cylinder spacing corresponding to the sth
peak determined by considering the path difference between the PWnx of cylinder k
and that of the other cylinders downstream of cylinder k. As shown in figure 14(a),
considering the path difference between the PWpx of the first cylinder in the array
and that of cylinder k (i.e. the path difference between P1 and Pk), when they interfere
constructively/destructively, we have

(k− 1)(1− cos β)Rβ,us
p(s) = sλ, (4.14)

(k− 1)(1− cos β)
(

Rβ,us
p(s) + δR

β,us
p

)
= (s+ 1)λ, (4.15)

(k− 1)(1− cos β)Rβ,us
v(s) = (2s− 1)

λ

2
, (4.16)

(k− 1)(1− cos β)
(

Rβ,us
v(s) + δR

β,us
v

)
= (2s+ 1)

λ

2
, (4.17)

δRβ,us
p

λ
=
δRβ,us

v

λ
=
δRβ,us

λ
= δ

(
Kd
π

)
=

1
(k− 1)(1− cos β)

. (4.18)

Figure 14 shows a schematic diagram of constructive interference in oblique waves.
Diagrams of destructive interference are similar and are omitted for simplicity.

The abscissae of the sth peak and the sth trough in Region III, determined by
considering the contributions of the cylinders upstream of cylinder k, are obtained as

Rβ,us
p(s)

λ
=

s
(k− 1)(1− cos β)

, (4.19)

Rβ,us
v(s)

λ
=

2s− 1
2(k− 1)(1− cos β)

. (4.20)

Equations (4.14)–(4.18) express the contributions of the cylinders upstream of
cylinder k. Next, the contributions of the cylinders downstream of cylinder k are
considered. As shown in figure 14(b), considering the path difference between the
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FIGURE 14. Schematic diagram of constructive interference in oblique waves.
(a) Contributions of cylinders upstream of cylinder k. (b) Contributions of cylinders
downstream of cylinder k.

PWnx of the last cylinder in the array and that of cylinder k (i.e. the path difference
between PN and Pk), when they interfere constructively/destructively, we have

(N − k)(1+ cos β)Rβ,ds
p(s) = sλ, (4.21)

(N − k)(1+ cos β)
(

Rβ,ds
p(s) + δR

β,ds
p

)
= (s+ 1)λ, (4.22)

(N − k)(1+ cos β)Rβ,ds
v(s) = (2s− 1)

λ

2
, (4.23)

(N − k)(1+ cos β)
(

Rβ,ds
v(s) + δR

β,ds
v

)
= (2s+ 1)

λ

2
, (4.24)

δRβ,ds
p

λ
=
δRβ,ds

v

λ
=
δRβ,ds

λ
= δ

(
Kd
π

)
=

1
(N − k)(1+ cos β)

. (4.25)

The abscissae of the sth peak and the sth trough in Region III, determined by
considering the contributions of the cylinders downstream of cylinder k, are obtained
as

Rβ,ds
p(s)

λ
=

s
(N − k)(1+ cos β)

, (4.26)

Rβ,ds
v(s)

λ
=

2s− 1
2(N − k)(1+ cos β)

. (4.27)

Similar to § 3.3, we take the smaller of the values obtained using (4.18) and (4.25)
as the minimum fluctuation spacing, and the formula for determining the minimum
fluctuation spacing in Region III for β 6= 0 can be obtained as

∆̂N,k
β =min

{
1

(N − k)(1+ cos β)
,

1
(k− 1)(1− cos β)

}
. (4.28)
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Here 1/[(N − k)(1 + cos β)] denotes the contribution of the last cylinder in the
array and 1/ [(k− 1)(1− cos β)] denotes the contribution of the first cylinder
in the array. Equation (4.28), obtained by considering constructive/destructive
interference, corresponds to (3.53) based on the interaction theory. Equation (4.28)
is slightly different from (3.53), so ∆̂N,k

β is used here instead of ∆N,k
β in (3.53). The

reason for the difference between the two equations will be explained in § 4.3.
In addition, the abscissae of every peak and trough in Region III can be obtained

as

R̂βp(s)
λ
=min

{
s

(N − k)(1+ cos β)
,

s
(k− 1)(1− cos β)

}
, (4.29)

R̂βv(s)
λ
=min

{
2s− 1

2(N − k)(1+ cos β)
,

2s− 1
2(k− 1)(1− cos β)

}
. (4.30)

4.3. Further discussions for formulae of fluctuation spacings
Equations (4.11) and (4.28) are the fluctuation spacing formulae we obtained by
considering constructive/destructive interference. There are slight differences between
(4.11)/(4.28) and (3.37)/(3.53). The reasons for these differences are discussed in this
subsection.

The situation of β = 0 is discussed first. At position xk (xk < 0) upstream of
cylinder k, the diffraction potential of cylinder k and those of the other cylinders
downstream of cylinder k are added up as follows:

N∑
j=k

e−iωt
∞∑

n=−∞

Aj
nZnHn

[
KR( j− k)+K|xk|

]
. (4.31)

For cylinders located in the interior region far from the ends, the unknown
coefficient satisfies Aj

n = eiKR( j−1)An, where An denotes the coefficient of the first
cylinder (see Linton & Evans 1993; Maniar & Newman 1997). By replacing the
Hankel function with its asymptotic expression, equation (4.31) can be simplified as

Ae−i(Kxk+ωt)
N∑

j=k

√
1

j− k− xk/R
e−i2KR( j−k), (4.32)

where

A= eiKR(k−1)e−i(π/4)

√
2

πKR

(
∞∑

n=−∞

AnZni−n

)
. (4.33)

Although expression (4.32) is approximate, it can reveal the mechanism underlying
the differences discussed in this subsection. The series in (4.32) can be rewritten as

N∑
j=k

√
1

j− k− xk/R
e−i2KR( j−k)

=

√
1
−xk/R

+
i

2 sin(KR)

{√
1

1− xk/R
eiKR
−

√
1

N − k− xk/R
eiKR[2(N−k)+1]

+ E

}
, (4.34)
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where

E=
N−k∑
j=2

(√
1

j− 1− xk/R
−

√
1

j− xk/R

)
eiKR2( j−1). (4.35)

Similar to the discussion of (3.22), the effect of E can be omitted. Then, equation
(4.32) becomes

Ae−i(Kxk+ωt)

{√
1
−xk/R

+
1

2 sin(KR)

√
1

1− xk/R
ei[K(2×R/2)+(π/2)]

+
1

2 sin(KR)

√
1

N − k− xk/R
ei[2K(N+(1/2)−k)R−(π/2)]

}
. (4.36)

Actually, expression (4.36) represents the superposition of the three PWnxs. The first
term is the PWnx of cylinder k; the second term can be understood as the PWnx of
cylinder η0; and the third term can be understood as the PWnx of cylinder σ0. The
positions of cylinders η0 and σ0 are R/2 and (N+1/2− k)R downstream of cylinder k,
respectively. The phase differences between the PWnxs of cylinder η0 (or σ0) and the
PWnx of cylinder k are 2K(R/2) (or 2K(N+1/2− k)R). The path differences between
these two PWnxs and the PWnx of cylinder k are 2(R/2) and 2(N + 1/2 − k)R,
respectively. Expression (4.36) indicates that the sum of N − k PWnxs emitted from
cylinders k + 1, k + 2, . . . , N is equivalent to the superposition of the two PWnxs
emitted from cylinder η0 and σ0, as shown in figure 15(a). Similar to the discussions
in § 4.1, cylinder σ0 (the cylinder furthest downstream of cylinder k) plays a key role
in the fluctuation phenomenon. Considering the path difference between Pσ0 and Pk,
formula (4.11) is revised as

∆
N,k
0 =

1
2(N − k)+ 1

. (4.37)

Formula (4.37) is identical to formula (3.37). In other words, derivation based on
constructive/destructive interference can yield a fluctuation spacing formula identical to
that obtained using the interaction theory, so long as all the contributions originating
from cylinder k + 1, k + 2, . . . , N are included. The total effect of the contributions
of these cylinders can be obtained by considering a new cylinder array, in which
cylinder N (cylinder k + 1) is moved towards the right (left) by distance R/2 and
the other cylinders removed (i.e. cylinder N (cylinder k+ 1) is replaced with cylinder
σ0 (cylinder η0), and only cylinders σ0 and η0 are retained downstream of cylinder k,
as shown in figure 15a).

It should be noted that the constant −π/2 in the third term of expression (4.36)
does not contribute to fluctuation spacing, although it changes the abscissae of the
peaks and troughs slightly. Consideration of the phase difference between Pσ0 and Pk
(including the constant −π/2) leads to

2
(

N +
1
2
− k
)

Rp(s)K −
π

2
= sλK. (4.38)

Then, the abscissa of the sth peak is obtained as

Rp(s)

λ
=

s+ 1/4
2(N − k)+ 1

. (4.39)
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FIGURE 15. Schematic diagram of propagation path of wave incidence and diffraction.
(a) Contributions of cylinders downstream of the kth cylinder in head waves (β = 0).
(b) Contributions of cylinders downstream of the kth cylinder in oblique waves (β 6= 0).
(c) Contributions of cylinders upstream of the kth cylinder in oblique waves (β 6= 0).

Similarly, the abscissa of the sth trough is

Rv(s)
λ
=
(2s− 1)+ 1/2
4(N − k)+ 2

. (4.40)

The formula (4.39) explains the linear relationship shown in figure 7(b). When N −
k � 1/2, the differences between formulae (4.39)/(4.40) and formulae (4.12)/(4.13)
are small for most s because s� 1/4 and 2s− 1� 1/2 when s > 3. The difference
between the abscissa of the sth and the (s+ 1)th peaks (troughs) gives the fluctuation
spacing, which is identical to the value obtained using formula (4.37).

For β 6= 0, as mentioned earlier, contributions of the downstream and the upstream
cylinders should be considered. At the position xk (xk < 0) upstream of cylinder k,
considering the sum of the diffraction potentials of cylinder k and other cylinders
downstream of cylinder k and performing an analysis similar to that for β = 0, we
can get the counterparts of formulae (4.32), (4.33), (4.36), (4.37), (4.39) and (4.40)
for β 6= 0 as follows. The sum of the diffraction potentials is

Be−i(Kxk+ωt)
N−k∑
j=0

√
1

j− xk/R
eiKRj(1+cos β), (4.41)

where

B= eiKR(k−1) cos βe−i(π/4)

√
2

πKR

(
∞∑

n=−∞

AnZni−n

)
. (4.42)

Expression (4.41) can be rewritten as

Be−i(Kxk+ωt)

{√
1
−xk/R

+
1

2 sin
[

1
2 KR(1+ cos β)

] [√ 1
1− xk/R

ei[(1/2)KR(1+cos β)+(π/2)]

+

√
1

N − k− xk/R
ei{(1/2)KR(1+cos β)[2(N−k)+1]−(π/2)}

]}
. (4.43)
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The fluctuation spacing owing to the downstream cylinders is given as

∆
N,k
β,ds =

1
(N + 1/2− k)(1+ cos β)

. (4.44)

The abscissa of the sth peak (or trough) owing to the downstream cylinders is given
as

Rβ,ds
p(s)

λ
=

s+ 1/4
(N + 1/2− k)(1+ cos β)

, (4.45)

or

Rβ,ds
v(s)

λ
=

(2s− 1)+ 1/2
2(N + 1/2− k)(1+ cos β)

. (4.46)

Formula (4.44) is identical to formula (3.51). The counterparts of cylinders σ0 and
η0, and Pσ0 are cylinders σ1 and η1, and Pσ1 , as shown in figure 15(b). When N −
k� 1/2, the differences between formulae (4.45)/(4.46) and formulae (4.26)/(4.27) are
small for most s (s > 3).

Next, the contributions of upstream cylinders are considered. At the position
xk (xk > 0) downstream of cylinder k, considering the sum of the diffraction potentials
of cylinder k and other cylinders upstream of cylinder k and performing a similar
analysis, we can get the counterparts of formulae (4.41)–(4.46) as follows. The sum
of the diffraction potentials is

Cei(Kxk−ωt)
k∑

j=1

√
1

k− j+ xk/R
e−iKRj(1−cos β), (4.47)

where

C= e−iKR(k−cos β)e−i(π/4)

√
2

πKR

(
∞∑

n=−∞

AnZni−n

)
. (4.48)

Expression (4.47) can be rewritten as

Cei(Kxk−ωt)

{√
1

xk/R
+

1
2 sin

[
1
2 KR(1− cos β)

] [√ 1
k− 1+ xk/R

ei[−(1/2)KR(1−cos β)−(π/2)]

+

√
1

1+ xk/R
ei{−(1/2)KR(1−cos β)[2(k−1)+1]+(π/2)}

]}
. (4.49)

The fluctuation spacing owing to the upstream cylinders is given as

∆N,k
β,us =

1
(k− 1/2)(1− cos β)

. (4.50)

The abscissa of the sth peak (or trough) owing to the upstream cylinders is given as

Rβ,us
p(s)

λ
=

s− 1/4
(k− 1/2)(1− cos β)

, (4.51)
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or
Rβ,us
v(s)

λ
=

(2s− 1)− 1/2
2(k− 1/2)(1− cos β)

. (4.52)

Formula (4.50) is identical to formula (3.52). The counterparts of cylinders σ1 and
η1, and Pσ1 are cylinders σ2 and η2, and Pσ2 , as shown in figure 15(c). When k� 1,
the differences between formulae (4.51)/(4.52) and formulae (4.19)/(4.20) are small
for most s (s > 3).

As shown in figure 11(C,D), there may be two obvious constant fluctuation
spacings in Region III of the curve of magnitude of wave load for β 6= 0. Now
we can reveal the physical mechanism. One fluctuation spacing stems from the
constructive/destructive interference between diffraction waves originating from
cylinder N and cylinder k; the other one stems from the constructive/destructive
interference between diffraction waves originating from cylinder 1 and cylinder k. The
combined effects of the contributions of cylinders other than cylinder N and 1 are
non-significant because their contributions almost cancel each other out. The collective
contributions of cylinders downstream (or upstream) of cylinder k are equivalent to
those of a new cylinder array. In the new array associated with downstream cylinders,
cylinder k+1 (cylinder N) is moved towards the left (right) by distance R/2; cylinders
k + 2, k + 3, . . . , N − 1 are removed. While in another new array associated with
upstream cylinders, cylinder 1 (cylinder k − 1) is moved towards the left (right) by
distance R/2; cylinders 2, 3, . . . , k − 2 are removed. The physical mechanism for
β = 0 is the same as the influencing mechanism of downstream cylinders when β 6= 0.

By taking the smaller of the values obtained using equations (4.44) and (4.50) as
the minimum fluctuation spacing, the formula for determining the minimum fluctuation
spacing in Region III for β 6= 0 can be obtained as follows:

∆N,k
β =min

{
1

(N + 1/2− k)(1+ cos β)
,

1
(k− 1/2)(1− cos β)

}
, (4.53)

which is identical to (3.53).
The abscissae of every peak and trough in Region III are

Rβp(s)
λ
=min

{
s+ 1/4

(N + 1/2− k)(1+ cos β)
,

s− 1/4
(k− 1/2)(1− cos β)

}
, (4.54)

Rβv(s)
λ
=min

{
(2s− 1)+ 1/2

2(N + 1/2− k)(1+ cos β)
,

(2s− 1)− 1/2
2(k− 1/2)(1− cos β)

}
. (4.55)

To verify the formulae for the abscissae of the peaks and troughs in Region III,
figure 16 shows comparisons of the measured values of R̃p(s)/λ, R̃v(s)/λ, R̃βp(s)/λ and
R̃βv(s)/λ with the values of Rp(s)/λ, Rv(s)/λ, Rβp(s)/λ and Rβv(s)/λ predicted using formulae
(4.39), (4.40), (4.54) and (4.55), respectively, for β = 0 and β 6= 0. The blank areas in
figure 16(a) are Regions I and II. The agreement between the measured and predicted
values is good. For about 90 % (95 %, 98 %) of the peaks and troughs in Region III,
the errors are smaller than 1 % (2 %, 5 %). This suggests that the formulae (4.39),
(4.40), (4.54) and (4.55) can predict accurately most of the abscissae of the peaks
and troughs in Region III.

There is one more thing to make clear. The phenomena in Regions I and II are
associated with non-trivial solutions of homogeneous equations (eigenvalue problems).
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FIGURE 16. Comparisons of measured values of R̃p(s)/λ, R̃v(s)/λ, R̃βp(s)/λ and R̃βv(s)/λ and
the values of Rp(s)/λ, Rv(s)/λ, Rβp(s)/λ and Rβv(s)/λ predicted using formulae (4.39), (4.40),
(4.54) and (4.55): (a) N = 51, k = 26, β = 0, a/d = 1/4; (b) N = 301, k = 90, β = π/3,
a/d= 1/4.

The present study shows that the fluctuation phenomenon in Region III is related to
the solutions of inhomogeneous equations, not to the solutions of the aforementioned
eigenvalue problem.

5. Application prospects and conclusions
Before concluding this paper, we will first discuss the engineering significance of

the present study. After examining a large number of computations, we found that
the relative differences in the ordinates of adjacent peaks and troughs in the curve of
magnitude of wave load are large at times. According to our calculation results, the
relative difference in Region III can reach 20 %. Thus, when calculating wave load,
if the calculation step length of the abscissa is not sufficiently small, the calculation
error of wave load in this region may reach 20 % or higher. Such a calculation error
has no effect on the safety evaluation of ‘one-time failure’ of a structure, which is
determined based on the spike load in Region I. From the viewpoint of fatigue failure
owing to cyclic loads, however, this calculation error is significant. The calculation
of fatigue life considers the comprehensive contributions of wave loads in a certain
frequency range (while for one-time failure analysis, only the maximum wave load
corresponding to the trapped mode must be considered). Any error in wave load may
significantly and negatively affect the accuracy of fatigue life estimation. The reasons
are as follows. To illustrate the problem, a cylinder array in waves is considered
a linear system. When the fatigue life of a linear system is analysed, the response
spectral density function of the alternating stress process is equal to the spectral
density of the incident wave multiplied by the square of the modulus of the transfer
function of the system. The natural frequencies of the elastic modes of offshore
cylinder arrays are significantly higher than those of wave frequencies, so the transfer
function for an alternating stress can be obtained by multiplying the transfer function
of the wave load, as shown in figures 1, 3 and 4, with a certain coefficient. If the
error in the transfer function of the wave load is large owing to selection of an
inappropriate calculation step size, the error in the alternating stress transfer function
will be large as well, and the error will increase after squaring (for example, if the
error in the modulus of transfer function is 10 %, the error in its square will increase
to about 20 %; if the error is 20 %, the error in its square will increase to 36 %).
Thus, the accurate stress range distribution will not be obtained, which will affect
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the accuracy of fatigue life assessment. The trapped mode frequency of the system is
generally designed to be far from the frequency band with high wave energy, which
means the stress range corresponding to Region III accounts for a large proportion of
the contribution to fatigue damage. Therefore, accurate calculation of the wave loads
in Region III is very important for accurate assessment of fatigue life.

When calculating the curve of magnitude of wave load (transfer function of wave
load), if the step size is too large, the peak value of the fluctuation in Region III
may be missed, resulting in a dangerously large error. If the step size is too small,
the calculation time will increase greatly for arrays consisting of many cylinders.
Formulae (4.37) (or (3.37)) and (4.53) (or (3.53)) presented in this study can be used
to easily predict the minimum fluctuation spacing of the curve of magnitude of wave
load before performing calculations to effectively guide step size selection. Hence,
these formulae are of practical use from the viewpoint of obtaining the magnitude of
wave load efficiently and for fatigue analysis.

In other words, the contributions of Region III affect the fatigue life estimation.
And hence they should be determined accurately. To avoid missing the peak point
of the fluctuation in Region III, the step size must at least be smaller than the
minimum fluctuation spacing ∆N,k

0 (or ∆N,k
β ). According to our calculation experience,

the relative error in the curve of magnitude of wave load can be smaller than 1 %
when the step length ∆

N,k
0 /5 − ∆N,k

0 /10 (or ∆N,k
β /5 − ∆N,k

β /10) is selected for cases
with different parameter combinations. Thus, before starting the calculation, we can
calculate ∆N,k

0 (or ∆N,k
β ) using formulae (4.37) (or (3.37)) or (4.53) (or (3.53)) and

then select a value between ∆
N,k
0 /5 and ∆

N,k
0 /10 (or between ∆

N,k
β /5 and ∆

N,k
β /10)

as the step size. Thereafter, we can obtain the magnitude of wave load with high
accuracy without increasing the calculation time unnecessarily.

In addition, we can quickly obtain the upper and lower envelopes of Region III
using the formulae (4.39) (or (4.54)) and (4.40) (or (4.55)). The abscissae of the
local extreme points can be first calculated using these formulae. Second, the ordinates
(i.e. the magnitude of wave load) corresponding to these abscissae can be calculated.
Thereafter, the positions of these local extreme points can be determined. Finally, the
upper and lower envelopes of Region III can be obtained by connecting these extreme
points. The total number of extreme points is O[Ξ × (N − k)] or O[Ξ × k], where Ξ
is the upper limit of the Kd/π of interest. Thus, the computation cost of obtaining the
upper and lower envelopes is very low. Therefore, determining the upper and lower
envelopes can serve as a fast and inexpensive way to obtain the upper and lower
bounds of the magnitude of wave load in Region III.

Finally, we summarize the whole paper.
The curve of magnitude of wave load acting on a certain cylinder in a long but

finite array in the presence of incident waves is divided into three regions in this
study. Several spikes corresponding to the trapped modes are collectively termed
Region I, a sequence of secondary peaks and intermediate troughs near Region I
is termed Region II and the regions other than Regions I and II are grouped into
Region III. In-depth understanding of the common phenomena in Regions I and II
has been presented in many previous reports. However, for Region III, this is not
the case. In Region III, the fluctuation of the curve of magnitude of wave load is
complex. The curve seems to be too intricate to understand. There are very few
studies of the fluctuation phenomena in Region III. In the present study, we found
that the fluctuations in Region III are actually regular, and their characteristics can
be predicted using simple analytical formulae.
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We found that in Region III, the horizontal distance ∆ between two adjacent local
maximum/minimum points is constant and does not change with non-dimensional
wavenumbers. Spacing ∆ is termed the minimum fluctuation spacing, which is
related only to the total number of cylinders N, identification number k indicating
the position of a cylinder and wave incidence angle β.

Using two methods (i.e. the interaction theory and constructive/destructive
interference), we proved that the minimum fluctuation spacing ∆ of the magnitude
of wave load acting on the kth cylinder can be predicted using equation (4.37) (the
same as (3.37)) for β = 0 and using equation (4.53) (the same as (3.53)) for β 6= 0.
Moreover, we presented formulae for determining the abscissae of every peak and
trough in Region III, namely equations (4.39) and (4.40) for β = 0 and equations
(4.54) and (4.55) for β 6= 0. Comparisons between the values predicted using the
formulae presented in this study and the measured values obtained from computation
results verify the correctness of the proposed formulae. The fact that the formulae
derived from the two methods are identical verifies the correctness of the proposed
formulae from another aspect.

We revealed the intrinsic mechanism of the fluctuation phenomenon in Region III.
For β 6= 0, when the diffraction waves emitted from cylinder N (cylinder 1) and
cylinder k interfere constructively/destructively, peaks/troughs of the magnitude of
wave load acting on cylinder k occur. This means that the two cylinders located the
furthest upstream and downstream of cylinder k play important roles in the fluctuation
phenomenon. For β = 0, only cylinder N (the furthest cylinder downstream from
cylinder k) plays a key role. The fluctuation phenomenon in Region III is related to
the solutions of inhomogeneous equations, as opposed to the solution of eigenvalue
problem as in the cases of Regions I and II. The present study of Region III
complements the existing understanding of the characteristics of the magnitude of
wave load, and it helps us fully understand variations in all parts of the entire curve
of magnitude of wave load.

The results of this study have engineering significances. The formulae for
determining the fluctuation spacings in Region III can be used to obtain the curve
of magnitude of wave load with high accuracy without performing large amounts of
computations. The formulae for determining the abscissae of the peaks and troughs
in Region III can be used to obtain the envelopes of the curve of magnitude of wave
load with very low computational cost.
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