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The shear-induced collective diffusivity down a concentration gradient in a viscous
emulsion is computed using direct numerical simulation. A layer of randomly packed
drops subjected to a shear flow, shows the layer width to increase with the 1/3
power of time, consistent with a semi-dilute theory that assumes a diffusivity linear
with concentration. This characteristic scaling and the underlying theory are used
to compute the collective diffusivity coefficient. This is the first ever computation
of this quantity for a system of deformable particles using fully resolved numerical
simulation. The results match very well with previous experimental observations.
The coefficient of collective diffusivity varies non-monotonically with the capillary
number, due to the competing effects of increasing deformation and drop orientation.
A phenomenological correlation for the collective diffusivity coefficient as a function
of capillary number is presented. We also apply an alternative approach to compute
collective diffusivity, developed originally for a statistically homogeneous rigid sphere
suspension – computing the dynamic structure factor from the simulated droplet
positions and examining its time variation at small wavenumber. We show that
the results from this alternative approach qualitatively agree with our computation
of collective diffusivity including the prediction of the non-monotonic variation of
diffusivity with the capillary number.

Key words: drops, emulsions, multiphase flow

1. Introduction
Suspended non-Brownian particles in a sheared emulsion or suspension experience

shear-induced diffusion due to irreversible inter-particle hydrodynamic and other
interactions (Eckstein, Bailey & Shapiro 1977; Davis 1996). Shear-induced diffusion
plays a critical role in chemical process engineering and microfluidic technologies
by enhancing mixing (Lopez & Graham 2008) in low Reynolds number flows
which is otherwise limited by slow molecular diffusion. In blood vessels, the
radial concentration profile of blood cells is a result of the competition between
shear-induced diffusion and wall-induced migration of cells towards the centre

† Email address for correspondence: sarkar@gwu.edu
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(Grandchamp et al. 2013). The mechanical properties of a blood cell, such as stiffness
that influences shear-induced diffusivity, are a proxy for the health of the cells (Cooke,
Mohandas & Coppel 2001). More fundamentally, the spatial distribution of particles
caused by the diffusion determines the local and global rheology of the flow. Here,
we propose a direct numerical simulation technique and compute for the first time
the collective diffusivity in a non-dilute emulsion of viscous drops.

In suspensions of rigid spheres, under the assumption of Stokes flow, hydrodynamic
pair interaction is reversible. A symmetry breaking mechanism such as roughness
is needed to give rise to diffusion from two-particle interactions (da Cunha &
Hinch 1996). In case of drops or other deformable particles, pairwise hydrodynamic
interaction is irreversible and nonlinear (Olapade, Singh & Sarkar 2009; Singh &
Sarkar 2009; Sarkar & Singh 2013) leading to a diffusive behaviour (Loewenberg &
Hinch 1997). Shear-induced diffusion is generally separated into self-diffusion and
collective or gradient diffusion (Rallison & Hinch 1986; Rusconi & Stone 2008).
The first refers to the random walk-like motion exhibited by the particles and is
present even in a uniformly mixed suspension or emulsion. It is characterized by the
self-diffusion coefficient Ds = γ̇ a2fs(φ) with γ̇ being the shear rate, a the particle
radius and fs(φ) the non-dimensional self-diffusivity, a function of the particle volume
fraction φ. The collective diffusion refers to a diffusive flux −Dc∇φ in the presence
of a particle concentration gradient and is similar to Fickian diffusion (Leshansky,
Morris & Brady 2008). The non-dimensional collective diffusivity fc(φ) = Dc/γ̇ a2

is usually higher in magnitude than fs(φ). Both diffusion coefficients depend on the
flow and are generally anisotropic.

Investigation into flow-induced diffusion was initiated by Eckstein et al. (1977).
They experimentally measured the lateral displacement of a tagged particle in a
Couette flow to compute the self-diffusivity. Subsequently, numerous experimental,
theoretical and computational studies explored various aspects of shear-induced
diffusion. The collective diffusivity was for the first time indirectly inferred in
the vorticity direction from the transient viscosity changes that were observed in a
Couette flow viscometer (Leighton & Acrivos 1987). The changes were caused by the
diffusion of particles from the high shear region (Couette gap) to the low shear region
(fluid reservoir). A more robust procedure for computing self-diffusivity was developed
using the time taken for a visually detectable particle to go around the Couette cell in
successive revolutions (Leighton & Acrivos 1987). Instead of tracking a single particle
that requires long temporal data to ensure ergodicity, positions of multiple tracer
particles were recorded using a digital camera, reducing the time requirement by an
order of magnitude and enabling the capture of the transient features of self-diffusion
(Breedveld et al. 1998; Breedveld 2000). More recent experiments (Rusconi & Stone
2008) have used microfluidic devices to measure the collective diffusivity in the
vorticity direction of highly asymmetric plate-like particles. On the numerical side,
pairwise interactions between two particles with surface roughness have been used to
calculate the self- and collective diffusivities in the dilute regime (da Cunha & Hinch
1996). The diffusion was assumed to be exclusively due to two-particle interactions,
and the diffusivities were calculated by integrating the displacement over all possible
initial positions of the two particles. Stokesian dynamics (Brady & Bossis 1988)
has been used to calculate the self-diffusivity for colloidal (Foss & Brady 1999)
and non-colloidal (Sierou & Brady 2004) suspensions directly from an ensemble
averaged mean square displacement of the particles, and also by using the velocity
autocorrelation function. The collective diffusivity was calculated from simulations
of homogeneous suspensions (Marchioro & Acrivos 2001), using the fact that the
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Shear-induced collective diffusivity down a concentration gradient 7

rate of relaxation of the microstructure on perturbation is proportional to the gradient
diffusivity. A more robust method for calculating the all particle diffusivities from
a single statistically homogeneous simulation using the dynamic structure factor of
a sheared suspension has also been developed (Morris & Brady 1996; Leshansky &
Brady 2005; Leshansky et al. 2008).

In contrast to suspensions, there have been far fewer studies devoted to shear-
induced diffusivity in emulsions. King & Leighton (2001) did the first measurement
of collective diffusivity, but the values they reported were lower than theoretical
predictions, due to the presence of surfactants that were required to stabilize the
droplets against coalescence. Hudson (2003), using more viscous liquids that did not
require surfactants, was the first to accurately measure the collective diffusivities of
an emulsion. To our knowledge, there have been no experimental measurements of
self-diffusivity in emulsions of drops. Self-diffusivities of red blood cells (Higgins
et al. 2009), and red blood cell ghosts (Goldsmith & Marlow 1979; Cha & Beissinger
2001) have been measured experimentally. Grandchamp et al. (2013) reported an
experimental study of the collective diffusivity of red blood cells in a rectangular
channel (also see Podgorski et al. 2011; Bureau et al. 2017). While we could not
find any computation of the collective diffusivity in emulsions, computations of
self-diffusivity have been attempted by computing two drop trajectories in shear
and averaged mean square displacements by Loewenberg & Hinch (1997) using a
boundary integral simulation of the Stokes flow. Tan, Le & Chiam (2012) simulated
emulsions of capsules in a bounded shear flow to estimate the self-diffusivity in the
vorticity direction. They showed that the emulsion can be sub-diffusive, diffusive
or super-diffusive depending on the level of confinement. Pairwise simulations of
vesicles have been used to calculate their self-diffusivity (Zhao & Shaqfeh 2013;
Gires et al. 2014). Calculating collective diffusivity with this method has not been
possible for deformable particles, as the integral over all possible pair of drops is
convergent only for zero capillary number, i.e. undeformed drops (King & Leighton
2001; Gires et al. 2014). In the past, renormalization procedures have been applied to
such divergent integrals; they use global constraints to obtain convergent expressions
for effective stresses and sedimentation velocity (Batchelor 1972; Batchelor & Green
1972) as well as shear-induced diffusion coefficients in a suspension (Wang, Mauri
& Acrivos 1998). Such procedures have not been applied to the current problem.

We use a direct numerical simulation of a layer of randomly packed drops in a
shear flow to compute the collective diffusivity varying the capillary number. In the
following, we briefly describe the numerical method and our procedure to obtain the
collective diffusivity from the simulation of a relatively small number of particles
over a short time interval. We also provide a qualitative analysis of the shear induced
diffusivity using the dynamic structure factor approach (Leshansky & Brady 2005)
that is based on the theory of dynamic light scattering. We discuss computed results,
compare with previous experimental observations and offer a brief conclusion.

2. Simulation method
We solve the incompressible Navier–Stokes equations using a front-tracking method

(Tryggvason et al. 2001):

∇ · u= 0,
∂(ρu)
∂t
+∇ · (ρuu)=−∇p+∇ · [µ{∇u+ (∇u)T}] −

∫
∂B
κnσδ(x− x′) dS(x′).


(2.1)
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FIGURE 1. (Colour online) A sketch of the problem being simulated.

Here u, p, ρ and µ are the velocity, pressure, density and viscosity respectively. κ
is the local drop surface curvature, n is the unit outward normal to the surface ∂B
of all drops and σ is the interfacial tension. In this numerical method, all drops and
their interactions are resolved. The method has been used by our group in many
problems involving drops (Sarkar & Schowalter 2001) and capsules (Li & Sarkar
2008) in viscous and viscoelastic fluids (Sarkar & Schowalter 2000; Mukherjee &
Sarkar 2009, 2013), including pairwise interactions (Singh & Sarkar 2009, 2015;
Sarkar & Singh 2013) and dense emulsions (Srivastava, Malipeddi & Sarkar 2016).
The reader is referred to these earlier publications for the details of the algorithm
and its verification and validation.

To compute the diffusion in a shear flow, we numerically simulate drops initially
concentrated in a central layer subjected to a simple unbounded shear flow (figure 1).
This is a departure from the experiments of King & Leighton (2001) or Hudson
(2003), where drops were initially uniformly distributed between the walls and
experience a bounded shear. The wall-induced lateral migration of drops away from
the walls (Mukherjee & Sarkar 2013, 2014; Sarkar & Singh 2013; Singh, Li & Sarkar
2013) competes with shear-induced collective diffusion to result in a concentration
gradient towards the centre. In contrast, here the drops are not affected by walls.
A uniform shear flow is generated in a computational domain, which is periodic
in the x and z directions and has numerical walls in the y direction moving with
specified velocities. The distance between the walls is Ly= 28a (a is the drop radius),
sufficiently large to simulate an unbounded shear (demonstrated below). The length
of the domain in the x and z directions is Lx = Lz = 14a. A 96× 192× 96 uniform
grid is used in the computational domain leading to 15 grid points per drop diameter,
shown to be sufficient in our earlier studies. The drops are initially randomly close
packed (Desmond & Weeks 2009) in a thin (∼0.2Ly) layer parallel to the xz-plane
(figure 1) in the middle of the computational domain. In the x and z directions, the
distribution of drops is homogeneous initially and remains so. The drops remain
adequately separated from the y-boundaries such that the wall effects are negligible
on drops over the time scale necessary to characterize the diffusion (discussed further
below). The front tracking finite difference code is used to solve the fluid dynamics
equation for various capillary numbers, the ratio between the viscous and interfacial
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Shear-induced collective diffusivity down a concentration gradient 9
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FIGURE 2. (Colour online) Snapshots from a simulation of 70 drops at Ca=0.10 showing
a layer of drops spreading due to collective diffusion in shear.

stresses Ca= µγ̇ a/σ . The drops are viscosity matched. Note that the explicit nature
of the code prevents us from simulating Stokes flow. The simulations are performed
at small but finite Reynolds number of Re = ργ̇ a2/µ = 0.1. Previously we have
shown that results at this Re matches sufficiently well with Stokes flow simulation of
emulsions (Srivastava et al. 2016).

3. Collective/gradient diffusivity

Under the assumption of homogeneity in the x and z directions, the problem reduces
to an unsteady, one-dimensional diffusion problem for the particle volume fraction φ=
φ(y, t):

∂φ

∂t
=
∂

∂y

(
Dc
∂φ

∂y

)
. (3.1)

Assuming that two-particle interaction dominates the dynamics, the collective
diffusivity is proportional to the rate of two-particle interactions (collisions) γ̇ φ:Dc=

γ̇ φa2f2, (i.e. fc,2 = f2φ) (da Cunha & Hinch 1996; Loewenberg & Hinch 1997;
Rusconi & Stone 2008; Grandchamp et al. 2013). Here f2 is the non-dimensional
collective diffusivity in the velocity-gradient direction, the focus of the present work.
The assumption of linear dependence of Dc on volume fraction, or equivalently the
dominance of pairwise interaction is a posteriori justified by the simulation results.

The simulation shows that the drops spread in the gradient direction with time
(figure 2; also see the movie in the supplemental material available online at
https://doi.org/10.1017/jfm.2019.122). We non-dimensionalize time and length as
t= t′/γ̇ , y= y′a. It has been shown by a detailed analysis that when a fixed number
of particles spread due to shear-induced diffusion, the transformed equation (3.1)
admits a self-similar parabolic concentration (Grandchamp et al. 2013)

ψ(η)= ( f2t′)1/3φ =
(
b− η2/6

)
, η=

y′

( f2t′)1/3
, (3.2)

in the similarity variable η, where b is a free parameter. We see that the profile
spreads with t1/3, which is slower than t1/2 growth known to occur in systems with a
constant diffusivity (i.e. independent of concentration or volume fraction). Note that
the characteristic scaling exponent depends on the details of the problem formulation.
In case of particles spreading from one side in an initially Heaviside concentration
profile (Rusconi & Stone 2008), the characteristic exponent is 1/2, even when Dc =

γ̇ φma2f2 with m > 1. In the experimental study of red blood cells (RBC) diffusing
down a gradient (Grandchamp et al. 2013), authors observed the RBC concentration
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10 A. R. Malipeddi and K. Sarkar

to reach a self-similar parabolic concentration as predicted by the analytical solution
(3.2) with its half-width at half-height, w, changing with time as

w3
−w3

o =Kt′, K =
9f2No

(4
√

2)
, No =

∫
φ(y′, t′) dy′. (3.3)

Here wo is the initial width and No is a conserved quantity, related to the particular
nature of the problem mentioned before – a fixed number of particles diffusing out.
It was used to obtain the value of the collective diffusivity f2.

We use two different methods to determine collective diffusivity f2 from our
simulation. The first one follows closely the approach mentioned above – determine
width by fitting a parabolic profile to the concentration and use the width-versus-time
data as per (3.3). For the simulation, No=NV/aLxLz, where V is the drop volume and
N is the total number of drops in the domain. However, to obtain a robust parabolic
approximation of the concentration for width estimation, one needs densely sampled
data with a very large number of drops as, in fact, were obtained in past experiments
(King & Leighton 2001; Hudson 2003; Grandchamp et al. 2013). Obtaining similar
quality data from a direct numerical solution of the Navier–Stokes equation requires
expensive simulation with a large number of individually resolved drops in a large
computational domain and a long simulation time. Figure 2 shows the time evolution
of the drop layer over time from a typical simulation of 70 drops. As the layer of
drops gets sparser, the quality of the concentration profile could become increasingly
worse due to there not being enough drops in each bin, leading to problems with
curve fitting. Instead of using drop centre positions to compute the profile, which
would have restricted the resolution strictly to the drop size, we compute drop phase
concentration over a far finer resolution (1/30 a).

We also use a second method for calculating f2 – instead of the half-width w of
the concentration profile, we use the standard deviation w of the y-positions (y′i) of N
drops (figure 2) as a representative of the width:

w=

√√√√ 1
N

N∑
i=1

(y′i −µ)2, µ=
1
N

N∑
i=1

y′i. (3.4)

Theory predicts this ‘modified’ width relative to its initial value w0 to also increase
linearly with time with a slightly different constant than in (3.3)

w3
−w3

o =K ′t′, K ′ =
9f2No

(10
√

5)
. (3.5)

From the drop locations in a typical simulation (e.g. figure 2), w is calculated and
plotted on a log–log plot to show an eventual linear curve indicating the power-law
dependence on time and f2 is computed. This way of computing f2 avoids curve fitting
at every time step and the associated errors. However, we will see that both methods
lead to very similar values of f2.

4. Results and discussion
4.1. Collective diffusivity using two methods at Ca= 0.05

Figure 2 shows a typical case of an initially concentrated layer of viscous drops
experiencing shear-induced diffusion with time. Figure 3(a) plots individual drop
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FIGURE 3. (Colour online) (a) The drop positions versus time at Ca= 0.05. A few drop
tracks are coloured to highlight the random-walk-like movement. (b) Concentration profile
at various times of drops spreading in shear at Ca = 0.05. Solid lines are the best fit
parabola. The inset shows the same scaled with t1/3 (as per (4.1)) collapse of different
time curves due to the self-similar evolution. (c) Width at half-height of the concentration
profile as a function of time on a log–log plot, showing the 1/3 exponent scaling. (d)
Modified width based on the standard deviation of the drop position as a function of time
showing the same scaling.

positions with time for a low capillary number of Ca = 0.05. The drops exhibit a
random-walk-like movement. The concentration profile for this case is plotted in
figure 3(b), fitting a parabolic profile in successive time instants (also see the movie
in the supplemental material). In the inset of figure 3(b), we plot the concentration
profiles scaled by t′−1/3 versus y′/t′1/3 to see that indeed they all collapse as they
should according to the similarity profile ψ(η) described in (3.2). Plotting the width
w on a log–log plot in figure 3(c) shows an eventual linear curve indicating the 1/3
power-law dependence on time. The initial data (t′ < 20) are discarded; starting from
t′0 = 20, the remaining portion is subdivided into smaller time intervals (15 inverse
shear units). The slope of w3

− w3
o in each subinterval and the corresponding value

of f2 there according to (3.3) is computed. The dynamics over these different time
intervals are approximately uncorrelated (Zinchenko & Davis 2002). The mean of this
average is reported (under the assumption of ergodicity, it is equal to an ensemble
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FIGURE 4. (Colour online) Effect of the computational domain: the width of drop layer
as a function of time for different widths of the computational domain.

average). The corresponding standard deviation of the values from different time
intervals is reported as the uncertainty of the estimation. We obtain f2= 0.329± 0.02.
In figure 3(d), the plot of the standard deviation w of the layer according to (3.4)
against time also shows a similar 1/3 slope with time. An identical analysis is
executed on this data to obtain the average f2 according to the second method to
obtain f2 = 0.327 ± 0.021, very similar to the one obtained by the other method.
Note that there is minimal ‘noise’ in both curves in figure 3(c,d), demonstrating the
robust nature of the 1/3 exponent. Presence of noise detracts from the confidence
of the fitting; which is why ensemble averaging of mean square displacements in
the computation of self-diffusivity requires a significantly larger number of particles
(Marchioro & Acrivos 2001).

4.2. Effects of domain size
Although we are interested in computing the collective diffusivity in an emulsion
in a free shear flow, i.e. without any boundary, our code requires walls to generate
the shear flow. Therefore, it is important to show that the domain size chosen is
sufficiently large and that the results are independent of the physical dimensions
of the domain. The pairwise interaction between drops in a shear flow with walls
was shown to be exactly the same as the free-shear interaction for Ly > 25a when
the drops are at the centre of the domain (Singh & Sarkar 2015). However, unlike
that case, the layer of drops considered here spreads its thickness with time and
eventually would be affected by the walls. Figure 4 shows w3

− w3
o increasing with

time for three different separations Ly between the walls. All three curves are linear
for a substantial portion initially and all have the same slope. This shows that, in
this linear region the walls do not affect the dynamics of the drops. For Ly = 21a,
at approximately t′ − t′0 = 200, the linearity breaks down due to the wall effects. For
Ly = 28a, this happens at approximately t′ − t′0 = 300 and for Ly = 42a there is no
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Shear-induced collective diffusivity down a concentration gradient 13

Ly/a f2

21 0.328± 0.022
28 0.327± 0.021
42 0.329± 0.024

TABLE 1. Effect of domain length in the y direction, i.e. the distance between the walls,
on the diffusivity.

Lx/a f2

10 0.313± 0.030
12 0.314± 0.036
14 0.327± 0.021
28 0.336± 0.032

TABLE 2. Effect of domain length in the flow direction on the diffusivity.

noticeable deviation in the curve until approximately t′ − t′0 = 400. Table 1 shows
the values of the diffusivity calculated in each of these cases from the linear portion.
We obtain a similar value for all three cases with no particular trend. We choose
Ly= 28a for all subsequent simulations. For this wall separation, one can estimate the
lateral velocity on a droplet induced by the bounding walls using a small deformation
analysis (Chan & Leal 1979):

Vlat

γ̇ a
=−

3(16+ 19λ)(54λ2
+ 97λ+ 54)

4480(1+ λ)3
Ca
(

a
Ly

)2( y
Ly

)(
1+

8
(1− 4y2/L2

y)
2

)
. (4.1)

For a sample case of Ca = 0.1, the half-width of the spreading layer reaches
y ∼ 4.5a. With a local volume fraction of ∼0.1, one obtains a Péclet number of
Pe = Vlat/( f2γ̇ aφ) ∼ 0.02, indicating negligible effects of the walls. We also study
the effects of Lx, shown in table 2. In the interest of a reasonable computation time,
Lx = 14a is chosen which seems sufficient for our purpose.

4.3. Effects of No (initial volume fraction in the layer) and initial configuration

In addition to the t1/3 scaling of the width, the dependence of diffusivity on the
quantity No that appears in (3.3) and (3.5) shows that the diffusion is mediated by
inter-particle interactions. In experiments at high volume fractions (>0.3), the effective
coefficient of diffusion (K in (3.3)) increased quadratically with No, indicating a
non-negligible contribution from three-particle interactions (Grandchamp et al. 2013).
It results in a linear increase of f2 with No. If only pairwise interactions dominate, f2
is expected to be independent of No. To verify this and to ensure that the size of the
system is sufficient, we perform simulations with different initial configurations and
different No. Different No values represent different volume fractions in the central
layer at t′ = t′0 (after the power law sets in as seen in figure 3c,d) – e.g. the curves
for No = 1.44 and 3.28 correspond to 18 % and 31 % volume fraction. The curve for
No = 2.44 with an asterisk is for a volume fraction of 49 % obtained with an initial
configuration with a smaller initial layer width. They also represent different layer
widths from ∼6 to ∼8 drop radii as well as different initial random configurations.
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FIGURE 5. (Colour online) Width of the drop layer as a function of time for Ca= 0.05
in the power law regime for different values of No. Inset shows the same, scaled by No,
collapses onto a single curve.

Figure 5 shows w3
− w3

o versus time for these various cases. As expected from (3.5)
the slope increases with No. The inset shows that upon scaling with No all lines
collapse onto a single line, indicating that the results are independent of No as well
as initial configurations.

Note that the relation w3
∝ t arising from (3.2) is contingent on the assumption of

the dominance of pair interactions in determining the shear-induced diffusion, that
gave rise to Dc ∝ φ. In contrast, if three-particle interactions were to dominate, the
diffusivity would be proportional to φ2 giving rise to w4

∝ t (Grandchamp et al.
2013). In general, at high enough concentrations, one would expect the higher-order
interactions to be significant, and a clear scaling might not appear. In the initial part
of the data in figure 3(c,d), when the local volume fraction is high in the closely
packed layer, the deviation from the 1/3 scaling – slopes are smaller – could be a
signature of higher-order interactions in addition to the deviation from the parabolic
profile. With time the local volume fraction continues to decrease and eventually
higher than two-drop interactions become increasingly rare. Note that the time scale
of drop deformation, the capillary time scale, is quite small – identical to Ca in
shear unit, i.e. 0.05–0.35 for the cases considered here. Therefore, the drops achieve
their final deformed state long before the 1/3 scaling behaviour sets in. Based on
the scaling seen in figure 5 and the corresponding volume fractions (specifically the
curve for No = 2.44), we conclude that the 1/3 scaling (and the relationship Dc ∝ φ)
holds for φ 6∼ 0.5.

4.4. Effects of capillary number
Figure 6 shows the drops at three different capillary numbers at approximately
the same time when the drops achieve their deformed shapes. We compute the
non-dimensional collective diffusivity f2 using both methods at different capillary
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Ca = 0.02 Ca = 0.15 Ca = 0.30

FIGURE 6. (Colour online) Snapshots of the drop layer at t′=∼17 for three different Ca.
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FIGURE 7. (Colour online) (a) Width at half-height of the concentration profile as a
function of time for different Ca. (b) Modified width of the drop layer as a function
of time for different Ca. Cube of both quantities has been plotted to show their linear
scaling.

numbers. Figure 7(a,b) shows that w3
−w3

o and w3
−w3

o both vary linearly and almost
identically with t′ − t′0 at different Ca values. Therefore, f2 (the slopes) computed by
the two methods are very similar at all values of Ca, as has been tabulated in table 3.
In figure 8, we plot f2 versus Ca using both methods. They resulted in very similar
values. It shows a non-monotonic variation, as was also seen for the self-diffusivity
(Loewenberg & Hinch 1997; Tan et al. 2012). An intuitive explanation for the
non-monotonic variation can be obtained as arising from a competition between the
effects of increasing deformation and decreasing drop orientation angle with increasing
Ca in pair interactions. The time variation of the average deformation and average
inclination angle of the drops are plotted in figure 9. As noted before, the initially
spherical drops quickly reach their equilibrium deformation over the capillary time
scale t′capillary = Ca. The inclination angle starts at the inclination of the extensional
axis 45◦ and decreases due to deformation (Taylor 1934). The fluctuations in their
values are caused by the drop–drop interactions in the shear flow. Note that although
the local volume fraction decreases due to diffusion of the drops, the average values
of deformation and inclination angle do not change significantly over the time period
considered.

In figure 9, we plot the Taylor deformation parameter D= (L− B)/(L+ B) (L and
B are the maximal and the minimal distances of the drop surface from the centroid)
averaged over all drops and over the power-law regime shown in figure 3(c,d); it
approximately matches with the small deformation perturbative result D= Ca(19λ+

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.122


16 A. R. Malipeddi and K. Sarkar

Ca

D
, f

2

0
0

10

20

30

40

œ 
(d

eg
.)

50

60
f2: from modified width
f2: from profile half-width

f2: best fit quadratic

D

f2
θ

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 8. (Colour online) Dimensionless gradient diffusivity ( f2), deformation parameter
(D) and drop inclination angle (θ ) plotted as functions of Ca. Symbols are the results
from the simulation. The solid and dash-dotted lines are predictions of small deformation
perturbative analysis for θ and D respectively. The dashed line is a quadratic fit of the
simulated f2 values (solid triangles) obtained by standard deviation according to (4.2). The
error bar corresponds to the f2 values.
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FIGURE 9. (Colour online) Average deformation (a) and average orientation angle (b) with
time for a simulation at Ca= 0.05. The shading shows the standard deviation.

16)/(16λ + 16) (λ is the viscosity ratio) (Taylor 1934) for the entire range of the
Ca considered here, the deviation also resulting from the interactions. The average
drop inclination angle plotted in the same figure (figure 9) shows a decrease as also
predicted by the small deformation perturbative analysis θ =π/4−Ca(2λ+ 3)(19λ+
16)/(80λ+ 80) (Chaffey & Brenner 1967).

Figure 10 explains the effects of competition between increasing deformation and
decreasing inclination with increasing Ca. For small Ca, increased deformation with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.122


Shear-induced collective diffusivity down a concentration gradient 17

Small Ca Moderate Ca Large Ca

FIGURE 10. (Colour online) Schematic showing two approaching drops in three different
regimes of Ca to explain the non-monotonic dependence of f2 on Ca. The overlapping
region increases initially and then decreases.

Ca f2 from w f2 from w

0.02 0.23± 0.05 0.24± 0.06
0.05 0.33± 0.03 0.33± 0.03
0.10 0.39± 0.06 0.40± 0.06
0.15 0.45± 0.05 0.45± 0.05
0.2 0.42± 0.03 0.43± 0.03
0.25 0.39± 0.03 0.40± 0.03
0.30 0.37± 0.02 0.38± 0.03
0.35 0.25± 0.04 0.26± 0.05

TABLE 3. Tabulated values of f2 using two methods, (i) from standard deviation of the
droplet position and (ii) width of the concentration profile.

increasing Ca enhances the irreversible relative displacement between droplets upon
interactions increasing the diffusivity. However, with larger increase in Ca, as the
angle of inclination decreases, the drops are more aligned, allowing sliding, and
eventually this effect overcomes the other, decreasing the diffusivity above Ca∼ 0.2.
The non-monotonic variation in relative displacement in the pair collisions between
drops in shear has been investigated in detail in the past (Olapade et al. 2009).
Loewenberg & Hinch (1997) also found non-monotonicity in self-diffusivity versus
Ca, and attributed it to the subtle difference in pairwise interactions between initially
closely spaced drops at low and high Ca numbers. At low Ca, initially closely
spaced drops experience higher post-collision net displacements in their streamlines
compared to drops which are initially far apart; the converse is true at higher Ca.
The authors argued that the balance between the decreasing near-field influence and
the increasing far-field influence may have caused the non-monotonicity. Finally, we
fitted the simulated values of f2 for different Ca by a quadratic curve and obtained a
phenomenological relation

f2 =−6.89Ca2
+ 2.57Ca+ 0.20. (4.2)

The relation has been plotted in figure 8.

4.5. Comparison with past experiments and theory
The only experimental measurement of f2 available in the literature is the one reported
by Hudson (2003), who used drops of poly(propylene glycol) or poly(ethylene-alt-
propylene) dispersed in poly(ethylene glycol). We ran simulations with material
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Experimental f2 (Hudson 2003) Present work

Ca= 0.02 0.21 0.23
Ca= 0.05 0.16 0.27
Ca= 0.40 0.22, 0.25 —

TABLE 4. Comparison of the diffusivity calculated from the present simulations
compared to the experimental values reported by Hudson (2003).

properties and a capillary number corresponding to this experiment and computed the
diffusivity. The comparison with the experiment, shown in table 4, is very good at
Ca=0.23 but shows some departure at Ca=0.05. At the large value of Ca=0.40, the
simulation indicated drop break-up. In search of possible reasons for the difference
between the computed results and measurements, one notes that the current simulation
is for a purely monodisperse system and without any coalescence. However, Hudson
noted that in their experiment the coalescence is rare and polydispersity is minor (the
ratio between volume averaged and number averaged radii is ∼1.2).

In the limit of Ca→ 0, the collective diffusivity for an emulsion of spherical drops
was inferred from two drop interactions to be ∼0.20 (Ramachandran, Loewenberg &
Leighton 2010), which matches with the value obtained by extrapolating the present
numerical result. There have been no other computations of f2 in the literature.
Grandchamp et al. (2013) reported a value of ∼0.77 (rescaled by particle volume)
for red blood cells. Loewenberg & Hinch (1997) used boundary element simulation of
pair collisions to obtain self-diffusivity 8–9 times smaller than the gradient diffusivity
calculated here. As noted before, for emulsions, effort to compute the gradient
diffusivity by integrating all possible pair collisions has been frustrated due to
divergence of the integrals. However, for rough spheres pair collisions can be used to
predict both diffusivities and the ratio of gradient to self-diffusivity has been found
to be ∼6 (da Cunha & Hinch 1996), similar to what has been found here.

4.6. Collective diffusivity computed using dynamic structure factor
As noted in the Introduction, Leshansky & Brady (2005) provided an elegant means of
computing the collective diffusivity of a rigid sphere suspension from the simulation
of a statistically homogeneous suspension in simple shear. It is based on the fact
that even in a homogeneous system, stochastic fluctuations appear spontaneously and
their decay can be used to compute self- as well as collective diffusivities (Morris
& Brady 1996). However, collective diffusivity intrinsically is a property of a non-
homogeneous system with concentration gradients. Therefore, it will be of interest
to apply any methodology for computing collective diffusivity to a non-homogeneous
system. Here, we apply the method proposed by the above authors to our system, get
an estimate of the collective diffusivity, qualitatively compare with the values obtained
in the previous section and discuss the applicability of the results.

The dynamic structure factor approach to obtaining the collective diffusivity
stemmed from the theory of dynamic light scattering, where the scattered response
of a monochromatic beam of a laser from a scattering volume containing multiple
scatterers (large macromolecules such as DNA, proteins, amino acids, viruses and
bacteria) is measured. The scattered field fluctuates due to thermal fluctuations of
the molecules and can provide structural and dynamic information about the system
(Berne & Pecora 1976). For an infinitely dilute system of non-interacting scatterers,
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the autocorrelation of the fluctuation decays exponentially and the decay time is
inversely proportional to the diffusivity. For concentrated systems, the fluctuating
particle motions are however affected by their hydrodynamic interactions and the
experimental observations require careful analysis (Altenberger & Deutch 1973;
Altenberger 1979; Russel & Glendinning 1981) and proper interpretation, which then
could furnish the collective or self-diffusivity (Rallison & Hinch 1986) in appropriate
limits. Leshansky & Brady (2005) carefully described the theory and applied it to
shear-induced diffusion. Here, we briefly sketch the argument. Note that the analysis
would lose its validity in the case of drop coalescence or break-up which are not
considered here. In dynamic light scattering, the scattered light corresponding to the
scattered wavenumber k (non-dimensionalized by a) from N scatterers located at
x′α(t′), α = 1, 2, . . . ,N is proportional to the intermediate scattering function

F(k, t′)=
1
N

〈
N∑

α,β=1

eik·(x′α(t′)−x′β (0))

〉
. (4.3)

Note that by the property of the Dirac delta function, the number density of the
scatterers (here droplets) and its spatial Fourier transform can be written as

n(x′, t′)=
N∑
α=1

δ(x′ − x′α), n̂(k, t′)=
N∑
α=1

eik·x′α . (4.4a,b)

Therefore, F(k, t′)= 1/N〈n̂(k, t′)n̂∗(k, 0)〉 may be regarded as measuring the autocorre-
lation of the fluctuation n′(x′, t′) (where n(x′, t) = no + n′(x′, t′)) at wavenumber k
for a statistically homogeneous system, as the constant background no would not
contribute to the autocorrelation. Our system is not homogeneous, but evolves from a
non-homogeneous initial condition with a strong concentration gradient. However, one
can note the following. Leshansky & Brady (2005) showed that the theory assumes
a model of the number density satisfying an advection diffusion equation in a shear
flow U+ Γ̇ · x (U is the average flow and Γ̇ is the velocity gradient tensor):

∂n
∂t′
+ (U+ Γ̇ · x) · ∇n=Dc∇

2n. (4.5)

One can use the same governing equation here, but unlike the homogeneous case
considered by the previous authors, the initial condition for (4.5) here is different
and represents the droplets concentrated in the central layer. Therefore, whereas
the concentration variation in the previous case results from the fluctuations caused
by the interactions of moving drops, here we introduce an initial inhomogeneous
concentration variation. But (4.5) is linear and therefore, the different wavenumber
components n̂(k, t′) are independent and the theory remains valid. One possible
concern is the value of the diffusivity obtained being dependent on the strength of
the variation and, in principle, one has to calculate for different strengths and the
results extrapolated to zero as was also argued by Marchioro & Acrivos (2001) for
one of their proposed methods for the computation of collective diffusivity. (Note
that (4.5) is slightly different from the one in Leshansky & Brady (2005), where a
non-local Fick’s law of diffusion was used to mathematically derive the expression
governing the wavenumber dependent diffusivity in the Fourier domain. Alternatively
one can postulate an independent linear Fick’s law in the Fourier domain (Russel &
Glendinning 1981).)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.122


20 A. R. Malipeddi and K. Sarkar

In spite of the advection terms in (4.5), in a simple shear due to the orthogonality of
the k(= kŷ) vector to the velocity field, one obtains a simple relation for the diffusivity
in the gradient direction (Leshansky & Brady 2005):

Dc,yy =−
1
k2

d(ln F)
dt′

. (4.6)

Note that instead of F, if one uses the self-intermediate scattering function Fs defined
by

Fs(k, t′)=
1
N

〈
N∑
α=1

eik·(x′α(t)−x′α(0))

〉
, (4.7)

one obtains long-term self-diffusivity D∞s,yy from the same equation (4.6) (Morris
& Brady 1996). We compute F(k, t′) according to (4.3) using the simulated drop
evolution data positions after eliminating the initial part (t′0 = 20). The resulting
intermediate scattering functions are averaged over overlapping intervals to obtain a
smooth time evolution curve as was also executed by Leshansky & Brady (2005).
In figure 11(a), we plot −ln F(k′, t)/k2 for Ca = 0.05 for different wavenumbers
normalizing their initial values. They show a linear growth with time and the curves
tend to converge to a single curve in the small k limit. Accordingly, the slope of
the curves asymptotes to a value as k→ 0 (large length scale limit), as shown in
figure 11(c) for different Ca values. Figure 11(d) plots this asymptotic value of
the slope, i.e. the collective diffusivity Dc,yy (non-dimensionalized by a and γ̇ ) as
a function of Ca. Similar to f2 in figure 8, Dc,yy shows a non-monotonic behaviour
with Ca. Due to the spatial variation and continuous decrease in the local volume
fraction ϕ(y′, t′) with time, one cannot directly compare the two values. However, the
approximate ratio Dc,yy/f2∼ 0.1 can be recognized as an average ϕ∼ 0.1 starting with
a maximum local value of 0.25 (see figure 3b).

As noted before, unlike in Leshansky & Brady (2005), the results here are obtained
from the evolution of an initially prescribed inhomogeneity instead of spontaneously
occurring fluctuations. The scaled parabolic evolution (3.2) of the imposed initial
condition also explains the increasing trend of the slope of −ln F(k, t′)/k2 with k in
figure 11(c). To further elucidate this fact, we interrogate the parabolic concentration
profile n̄(y′, t′)= 3ϕ(y′, t′)/4πa3 fitted at successive time instants from the simulated
droplet positions (as in figure 3b). We compute fast Fourier transform (FFT) of the
data ˆ̄n(k, t′) and find the corresponding autocorrelation F̄(k, t′)= 1/N〈 ˆ̄n(k, t′) ˆ̄n∗(k, 0)〉.
The time evolution was averaged following a procedure identical to the one for F(k, t′).
For Ca = 0.05 in figure 11(b), −ln F̄(k, t′)/k2 shows behaviour very similar to that
of −ln F(k, t′)/k2 shown in figure 11(a) derived directly from the discrete particle
positions. The slopes at different k and Ca from the fitted parabolic profiles plotted
in figure 11(c) also follow the same curve. In figure 11(d), the dashed line from this
procedure matches the one computed from discrete positions directly. Therefore, we
emphasize that the increasing trend of the slope of −ln F(k, t′)/k2 in figure 11(c) arises
from the nonlinear diffusion of the imposed initial condition. For the same reason,
interpretation of the values of −ln F(k, t′)/k2 for higher k as wavenumber dependent
diffusivity is not possible here. Note that in the limit of k → ∞, in (4.3) due to
the large variations in the phase factors for terms corresponding to α 6= β results in
F(k, t′)→ Fs(k, t′) (Rallison & Hinch 1986; Leshansky & Brady 2005). Therefore,
the slope of −ln F(k, t′)/k2 in this limit gives rise to self-diffusivity. However, with
the small system size (which becomes more acute for the single summation in (4.7)),
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FIGURE 11. (Colour online) (a) The dependence of −ln F(k, t′)/k2 on time for various
wavenumbers obtained from individual particle positions. (b) The same computed using
the autocorrelation function of the fitted parabolic concentration profile. (c) Slope of
−ln F(k, t′)/k2 as a function of the wavenumber for both the previous calculations showing
similar values. (d) Slope of −ln F(k, t′)/k2 at the lowest wavenumber obtained from both
calculations. The dependence on Ca is similar to what was obtained for f2 versus Ca
(figure 8).

the values of self-diffusivity computed using (4.7) were too noisy to be quantitatively
useful, although they were of the right magnitude (smaller by a factor of 5 compared
to the gradient diffusivity). In any event, the above analysis demonstrates that the
procedure for computation of dynamic structure factor and correspondingly the
collective diffusivity can also be applied to inhomogeneous systems. We also note
the following about our method vis-à-vis the dynamic structure factor method. In a
statistically homogeneous or non-homogeneous (as in here) system, the accuracy of
the results obtained from a particular analysis, to which one subjects the experimental
or the simulated data (e.g. the droplet positions here) depends on the validity of the
assumptions of the theory underlying the analysis. The dynamic structure factor theory
assumes a linear governing equation (4.5), whereas the results obtained before based
on the observed ∼t1/3 scaling indicates a nonlinear diffusion (3.2) with Dc,yy linear
in ϕ or n. One can apply dynamic structure factor theory to simulations performed
at different volume fractions, and obtain volume fraction dependence of diffusivity,
as was executed by Leshansky & Brady (2005). However, the implicit assumption is
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that during the time of analysis the variation in the fluctuation remains sufficiently
small so that the linear theory remains. Nonetheless, we argue that different analytical
procedures can provide fruitful information about a system as long as their underlying
assumptions are kept in mind.

5. Summary and concluding remarks
In summary, we have used fully resolved numerical simulations to compute the

gradient or collective diffusivity of viscous drops in a sheared emulsion. We used
two slightly different methods – the width of a fitted concentration profile, and
the standard deviation of the droplet positions – using a relatively small number
(70) of droplets. Both yielded very similar results and were roughly consistent with
the single experimental observation available in the literature, as well as the limit
value of a previous theoretical computation. The collective diffusivity was seen to
vary non-monotonically with Ca, due to the competition between the increasing
deformation and decreasing inclination in the underlying drop dynamics, which in
turn affects the drop–drop collision. An empirical correlation has been developed to
describe the Ca dependence. We also applied an alternative method of computing
collective diffusivity, using the dynamic structure factor, that was originally developed
for statistically homogeneous suspensions. Although the results could not be directly
compared, as the system is inhomogeneous, we show that the results from the
alternative method when appropriately interpreted are in qualitative agreement with
those from the other method including the prediction of the non-monotonic variation
with capillary number. It indicates that the structure factor based method could
provide valuable information even in a non-homogeneous system. In future, effects
of viscosity ratio variation as well as more complex systems such as suspensions of
capsules or vesicles will be investigated.
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