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SUMMARY
Adaptive gait planning is an important aspect in the
development of control systems for multi-legged robots
traversing on rough terrain. The problem of adaptive gait
generation can be viewed as one of finding a sequence of
suitable foothold on rough terrain so that legged systems
maintain static stability and motion continuity. Due to the
limit of static stability, deadlock situation may occur in the
process of searching for a suitable foothold, if terrain
contains a large number of forbidden zones. In this paper, an
improved method for adaptive gait planning is presented by
active compensation of stability margin, through center of
gravity (CG) adjustment in the longitudinal axis and/or
body translation in the lateral direction. An algorithm for the
proposed method is developed and embedded in a computer
program. Simulation results show that the method provides
legged machines with a much larger terrain adaptivity and
better deadlock-avoidance ability.

KEYWORDS: Multi-legged robots; Gait planning; Motion plan-
ning; CG adjustment.

1. INTRODUCTION
There is a growing need for multi-legged vehicles to
traverse rough terrain in applications such as agriculture,
underwater1 as well as planetary and volcanic exploration.2

In these demand applications, the superior terrain adaptivity
is a critical requirement.3

The terrain adaptivity of a legged system depends directly
on the gait planning. The problem of gait planning in a
multi-legged system can be generally formulated as how to
coordinate the motion of legs and body to make the machine
traverse over a particular terrain with static stability manner.
An adaptive gait should be able to coordinate the locomo-
tion of legged systems to negotiate the terrain containing
forbidden zones. Specifically, the task of an adaptive gait
planning in control includes a determination of optimal
schedule for lifting and placing of legs of walking robots
and a finding of suitable footholds as supporting points for
the transfer leg(s) over the whole trajectory.4,5 To achieve an
effective adaptive gait, some limits, namely, terrain condi-
tion, geometry (or kinematic) constraint and static stability,
must be taken into account in planning.6 The geometry
constraint requires all legs keeping their foot tips in the
respective reachable area, while static stability constraint

refers to that the projection of the body center of gravity
(CG) must be located inside the boundary of support
polygon composed by the tips of supporting legs.4 In other
words, the stability margin must be greater than zero during
locomotion.

A considerable amount of prior work has been devoted to
the study of the adaptive gait over past decades. Representa-
tive of these works is a free gait algorithm which was first
recognized and formalized by Kugushev and Jaroshevskij,4

and subsequently improved and developed for a hexapod
robot by McGhee and Iswandhi.5 The general strategy of
free gait is to find a sequence of support patterns such that
there is an overlap of the existence segment of each support
state with that of the proceeding support state. To reduce the
complexity of the problem, the algorithm developed by
McGhee and Iswandhi determines the support pattern
sequence only one cycle forward rather than over the whole
trajectory. Such an approach may lead to a situation of
deadlock if terrain contains a large number of forbidden
zones. For four-legged robots, due to fewer choices about
selecting their steps, free gait algorithm may become more
susceptible to deadlock situation. Hirose7 presented a
hierarchical algorithm to overcome the deadlock problem of
quadruped robots. In his algorithm, new support points are
selected through the three reflexes from sensors. The
selection tends to restrict the search area of new footholds.
More recently, some improved free gait algorithms based on
all possible leg-ends and body transfer,8,9 and a graphic
search over the whole trajectory10 are also presented for
obstacle-avoidance.

Careful examination of the methodology of these algo-
rithms for free gait shows that the trade-off between stability
and adaptability is critical for successful generation of a free
gait. A deadlock situation will occur if a contradiction
appears in stability and adaptability. It is clear that the
likelihood of deadlock will decrease if the value of stability
margin is compensated.

Two ways can be utilized to compensate stability margin.
One is to adjust the CG position relative to the platform11–13

and another is to move the vehicle body in the lateral and/or
longitudinal direction acordingly.14,15 Ding and Scharf11

applied the former method to study deadlock avoidance for
a quadruped, in which the CG is shifted forward and
backward in the longitudinal direction by moving an arm.
Messuri and Klein,14 under the assumption of a sufficiently
slow body speed, used the second approach in precision-
footing control mode, developing a body regulation scheme
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to aid the operator in maneuvering the hexapod vehicle
(ASV).

This paper focuses on improving adaptive gait behaviors
through compensating the stability margin, using a combi-
nation of CG adjustment in the longitudinal axis and body
regulation in the lateral axis. An algorithm is developed for
a quadruped simulation prototype. The significant feature of
this algorithm is that it can provide the machine with a much
greater adaptivity over rough terrain at a reasonable walking
speed. The paper is organized as follows. The scheme of
stability margin compensation for a quadruped prototype is
described in Section 2. In Section 3 the motion of non-
periodic gait is described and then the adaptive gait planning
is formulated. The method to improve adaptive gait
behaviors through stability margin compensation is
addressed in Section 4 together with the strategy of CG
adjustment. An adaptive gait planning algorithm is pre-
sented in Section 5 and simulation results are given in
Section 6 to illustrate the benefit of the proposed method.
Finally, a summary and conclusions are made in Section 7.

2. COMPENSATION DEVICE
A quadruped robot, referred to as NTU-Q1, is being
developed at the Nanyang Technological University to
facilitate the study of adaptive locomotion of legged
systems. Figure 1 shows a computer simulation prototype of
NTU-Q1. When completed, it will be a self-contained
walking robot intended for material handling on irregular
terrain environment. Each of its four legs has three
independent rotary joints arranged in an arthropod config-
uration. The two terrain scanners located at the front are
used to provide terrain data for the prediction of suitable
foothold position. To achieve superior terrain adaptivity, a
device for the compensation of stability margin has also
been incorporated into the design of this machine.

The scheme of stability margin compensation adopted by
NTU-Q1 involves the CG adjustment relative to body frame
along the longitudinal axis and body frame translation in the
lateral axis. Such an arrangement allows the machine to
enhance the minimum value of stability margin, while it is
independent of the machine’s locomotion in the longitudinal
direction. A movable weight which may consist of the

batteries and control parts is used as balancing mass to
adjust the CG position in the longitudinal axis. On the other
hand, the arthropod configuration of each leg enables the
body frame to translate laterally in a sufficiently large range,
thus affecting the adjustment of the CG position in this
direction.

As shown in Fig. 2, compensation area is a region in
which the CG can be adjusted through the motion of
movable weight in the longitudinal axis and the motion of
body frame along lateral axis. Clearly, the compensation
area will be a rectangle if the body is not allowed to rotate.
The length in the lateral direction depends on the position of
support legs in the lateral stroke, while the length in the
longitudinal direction is determined by the maximum
distance covered by the movable weight. The size of
compensation area may affect the extent of stability margin
compensation. A reasonable size of the compensation area
is needed to maintain the machine’s static stability on the
support pattern permitted by the reach of support legs. For
NTU-Q1, the desired size of compensation area is
Cx = 20.2 cm in the longitudinal direction and Cy =30 cm in
the lateral direction (see Fig. 2). Some preliminary simula-
tions have shown that such an adjusting region is adequate
to keep the machine’s static stability. Figure 3 shows several
examples of how the CG position can be adjusted within the
compensation area to maintain the static stability.

Fig. 1. Computer model of NTU-Q1.

Fig. 2. Compensation area of NTU-Q1.

Fig. 3. Top view of CG adjustment in some support patterns.
(a) longitudinal direction, (b) lateral direction, (c) longitudinal and
lateral direction.
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3. PROBLEM STATEMENT
An entire gait consists of a finite number of support states.
Thus an adaptive gait planning for the complete trajectory
can be divided as the gait planning in a support state. At this
point, the problem of adaptive gait planning can be viewed
as the coordination of the motion of legs and body with
static stability within a support state and state shifting.

3.1 Description of motion
The support state of a K-legged locomotion system is
actually a state description of the legs touching or lifting
from the ground. For the purpose of discussion, the support
state can be classified into two types:

(i) F-state, if all the legs are the supporting leg,

(ii) T-state, if there is at least one swing leg.

The shifting of support state from one to another is
caused by the occurring of at least one event.  A gait event
is the placement or lift of the leg. For adaptive gait, the
sequence of support state is irregular, which closely depends
on the given terrain condition. To take the sequence of
support states into account, an integer number n is used for
each support state according to the time order. If the
location of a support state in the series formed by all support
states is n, then this support state will be denoted as S(n).
Thus F-state is denoted as SF(n), and T-state as ST(n).

The time length occupied by a support state is called the
state period. A state period associated with S(n) can be
denoted as Dt(n). The moment of shifting from S(n-1) to
S(n) is denoted as t 2 (n), likewise, the moment from S(n) to
S(n+1) as t+ (n), both of which are measured from the initial
time. We can get the following equations,

Dt(n)=t+ (n)2 t2 (n)

t2 (n)= On21

k=1

Dt(k) (1)

t+ (n21)=t2 (n).

During the period of support state, the body of the machine
may move or rest. A body’s motion state16 is defined as 1 if
the body has moved, and as 0 if the body has not moved.
Evidently, if more body motion states are 1 in a complete
gait, then the machine will reach relatively higher speed orFig. 4. Kinematic coordinate systems.

Fig. 5. Initial foot conditions in one cycle of a wave gait.
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the motion of the machine will be “smoother”.
The locomotion state is a description of machine’s motion

that involves both body state and support state. According to
the motion of legs and body, locomotion state of a machine
in any time is possibly one of four cases, (ST, 0), (ST, 1),
(SF, 1), and (SF, 0). The locomotion state (SF, 0) means legs
and body rest. Such a locomotion state generally possesses
the best static stability because all feet are supporting legs.
The locomotion state can be utilized in some cases to adjust
the position of CG for the subsequent motion, which leads
to a transitional state, denoted by S([n]). This is a
locomotion state that the legs and body rest but the movable
weight may move.

The determination of the type of a locomotion state
relates to the support state’s foot condition, i.e. the position
of the supporting feet with respect to the body-frame. Foot
condition is also represented through the kinematic margins
of the feet. Note that the kinematic margin11 is the length of
a vector opposite motion direction from the current support
point to the intersection point with a reachable area
boundary.

In this work, KMi(n) is used to denote the kinematic
margin of leg i in S(n).  It is also useful in gait planning to
identify the order of magnitudes of all leg kinematic
margins. If there are k support legs at certain moment of
S(n), K(i, n) denotes the i-th kinematic margin from the
minimum value, thereby having K(1, n) ≤ K(2, n) ≤ . . .
≤ K(k, n). Note that K(i, n) is generally a function of time.
If a body motion state is 1 in a support state, the foot
condition in different instance during this support state will
be different. The foot condition at the moment of the
beginning of a support state is called initial foot condition.
Unless otherwise specified, KMi(n) or K(i, n) is measured in
the initial foot condtiion of S(n).

The motion speed of the body and swing leg, in practice,
may vary within a state period. We use the average body
speed, Vb(n), and average swing speed, Vs(n), to describe the
velocities of the body and transfer leg. Note that Vb(n), is
measured with respect to the global-frame while Vs(n) is
measured with respect to the body-frame. Without ambi-
guity, Vb(n) and Vs(n) will also be called body speed and
swing speed in later sections for abbreviation. Let us define
b-factor and a-factor, denoted by b(n) and a(n) as follows:

b(n) =
Vs(n)

Vs(n) + Vb(n)
and a(n) =

Vb(n)
Vs(n)+Vb(n)

. (2)

Note that b(n) may vary from state to state around a
specified b for adapting the terrain. For a given b-factor,
swing speed will be fixed, but body speed may change
owing to different b(n). It is assumed that the backward
motion of body is prohibited. The following relations about
b(n) and a(n) will always hold in a support state

1 ≥ b(n)>0, 1>a(n)≥0, and a(n)+b(n)=1. (3)

In fact, if the sequence of support states is periodic, b-factor
in quantity will be equal to the duty factor defined in a
periodic gait.16,17

3.2 Formulation of problem
The following assumptions are adopted in this work.18,19

• The machine keeps its body level at a constant height
during locomotion.

• All legs possess the same rectangular reachable area.
• No backward motion of body is allowed.
• No rotation of body is allowed during locomotion.
• Terrain is smooth except in forbidden zones.

Based on these assumptions, the machine-terrain system can
be modeled as a two-dimensional system as shown in Fig. 4
(see Appendix for the definition of symbols).

Three frame-systems, namely, global-frame {W}, body-
frame {B} and trace-frame {T} are used to describe the
machine’s motion. The global frame is fixed to the ground
and used to define the motion of the body-frame and/or the
trace frame. The body frame is attached to the body chassis
and used to facilitate the depiction of leg motion relative to
the body. Since the CG position is adjustable with respect to
the body chassis through moving the movable weight, the
origin of the body frame (OB) is not fixed at the CG but at
the geometry center of the chassis. The trace-frame, the
origin of which (OT) is fixed at the center of the
compensation area, is used to describe the CG adjustment
relative to the compensation area. It should be noted that
without CG adjustment, the three points, namely CG, origin
of body frame and origin of the trace-frame will coincide
together. Clearly, the position of OB on {T} represents the
adjustment of the body chassis along the lateral axis, and the
position of CG on {B} represents the adjustment of CG
caused by the motion of the movable weight along the
longitudinal axis. Note that {B} has no rotation relative to
{T}.

The coordinate of the foot tip of leg i in {W} can be
expressed in {B} as

FW
xi(n)

Wyi(n)
G=FW

xT(n)

WyT(n)
G+ W

T A(f)F B
xi(n)

Byi(n)2 TyB(n)
G, (4)

where WT A(f) =Fcos f

sin f

2sin f

cos f G is a rotational matrix from

{T} to {W}.
The kinematic margin of each leg can be obtained by

KMi(n)=

Bxi(n)2 (
k
2

2 i)
Px

2
+

Rx

2
, if i is odd

Bxi(n)2 (
k
2

2 i+1)
Px

2
+

Rx

2
, if i is even

(5)

where k is the number of legs, while Px and Rx are
respectively the pitch and stroke in the longitudinal
direction.

By now the problem of the adaptive gait planning in S(n)
has been defined:

For a given terrain condition and a desired b, if a machine
state at t = t2 (n) is known, the task of the gait planning is to
determine the parameters of the machine state at
t = t2 (n + 1) for a statically stable motion.
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4. AN IMPROVED ADAPTIVE GAIT PLANNING

4.1 Rules of selection of locomotion state
We assume that the support state S(n) always begins from a
condition with full supporting legs. At this instant, a
decision will be made on which leg should be the transfer
leg and which type of the support state (T-state or F-state)
should be used for the next step. Accordingly, some rules
should be made to govern machines’ locomotion so as to
ensure the following requirements:

(i) Support states must be statically stable.
(ii) Geometry limit for all legs cannot be violated.

(iii) The lifting or placing of a leg should result in the
minimum value of the kinematic margin of all
supporting legs maximum.5,17

(iv) To keep b(n) equal to the desired b-factor, if possi-
ble.

Based on the above requirements, the following rules are set
up for the selection of the transfer leg and the support
state:

Rule 1: the leg with the minimum kinematic margin will
always first be selected as the transfer leg.

Rule 2: a leg cannot be selected as a transfer leg twice
successively.

Rule 3: if two or more legs are with the minimum
kinematic margin, the leg which, when lifted, results in the
largest stability margin should be selected as a transfer
leg.

Rule 4: if the transfer leg is still not determined, then the
sequence of the swing legs, 1-4-2-3, should be used, which
possesses the largest stability margin in the periodic gait.20

After the transfer leg has been determined, it is necessary
to consider whether this chosen leg is lifted immediately,
which result in a T-state, or this leg is lifted after a period,
which result in an F-state. The method of the generation of
a support state type is given by Rules 5–8.

Rule 5: if the support state tends to be statically unstable
when the transfer leg selected is lifted, then an F-state
should be used.

Actually either such an F-state produced from Rule 5 is a
transitional state or it is followed by a transitional state.
During the period of this transitional state, the CG of the
machine will be adjusted to a suitable position so as to
guarantee the selected swing leg can be lifted. If without
stability compensation, the case occurring in Rule 5 will
result in a deadlock situation.

Rule 6: without violating Rule 5, if the minimal kine-
matic margin of support legs is equal to zero, then a T-state
should be used.

For the case of the minimum kinematic margin greater
than zero, both T-state and F-state may be used for the
machine locomotion. However, for the purpose of the
“smoother” motion of the machine, it is often necessary to
keep b(n) of the desired b-factor by virtue of the
characteristics of different types of support state. The
following rules can be used for this purpose.

Rule 7: an F-state must be followed by a T-state, i.e., two
successive F-states are prohibited.

Rule 8: without violating Rule 7, if

K(2,n) >
[Rx 2K(1,n)]a(n)

b(n)
and K(1,n) > 0, then an F-state

should be used, otherwise a T-state should be used.
Although the above rules are presented for adaptive gait

planning, when applied to analyze the periodic gaits they
should also lead to the same sequence of support state as
that from known periodic gaits. This feature can be used to
check the correctness of these rules. Consider a wave gait
with a duty factor b=0.8. Its gait diagram is shown in Fig.
5(a), in which a total of 5 support states are included in a
cycle. The initial foot condition of each support state is
shown in Fig. 5(b). Clearly, according to Rules 1 and 6,
S(1), S(2), S(4) and S(5) are T-states, with the transfer legs
leg 4, leg 2, leg 3 and leg 1, respectively. According to Rules
1 and 8 S(3) is an F-state with leg-3 as the possible transfer
leg. These results are agreeable to those obtained from the
wave gait formulation.

4.2 Foothold selection
A suitable foothold for the transfer leg in a T-state should be
one that the transfer leg can reach it in a statically stable
manner while not violate the geometry, kinematics and
static stability limits of the machine. Obviously, such a
foothold is not unique. The underlying logic for foothold
selection here is to find a region in which all feasible
footholds satisfy the above constraints. After the region is
determined, the suitable foothold (support point) will be
selected from this region according to appropriate optimal
rules.

4.2.1 Geometry constraint. Geometry constraint requires
that all foot tips of the machine must be placed within
respective reachable area. To determine the foothold region
satisfying the geometry constraint, the maximum distance
covered by the transfer leg should be computed. With the
aid of body motion the maximum distance the swing leg can
cover should be

Cg(n) = Rx 2K(1, n) + K(2, n). (6)

Equation (6) implies that any a foothold within Cg(n) if
selected as a support point will ensure the transfer leg
satisfy the geometry limit.

4.2.2 Kinematic constraint. When a legged system walks
with a desired b-factor specified in advance, the following
cases may appear: (i) The swing leg reaches the boundary
of its reachable area, but the support legs do not. (ii) The
support leg with kinematic margin K(2, n) reaches the
boundary of its reachable area, while the transfer leg does
not. The first case may reduce the distance the body can
cover in a support state, while the second case may result in
a deadlock situation. To avoid these cases, the maximum
distance the swing leg can cover in S(n) should satisfy the
following kinematic constraint

Ck(n) = min {[Rx 2K(1, n)]/b(n), K(2,n)/[12b(n)]}.(7)

Obviously, Ck(n) ≤Cg(n). The value of Ck(n) will get its
maximum value, Cg(n), if b(n) is appropriately adjusted in
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the form

b(n) = bm(n) =
Rx 2K(1, n)

Rx 2K(1, n) + K(2, n)
. (8)

At this point both the support legs and swing leg will reach
their reachable area boundary simultaneously.

4.2.3 Stability constraint. Static stability requires the
projection of the CG of a machine locating inside the
support polygon or the static stability margin of the machine
positive at any time. From Rule 5, at the beginning of a T-
state the stability margin should be greater than zero, or a
transitional state will be used. Furthermore, since the
backward motion of a machine is forbidden, only the front
stability margin need to be considered in the foothold
selection. The front stability margin in the period of a
support state is monotone function, and the minimum and
maximum values occur respectively at the end and begin-
ning of that support state.19 It implies that if the maximum
front stability margin during S(n) is SMl(n), then under the
consideration of stability constraint without CG adjustment,
the maximum distance the body can translate in S(n) will be
SMl(n). Assume the front boundary of the support pattern of
S(n) is composed by the foot tips of leg-i and leg-j, we
have

SMl(n) =
Bxj(n)2 Bxi(n)
Byj(n)2 Byi(n)

[ByG(n)2 Byi(n)] + Bxi(n)2 BxG(n). (9)

Denote Cs(n) as the maximum distance that transfer leg can
cover under the condition of the stability constraint. Similar
to that presented in subsection 4.2.2, Cs(n) can be deter-
mined by

Cs(n)= min{[Rx 2K(1, n)]/b(n), SMl(n)/[12b(n)]}. (10)

Comparing Equations (7) and (10), the maximum distance,
C(n), that the transfer leg can cover under kinematic
constraint and stability constraint should be a minimum of
Cs(n) and Ck(n),

C(n)= min {[Rx 2K(1, n)]/b(n), min[(SMl(n),

K(2, n))/(12b(n)]}. (11)

Likewise, the value of bm(n) can be obtained by

bm(n)=
Rx 2K(1, n)

Rx 2K(1, n) + min [SMl(n), K(2, n)]
.

Without the compensation of stability margin, SMl(n) will
passively depend on the support polygon. It is possible that
SMl(n) becomes very small in some support states if terrain
is very rough. For this case, C(n) may decrease even become
zero, consequently the swing leg may find no-place to rest.
Thus the terrain adaptivity of the transfer leg will be
lowered, and the deadlock case may occur. If there is a
compensation of stability margin, SMl(n) will be independ-
ent from the support polygon because the coordinate
[BxG(n), ByG(n)] in Eq. (9) is adjustable. The value of SMl(n)
can be enhanced through adjusting the CG position within

the compensation area. Further, if the compensation mecha-
nism is constructed appropriately, it is possible that there is
at least one point within the compensation area which
results in

SMl(n)≥K(2, n). (13)

It means that C(n) will be equal to Ck(n) under the
consideration of the CG adjustment. Thus the selection of
the foothold will be independent from the stability con-
straint. It is the task of CG adjustment to find a point
satisfying Eq. (13) within the compensation area. Therefore
in planning, the support point can be selected in term of
C(n) = Ck(n), while static stability is satisfied through
actively adjusting the CG position.

4.2.4 Foothold determination. The term C(n) defines a
range in which any feasible foothold can be selected as a
support point for the next support state S(n+1). Such a
defined range is also called foot range. It is clear that a foot
range closely associates with the given support state and its
initial foot condition. If the compensation mechanism
is constructed appropriately so that Eq. (13) is true,
the foot range will be determined only by
kinematic constraint (Ck(n)). From Eqs. (11) and (12),
we have: C(n) = Rx 2K(1, n) + D(n), if b(n) = bm(n);
C(n) = D(n)/(12b(n)), if b(n)>bm(n); C(n) = [Rx 2K(1,
n)]/b(n), if b(n)<bm(n).

After foot range is determined, a suitable foothold can be
selected from the foot range. In general, we select the
suitable foothold based on such a rule:

Rule 9: the feasible foothold with the maximum distance
from the original support point will always be selected as
the next support point for the transfer leg.

It implies that (i) if the forbidden zone is totally within
the foot range, then the foothold with a distance of C(n) will
be selected as the support point, (ii) if the forbidden zone
crosses the front boundary of the foot range, then the
foothold nearest to the forbidden zone will be selected as the
support point. This rule tends to make the swing leg get the
maximal ability of obstacle avoidance.

4.3 Locomotion control
Once the support point is selected based on the foot range,
the real distance covered by the body can be finally
determined. Assume that the coordinate of the new support
point [Wx*i(n), Wy*i(n)] is positioned through the machine’s
sensory system. The distance from the current support point
to new one, c(n), is

c(n) = Ï[Wy*i(n)2 Wyi(n)]2 + [Wx*i(n)2 Wxi (n)]2. (14)

Thus the state-period of S(n) will be

Dt(n) = c(n)/(Vs(n) + Vb(n)) = c(n)b(n)/Vs(n). (15)

The real distance the body translates, d(n), is

d(n) = Dt(n)Vd(n) = c(n)a(n) or c(n)(12b(n)). (16)

By virtue of Eq. (16), the origin of the trace-frame at
t2 (n+1) can be obtained by
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F W
xT(n + 1)

WyT(n + 1)
G = F W

xT(n)

WyT(n)
G + d(n) F cos f

sin fG. (17)

The foot tip coordinate with respect to {T} and the
kinematic margins of all legs at the instance of t2 (n+1) are
also obtained by

Txi(n + 1) = Txi(n)2d(n),
Tyi(n+1) = Tyi(n), if leg i is support leg in S(n).
Ki(n + 1) = Ki(n)2d(n),

(18a)

FT
xi(n+1)

Tyi(n+1)
G = W

T A(f)21FW

xi(n+1)2 Wxi(n+1)

Wyi(n+1)2 WxT(n+1)
G,

Ki(n+1) = K(1,n)+c(n)b(n),

if leg i is transfer leg in S(n). (18b)

Likewise, for an F-state, we have the following relations

Txi(n+1) = Txi(n)2dF(n),
Tyi(n+1) = Tyi(n),
Ki(n+1) = Ki(n)2dF(n),

(18c)

where dF = K(1, n) is the distance that body translates in F-
state.

4.4 Strategy of CG adjustment
In the selection of the foothold, we don’t consider the static
stability constraint of the machine because the CG is
adjustable in the compensation region. The selection of the
foothold is only based on the kinematic or geometrical limit.
Thus a larger foot range, also a larger obstacle-crossing
ability can be obtained. In this section, the strategy of how
to adjust the CG position to ensure static stability for the
new foothold is studied. Generally, two phases need to be
considered in keeping the static stability of the machine.
Firstly, during the period of S(n0), the CG should be
adjusted to an appropriate position resulting in the stability
margin greater than zero. Secondly, during the shifting of
two successive support states such as ST(n)→ST(n+1) or
SF(n)→ST(n+1), the adjusted CG position should also keep
the stability margin at t2 (n+1) greater than zero.

The static stability of S(n) is closely associated with its
support pattern. To clearly address the strategy of CG
adjustment, we represent the support pattern at the begin-
ning of S(n) as P2 (n) and the support pattern at the end of

S(n) as P+ (n). Here the symbols of P2 (n) and P+ (n) also
represent the point set covered by the support patterns when
observed from the body frame. Furthermore, denote the
location of the CG projection on the trace frame at the
instance t2 (n) as g2 (n), at t+ (n) as g+ (n), and assume the
support state at t2 (n) is stable. In addition, we denote the
intersection of support patterns P+ (n) and P2 (n+1) as A,
the intersection between P+ (n) and the compensation region
(denoted by R) as B, and the intersection between P2 (n+1)
and R as C. We have the following relationship

A = P+ (n)>P2 (n+1),

B=P+ (n)>R, (19)

C=P2 (n+1)>R.

It is clear that (1) if g+ (n)PB, then support state S(n) is

Fig. 6. Schematic diagram of the strategy for CG adjustment
where a-b-c is the support pattern at t+ (n), and a-b-d is the support

pattern at t2 (n+1); (a) Q≠0, (b) Q=0. Fig. 7. Flowchart of determining support points of transfer leg.
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stable at t+ (n), (ii) if g+ (n)PC, then S(n+1) at instance
t2 (n+1) is stable, and (iii) if g+ (n)P A, then the shifting
from S(n) to S(n+1) is stable. Therefore to guarantee static
stability of both S(n) and the shifting from S(n) to S(n+1),
the CG location at t+ (n) should satisfy

g+ (n)PQ = A>B>C = P+ (n)>P 2 (n+1)>R (20)

where Q is the intersection area among A, B and C. For a
stable S(n) at t2 (n), if g2 (n)PQ and let g+ (n)=g2 (n), then
CG can satisfy the stability requirement during the period of
S(n) without any adjustment. However, if g2 (n)¸Q, the CG
location must be adjusted to g+ (n), a new position satisfying
Eq. (20).

It should be noted that, in the terrain containing a large
number of forbidden zones, it is possible that Q = 0. In that
case, it is necessary to insert a transitional state S([n]).
Since S([n]) is with full support legs, the support pattern
P([n]) covers P+ (n), P2 (n+1) and R. Thus we can get

g+ (n)= g2 ([n])

= P2 ([n])>P+ (n)>R=P+ (n)>R,
(21)

g+ ([n])= g2 (n+1)

= P+ ([n])>P2 (n+1)>R=P2 (n+1)>R .

It means that if Q = 0, CG will first move to a position
within B, g+ (n). Consequently, it moves to the final position

Fig. 8. Flowchart of CG adjustment.
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within C, g+ ([n]), through the transitional state S([n]). Note
that C≠0 and B≠0 due to the limitation of the foot range on
the body motion and the selection of the new supporting
point.

The strategy of the CG adjustment has been summarized
by virtue of Figure 6.

5. RECURSIVE ALGORITHM
We have verified that the machine is capable of moving
from S2 (n) to S2 (n+1) with statically stable manner if CG
adjustment is used. The locomotion during S(n) only
depends on its initial foot condition and the local terrain
condition. It means that if information of S2 (1) is known
we can plan the locomotion of all later support states using
a recursive way until the machine reaches the objective
location.

Figures 7 and 8 show the flowchart of the proposed
recursive algorithm. The feature of this recursive algorithm
is that the determination of supporting point (Fig. 7) is free
from the consideration of static stability. Static stability of
the machine is realized through a CG adjustment strategy
(Fig. 8). Combination of both foothold selection and CG
position adjustment will produce a complete gait. The gait
can be generated off-line or on-line. In the case of off-line,
a separate computer is used to calculate the coordinates of
the foothold based on terrain data and then the CG
adjustment position according to the obtained foothold
coordinates. The on-board computer then combines these
results together to generate a complete gait. This case
requires terrain data known in advance. In the case of on-
line, the on-board computer implemented CG adjusting
strategy immediately after each step. The machine moves
forward into S(n+1) by virtue of the location of the foothold
and the CG coordinate obtained in S(n). In that case, only
required is terrain data in the next step.

6. SIMULATION RESULTS
A gait generation algorithm has been proposed and
implemented by virtue of Maple V.21 The animation is
conducted by using UNIX system and displayed on a SUN-
station through a commercial software package DADS,
which also performs dynamic and kinematic analysis of the

prototype. The computer model of NTU-Q1 as shown in
Fig. 1 is used and only locomotion with zero crab angle is
considered during the simulation. The program allows the
user to set up the terrain data, to select desired b-factor and/
or to vary initial foot condition according to the
requirement, testing the terrain adaptivity of the prototype.
From the initial position, the machine walks over the rough
terrain until the given objective location is reached.

As an example, Figure 9 shows a schematic representa-
tion for the system including the machine and a typical
rough terrain, in which the shadow area presents the
forbidden zone. Note that the movable mass within the body
is not shown in this figure. The initial foot condition
in this example is, KM1(1)=0.0, KM2(1)=24.0 cm,
KM3(1)=36.0 cm and KM4(1)=12.0 cm and the maximum
distance from the initial point to the objective location
covered by the body frame is 270 cm. Figure 10(a)–(j)
shows ten representative phases of this simulation experi-
ment with a swing speed of the transfer leg, Vs =25 cm/s,
and the desired b-factor, b=0.8. Here, the transfer leg is
indicated with an arrow near that leg. In this example, the
negative stability margin or deadlock situation would occur
in Fig. 10(e)–(j) if without compensation of stability
margin. These cases can also be monitored at corresponding
time of these phases in Fig. 11, which shows the comparison
of stability margins with and without compensation. The
trajectories of the CG adjustment relative to the trace-frame
in the longitudinal and lateral direction are shown in
Fig. 12. The foot tip trajectories of the four legs are plotted
in Fig. 13. Comparing Figs. 10 through 13, it can be found
that, after compensation of stability margin, the presented
algorithm tends to extend the transfer leg to its maximum
reach at each T-state. This means that the machine may
obtain a bigger terrain adaptivity.

The above simulation includes 58 support states in total.
Of them there is one transitional state which occurs at the
interval of Dt=27.0 s~29.6 s. This transitional state is
aimed to help the machine to shift the CG into new support
polygon so that the leg reaching its kinematic limit can be
lifted in the next step. However, it is often undesired having
transitional state because it causes the discontinuity of the
body motion. Transitional state can be removed if a bigger
b-factor value is used.

Fig. 9. Simulation model of NTU-Q1 and typical rough terrain.
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Several different terrain conditions have been investigated
with the proposed algorithm. As long as the maximum
width of the forbidden zone is less than the stroke of
machines’ reachable area, no deadlock cases have been
found even though the machine traverses on a continuous
forbidden zone such as ditch. For very rough terrain
condition, the algorithm will automatically adjust the value
of b(n) around the given b for the continuity of body
motion. If the terrain becomes perfect, the algorithm will
produce a periodic gait for locomotion of the machine.
Therefore the algorithm can provide machine with a

reasonable walking speed over rough terrain. These features
of the algorithm are highly desirable in some applications.

7. CONCLUSIONS
This paper has presented an alternative method for improv-
ing of the terrain adaptivity of a multi-legged machine
traveling over rough terrain. It is achieved through a 2D CG
adjustment, compensating the stability margin according to
terrain condition. An algorithm for the gait planning under
the above consideration has also been developed and the

Fig. 10. Walking phases of NTU-Q1 over a typical rough terrain.
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simulation program to realize the algorithm has been
written. This algorithm determines footholds based on the
current support pattern rather than over the whole trajectory.
With the stability compensation, the determined footholds
are capable of maintaining the machine static stability
during the current support state as well as the shifting from
the current support state to the proceeding one. In this way,
the possible deadlock situations could be avoided unless the
forbidden zone is larger than its reachable area. Some
simulation work has been implemented to test the validity of
the proposed algorithm.

The concept of stability margin compensation has been
applied to the design of the quadruped robot NTU-Q1.
Since the above algorithm provides a way to control
stability margin actively, it is believed that NTU-Q1 will
possess a larger degree of freedom to accommodate rough

terrain during locomotion. As the simulation result has
shown, it is also possible that the machine may be able to
achieve a larger adaptivity on rough terrain at a reasonable
higher body speed.

It should be pointed out that the trajectory of the CG
adjustment is not unique. Although a feasible CG trajectory
has been given in this paper, apparently, it may not be the
optimal one. Further research is therefore necessary in
finding the strategy to achieve the optimal trajectory of the
CG adjustment based on the given criteria such as minimum
adjusting distance and smoothness.

As a final remark, although only a quadruped robot and a
2D terrain are considered in the article, the proposed
method can also be extended to other multi-legged systems
such as six-legged robots, and the terrain containing 3D
obstacle.

Fig. 11. Comparison of the stability margins with and without compensation (at b=0.8).

Fig. 12. CG trajectory in longitudinal and lateral directions with respect to {T}.
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APPENDIX: NOMENCLATURE
A: intersection area of P+ (n) and P2 (n).
B: intersection area of P+ (n) and R.

{B} body frame.
C: intersection area of P2 (n+1) and R.

C(n): maximum distance covered by swing leg in S(n)
under geometry, kinematic, and stability con-
straints.

Cs(n): maximum distance covered by swing leg in S(n)
under stability constraint.

Ck(n): maximum distance covered by swing leg in S(n)
under kinematic constraint.

Cg(n): maximum distance covered by swing leg in S(n)
under geometry constraint.

Cx: the length of compensation area in longitudinal
axis.

Cy the length of compensation area in lateral axis.
c(n) the distance from the current support point to

selected foothold.

Fig. 13. Foot tip trajectory of four legs with b=0.8.
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dF(n) maximum distance that body can translates in F-
state.

d(n) real distance body can translate in T-state.
F: F-state, one kind of support state, in which all

legs are supporting legs.
g(n): CG position in S(n).

g+ (n): CG position at t+ (n)
g2 (n): CG position at t2 (n).
gx(n): x coordinate of CG respect to trace frame at

t2 (n).
gy(n): y coordinate of CG respect to trace frame at

t2 (n).
KMi(n): kinematic margin of leg i in S(n).
K(i, n): the i-th kinematic margin in the orders from

small to big in S(n).
W

TA(f) rotational matrix from {T} to {W}.
P pitch of legs.

Px longitudinal pitch.
P(n): support pattern of S(n).

P+ (n): the area covered by support pattern when
observed at t+ (n) from body frame.

P2 (n): the area covered by support pattern when
observed at t2 (n) from body frame.

Q: the intersection area among A, B, and C.
Rx: longitudinal stroke.
Ry: lateral stroke.
R: the area covered by compensation region.

SMl(n): minimum front stability margin of S(n).
S(n): the n-th support state.

T: T-state, one kind of support state, in which there
are at least one transfer leg.

{T}: trace frame.

t2 (n): the time moment of shifting from S(n21) to
S(n).

t+ (n): the time moment of shifting from S(n) to
S(n+1).

Dt(n): state period of S(n).
Bxi(n): x coordinate of foot tip of leg i with respect to

body frame in S(n).
Byi(n): y coordinate of foot tip of leg i with respect to

body frame in S(n).
BxG(n): x coordinate of the CG with respect to body

frame in S(n).
ByG(n): y coordinate of the CG with respect to body

frame in S(n).
Wxi(n): x coordinate of foot tip of leg i with respect to

global frame in S(n).
Wyi(n): y coordinate of foot tip of leg i with respect to

global frame in S(n).
WxT(n): x coordinate of the origin of the trace-frame with

respect to global frame in S(n).
WyT(n): y coordinate of the origin of the trace-frame with

respect to global frame in S(n).
VS(n): average swing speed.
Vb(n): average body speed.

W distance between two side central lines of lateral
stroke.

{W}: global frame.
[n]: index of transitional state.
f: direction angle of {T} relative to {W}.

a(n): a-factor in S(n).
b(n): b-factor in S(n).

b: desired b-factor.
bm(n): b-factor associated with the maximum Ck(n).
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