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We report an experimental study of confinement effects in quasi-2-D turbulent
Rayleigh–Bénard convection. The experiments were conducted in five rectangular
cells with their height H and length L being the same and fixed, while the width
W was different for each cell to produce lateral aspect ratios (Γ = W/H) of 0.6,
0.3, 0.2, 0.15 and 0.1. Direct flow field measurements reveal that the large-scale
flow slows down as Γ decreases and there are more plumes travelling through the
bulk region. Moreover, the reversal frequency of the large-scale flow is found to
increase drastically in smaller Γ cells, by more than 1000-fold for the highest value
of Rayleigh number reached in the experiment. The reversal frequency can be well
described by a stochastic model developed by Ni et al. (J. Fluid Mech., vol. 778,
2015, R5) and the probability density functions (PDF) of the time interval between
successive reversals are found to follow Poisson statistics as in the 3-D system.
It is further observed that the bulk temperature fluctuation increases significantly
and its PDF changes from exponential to Gaussian as Γ decreases. The influences
of geometric confinement on the global heat transport are also investigated. The
measured Nu–Ra relationship suggests that, as the lateral aspect ratio decreases,
the relative weight of the boundary layer contribution in the global heat transport
increases compared to that from the bulk. These results demonstrate that in the
quasi-2-D geometry, geometric confinement has strong effects on both the global
and local properties in turbulent convective flows, which are very different from the
previous findings in 3-D and true 2-D systems.
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1. Introduction

Thermal turbulence is ubiquitous in both nature and industrial applications.
Turbulent Rayleigh–Bénard (RB) convection, a fluid layer heated from the bottom
and cooled from the top has become a paradigm for the study of general convection
phenomena. Over the years, there have been extensive studies addressing how the
heat transport and flow dynamics of turbulent RB convection are determined by
two control parameters, i.e. the Rayleigh number Ra = αg1TH3/νκ and the Prandtl
number Pr = ν/κ , where 1T is the temperature difference across the fluid layer
of height H, g is the acceleration due to gravity and α, ν and κ are the thermal
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expansion coefficient, the kinematic viscosity and the thermal diffusivity of the
working fluid, respectively (for reviews, see Ahlers, Grossmann & Lohse 2009; Lohse
& Xia 2010; Chillà & Schumacher 2012; Xia 2013). In laboratory experiments, the
convective flows are always confined in containers with different geometries. It is
generally believed that different geometric configurations will result in different flow
structures and thus different associated flow properties. Therefore, the third control
parameter that characterizes the effects of geometric confinement, aspect ratio Γ
(lateral dimension of the fluid layer over its height), comes into the problem.

Most of the existing studies on the confinement effects in turbulent RB convection
were made in 3-D geometry (Funfschilling et al. 2005; Nikolaenko et al. 2005; Sun
et al. 2005a; Niemela & Sreenivasan 2006; du Puits, Resagk & Thess 2007; Xia,
Sun & Cheung 2008; Bailon-Cuba, Emran & Schumacher 2010; Roche et al. 2010;
Wu & Libchaber 2012; Zhou et al. 2012) and the general findings were: (i) the
single-roll structure changes to a multi-roll pattern with increasing Γ ; (ii) the heat
transfer efficiency, characterized by the Nusselt number Nu, decreases slightly as Γ
increases and the asymptotic large-Γ behaviour may have been reached for Γ & 10.
These findings have led one to conclude that the flow structures do not strongly
influence the heat transport properties (Ahlers, Grossmann & Lohse 2009). Recently,
there has been a growing interest in 2-D RB flow (Sugiyama et al. 2010; van der
Poel, Stevens & Lohse 2011, 2013; van der Poel et al. 2012; Chandra & Verma
2013; Huang & Zhou 2013; Podvin & Sergent 2015). It was found that such a
geometry will result in a stronger and more complicated Γ -dependence of Nu, which
was ascribed to the different flow structures in the 2-D system (van der Poel et al.
2011, 2012, 2013). Although the flow dynamics in the 2-D system, which strictly can
only be realized numerically, may share certain features with those in the quasi-2-D
case (Sugiyama et al. 2010), a true 2-D system is fundamentally different from a
quasi-2-D one. Indeed, recent studies by Huang et al. (2013) and Chong et al. (2015)
found that simple geometric confinement in the quasi-2-D system can significantly
enhance convective heat transport, which is brought about by the change in the
dynamics and morphology of the thermal plumes. Such a striking phenomenon has
not been observed in previous studies in 3-D and true 2-D systems. In this paper,
we further investigate the confinement effects in quasi-2-D turbulent RB convection
by experimentally studying various flow properties, including flow dynamics, local
temperature fluctuation and global heat transport. The results will complement the
findings reported in Huang et al. (2013) and Chong et al. (2015). As will be shown
in the paper, in the quasi-2-D geometry, the geometric confinement not only can
strongly influence the local flow properties, but also has a significant effect on the
global properties, which are very different from the previous findings in 3-D and
true 2-D systems (Daya & Ecke 2001; Song & Tong 2010; van der Poel et al. 2011,
2012, 2013; Chandra & Verma 2013).

The rest of this paper is organized as follows. The experimental set-up and
measurement techniques are described in § 2. The main results are presented in § 3,
which is divided into three parts. We first show the results obtained from the flow
field and reversal measurements in § 3.1. The influences of geometric confinement on
the local temperature fluctuation and the global heat transport will be presented in
§§ 3.2 and 3.3. A summary of our findings comes in § 4.

2. Experimental apparatus and methods

The experiments were conducted in the range 8.6× 107 6 Ra6 2.50× 109 with the
bulk temperature of the fluid (deionized and degassed water) Tc maintained at 40.0 ◦C,
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Geometric confinement in quasi-2-D turbulent convection 641

corresponding to Pr= 4.3. The convection cells used in the experiments were similar
to the one described in Xia, Sun & Zhou (2003). Briefly, they were of rectangular
shape and were built independently with their own Plexiglas side walls and conducting
plates (but of identical design), where the bottom plates were heated with constant
power and the top plates were kept at constant temperature. The height H and length
L of the cells were the same and fixed at 12.6 cm, thus the aspect ratio Γ‖ (=L/H) in
the plane parallel to the large-scale circulation (LSC) plane is one; whereas the width
W of the cells had values 7.56, 3.84, 2.56, 1.92 and 1.27 cm, giving rise to aspect
ratios in the plane perpendicular to the LSC plane (Γ⊥ =W/H, hereafter simply Γ )
of 0.6, 0.3, 0.2, 0.15 and 0.1, respectively. With these geometric configurations, the
confinement on the flow is expected to increase as Γ decreases. Having exactly the
same height is one important feature of the present study, as it allows measurements in
different cells to be made over exactly the same range of Ra, so that results obtained
from different cells can be compared directly.

To obtain an overall picture of the confinement effects on the flow dynamics, we
made 2-D velocity measurements in the vertical plane midway between the front and
back walls of the convection cell at two selected aspect ratios, i.e. Γ = 0.3 and 0.15,
using a commercial particle image velocimetry (PIV) system that has been introduced
elsewhere (Xia et al. 2003). In the PIV measurements, the fluid was seeded with
polyamide particles of 50 µm in diameter. Each flow field contained 127 × 127
velocity vectors and a total of 10 000 vector maps were acquired with a sampling
rate ∼2 Hz. The statistical behaviour of flow reversal, a phenomenon that the LSC
suddenly reverses its flow direction in an erratic manner (Sreenivasan, Bershadskii
& Niemela 2002; Brown & Ahlers 2007; Xi & Xia 2007), were studied with the
so-called temperature contrast method (Sugiyama et al. 2010; Ni, Huang & Xia 2015).
For ease of presentation, the details of this technique will be described in § 3.1. The
temperature fluctuations in the cell centre were measured with a small thermistor with
a size of 200 µm. Except in the PIV measurements, where a transparent window was
required, several layers of thermal insulation were wrapped to the whole convection
cell to prevent the heat leakage. To minimize influence from the surroundings, all the
measurements were made in a thermostat with a stability of better than 0.1 ◦C.

3. Results and discussions
3.1. Flow dynamics

It is one’s intuition that the flow dynamics should strongly depend on geometry.
To find out how the flow dynamics responds to geometric confinement, we show in
figure 1(a–c) the PIV-measured mean velocity fields for Γ = 0.3 (the unconfined case)
and 0.15. The first thing we can see is that there exists a well-defined LSC with two
counter-rotating corner rolls in the Γ = 0.3 cell, as found in previous studies with
similar aspect ratios (Xia et al. 2003; Sugiyama et al. 2010). For the Γ = 0.15 cell,
however, one finds a quite different flow pattern in the long time-averaged field: The
single-roll structure has disappeared, instead, we have a four-roll structure. One way
such a four-roll pattern in the mean field can arise is for the LSC to frequently reverse
its flow direction, which had been experimentally demonstrated in an earlier study
(Sun, Xia & Tong 2005b). Indeed, by taking short time averages of the instantaneous
velocity fields, we can obtain LSCs with both clockwise and counter-clockwise flow
directions in the Γ = 0.15 cell (see figure 1c for the counter-clockwise case), which
was also illustrated in a recent numerical study with a similar Γ (Kaczorowski,
Chong & Xia 2014). The second difference between these two Γ cells is that the
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FIGURE 1. (Colour online) Coarse-grained vector maps of mean velocity field (a–c) and
the corresponding contour maps of the r.m.s. velocity field (d–f ) at Ra = 1.1 × 109.
(a,d) Γ = 0.3 cell by long time averaging; (b,e) Γ = 0.15 cell with a four-roll pattern
by long time averaging; (c, f ) Γ = 0.15 cell with a well-identified LSC by short time
averaging. The velocity is coded in both colour scale and vector length in units of cm s−1.
The r.m.s. velocity is represented by the colour coding in units of cm s−1.

magnitude of the time-averaged LSC is smaller for Γ = 0.15, as indicated clearly by
the scale bar. While the increased drag force from the walls can certainly slow down
the flow, a more fluctuating flow can also result in a smaller mean velocity. Larger
fluctuations in the flow field for small Γ are evident in the root-mean-square (r.m.s.)
velocity field (see figure 1d–f ), which shows that the fluctuations in the bulk of the
Γ = 0.15 cell become stronger and the region of strong fluctuations also becomes
larger. It has been found in Xia et al. (2003) that larger velocity fluctuations are
associated with plume clusters, therefore the r.m.s. velocity fields measured here
indicate that there are more thermal plumes going through the bulk region in the
highly confined geometry, rather than rising and falling along the side walls as is the
case for larger Γ . Note that the reversal of the LSC could also contribute to a larger
velocity fluctuation in the bulk region. However, we found that the r.m.s. velocity
field in the Γ = 0.15 cell for the situation when a LSC can still be identified by short
time averaging is quite similar to the one with a four-roll pattern (see figure 1e, f ),
suggesting that the major contributors for larger fluctuations in the bulk flow are the
thermal plumes.

That flow reversals become more probable in quasi-2-D cells with smaller Γ was
also observed in some previous studies (Vasilev & Frick 2011; Wagner & Shishkina
2013; Kaczorowski et al. 2014), but their statistical properties have not been examined.
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FIGURE 2. (Colour online) A schematic sketch of the reversal process changing from (a)
state I to (b) state II. (c) A typical time series of the temperature contrast δ between
the two sensors embedded in the bottom plate for Ra= 1.1× 109. The red solid circles
indicate detections of flow reversal events based on the criteria described in the text. The
red dashed lines indicate the two flow states I and II shown in (a) and (b), respectively.
(d) The corresponding PDF of the data shown in (c). The blue dashed lines are two
independent Gaussian function fits to the data and the red solid line is the superposition
of them. It is seen that the data can be excellently fitted with a double-Gaussian function.
See text for the explanations of d and σ . Note that similar results were obtained from the
top plate.

Here, we used the temperature contrast method (Sugiyama et al. 2010; Ni et al. 2015)
to detect flow reversal events over long time periods. This method is based on the
idea that a region where cold plumes impinge should have a lower temperature than
that where hot plumes emit. As illustrated in figure 2, when the LSC circulates in the
counter-clockwise direction (state I as sketched in figure 2a), the temperature in the
left side of the bottom plate is lower than that in the right side; when the flow reverses
its circulation directing and changes to state II (figure 2b), the temperature in the left
side becomes higher. Therefore, the temperature contrast δ = Tright − Tleft will change
its sign during a reversal event and thus is a good indicator of reversals (see figure 2c).
Besides the sign change of δ, we set three more criteria to count true reversal events.
The first one is that the two circulation states can be clearly distinguished from each
other. This is quantified with the PDF of δ, as shown in figure 2(d). To be specific,
the distance d between the two most probable values in the PDF should be larger
than the r.m.s. value σ so that the two peaks can be clearly distinguished, where
d and σ were obtained by a double-Gaussian function fit as shown in figure 2(d).
The second criterion is that when the flow changes from one state to the other, δ
should first crossover the peak, i.e. the value of δ should be larger (smaller) than the
peak value in the PDF corresponding to state I (II). The third one is that the flow
should stay at the new state for more than one turnover time tLSC of the LSC, which
was obtained from the correlation function of the temperature signals inside the plates
(Brown, Funfschilling & Ahlers 2007). With these criteria, we are ready to examine
the flow reversals quantitatively.
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FIGURE 3. (Colour online) Examples of flow reversals at Ra = 1.1 × 109 for (a) Γ =
0.3, (b) Γ = 0.2 and (c) Γ = 0.15. The red solid circles indicate detections of flow
reversal events based on the criteria described in the text. (d) The normalized flow reversal
frequency frev/fLSC as a function of Γ for different Ra, where frev = 1/〈τ 〉, fLSC = 1/tLSC,
and 〈τ 〉 is the mean time interval between successive reversals.

We first show in figure 3(a–c) some examples of flow reversals at Ra= 1.1× 109

for Γ = 0.3, 0.2 and 0.15, respectively. It is seen clearly that the LSC reverses its
circulating direction with a drastically increased frequency as Γ decreases, which is
quantified in figure 3(d). However, when Γ is further reduced from 0.15 to 0.1, the
reversal frequency does not show a significant increase anymore, so we do not show
the examples for Γ = 0.1 here. It is further observed in figure 3(d) that the increase
in the reversal frequency is Ra-dependent: the higher Ra becomes, the larger the
increase (by more than 1000-fold for the highest value of Rayleigh number reached
in the experiment), suggesting that the impact of confinement on the LSC dynamics
is stronger for higher Ra. Note that the measurements in smaller Γ cells did not
go to lower Ra, because σ becomes comparable with d in these cases, thus the first
criterion is not satisfied anymore. This is a limitation of the measurement technique.
We also remark that no flow reversal was observed in the Γ = 0.6 cell, even with a
long time measurement of up to 15 000tLSC (more than two weeks) at Ra= 2.8× 108,
at which flow reversals are supposed to have a higher probability of occurrence than
at higher Ra (Sugiyama et al. 2010; Ni et al. 2015).

In a recent study using quasi-2-D cells similar to the ones used in the present
experiment, Ni et al. (2015) have shown that the mean time interval between
successive reversals 〈τ 〉 follows a stochastic process, i.e. 〈τ 〉/tLSC=Cp(Γ ) exp[(d/2σ)2],
where d is taken as the relative strength of the LSC and σ is its fluctuation. Figure 4
shows the data 〈τ 〉/tLSC versus (d/2σ)2 for different Γ cells in a semi-log plot.
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FIGURE 4. (Colour online) A semi-log plot of the normalized mean time interval between
successive reversals 〈τ 〉/tLSC as a function of (d/2σ)2 for different Γ . The solid lines
are fittings to individual data sets according to the formula 〈τ 〉/tLSC =Cp(Γ ) exp[(d/2σ)2]
obtained in a model developed by Ni et al. (2015) recently. Inset: The fitting coefficient
Cp versus Γ .

It is seen that the data can be nicely fitted with the formula above, with a strong
Γ -dependent prefactor Cp, as shown in the inset, indicting that the model developed
in Ni et al. (2015) can also well describe the reversal behaviours in a highly confined
geometry. Since the value of d/σ can be used to characterize the stability of the
LSC, we further examine their values separately to see how confinement affects the
properties of the LSC. It is seen in figure 5 that as Γ decreases, d decreases on one
hand, and σ increases on the other, which suggests that LSC becomes weaker and
experiences stronger fluctuations in highly confined geometry, thus confirming the
PIV-measured results. As d is essentially the temperature difference between the left
and right sides of the conducting plates, smaller d also suggests that the temperature
is more uniform in the plate for small Γ cells, consistent with the findings in Huang
et al. (2013).

In figure 6, we show the PDFs of time interval between successive reversals τ/tLSC
for Γ = 0.2 and 0.15 cells on a semi-log scale. It is seen that the data for both
Γ are in good agreement with the exponential function p(τ/tLSC) ∼ exp(−τ/tLSC).
(The levelling off of the PDFs at the large values of τ/tLSC is caused by the
insufficient statistics.) These results indicate that flow reversals in the quasi-2-D
geometry obey Poisson statistics as in the 3-D case (Sreenivasan et al. 2002; Brown
& Ahlers 2007; Xi & Xia 2007), which suggests that it may be possible to develop
a geometry-independent model to explain the apparently different LSC dynamics in
different geometries.

3.2. Local temperature fluctuations
In Huang et al. (2013), it was simply mentioned that with decreasing Γ the local
temperature fluctuation in the cell centre increases significantly and its PDF changes
from exponential to Gaussian. Here, we present the details. Figure 7(a,b) shows
the time series of temperatures measured at the cell centre for Ra = 1.1 × 109

and Ra = 8.6 × 107, respectively. It is seen clearly that the fluctuations in small
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FIGURE 5. (Colour online) (a) The strength of the LSC d and (b) its fluctuation σ
normalized by the global temperature difference 1T as a function of Γ for different Ra.
Note that 1T for different Γ cells are the same for the same Ra, as they have the same
height.
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10–1
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FIGURE 6. (Colour online) PDFs of the normalized time interval between successive flow
reversals at Ra = 1.1 × 109 for (a) Γ = 0.2 and (b) Γ = 0.15, respectively. The straight
lines indicate exponential fittings.

Γ cells are stronger than those in large ones. Besides the change in fluctuation
magnitude, the corresponding PDFs (shown in figure 7c,d) also change their forms:
as Γ is reduced, there is a transition from (stretched) exponential to Gaussian-like.
The strong geometric dependency of the temperature fluctuation PDF found in the
quasi-2-D system is consistent with a recent numerical simulation using similar
geometries (Kaczorowski et al. 2014), but quite different from previous studies
conducted in 3-D systems, in which a universal form for different geometries was
observed (Daya & Ecke 2001; Song & Tong 2010). The functional form of the
temperature fluctuation PDF is one important hallmark for different flow states
(Heslot, Castaing & Libchaber 1987; Castaing et al. 1989; Massaioli, Benzi & Succi
1993) and the plume distribution in the convection cell (Xia & Lui 1997), thus these
changes confirm that the flow state has been changed and/or there are more plumes
passing though the cell centre as a result of confinement.

To examine these changes quantitatively, we plot the Ra-dependence of the
normalized r.m.s. temperature σc/1T and their flatness values in figure 8. From
figure 8(a), one can see that while the magnitude of σc/1T increases as Γ decreases,
its Ra-scaling exponent in general decreases (see table 1 for detailed values).
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FIGURE 7. (Colour online) (a,b) Time series of temperatures measured at the cell centre
for (a) Ra= 1.1× 109 and (b) Ra= 8.6× 107. From top to bottom, Γ = 0.1, 0.15, 0.2,
0.3 and 0.6. (c,d) The corresponding PDFs of temperature fluctuations shown in (a,b): (c)
Ra = 1.1 × 109 and (d) Ra = 8.6 × 107. Note that the data for different Γ have been
upshifted for clarity. The green and orange lines represent exponential and Gaussian fits,
respectively.
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FIGURE 8. (Colour online) (a) Normalized temperature fluctuation σc/1T at the cell
centre as a function of Ra for different Γ . The solid lines represent power-law fits to
the individual data sets. (b) The corresponding flatness versus Ra.

Large variations in the Ra dependency of temperature fluctuations due to geometric
effects have also been found in earlier studies (Daya & Ecke 2001; Song & Tong
2010). We note that the scalings for the Γ = 0.6 and 0.3 cells are the same as
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Γ A α ± 0.002 C1 ± 0.005 C2 ± 0.02 B β ± 0.01

0.6 0.173 0.286 0.029 0.20 6.56 −0.35
0.3 0.152 0.291 0.033 0.17 12.43 −0.35
0.2 0.216 0.277 0.022 0.25 6.04 −0.30
0.15 0.264 0.269 0.017 0.29 4.75 −0.27
0.1 0.267 0.270 0.018 0.31 0.69 −0.17

TABLE 1. Fitting coefficients for the single power law Nu= ARaα , the combined power
law Nu = C1Ra1/3 + C2Ra1/4 and the normalized temperature fluctuation σc/1T = BRaβ
measured in different Γ cells. For an easier data referring, the uncertainties presented here
are the maximum values of the fitting errors among all the cells.

those found in a recent simulation of turbulent RB convection in a cubic geometry
(Kaczorowski et al. 2014), but very different from the value −0.49 reported in Daya
& Ecke (2001) in a convection cell with square cross-section. The Γ = 0.3 cell also
has similar flatness values with the Γ = 0.6 cell (see figure 8b), suggesting that the
convective flow has not sensed the confinement effects from the walls for Γ = 0.3.
However, when Γ is further reduced, there is a sudden drop in the flatness values;
and these values gradually decrease to ∼3 (Gaussian case) for smaller Γ and lower
Ra, which is consistent with the change in the form of temperature fluctuation PDF
shown in figure 7. Special attention is paid to the abnormal Ra dependence of flatness
in the Γ = 0.1 cell, which is also reflected in its very different time series signals and
the bimodal shaped PDF at Ra = 8.6 × 107. Based on the recent finding by Chong
et al. (2015), these strange behaviours for Γ = 0.1 could be due to the fact that the
LSC no longer exists in this case.

3.3. Heat transport
We now examine the influences of spatial confinement on the heat transport properties.
Figure 9 shows a semi-log plot of the compensated Nu versus Ra for different Γ
cells. As the heat transfer in a cubic cell (i.e. Γ = 1) is identical to that in a cylinder
(Qiu & Xia 1998b), for clarity and easy comparison, we plot in figure 9 the results
measured in a cylindrical cell of Γ = 1 (Wei, Ni & Xia 2012), which is the most
commonly used geometry in the study of turbulent RB convection. From figure 9, we
find that: (i) the data for the Γ = 0.6 cell collapse well with those measured in the
Γ = 1 cell; (ii) Nu first decreases a little when Γ is changed from 0.6 to 0.3 and then
increases significantly afterwards, up to 17 % for the parameter range explored in the
present study. Note that the Nu data have been reported in Huang et al. (2013). We
plot them here in a different form to understand the confinement effects in turbulent
thermal convection from a different point of view.

The solid lines in figure 9 represent power-law fits Nu = ARaα to the measured
data with the scaling exponent α varying from 0.27 to 0.29 (see table 1 for detailed
values). These values are in general agreement with those found in previous studies
in the same parameter ranges of Ra and Pr (Ahlers, Grossmann & Lohse 2009). We
recall that the Grossmann–Lohse (GL) model splits the globally averaged dissipation
rate into bulk and boundary layer (BL) contributions and suggests that different
linear combinations of power laws for different parameter ranges should be used for
the Nu–Ra fitting (Grossmann & Lohse 2000). Based on this idea, we fit to each
set of data with a combination of two power laws proposed in the GL model, i.e.
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FIGURE 9. (Colour online) Compensated Nu as a function of Ra from different Γ cells
as indicated by different symbols. The solid lines are power-law fits to individual data
sets. The solid hexagons are the results measured in a cylindrical cell of Γ = 1 (Wei, Ni
& Xia 2012).
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FIGURE 10. (Colour online) Fitting coefficients for the combined power law Nu =
C1Ra1/3 +C2Ra1/4 as a function of Γ : (a) C1 and (b) C2. (c) The ratio between C2Ra1/4

and C1Ra1/3 versus Ra in different Γ cells.

Nu = C1Ra1/3 + C2Ra1/4, in which C1Ra1/3 and C2Ra1/4 represent the contributions
from the bulk and BLs, respectively. The obtained fitting coefficients C1 and C2

for different Γ are plotted in figures 10(a) and 10(b), respectively (see table 1 for
detailed values). It is seen that the Γ dependencies of C1 and C2 have an opposite
trend: the decrease (increase) in C1 is accompanied by an increase (decrease) in C2.
Interestingly, the behaviour of C2 is similar to that of the global Nu: It first decreases
when Γ is changed from 0.6 to 0.3 and then increases with decreasing Γ afterwards
(see figure 1 in Huang et al. (2013)). This is because in the present parameter
range, the heat transport, in terms of the energy dissipation rate, is dominated by
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the contributions from the boundary layers, which is supported by comparing the
magnitudes between C1Ra1/3 and C2Ra1/4 as shown in figure 10(c). The change in
the ratio of C2Ra1/4 over C1Ra1/3 as Γ is decreased suggests that the confinement
increases the contribution from the BLs in the global heat transport and weakens
that from the bulk. This result is consistent with the finding in Huang et al. (2013),
in which it was found that the confinement suppresses the large-scale turbulent flow
in the bulk and enables thermal plumes (commonly viewed as detached thermal BLs)
to pass through the entire cell, rather than being confined in its periphery.

Why have such significant changes in Nu not been observed in previous studies
in 3-D and true 2-D systems? Note that even for the smallest Γ explored in the
present study, the width of the cell (its smallest dimension) is still much larger than
the thermal boundary layer thickness, therefore it is unlikely that the geometric effects
will directly lead to any change in the BLs and hence Nu. Thus, the reasons must be
connected to the flow structures. It has been shown by Huang et al. (2013) that the
confinement restricts the plume’s movement near the BLs into a 1-D motion, resulting
in the formation of highly coherent plumes. These highly coherent plumes turn out to
have a stronger interaction with the BLs, which is supported by the mean velocity
fields as shown in figure 1. It is seen that in the Γ = 0.3 cell the mean flow near
the boundary layers has a large horizontal component, whereas in the Γ = 0.15 case,
the mean flow is largely perpendicular and thus perturbs the BLs directly. Therefore,
geometric confinement in the quasi-2-D geometry not only changes the morphology
and dynamics of thermal plumes, but also strengthens the interaction between the flow
structures in the bulk and the BLs, both of which have not been observed in previous
studies in 3-D systems. This explains why these studies found a weak Γ effect on heat
transport. In the true 2-D case, there is no lateral confinement of the plumes when the
aspect ratio is changed. As the coherent properties of plumes are not modified in this
case but the flow structures are changed as a result of the aspect ratio variation, Nu
is found to be sensitive to the nature of the flow structures in the 2-D geometry (van
der Poel et al. 2011, 2012).

In a recent numerical simulation of 2-D turbulent convection (Chandra & Verma
2013), extremely large fluctuations and even negative values of global Nu were
observed during the flow reversal processes, which was attributed to the strong
geometric constraints to the flow. Since the confinement also leads to more frequent
flow reversals, it would be interesting to examine the instantaneous Nu for different
Γ during reversals. As we can see in figure 11(a,b), neither negative values nor
very large fluctuations are observed in the time series of instantaneous Nu for all
the cases, which is also reflected by their PDFs, shown in figure 11(c,d). Although
there is a trend that the fluctuations of instantaneous Nu increase as Γ decreases, the
fluctuation values for all the Γ and the differences between them are so small that
they are all within 1 % of the mean values. These results further suggest that the
quasi-2-D geometry is different from the true 2-D case.

4. Conclusion
In summary, our experiments reveal rich physics in quasi-2-D turbulent RB flow

under geometric confinement.

(i) With the increasing degree of confinement, the large-scale flow slows down and
there are more plumes traveling through the bulk region. Moreover, the LSC
reverses its circulation direction more frequently in smaller Γ cells, by more than
1000-fold for the highest value of Rayleigh number reached in the experiment.
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FIGURE 11. (Colour online) (a,b) Time series of instantaneous Nu for (a) Ra= 1.1× 109

and (b) Ra= 8.6× 107. From top to bottom, Γ = 0.1, 0.15, 0.2, 0.6 and 0.3. (c,d) The
corresponding PDFs of the Nu fluctuations shown in (a,b): (c) Ra = 1.1 × 109 and
(d) Ra= 8.6× 107.

Despite the significant changes in the flow pattern and dynamics, it is found that
the reversal process still follows Poissonian statistics, as in the 3-D system, and
the reversal frequency could be well described by the stochastic model of Ni
et al. (2015), which is closely related to the models used in other geometries
(Brown & Ahlers 2007; Song et al. 2014). These common features are good
circumstantial evidence for a potentially general model of LSC dynamics in
different geometries.

(ii) The impact of geometric confinement on the flow dynamics is also reflected in
the local temperature fluctuation. It is found that the bulk temperature fluctuations
in different Γ cells differ from each other not only in the magnitude and Ra-
dependent scaling, but also in the PDF shapes. These changes are the outcome
of the changes in the flow state and/or plume distribution in the convection cell.

(iii) Despite a slower flow, remarkable enhancement of heat transport is observed. By
analysing the Nu–Ra behaviours according to the GL model, our results suggest
that as Γ decreases, the relative weight of the boundary layer contribution to
the global heat transport increases and at the same time that from the bulk
decreases. In addition, we did not observe large variations nor negative values
in global Nu during the reversal processes as found in true 2-D systems, which
provides another evidence for the difference between the quasi-2-D and the true
2-D geometries.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

18
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.181


652 S.-D. Huang and K.-Q. Xia

These geometric confinement induced changes in quasi-2-D turbulent RB convection
show that the interaction between the LSC, the thermal plumes and the BLs in thermal
convection is more complicated than previous thought. These striking phenomena have
not been observed in previous studies in 3-D and true 2-D systems, and could not
be accounted for with the existing models for aspect ratio dependence (Grossmann &
Lohse 2003; Ching & Tam 2006). We end by stressing that our present understanding
of the confinement effects in quasi-2-D turbulent convection are 2-fold: the first is
the changes in the morphology and dynamics of thermal plumes and the modification
of the flow structures in the bulk; the second is the strengthening of the interaction
between the flow structures in the bulk and the BLs. Given this, the influence of
geometric confinement in the small-Γ limit would be an interesting topic for future
studies.
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