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The morphology of nodes generated by the interaction of discontinuities in steady
two-dimensional inviscid flows is examined. The fluids considered are Bethe–
Zel’dovich–Thompson (BZT) fluids, which feature negative values of the fundamental
derivative of gas dynamics in the vapour phase. The operating conditions correspond
to the non-classical gas-dynamic regime where expansion shocks, compression fans
and composite waves are admissible in addition to the classical compression shocks
and expansion fans. Interactions caused by the crossing, overtaking and splitting of
compression/expansion shocks, along with the refraction of these through a contact
discontinuity, are analysed here. The well-established method of wave curves is
applied to non-classical wave curves, revealing a variety of interaction patterns that
are simply not admissible in classical gas dynamics. It is shown that shock waves
can be reflected, transmitted and refracted as Prandtl–Meyer fans or composite waves.
Based on numerical evidence, the splitting (and consequently the Mach reflection)
of an expansion shock seems to be disallowed. Theoretical considerations on the
admissibility of such configurations are also provided. The present analysis is relevant
to applications potentially involving supersonic flows of BZT fluids, e.g. organic
Rankine cycle power systems, and can also be used in front-tracking algorithms for
general equations of state.
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1. Introduction
In supersonic confined flows, shock waves are bound to interact with boundaries

such as solid walls and material interfaces or with other recognisable flow features
such as acoustic wave fans, shear layers and, of course, other shocks. From
the macroscopic point of view, the approximation of thin layers as surfaces of
discontinuity within the fluid is often reasonable and advantageous. It is the case,
for example, of shock waves of moderate or high intensity in high-Reynolds-number
flows and away from boundary layers, of material interfaces and of sharp shear layers.
Within this approximation – compatible with the inviscid limit of the governing
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equations of fluid dynamics – the interaction of two such fronts occurs along singular
lines. In the simpler context of two-dimensional planar flows, where discontinuities
are represented by lines, the interaction of shock waves thus occurs at a point.
The flow field in the neighbourhood of the interaction point has been the focus
of numerous studies, starting with the early work of Courant & Friedrichs (1948),
Landau and D’yakov (reported by Landau & Lifshitz (1987)), Guderley (1962) and
Edney (1968), among others. Later on, a comprehensive description and classification
of the steady-state wave patterns near the interaction point was formulated by Glimm
et al. (1985), who also introduced the term ‘node’ to indicate the point of intersection
of discontinuity curves. In the analysis of Glimm et al. (1985) and in related studies
(e.g. Grove 1989), the node pattern is examined by analogy with the Riemann problem
for one-dimensional unsteady flow.

The possibility of exploiting such an approach follows from two main observations.
Firstly, the equations for two-dimensional supersonic steady flow and one-dimensional
unsteady flow are largely equivalent, specifically: (i) the two systems are both
associated with two acoustic wave families and a linearly degenerate one, (ii) the
streamlines correspond to the time-like direction, and (iii) the flow direction and
Mach angles in two dimensions play the role of the velocity and speed of sound
in one dimension, respectively (see also Menikoff (1989)). Secondly, it is necessary
that the interacting waves provide scale-invariant, supersonic initial data (in terms
of time-like direction) for the Riemann problem. This requirement implies, on the
one hand, that the trajectories of the incoming waves in the node are straight (or
equivalently that the focus is on the immediate vicinity of the node, where the
interacting waves can be approximated by straight lines separating wedge-shaped
regions) and, on the other hand, that the downstream states remain supersonic. When
these conditions are satisfied, the outcome of the shock interaction is determined, as
in the one-dimensional case, by the intersection of the acoustic wave curves (in the
pressure–flow direction diagram, rather than in the pressure–velocity plane). This is
the classical method of wave curves.

The analysis of the shape of wave curves in two-dimensional steady flows, however,
brings to light important differences from the one-dimensional unsteady case. The
wave curves in two dimensions include states that are subsonic; this is related to
the fact that, across the shock, the flow may be transonic and implies that for some
cases a Riemann problem cannot be established (note that this does not necessarily
mean that a steady-state scale-invariant solution can be constructed; see e.g. the
degenerate cross-node configuration in Henderson & Menikoff (1998)). Moreover, the
two-dimensional wave curves are bounded and may fail to intersect. The non-existence
of the solution signals that the analysis of the bifurcation or scattering of the node
necessarily requires unsteady flow considerations (see e.g. Glimm & Sharp 1986;
Hornung 1986; Grove & Menikoff 1990). At the same time, non-uniqueness of some
two-dimensional steady Riemann problems is a well-known feature (e.g. Henderson &
Atkinson 1976), the most relevant example being the parameter domain where both
regular and Mach reflections are possible.

The theory developed in the references mentioned above is based on the assumption
(either explicit or implicit) that the acoustic wave families are genuinely nonlinear,
thus generating compression shock waves and centred expansion fans in a scale-
invariant flow. The genuine nonlinearity of the acoustic wave families is formally
expressed (Menikoff & Plohr 1989; Vimercati, Kluwick & Guardone 2018) by the
condition Γ > 0, where

Γ =
v3

2c2

(
∂2P
∂v2

)
s

(1.1)
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Incoming
shock

(a) Outgoing
oblique wave

Contact
discontinuity

y

x
Cross node Overtake node Mach node Refraction node

(b) (c) (d)

FIGURE 1. Qualitative sketch illustrating the configuration of the incoming waves for
different nodes. The undisturbed supersonic flow is aligned with the x-axis (from left to
right). An outgoing wave can disappear for specific incoming shock conditions or if the
flow downstream of an incoming shock is subsonic.

is the fundamental derivative of gas dynamics (Thompson 1971), in which P is the
pressure, v is the specific volume, c is the speed of sound and s is the specific
entropy. If Γ < 0, unconventional phenomena such as expansion shocks, compression
fans, shock waves with upstream or downstream sonic state and composite waves
can be formed (see also Thompson & Lambrakis 1973; Cramer & Kluwick 1984;
Cramer & Sen 1987; Cramer 1989b; Menikoff & Plohr 1989; Kluwick 2001). For
this reason, gas dynamics associated with states featuring negative or mixed values of
the fundamental derivative is known as non-classical gas dynamics. A distinguishing
feature of the non-classical gas-dynamic regime is that a given supersonic state can be
connected with as many as three different states by means of the Rankine–Hugoniot
relations (see e.g. Thompson 1988). The theory of admissible shock waves in the
non-classical gas-dynamic regime is well established and enables the selection of the
physically relevant solutions of the Rankine–Hugoniot relations; detailed discussions
can be found for example in Kluwick (2001) and Zamfirescu, Guardone & Colonna
(2008).

Thermodynamics requires Γ to be positive in the dilute-gas limit (for a gas with
constant specific heats). Indeed, for a perfect gas the fundamental derivative is given
by Γ = (γ + 1)/2> 1, where γ is the ratio of the specific heats. However, negative
values of Γ can in principle be observed in the close proximity to the liquid–vapour
saturation curve and critical point (Nannan, Guardone & Colonna 2014; Nannan et al.
2016). In addition, a family of highly molecularly complex fluids, commonly referred
to as Bethe–Zel’dovich–Thompson (BZT) fluids, is expected to exhibit negative
nonlinearity in a finite vapour-phase thermodynamic region (also known as BZT
region) neighbouring the saturation curve. According to modern and most accurate
thermodynamic models, candidate BZT fluids are believed to belong to the classes
of hydrocarbons, fluorocarbons and siloxanes (Lambrakis & Thompson 1972; Cramer
1989a; Colonna, Guardone & Nannan 2007).

In the present work, a step towards the understanding of the shock-interaction
mechanisms in non-classical gas dynamics is performed. The focus is on single-phase
flows of BZT fluids. Retaining the same approach as in previous investigations (in
particular, Glimm et al. (1985), Grove (1989) and Grove & Menikoff (1990)), the
graphical analysis of wave curves in the pressure–flow direction diagram is applied
to determine the steady-state node patterns corresponding to different configurations
of interacting discontinuities. With reference to figure 1, these are the crossing of
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shock waves travelling in opposite directions (cross node), the overtaking of shocks
travelling in the same direction (overtake node), the splitting of shock waves (Mach
node) and the regular refraction of shocks through a contact discontinuity (refraction
node). To this end, we take advantage of the theory of non-classical wave curves
developed by Vimercati et al. (2018). Two new features need to be considered in
non-classical gas dynamics: firstly, the possibility that one or more waves generated
by the interaction are non-classical (for example, a composite wave); secondly, one
or more of the interacting waves may be an expansion shock.

The primary goal of this investigation is to illustrate how non-classical shock
interactions arise. To this end, the van der Waals gas model of a BZT fluid is
employed. The question arises, then, whether the computed configurations are specific
to the van der Waals gas used in this study or of more general nature. A complete
classification of each realisable node pattern, together with the precise definition of
the boundaries, in the parameter space associated with the incident waves, inside
which a specific configuration is observed, are beyond the scope of this analysis.
Nevertheless, it is expected that qualitatively similar node patterns can be obtained
from other thermodynamic models of BZT fluids. This result is suggested by the
qualitative correspondence, among diverse thermodynamic models of BZT fluids,
of the domain of upstream-state parameters leading to the different wave-curve
configurations (Vimercati et al. 2018) and it is confirmed by further computations
using state-of-the-art thermodynamic models present here. More generally, such an
approach is fundamentally motivated by the similar curvature properties of the shock
adiabats and has been successfully employed in various studies concerning BZT fluids,
from the aforementioned two-dimensional steady scale-invariant flow (Vimercati et al.
2018) to unsteady shock propagation in one and two dimensions (Alferez & Touber
2017; Touber & Alferez 2019).

The structure of the present work is the following. Section 2 provides the necessary
background for the inspection of the node patterns in non-classical gas dynamics.
Sections 3–6 are devoted to the analysis of the different types of node, namely the
cross node, overtake node, Mach node and refraction node, respectively. For each
node, both compression and expansion incident shocks are considered. To illustrate
shock interactions in non-classical gas dynamics, the van der Waals gas model is
used; in § 7 are reported results of accurate thermodynamic models for selected fluids.
Finally, § 8 gives the concluding remarks.

2. Governing equations and method of solution
We consider a two-dimensional, steady, single-phase flow in which the effects of

viscosity, thermal conduction, chemical reactions and other non-equilibrium effects are
limited to layers of negligible thickness and can all be disregarded. Under the further
assumption of negligible body forces, the balance equations of mass, momentum and
energy, written in integral form for a control volume Ω with boundary ∂Ω and unit
outer-pointing normal n, are ∮

∂Ω

F · n dS= 0, (2.1)

where
F= (ρu, ρu⊗ u+ PI, ρuht), (2.2)

is the flux density, in which ρ is the density, u is the particle velocity, ht
= e+‖u‖2/2

is the specific total enthalpy, e is the specific internal energy and I is the unit tensor.
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Shock interactions in 2-D steady flows of BZT fluids 887 A12-5

Equations (2.1) are equivalent to the Euler equations at points where the flow variables
are smooth and to the Rankine–Hugoniot relations at points of jump discontinuities
(see e.g. Thompson 1988). The specification of the equation of state P(e, ρ) completes
the equations; it is assumed that this relation derives from a consistent fundamental
relation s(e, v), see e.g. Callen (1985).

2.1. Two-dimensional steady scale-invariant flow
The interaction of shock waves with other shocks or contact discontinuities occurs
at singularity points called nodes. The flow field in the immediate vicinity of these
singularities is properly described in terms of elementary waves (see Glimm et al.
1985; Glimm & Sharp 1986). In two space dimensions, an elementary wave is a
steady, scale-invariant solution of equation (2.1). As such, it consists of uniform states
separated by waves propagating along rays (straight lines) centred on the node. It is
convenient to assign a direction to every wave, based on the tangential velocity along
the shock or contact front and each acoustic wave in a centred fan: if this points
towards the node, the wave is incoming, otherwise the wave is outgoing (Henderson
& Menikoff 1998). It is customary to regard the incoming waves as data, while the
outgoing waves are to be determined.

Before addressing the structure of elementary waves in non-classical gas dynamics,
it is necessary to summarise the properties of scale-invariant waves in steady
planar flows. The restriction of the Euler equations to scale-invariant flows in two
space dimensions yields a system of four ordinary differential equations for the
independent variable x/y, in a Cartesian (x, y) coordinate system centred on the
node, or equivalently for the angular coordinate, in a polar coordinate system. The
imposition of scale invariance thus leads to the elimination of the radial derivatives.
Similarly, the Rankine–Hugoniot relations are satisfied across each ray carrying a
jump discontinuity.

As is well known (see e.g. Godlewski & Raviart 2013), the system of equations so
obtained is non-strictly hyperbolic for supersonic flow M> 1 (M= ‖u‖/c is the flow
Mach number) with three characteristic families. The acoustic families propagate with
slope ϑ − µ (right-running acoustic waves) or ϑ + µ (left-running acoustic waves),
where ϑ is the local streamline slope (positive if anticlockwise) and µ= sin−1(1/M)
is the Mach angle. These characteristic fields are non-degenerate, except at isolated
points corresponding to Γ = 0. The remaining characteristic family is directed along
the particle paths and is a linearly degenerate mode of double multiplicity.

Besides the trivial solution corresponding to a completely uniform flow, two
constant-state circular sectors about the node can be separated by one of the following
waves:

(i) Simple waves or Prandtl–Meyer waves. These are centred fans of acoustic waves.
By definition, the Mach number normal to each acoustic wave in the fan is
equal to one (Thompson 1988). A simple wave expands the flow if Γ > 0 and
compresses the flow if Γ < 0. A simple wave breaks down at degenerate points
if Γ = 0.

(ii) Shock waves – discontinuities in the acoustic wave families. Physically
admissible shocks must satisfy certain admissibility criteria, among which are
the entropy-increase condition, the speed ordering relation on the Mach number
normal to the shock front and the existence of a one-dimensional thermoviscous
profile (Kluwick 2001). Admissible shock waves compress the flow in positive-Γ
fluids, but in the neighbourhood of the Γ < 0 region of BZT fluids, expansion
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shocks are admissible. Shock waves crossing the transitional curve Γ = 0 may
feature unit normal Mach number in the pre-shock state (pre-sonic shock),
post-shock state (post-sonic shock) or both states (double-sonic shock). These
are called sonic shocks.

(iii) Composite waves. A sonic shock can be placed next to a simple wave of the
same characteristic family to form a composite wave. Composite waves naturally
arise in the presence of degenerate points Γ = 0 due to folding of acoustic waves
or violation of shock admissibility criteria (Menikoff & Plohr 1989).

(iv) Contact discontinuities – discontinuous waves of the linearly degenerate charac-
teristic family. The pressure and flow direction are constant across the contact,
while the entropy and velocity magnitude can experience jumps.

Owing to their general geometrical property of forming a non-zero angle with
respect to the local flow direction, the waves of the acoustic families (simple waves,
shock waves and composite waves) are called here oblique waves.

The separation of the propagation speed (slope) between waves of distinct
characteristic families, along with the requirement for 2π periodicity, implies that
an elementary wave includes at most one incoming wave of each family and at most
one outgoing wave of each family. Thus two incoming oblique waves are allowed,
one left-running and one right-running, separated by a contact discontinuity, which
necessarily coincides with the streamline entering the node. The same considerations
apply for the outgoing waves.

2.2. Classification of nodes
Taking into account the physical meaning of the wave interaction, we shall limit
our considerations to configurations containing at most two incoming rays. Other
configurations are indeed geometrically irregular (Sanderson 2004), in the sense
that a slight geometrical perturbation of one of the incoming rays would break the
single-node interaction pattern into multiple nodes. This requirement also excludes
the case of incoming wave fans centred on the node.

Having restricted the analysis to configurations containing at most two incoming
rays leaves us with a limited number of possible nodes. Following Glimm et al.
(1985), the node pattern can be classified on the basis of the incoming waves as
follows (cf. figure 1):

(i) Cross node: collision of two oblique shocks of opposite families.
(ii) Overtake node: collision of two oblique shocks of the same family.

(iii) Mach node: splitting of an incoming oblique shock (special case of cross or
overtake node in which an incoming shock disappears).

(iv) Refraction node: regular refraction of an oblique shock through a contact
discontinuity.

When the flow downstream of the incident shocks is supersonic, a supersonic steady-
state Riemann problem is established, in which the data are provided by the states
behind the incident waves (see also Menikoff 1989). Thus, three outgoing waves are
expected at the node, namely two oblique waves with a slip line in between. An
outgoing oblique wave can disappear (degenerate node) for special deflection angles of
the incident shocks, or more commonly if the flow downstream of an incident shock
is subsonic. In this work, the analysis of shock interactions is limited to configurations
in which the flow downstream of the incident shocks is supersonic.
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2.3. Wave curves for two-dimensional steady flow
In the context of two-dimensional, steady, scale-invariant flows, a wave curve of
an acoustic family is by definition the set of states connected to a given upstream
supersonic state by oblique waves. The importance of wave curves in the study
of elementary waves is evident: since the pressure and flow direction are constant
across contact discontinuities, then, given the incoming waves at the node, the task of
determining the outgoing waves translates into that of finding intersections between
oblique-wave curves in the (P, ϑ) diagram.

The general structure of wave curves in BZT fluids has been analysed by Vimercati
et al. (2018). Wave curves can be classified based on type and sequence of
oblique waves composing the compression and expansion branches. The different
configurations are listed in table 1 and are briefly recalled in this section. A
representative diagram displaying the normalised pressure jump (P/PA − 1, where
PA is the upstream pressure) against the deflection angle Θ across the oblique wave
(positive if anticlockwise, i.e. across left-running compressive waves and right-running
expansive waves, and negative otherwise) is reported for each type of wave curve. For
simplicity, only left-running waves are considered; right-running waves are obtained
by reflecting the left-running ones about the Θ = 0 axis.

The thermodynamic model used to generate the wave curves of table 1 and used
throughout the following discussion for explanatory purposes is the van der Waals
model (van der Waals 1873) with constant isochoric specific heat cv (polytropic van
der Waals model). In terms of reduced quantities (scaled using the critical-point
values), the polytropic van der Waals model depends only on the non-dimensional
isochoric heat capacity cv/R, where R is the gas constant (Colonna & Guardone 2006).
A finite negative-Γ region in the vapour phase exists provided that cv/R& 16.66 (see
Thompson & Lambrakis 1973). In this work we will use the polytropic van der
Waals gas model with cv/R = 57.69, which corresponds to the siloxane MDM
(octamethyltrisiloxane, C8H24O2Si3). The general validity of the results so obtained is
suggested by that of the wave curves (in terms of configurations and dependence on
the upstream supersonic state), regardless of the specific choice of the equation of state
(Vimercati et al. 2018). More details, including an assessment against state-of-the-art
thermodynamic models, is given below in § 7.

With reference to table 1, wave curves of type C correspond to the well-known
configuration of classical gas dynamics. The compression and expansion branches
consist of oblique shocks and Prandtl–Meyer fans, respectively. Curve N1 is
characterised by composite waves in the compression branch. After the initial portion
comprising oblique shocks, the compression is realised by composite shock-fan waves
and next by shock-fan-shock waves. For the largest compressions, the oblique shock
configuration is restored. Type-N2 and type-N3 curves are generated if the upstream
thermodynamic state is inside the negative-Γ region. As a result, for small deflection
angles, inverted behaviour is observed. For increasing downstream pressures, in the
compression branch the sequence of wave configurations is: Prandtl–Meyer fans,
composite fan-shock waves and oblique shocks. The expansion branch consists of
oblique shocks for curves of type N2, while type-N3 curves feature an additional
shock-fan portion. Curves N4 and N5 include non-classical waves in the expansion
branch only. After the initial section corresponding to Prandtl–Meyer waves, fan-shock
waves and oblique shocks are observed. In the case of type-N5 an additional shock-fan
portion provides the strongest expansions. Finally, curves of type N6 are distinguished
by the following sequence of oblique waves along the expansion branch, in the order
of decreasing downstream pressure: fan, fan-shock, fan-shock-fan.
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Branch sequence Example

Type Comp. side Exp. side (P, Œ) diagram Upstream state

c S F

n1 S | SF | SFS | S F

n2 F | FS | S S

n3 F | FS | S S | SF

1.0

0.5

-0.5

10-10-20

P/PA - 1

P/PA - 1

P/PA - 1

P/PA - 1

Œ (deg.)

10-10-20 Œ (deg.)

5-5-10 Œ (deg.)

Œ (deg.)

sA = -sA
√A = 10√c
MA = 1.5
˝A = 0.92

sA = -sA
√A = 2.5√c
MA = 1.09
˝A = 0.48

sA = -sA
√A = 1.3√c
MA = 1.08

˝A = -0.73

sA = -sA
√A = 1.3√c
MA = 1.1

˝A = -0.73

0.4

0.2

-0.2

-0.4

0.10

0.05

-0.05

-0.10

-0.15

-4 -2 2 4 6

0.1

-0.1

-0.2

-0.3

Shock

Fan

Shock-fan

Fan-shock

Shock-fan-shock

Fan-shock-fan

TABLE 1. Continued on next page.
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Branch sequence Example

Type Comp. side Exp. side (P, Œ) diagram Upstream state

n4 S F | FS | S

n5 S F | FS | S | SF

n6 S F | FS | FSF

P/PA - 1

Œ (deg.)

P/PA - 1

P/PA - 1

Œ (deg.)

Œ (deg.)

sA = -sA
√A = √c

MA = 1.08
˝A = 1.94

sA = -sA
√A = √c

MA = 1.1
˝A = 1.94

sA = -sA
√A = 0.7√c
MA = 1.6
˝A = 4.3

Shock

Fan

Shock-fan

Fan-shock

Shock-fan-shock

Fan-shock-fan

-2-4-6-8
-0.05

-0.10

-0.15

-0.20

-0.25

-2-4-6-8-10
-0.01

-0.02

-0.03

-0.04

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6

-10-20-30

TABLE 1 (cntd). Classification of the wave curves: S, shock; F, fan; SF, composite
shock-fan; SFS, composite shock-fan-shock; FS, composite fan-shock; FSF: composite
fan-shock-fan. The different waves are illustrated on a typical ramp configuration. Shock,
shock-fan, fan and fan-shock waves can be either compression or expansion waves. On
the compression/expansion side, the sequence of wave types is listed in the order of
increasing/decreasing downstream pressure. For each wave configuration, an exemplary
pressure–deflection diagram computed from the polytropic van der Waals model with
cv/R = 57.69 is reported. The upstream thermodynamic states are all selected along the
same isentrope s̄A = s(0.74Pc, 2.5vc), where subscript c denotes critical-point quantities
(note that each case corresponds to a different stagnation state). Symbolu (blue) denotes
downstream sonic states.
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3. Cross node
At a cross node, two oblique shocks of opposite families collide. This occurs, for

example, at a supersonic engine inlet or nozzle outlet. For a perfectly symmetric
incident-shock configuration, the outgoing wave pattern is also symmetric and the
velocity and entropy jumps across the slip line vanish. It is easily checked that the
flow configuration in each of the half-planes about the symmetry axis is identical to
that of a regular reflection.

In addition to the possibility of observing non-classical outgoing waves, as
suggested by the presence of non-classical wave branches along the wave curves,
the admissibility of expansion shocks gives the opportunity to consider the crossing
of expansion shocks or mixed configurations with an incident compression shock
and expansion shock. A non-exhaustive set of representative cross nodes is analysed
in this section starting with the most familiar case of incident compression shocks,
discussed by Glimm et al. (1985) for dilute gases.

3.1. Crossing of compression shocks
In each of the following pressure–flow direction diagrams, a numerical subscript is
used to indicate the state of the fluid in each circular sector about the node, starting
with subscript 0, which denotes the upstream supersonic state (undisturbed flow).
The graphical analysis of cross-node interactions generally requires consideration of
four different wave curves in the pressure–flow direction diagram, as illustrated in
the schematic of figure 2(a): the two incoming wave curves W l

0 and W r
0, namely

the left-running and right-running wave curves from the given upstream state, and
the two outgoing (or reflected) wave curves W r

1 and W l
1′ , namely those computed

from the states immediately downstream of the incident shocks (provided that these
states are supersonic) and propagating in the opposite direction. The outgoing
waves are determined by the intersection point of the reflected wave curves. In
figure 2, the selected upstream state generates incoming wave curves of type N1 and
various reflected wave curves are plotted; these correspond to different incident-shock
conditions which are now examined.

The case in figure 2(a) depicts the typical configuration of a cross node in classical
gas dynamics. Two incident compression shocks produce two outgoing shocks with a
slip line in between. It is easily verified that this is the only admissible configuration
if the incident and reflected wave curves are of type C and the incident shocks
correspond to the weak shock solution (lower pressure jump) for the specified
deflection angle. Menikoff & Plohr (1989) observed that an alternative scenario is
possible if one of the incoming shocks is a strong oblique shock (larger pressure
jump solution for the given deflection angle) with supersonic downstream state: the
strong shock is reflected as an expansion fan.

By increasing the strength of the incident shocks, the intersection point between
the reflected wave curves moves towards the non-classical branches, implying that
non-classical outgoing waves can be observed. The cases in figure 2(b,c) are two such
examples, which involve outgoing shock-fan and shock-fan-shock waves, respectively.
Configurations figure 2(a–c) are symmetrical, in terms of wave types, about the slip
line, and are obtained for similar values of the pressure jump across the incident
shocks. A special case is of course the symmetric cross node, obtained when the
incident shocks have identical jumps and opposite deflection angles. Therefore, it
should come as no surprise that the regular reflection of compression shocks in BZT
fluids might be realised by non-classical reflected waves.
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FIGURE 2. Pressure–deflection diagram for the crossing of compression shocks in a
polytropic van der Waals gas (cv/R = 57.69) and schematic illustrations of the node
patterns. Only oblique compression waves are generated in this type of interaction. The
wave-curve labelling is shown for the exemplary case (a) (superscript l and r stand for left-
and right-running waves, respectively, the subscript indicates the initial state). Upstream
state: P0= 0.527Pc, v0= 4vc, M0= 1.5 (subscript c for critical quantities). Deviation angles
across the incident shocks: Θ0-1= 3◦, 6◦, 9◦, 12◦, 15◦, 18◦, 21◦, 24◦ (left-running incident
shock); Θ0-1′ = −3◦, −6◦, −9◦, −12◦, −15◦, −18◦, −21◦, −24◦ (right-running incident
shock). Legend for wave-curve branches in table 1.

The loss of symmetry between the wave types on each side of the outgoing slip line
is due to the modification, either quantitative or qualitative, of the wave curves across
the incoming shocks. An example of the first kind is the intersection, in figure 2,
of the shock and shock-fan branches of the reflected wave curves of type N1. On
the other hand, a transition of the wave-curve type from N1 to N3 is observed for
the left-running outgoing waves associated with configurations in figure 2(d–f ). Thus,
cross nodes including outgoing compression fans or fan-shock composite waves are
also possible.

The occurrence of wave-curve transitions suggests that intersections similar to those
depicted in figure 2 can be generated from other types of incoming wave curves.
Computations not shown here confirm this claim and indicate that non-classical cross
nodes are possible from incoming wave curves of type C (it is still necessary that the
incoming wave curve crosses the Γ < 0 region).

3.2. Crossing of expansion shocks
Relevant examples of cross nodes with incoming expansion shocks are shown in
figure 3. Here, the incident wave curves are of type N3. Note that the requirement
for incoming expansion shocks can be satisfied also from wave curves of type N2–N5,
see table 1.

The graphical analysis of expansion cross nodes in figure 3 suggests that only
expansion waves can be generated at the node with incoming expansion shocks.
Configurations that are symmetrical, in terms of outgoing wave types, are those in
figures 3(a), 3(b) and 3(c); these correspond to pairs of outgoing expansion shocks,
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FIGURE 3. Crossing of expansion shocks in a polytropic van der Waals gas (cv/R=57.69).
Only oblique expansion waves are generated in this type of interaction. Incoming waves
data: P0 = 1.032Pc, v0 = 1.1vc, M0 = 1.5; Θ0-1 = 2◦, 4◦, 6◦, 8◦, 10◦, 12◦, 14◦, 16◦; Θ0-1′ =

−2◦, −4◦, −6◦, −8◦, −10◦, −12◦, −14◦, −16◦ (same conventions as figure 2). Legend
for the wave-curve branches in table 1.

shock-fan waves and fans, respectively. In this connection we can see, by focusing on
intersections along the ϑ = 0 axis, that the regular reflection of the weakest expansion
shocks requires a reflected expansion shock, while with increasing incident-shock
strength a reflected shock-fan composite wave and ultimately a Prandtl–Meyer fan
is necessary. The latter configuration involving the expansion fan is a result of the
wave-curve transition across the incident shock from type N3 to type N1.

Further allowed configurations of the outgoing waves emerging from figure 3 are the
combinations of expansion shock and shock-fan wave (figure 3d), shock and Prandtl–
Meyer fan (figure 3e), fan and shock-fan wave (figure 3f ).

3.3. Compression shock crossing an expansion shock
The last cross-node scenario is that of a compression shock interacting with an
expansion shock; see figure 4. Incident wave curves of type N3 are chosen for
explanatory purposes. We note from graphical inspection that the fluid particles
passing through the incident compression shock must successively go through an
expansion wave and vice versa. Whether the interaction produces an overall pressure
increase or decrease (downstream of the outgoing waves) depends on the specific
configuration of the upstream state and incident shocks. Nevertheless, the relative
strength of pressure jumps across the incident shocks roughly determines the final
pressure variation.

Figure 4 shows that possible combinations of outgoing waves at the cross node are
(each pair is of the form expansion wave and compression wave, respectively):
composite fan-shock wave and Prandtl–Meyer fan (figure 4a), shock and fan
(figure 4b), fan-shock wave and shock-fan wave (figure 4c), shock and shock-fan
wave (figure 4d), fan-shock wave and shock (figure 4e), two shocks (figure 4f ). We
stress once again that these non-classical shock interactions result not only from
the peculiar configuration of the incoming wave curves but also from the possible
transition of the wave curve as the incoming wave is crossed.
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FIGURE 4. Crossing of a compression and an expansion shock in a polytropic van der
Waals gas (cv/R= 57.69). Oblique compression and expansion waves are denoted with a
plus and minus sign, respectively. Incoming waves data: P0=1.032Pc, v0=1.1vc, M0=1.5;
Θ0-1 = 2◦, 4◦; Θ0-1′ = 2◦, 4◦, 6◦, 8◦, 10◦, 12◦, 14◦, 16◦ (same conventions as figure 2).
Legend for the wave-curve branches in table 1.

4. Overtake node
An overtake node occurs when two shocks of the same family interact. Overtake

nodes are typically found on double-wedge geometries or in special cases of irregular
shock reflections such as the von Neumann, Guderley and Vasil’ev reflections
(Ben-Dor 2007). The collision of the incoming shocks produces a transmitted wave
(i.e. an outgoing wave of the same family as the incident shocks), a slip line and
a reflected wave (the latter only if the flow passing through both incoming shocks
remains supersonic).

Four different combinations of incoming compression/expansion shocks are possible.
Along the lines of § 3, the possible morphology of overtake nodes in non-classical gas
dynamics is illustrated using selected, relevant examples.

4.1. Overtaking of compression shocks
Overtake nodes can be analysed graphically as shown in the schematic of figure 5(a).
Without loss of generality, we assume left-running incoming shocks. In the pressure–
flow direction diagram, it is necessary to plot the two incoming wave curves W l

0 and
W l

1, which correspond to the upstream state and to the state downstream of the leading
incident shock, respectively, along with the reflected wave curve W r

2 computed from
the state downstream of the trailing incident shock (provided that this is supersonic).
Differently from the cross-node interaction, three wave curves suffice to represent the
overtake-node configuration since the transmitted wave is connected upstream to the
unperturbed state. Thus the outgoing waves are determined by the intersection of the
curves W l

0 and W r
2.

At the node formed by the overtaking of compression shocks, the reflected wave can
be either a compression or an expansion wave (see e.g. Glimm et al. 1985). Whether
a compression or expansion reflected wave occurs depends on the shape of the two
incoming wave curves: if the wave curve computed from the undisturbed state lies
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FIGURE 5. Overtaking of compression shocks in a polytropic van der Waals gas (cv/R=
57.69). Only oblique compression waves are generated in the selected configurations. For
case (a) the same conventions as figure 2 are used. Incoming waves data: P0 = 0.408Pc,
v0=5.4vc, M0=1.5; Θ0-1=10◦ (leading shock); Θ1-2=17◦, 20◦, 23◦, 26.5◦ (trailing shock).
Legend for the wave-curve branches in table 1.

on the left-hand side of the wave curve associated with the trailing shock, then the
reflected wave is compressive, otherwise an expansion reflected wave is generated. In
this section we limit the discussion to representative cases of the first kind.

Examples of the overtaking of two compression shocks are shown in the pressure–
deflection diagram of figure 5, where the incoming wave curves are of type N1. Here
we have fixed the leading incident shock and consider trailing incident shocks of
increasing strength.

The case in figure 5(a) involves compression oblique shocks only and it is one
of the two possible configurations in classical gas dynamics (in the other one the
reflected compression shock is replaced by an expansion Prandtl–Meyer fan). The case
in figure 5(b) is a first example of non-classical overtake node, which is distinguished
by the reflected shock-fan wave. As the pressure jump across the incoming wave
system increases, transitions of the wave-curve structure are possible. Reflected wave
curves of type N3 occur for the configurations in figures 5(c) and 5(d), implying that
the state downstream of the incoming shock exhibits Γ < 0. The case in figure 5(c)
involves a reflected compression fan; this configuration is geometrically equivalent to
the classical one featuring a reflected expansion fan. Configuration figure 5(d) shows
that the collision of two shocks of the same family can also generate a non-classical
transmitted wave, in this specific case a shock-fan wave (together with a reflected
fan-shock wave).

4.2. Overtaking of expansion shocks
The overtaking of an expansion shock by another expansion shock is shown in
figure 6. In this representative scenario, the wave curve computed from the upstream
state is of type N5. Across the leading incident shock, which is kept fixed in the
present analysis, the transition to type-N3 curve is realised.

Each configuration outlined in figure 6 features a transmitted expansion shock and a
reflected compression wave. A reflected compression fan is observed from the smallest
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FIGURE 6. Overtaking of expansion shocks in a polytropic van der Waals gas (cv/R =
57.69). The plus/minus sign indicates the pressure jump. Incoming waves data: P0 =

1.021Pc, v0 = vc, M0 = 1.5; Θ0-1 = −8◦; Θ1-2 = −4◦, −5◦, −6◦ (same conventions as
figure 5). Legend for the wave-curve branches in table 1.

deflection angles across the trailing shock; see figure 6(a). For the cases in figure 6(b)
and (c), the jump in the thermodynamic quantities across the trailing shock produces
a further transition of the wave curve, namely from type N3 to N1. Thus reflected
shock-fan composite waves (figure 6b) and shock wave (figure 6c) are also possible.

The configurations in figures 6(a) and 6(c) can be regarded as the counterparts of
the overtake-node configurations of classical gas dynamics, the pressure jump being
inverted across each oblique wave. Geometrically, these configurations are also similar
to their classical counterparts, except for the direction of the slip line (i.e. the final
flow direction), which is reversed.

4.3. Compression shock overtaking an expansion shock
Mixed configurations in which a compression shock interacts with an expansion shock
are also important. Such scenarios may arise, for example, in confined supersonic
flows with a change of curvature in the wall slope. The case where the leading shock
wave is compressive is examined first. A representative pressure–deflection diagram is
shown in figure 7, where the wave curves corresponding to the leading and trailing
incident shocks are of type N1 and N3, respectively. The overall pressure variation
across the wave system clearly depends on the relative strength of the incident shocks.
For each case depicted in figure 7, the incident compression shock (fixed during the
analysis) is followed by a comparatively weaker expansion shock, thus producing an
overall compression. Note, however, that the reflected wave is an expansion wave.
Configurations of reflected waves similar to those encountered in the previous section
are observed, namely the expansion fan (figure 7a), shock-fan (figure 7b) and shock
wave (figure 7c).

Geometrically, the qualitative difference with the overtaking of compression or
expansion shocks is expressed by the slope of the transmitted shock, which is indeed
smaller than the slope of the leading incident shock in order to match the pressure
jump across the contact discontinuity.
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FIGURE 7. Compression shock overtaking an expansion shock in a polytropic van der
Waals gas (cv/R = 57.69). Plus/minus sign for the pressure jump. Incoming wave data:
P0 = 0.401Pc, v0 = 5.5vc, M0 = 1.53; Θ0-1 = 32◦; Θ1-2 = −5◦, −7◦, −9◦, −11◦ (same
conventions as figure 5). Legend for the wave-curve branches in table 1.

4.4. Expansion shock overtaking a compression shock
The last combination of incident shocks in the overtaking configuration is reported in
figure 8. Here the undisturbed state generates a type-N3 wave curve and across the
leading incident shock (fixed for the present analysis) the transition to a type-N1
curve occurs. The same considerations as given in the previous section apply
to the present scenario, provided that each compression wave is replaced by the
corresponding expansion wave and vice versa. The configurations outlined in figure 8
produce an overall expansion (due to the comparatively larger strength of the leading
expansion shock), which is achieved through a transmitted expansion shock and a
reflected compression shock (figure 8a), shock-fan composite wave (figure 8b) and
fan (figure 8c). From the geometrical point of view, the cases of figures 8 and 7
differ qualitatively only in the direction of the slip line.

5. Mach node
The special case of a cross or overtake node in which one incident shock has zero

strength is called a Mach node. Mach nodes can be found in irregular shock reflections
at solid walls (i.e. Mach reflections; see e.g. Ben-Dor 2007) or at the tip of Mach
disks, e.g. in under/overexpanded jets (Thompson 1988). The incoming shock splits
into a transmitted and a reflected wave separated by a slip line. The jumps across the
slip line cannot vanish, as is the case, for example, in a perfectly symmetric cross
node (Serre 2007).

The graphical analysis of the Mach node (see the schematic of figure 9a) requires
that the incoming wave curve W l

0 (assuming a left-running incoming shock),
corresponding to the undisturbed state, and the reflected wave curve W r

1, computed
from the state downstream of the incident shock, are drawn in the pressure–deflection
diagram. The outgoing waves are determined by the intersection of these wave curves.
Selected configurations, representative of possible non-classical scenarios, are shown
in figure 9. The upstream state is fixed, while different incoming shock angles are
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FIGURE 8. Expansion shock overtaking a compression shock in a polytropic van der
Waals gas (cv/R = 57.69). Plus/minus sign for the pressure jump. Incoming waves data:
P0= 1.021Pc, v0= vc, M0= 1.6; Θ0-1=−21◦; Θ1-2= 2.8◦, 3.8◦, 4.8◦ (same conventions as
figure 5). Legend for the wave-curve branches in table 1.
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FIGURE 9. Splitting of a compression shock in a polytropic van der Waals gas (cv/R=
57.69). Only oblique compression waves are generated in this type of interaction. For case
(a) the same conventions as figure 2 are used. Upstream state: P0 = 0.406Pc, v0 = 5.4vc,
M0= 1.5. Deviation angles across the incident shocks: Θ0-1= 26◦, 27◦, 27.5◦, 29◦. Legend
for the wave-curve branches in table 1.

considered. The intersection between the wave curves occurs along the subsonic
shock branch of the incident wave curve (transonic transmitted shock) and in either
a supersonic or subsonic branch of the reflected wave. The configurations examined
in figure 9 exhibit subsonic flow downstream of both outgoing waves.

The case in figure 9(a) depicts the situation where non-classical wave curves
generate a classical Mach node (compression shocks only). Specifically, a type-N1

wave curve is reflected as a type-N3 wave curve, but their intersection point in the
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FIGURE 10. (a) Pressure–deflection diagram computed for a polytropic van der Waals
gas (cv/R = 57.69) with upstream state P0 = 1.032Pc, v0 = 1.1vc, M0 = 1.15. Deviation
angle across the incident shocks: Θ0-1 =−2.5◦, 27◦. Legend for the wave-curve branches
in table 1. (b) Qualitative illustration of the shock curves in the (P, v) plane corresponding
to the layout of panel (a). RH0 and RH1 denote the shock curves from states 0 and 1,
respectively.

pressure–deflection diagram is located along shock branches. By slightly decreasing
the incident-shock strength, the more interesting case in figure 9(b) is obtained,
which demonstrates that non-classical effects can modify the classical picture of the
Mach node. The incident shocks split in the usual transmitted shock and a reflected
fan-shock composite wave. For small or moderate values of the incident-shock
strength, no transition of the wave-curve structure occurs, and additional Mach node
configurations are possible. For example, the case in figure 9(c) represents a Mach
node in which the incoming shock is reflected as a shock-fan-shock composite wave.
Further computations (not shown) confirm that Mach nodes including a reflected
compression fan or shock-fan composite wave are possible as well.

On the basis of numerical evidence, namely an extensive exploration of the
parameter space associated with incoming expansion shocks, it appears that expansion
shocks cannot split forming a Mach node. Within the range of the parameters
corresponding to an incident expansion shock, the reflected wave curve was seen
either to cross the ϑ = 0 axis (as shown, for example, in figure 3) or not to cross
the incident wave curve at all; see figure 10(a). Not only has this behaviour been
observed in polytropic van der Waals gases, but also it has been confirmed by
graphical analysis of the wave curves in other gases (see § 7 below).

The lack of Mach-node configurations for incoming expansion shocks is supported
by the following considerations. Firstly, in the transonic regime |M2

−1|�1 and close
to Γ = 0, analytical expressions have been derived by Kluwick & Cox (2018, 2019b)
in the context of shock reflections and reveal a complete symmetry between the case
of incident compression shocks and incident expansion shocks. It is demonstrated that
the reflected wave curve cannot intersect the incoming wave curve, thus excluding
Mach nodes.

Secondly, there exists a threshold value of the upstream Mach number (depending
on the upstream thermodynamic state) beyond which expansion wave curves do
not present detachment points or other extrema of the deflection angle, in contrast
to the compression wave curves where a detachment point exists for arbitrarily
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large upstream Mach numbers (Vimercati et al. 2018). For such incoming wave
curves, the conditions for the observation of a Mach node are clearly not satisfied.
Thus, the parameter range (in terms of upstream states) where Mach nodes might
potentially form is considerably smaller for incident expansion shocks than for
incident compression shocks.

Thirdly, let state 0 and state 1 indicate the flow states upstream and downstream of
the incident shock, respectively. The mass balance across the shock then reads

ρ0u0 sin β = ρ1u1 sin(β −Θ), (5.1)

where β and Θ denote the shock angle and the flow deflection angle, respectively. The
quantity ρ0u0 is the mass flux for an incident normal shock (point N0 in figure 10).
The mass-flux value ρ1u1, instead, is associated with the maximum pressure decrease
along the reflected wave curve (namely, the normal shock from state 1, point N1). A
compression shock deviates the flow towards the front itself (|β −Θ|< |β|), whereas
an expansion shock away from it (|β − Θ| > |β|). Thus we obtain that ρ1u1 < ρ0u0
for an incident expansion shock. Now consider the construction of figure 10(b). The
quantity ρu is directly related to the slope of the chord between the pre-shock and
the post-shock states (which is given by −ρ2u2). The shock adiabat RH1 from state
1, for v >v1, is located below the shock adiabat RH0 from state 0 (see Kluwick 2001).
Combining these two results, we obtain that the pressure at point N1 is larger than the
pressure at N0. This condition is necessary, but not sufficient, for the non-existence of
Mach reflections of expansion shocks, for the pressure value at N1 should be larger
than the pressure at point 2, the strong oblique shock with the same flow deflection
as point 1.

To sum up, the above observations are consistent with the results of our graphical
analysis, but unfortunately they are not sufficient to demonstrate whether an
expansion shock can split forming a Mach node or not. Importantly, these theoretical
considerations do not depend on the specific form of the thermodynamic model and
thus they suggest a possible path for the investigation of this open problem.

6. Refraction node
In a (regular) refraction node, an incident shock impinges on a contact discontinuity

causing a deflection of the contact wave and the appearance of a reflected wave and
a transmitted oblique wave. Upstream of the node, the contact discontinuity separates
two uniform and compatible (same pressure and flow direction) supersonic states. The
transmitted wave is thus the refracted shock, propagating into a state with a different
entropy and/or velocity magnitude. Refraction nodes can occur in the presence of
supersonic mixing layers, for example downstream of the trailing edge of turbine
cascades with supersonic outflow, at boundaries between different media or also in
combustion problems (e.g. in detonation engines).

The relatively large degree of freedom in the choice of the two upstream supersonic
streams results in a variety of possible outgoing waves. In this section we focus, in
particular, on the phenomenon by which a shock wave undergoing a refraction by a
contact discontinuity is transmitted as a different type of wave. Representative regular
refractions of compression and expansion shocks are detailed in the following.

6.1. Refraction of compression shocks
With reference to the schematic in figure 11(a), to examine a regular refraction node
(an incident left-running shock is assumed), the wave curves W l

0 and W l
0′ , centred on
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FIGURE 11. Regular refraction of a compression shock through a contact discontinuity
in a polytropic van der Waals gas (cv/R= 57.69). Plus/minus sign for the pressure jump.
For case (a) the same conventions as figure 2 are used. Incoming wave data: P0= 0.83Pc,
v0 = 2.5vc, M0 = 1.4, P0′ = 0.83Pc, v0′ = 2.1vc, M0′ = 1.4; Θ0-1 = 5◦, 10◦, 15◦. Legend for
the wave-curve branches in table 1.

the upstream states on each side of the contact discontinuity, are plotted along with the
reflected wave curve W r

1 computed from the state downstream of the incident shock.
The outgoing waves are thus determined by the intersection point between the curves
W l

0′ and W r
1.

In the pressure–deflection diagram of figure 11, the upstream states 0 and 0′

generate wave curves of type C and N1, respectively. Similarly to overtake-node
configurations, the refraction of a compression shock may generate either compressive
waves only or a transmitted compression wave together with a reflected expansion
wave; the actual configuration depends on the relative shape of the wave curves
computed from the upstream states. In figure 11, the supersonic branch of W l

0 lies on
the left-hand side of W l

0′ , thus indicating that a reflected expansion wave is required.
The case in figure 11(a) represents a classical refraction node in which the incident

shock is transmitted through the contact discontinuity and reflected as an expansion
fan. As the strength of the incident shock is increased, the intersection point between
the reflected wave curve and the wave curve from state 0′ moves towards the
non-classical branches of the latter wave curve, so that the transmitted shock is soon
replaced by composite waves. Thus, in passing through the contact discontinuity,
the incident shock is deflected and an additional fan is generated to accomplish the
compression; see the configuration in figure 11(b). Configurations such as figure 11(c),
featuring a transmitted shock-fan-shock wave, are also possible.

Other refraction-node patterns can be obtained by properly choosing the upstream
states and the incident shock conditions. Particularly interesting are the configurations
featuring a transmitted compression fan, which can be obtained if the state 0′ generates
a wave curve of type N2 or N3. Such cases represent refraction nodes in which the
contact discontinuity acts as a barrier against the entropy production, segregating all
the sources of entropy on the side of the incident shock.
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FIGURE 12. Regular refraction of an expansion shock through a contact discontinuity in
a polytropic van der Waals gas (cv/R = 57.69). Plus/minus sign for the pressure jump.
Incoming waves data: P0=1.05Pc, v0=1.1vc, M0=1.4, P0′ =1.05Pc, v0′ =0.9vc, M0′ =1.2;
Θ0-1 = −1.5◦, −12◦, −15◦ (same conventions as figure 11). Legend for the wave-curve
branches in table 1.

6.2. Refraction of expansion shocks
Possible scenarios for the refraction of an expansion shock are shown in figure 12. For
the particular combination of upstream states selected here, weak incident expansion
shocks (Θ . 2.5◦) are transmitted through the contact discontinuity as expansion fans
and generate reflected expansion shocks. By increasing the strength of the incident
shock, the point is reached where the wave curves associated with the upstream
states intersect and no reflected wave is produced. Beyond this point, the interaction
generated reflected compression waves and therefore the transmitted wave is weaker
than the incident wave. Two such scenarios are illustrated in figure 12. The case in
figure 12(b) represents the refraction of an expansion shock as a fan-shock composite
wave with a reflected compression fan. The case in figure 12(c) involves instead
a reflected compression shock due to the transition of the reflected wave curve to
type N1.

7. Results for selected siloxanes
The shock-interaction patterns shown in §§ 3–6 are computed using the van der

Waals model, which is well known to be qualitatively accurate, but quantitatively
inaccurate, in the thermodynamic region of interest (see e.g. Thompson & Lambrakis
1973). The possibility to extend the results of this investigation to other thermodynamic
models, especially in realistic scenarios, is therefore questioned. Vimercati et al.
(2018) illustrated a procedure to compute the domain of upstream-state parameters
leading to each type of wave curve, showing that qualitative agreement is obtained for
diverse thermodynamic models of BZT fluids. Extending this approach to the present
context, i.e. determining the relation between the incoming waves and the outgoing
wave pattern, appears impracticable due to the higher number of degrees of freedom.
However, the general qualitative character of the domain of upstream-state parameters
leading to each type of wave curve strongly suggests that interaction patterns (i.e.
intersections of wave curves) analogous to those illustrated using the van der Waals

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1053


887 A12-22 D. Vimercati, A. Kluwick and A. Guardone

4020-20-40

0.8

0.6

0.4

0.2

-0.2

P/P0 - 1(a) (b) P/P0 - 1

ˇ (deg.) ˇ (deg.)
302010-10

1.0

0.8

0.6

0.4

0.2

-0.2

FIGURE 13. Shock interactions in fluid D6, computed from the reference thermodynamic
model developed by Colonna, Nannan & Guardone (2008). (a) Crossing of compression
shocks: P0= 0.724Pc, v0= 2.9vc, M0= 1.4; Θ0-1= 2◦, 4◦, 6◦, 8◦, 10◦, 12◦, 14◦, 16◦; Θ0-1′ =

−2◦, −4◦, −6◦, −8◦, −10◦, −12◦, −14◦, −16◦ (same conventions as figure 2).
(b) Compression shock overtaking an expansion shock: P0= 0.564Pc, v0= 4.3vc, M0= 1.3;
Θ0-1= 25◦; Θ1-2=−5◦, −6.5◦, −8◦, −11◦ (same conventions as figure 5). Legend for the
wave-curve branches in table 1.
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FIGURE 14. Shock interactions in fluid MD4M, computed from the reference
thermodynamic model developed by Thol et al. (2019). (a) Crossing of compression
shocks: P0 = 0.722Pc, v0 = 3.0vc, M0 = 1.5; Θ0-1 = 2◦, 4◦, 6◦, 8◦, 10◦, 12◦, 14◦, 16◦;
Θ0-1′ = −2◦, −4◦, −6◦, −8◦, −10◦, −12◦, −14◦, −16◦ (same conventions as figure 2).
(b) Compression shock overtaking an expansion shock: P0 = 0.560Pc, v0 = 4.5vc,
M0 = 1.3; Θ0-1 = 25◦; Θ1-2 = −5◦, −6.5◦, −8◦, −11◦ (same conventions as figure 5).
Legend for the wave-curve branches in table 1.

model are to be expected for different thermodynamic models of BZT fluids. In fact,
all the results presented here have been reproduced by more accurate thermodynamic
models for candidate BZT fluids, including the Stryjek–Vera–Peng–Robinson
(Stryjek & Vera 1986), the Martin–Hou (Martin & Hou 1955; Martin, Kapoor &
De Nevers 1959) and the Span–Wagner (Span & Wagner 2003a,b) equations of
state. As an example, representative pressure–deflection diagrams for the siloxanes
D6 (dodecamethylcyclohexasiloxane) and MD4M (tetradecamethylhexasiloxane) are
reported in figures 13 and 14, respectively. The thermodynamic models used here to
compute shock interactions in D6 and MD4M belong to the class of multi-parameter
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equations of state in Span–Wagner form and are detailed in Colonna et al. (2008)
and Thol et al. (2019), respectively. These models, available in the REFPROP library
(Lemmon, Huber & McLinden 2013), are the most accurate ones available in the open
literature. The qualitative trends obtained in the previous sections with the van der
Waals model are therefore confirmed. The splitting of expansion shocks in a Mach
node has also been analysed; our graphical investigation confirms the observation
made in § 5 that this configuration appears to be disallowed.

8. Concluding remarks

Two-dimensional steady interactions of discontinuities in BZT fluids were investi-
gated. The analysis focused on the immediate vicinity of the interaction point, the
node, where the steady-state solutions (if any exists) for a given pair of incoming
discontinuities are scale-invariant. The restriction to these so-called elementary wave
patterns allows one, on the one hand, to reduce the possible intersections to four
types (cross, overtake, Mach and refraction node) and, on the other hand, to apply the
conventional method of wave curves. The main differences with respect to the classical
analysis are caused by the admissibility of non-classical waves such as expansion
shocks, centred compression fans and composite waves, and therefore by the structure
of the interacting wave curves – in total six different types of non-classical wave
curves, as classified by Vimercati et al. (2018). The resulting picture is considerably
richer and more complex than in classical gas dynamics.

The analysis of cross nodes pointed out a variety of possible combinations of
reflected waves, especially composite waves. Analogous considerations extend to the
regular shock reflection, a special sub-case of cross node. An important result, due
to the expansion branch of the wave curve being unbounded, is that moderate or
strong expansion shocks generate reflected shock-fan waves or fans when they cross
or impinge on a wall. Similarly, the overtaking of shock waves in BZT fluids may
involve non-classical reflected waves. Conditions were also reported under which the
interaction of two compression shocks generates a transmitted composite wave.

Our analysis revealed that an incident compression shock can be reflected as
composite waves also in a Mach node. In the representative configurations shown
here, the conditions for the observation of a non-classical transmitted wave (i.e.
Mach stem in the context of shock reflections) were not satisfied. It is remarkable
that the splitting of an incoming expansion shock seems to be disallowed, based on
numerical evidence. Node patterns containing three expansion waves were indeed
not observed, as the incident and reflected wave curves do not intersect in the
pressure–deflection plane. A proof of the impossibility of Mach nodes for incoming
expansion shocks is currently available only for transonic, small-perturbation flows
in the neighbourhood of Γ = 0. However, as a partial explanation of the observed
configurations, it was demonstrated that the pressure jump across two successive
expansion shocks cannot exceed the pressure jump corresponding to the normal
expansion shock from the same initial state. This finding may be of help in the
proof or disproof of the existence of Mach node with incoming expansion shocks.
The present conjecture, if proven true, would imply that four-wave reflection patterns,
namely Guderley or Vasil’ev reflections (which include, in fact, overtake nodes) are
the only alternative to the regular reflection of expansion shocks. The extension of the
small-disturbance analysis of Kluwick & Cox (2019b) to flows in the neighbourhood
of the thermodynamic point where Γ = 0 and (∂Γ /∂v)s = 0 is especially promising
since the resulting flow behaviour (in particular the configuration of the wave curves)
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is expected to be in complete qualitative agreement with the fully nonlinear analysis
of Vimercati et al. (2018). Preliminary results by Kluwick & Cox (2019a) indeed
confirm the latter claim. Therefore, small-perturbations theory in the aforementioned
thermodynamic domain will arguably provide new insights into the problem associated
with the splitting of expansion shocks.

Finally, it was shown that a compression shock wave can be transmitted as a centred
fan or a composite wave in a regular refraction through a contact discontinuity (while
in the classical gas-dynamic regime the transmitted wave is necessarily a shock). The
same phenomenon was observed in the refraction of expansion shocks.

Some remarks concerning the validity of the presented results are as follows.
Although the investigation was conducted using a specific thermodynamic model,
namely the van der Waals equation of state with cv/R= 57.69 (corresponding to the
fluid MDM), it is expected that the present findings are of general nature thanks to
the qualitative correspondence, among different thermodynamic models of BZT fluids,
of the domain of upstream-state parameters leading to each type of wave curve. All
the results presented here have been reproduced by state-of-the-art thermodynamic
models of BZT fluids such as D6 and MD4M.

The outgoing-wave configurations presented in this work are a subset of those
realisable at a sharp trailing edge (e.g. of an airfoil or turbine blade) where two
different supersonic streams interact. If the thermodynamic and kinematic state of
two streams can be independently chosen, there is no constraint on the configuration
of the outgoing waves. Thus, every combination among the ten possible types of
acoustic wave can be generated.

Wave curves in the pressure–deflection diagram are bounded and non-monotonic;
therefore they may have multiple intersections or no intersection at all. The
non-existence of the steady-state solution is connected with the bifurcation or
scattering of the node (unsteady flow). The problem of multiple intersections is
well known in classical gas dynamics and it is further amplified by non-classical
effects. For example, in a cross node the reflected wave curves intersect twice; these
intersections typically correspond to a downstream supersonic and subsonic flow. The
subsonic solution is expected to be unstable to small perturbations, just like a subsonic
regular reflection (Teshukov 1989). However, it is possible that multiple supersonic
intersections occur, as the sonic point occurs at higher pressures than the detachment
point (see e.g. the incoming wave curve in figure 5). Some of these patterns may not
be admissible as the reflected wave includes oblique shocks that would be unstable
to transverse perturbations of their front (Fowles 1981; Henderson & Menikoff 1998).
Another example of non-uniqueness is represented by configurations for which the
wave curves intersect, yielding both a cross-node solution or a couple of Mach nodes.
This problem is well known in the context of shock reflections (Ivanov, Gimelshein &
Beylich 1995). The scenario is further complicated in the non-classical gas-dynamic
regime, where it is possible to construct pressure–deflection diagrams exhibiting two
distinguished Mach-node intersections. The problem of multiple intersections may be
resolved by considering the local stability of the solution and the global boundary
conditions.
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