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Direct numerical simulation of pattern
formation in subaqueous sediment
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We present results of direct numerical simulation of incompressible fluid flow over
a thick bed of mobile spherically shaped particles. The algorithm is based upon the
immersed-boundary technique for fluid–solid coupling and uses a soft-sphere model
for the solid–solid contact. Two parameter points in the laminar flow regime are
chosen, leading to the emergence of sediment patterns classified as ‘small dunes’,
while one case under turbulent flow conditions leads to ‘vortex dunes’ with significant
flow separation on the lee side. The wavelength, amplitude and propagation speed
of the patterns extracted from the spanwise-averaged fluid–bed interface are found to
be consistent with available experimental data. The particle transport rates are well
represented by available empirical models for flow over a plane sediment bed in both
the laminar and the turbulent regimes.

Key words: multiphase and particle-laden flows, sediment transport, turbulent flows

1. Introduction

The process of erosion of particles from an initially flat subaqueous sediment layer
and their deposition at certain preferential locations leads, under certain circumstances,
to the amplification of small perturbations and gives rise to wave-like bed shapes
which are commonly described as ripples or dunes. These sedimentary patterns
are commonly observed in river and marine flows, as well as in various technical
applications involving shear flow over a bed of mobile sediment particles. From an
engineering point of view it is highly desirable to be able to predict the occurrence
and the nature of this phenomenon, since the bedform significantly influences flow
characteristics such as resistance, mixing properties and sediment transport.

Most of the previous theoretical work on the formation of sediment patterns is
based upon the notion that a flat bed is unstable with respect to perturbations of
sinusoidal shape. It was Kennedy (1963) who first studied this instability problem by
considering a potential flow solution, and over the years the concept has been applied
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by a number of researchers for a variety of flow conditions, in the laminar (Charru
& Mouilleron-Arnould 2002; Charru & Hinch 2006) and turbulent regimes (Richards
1980; Sumer & Bakioglu 1984; Colombini 2004; Colombini & Stocchino 2011).
Invoking a disparity in time scales between the flow and the bed shape modification,
most of the approaches have considered the bed shape as fixed for the purpose of the
analysis. The hydrodynamic stability problem is then complemented by an expression
for the particle flux as a function of the local bed shear stress at a given transverse
section of the flow.

It is now generally accepted that the mechanism that destabilizes a flat sediment bed
is the phase lag between the perturbation in bed height and the bottom shear stress
as a consequence of fluid inertia. A balance between this destabilizing mechanism
and other stabilizing effects such as gravity (Engelund & Fredsoe 1982) or phase lag
between bottom shear stress and the particle flow rate (Charru 2006) is believed to
result in instability of the bed at a certain preferred wavelength. Linear stability
analysis is often applied to the problem in order to predict the most unstable
wavelength; compared with experimental observations, however, predictions resulting
from this approach can be broadly described as unsatisfactory, sometimes predicting
pattern wavelengths which are off by an order of magnitude (Raudkivi 1997; Langlois
& Valance 2007; Coleman & Nikora 2009; Ouriemi, Aussillous & Guazzelli 2009).

Most available experimental studies report wavelengths of the developed bedforms
after they have undergone a coarsening process (the temporal evolution of the initial
patterns to their ‘steady-state’ form), or possibly after they have coalesced with other
bedforms. There are several experimental studies that report on the initial wavelength
and its development (Coleman & Melville 1994; Betat et al. 2002; Coleman, Fedele &
Garcia 2003; Langlois & Valance 2007; Ouriemi et al. 2009). However, the reported
data are widely dispersed. Today it is still a challenge to capture the three-dimensional
nature of the individual particle and fluid motion within the bed layer in a laboratory
experiment, which in turn has hindered the assessment of the various theoretical
approaches.

In the present work we numerically investigate the development of subaqueous
patterns in a statistically unidirectional channel flow configuration in both the laminar
and turbulent regimes. A sufficiently large number of freely moving spherical particles
are represented such that they form a realistic sediment bed in the simulation. To
the best of our knowledge, no attempt to numerically simulate the evolution of a
bed of mobile sediment particles (leading to pattern formation) by means of direct
numerical simulation (DNS), which resolves all the relevant length and time scales
of the turbulent flow as well as the individual sediment particles, has been reported
to date. The present study focuses on aspects related to the initial bed instabilities
and their subsequent short-time development.

2. Computational set-up

2.1. Numerical method
The numerical treatment of the fluid–solid system is based upon the immersed-
boundary technique. The incompressible Navier–Stokes equations are solved with
a second-order finite-difference method throughout the entire computational domain
Ω (comprising the fluid domain Ωf and the domain occupied by the suspended
particles Ωs), adding a localized force term which serves to impose the no-slip
condition at the fluid–solid interface. The particle motion is obtained via integration
of the Newton equation for rigid-body motion, driven by the hydrodynamic force
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FIGURE 1. (a) Schematic showing the collision force F(i,j)
c and torque T (i,j)

c acting on a
particle with index i during contact with particle j. The subscripts n and t indicate the
normal and tangential components, respectively; ∆c denotes the force range and δ(i,j)c is
the overlap length. (b) Computational domain and coordinate definition in cases LC1 and
LC2. (c) The same for case TO1. The computational domains are periodic along the x
and z directions with periods Lx and Lz, respectively.

(and torque) as well as gravity and the force (torque) resulting from interparticle
contact. Further information on the extensive validation of the DNS code on a whole
range of benchmark problems can be found in Uhlmann (2005), Uhlmann & Dušek
(2014) and further references therein. The code has been previously employed for
the simulation of various particulate flow configurations (Uhlmann 2008; Chan-Braun,
García-Villalba & Uhlmann 2011; García-Villalba, Kidanemariam & Uhlmann 2012;
Kidanemariam et al. 2013).

In the present case, direct particle–particle contact contributes significantly to the
dynamics of the system. In order to realistically simulate the collision process between
the immersed particles, a discrete element model (DEM) based on the soft-sphere
approach is coupled to the two-phase flow solver. The DEM used in the present work
employs a linear mass–spring–damper system to model the collision forces, which
are computed independently for each colliding particle pair. Any two particles are
defined as ‘being in contact’ when the smallest distance between their surfaces, ∆,
becomes smaller than a force range ∆c, as illustrated in figure 1(a). The collision
force is computed from the sum of an elastic normal component, a normal damping
component and a tangential frictional component. The elastic part of the normal
force component is a linear function of the penetration length δc ≡ ∆c − ∆, with a
stiffness constant kn. The normal damping force is a linear function of the normal
component of the relative velocity between the particles at the contact point with
a constant coefficient cn. The tangential frictional force (the magnitude of which
is limited by the Coulomb friction limit with a friction coefficient µc) is a linear
function of the tangential relative velocity at the contact point, again formulated with
a constant coefficient denoted as ct. A detailed description of the collision model
and extensive validation tests with respect to available experimental data for a single
particle colliding with a wall in a viscous fluid and in the case of bedload transport
under laminar shear flow has been recently provided by Kidanemariam & Uhlmann
(2014).

The four parameters that describe the collision process in the framework of this
model (kn, cn, ct, µc) as well as the force range ∆c need to be prescribed for each
simulation. From an analytical solution of the linear mass–spring–damper system in
an idealized configuration (considering a binary collision of uniformly translating
spheres in vacuum and in the absence of external forces), a relation between the
normal stiffness coefficient kn and the normal damping coefficient cn can be formed
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by introducing the dry restitution coefficient εd. This latter quantity is a material
property, defined as the absolute value of the ratio between the normal components
of the relative velocity postcollision and precollision. In the present simulations, ∆c
is set equal to one grid spacing 1x. The stiffness parameter kn has a value equivalent
to approximately 17 000 times the submerged weight of the particles, divided by
the particle diameter. The chosen value ensures that the maximum overlap δc over
all contacting particle pairs is within a few per cent of ∆c. The dry coefficient of
restitution is set to εd = 0.3, which together with kn fixes the value for cn. Finally,
the tangential damping coefficient ct is set equal to cn, and a value of µc = 0.4 is
imposed for the Coulomb friction coefficient. This set of parameter values for the
contact model was successfully employed in the simulations of (featureless) bedload
transport by Kidanemariam & Uhlmann (2014).

In order to account for the large disparity between the time scales of the particle
collision process and those of the smallest flow scales, the Newton equation for
particle motion is solved with a significantly smaller time step than the one used
for solving the Navier–Stokes equations (by a factor of approximately one hundred),
while keeping the hydrodynamic contribution to the force and torque acting upon the
particles constant during the intermediate interval.

2.2. Flow configuration and parameter values
The flow considered in this work is horizontal plane channel flow in a doubly periodic
domain, as shown in figure 1(b,c). Three simulations are performed, henceforth
denoted as case LC1, case LC2 (both in the laminar flow regime) and case TO1 (in
the turbulent regime). In cases LC1 and LC2 the domain is bounded in the vertical
direction by two solid wall planes, whereas for reasons of computational cost
in case TO1 an open channel is simulated, i.e. only the lower boundary plane
corresponds to a no-slip wall, while a free-slip condition is imposed at the upper
boundary plane. As shown in figure 1, the Cartesian coordinates x, y and z are
aligned with the streamwise, wall-normal and spanwise directions, respectively, while
gravity acts in the negative y direction. The flow is driven by a horizontal pressure
gradient at constant flow rate qf (per unit spanwise length), which results in a shear
flow of height hf over a mobile bed of height hb; spatial averages 〈hf 〉x and 〈hb〉x of
both quantities are defined in § 2.4; temporal averaging over the final period of the
simulations is henceforth indicated by the operator 〈·〉t. The bulk Reynolds number
of the flow is defined as Reb = 2Hub/ν, where ub ≡ qf /〈hf 〉xt is the bulk velocity,
H is the equivalent boundary layer thickness (i.e. H = 〈hf 〉xt/2 in cases LC1 and
LC2 and H = 〈hf 〉xt in case TO1, cf. figure 1(b,c)) and ν is the kinematic viscosity.
Similarly, the friction Reynolds number is defined as Reτ = uτ 〈hf 〉xt/ν, where the
friction velocity uτ is computed by extrapolation of the total shear stress to the fully
developed value of the wall-normal location of the average fluid–bed interface 〈hb〉x.
Scaling in wall units is henceforth indicated by a superscript ‘+’. Further physical
parameters are the ratio of particle to fluid density, ρp/ρf , the Galileo number
Ga = ugD/ν (where ug = ((ρp/ρf − 1)|g|D)1/2 and D is the particle diameter), the
Shields number Θ = u2

τ/u
2
g and the length scale ratio H/D; these together with the

chosen numerical parameters are shown in table 1. The present simulations consumed
a total of approximately five million core hours on the computing system SuperMUC
at LRZ München. Typical runs of case TO1 were carried out on 576 cores.

Figure 2 shows the three parameter points of the present simulations in the plane
spanned by Reb and Ga(2H/D)2 in comparison with the laboratory experiments of
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FIGURE 2. Different regimes of sediment bed patterns obtained in the pipe flow
experiment of Ouriemi et al. (2009), shown in the parameter plane (Reb, Ga(2H/D)2):
‘flat bed in motion’ (�); ‘small dunes’ (◦); ‘vortex dunes’ (N). For the pipe flow data
the Reynolds number Repipe based upon the pipe diameter dpipe and the bulk velocity
qf /dpipe is used. The data points in the turbulent channel flow experiment of Langlois &
Valance (2007) are indicated by D = 100 µm (M); D = 250 µm (C); D = 500 µm (B).
The following symbols refer to the present simulations: black circle, LC1; red circle, LC2;
blue circle, TO1.

Langlois & Valance (2007) and Ouriemi et al. (2009). It should be noted that the
former experiment was performed in pipe flow, whereas the latter was in plane channel
flow. It can be seen that the cases LC1 and LC2 fall into the regime where the
formation of ‘small dunes’ is expected, while ‘vortex dunes’ can be anticipated in
case TO1.

2.3. Initiation of the simulations
The simulations were initiated as follows. In a first stage the initial sediment bed was
generated by means of a simulation of particles settling (from random initial positions)
under gravity and under solid–solid collisions but disregarding hydrodynamic forces.
The result is a pseudo-randomly packed bed of initial bed thickness hb(t = 0) above
the bottom wall. Then the actual fully coupled fluid–solid simulation is started with all
particles being initially at rest. In cases LC1 and LC2, the initial fluid velocity field is
set equal to a laminar Poiseuille flow profile with the desired flow rate in the interval
hb(t= 0)6 y6Ly and zero elsewhere. After starting the simulation, individual particles
are set into motion due to the action of hydrodynamic force/torque, and erosion takes
place. In case TO1 the fluid–solid simulation was first run with all particles held
fixed in order to develop a fully turbulent field over the given sediment bed. After
approximately 100 bulk time units the particles were released, and the bed started to
evolve away from its initial macroscopically flat shape, as discussed in the following.

2.4. Definition of the fluid–bed interface
The location of the interface between the fluid and the sediment bed is determined
in the following way. First, a solid phase indicator function φp(x, t) is defined which
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FIGURE 3. (a) Close-up showing an instantaneous distribution of particles (coloured
according to their streamwise velocity) in case TO1. (b) The spanwise-averaged
two-dimensional solid volume fraction 〈φp〉z(x, y, t) corresponding to the snapshot shown
in (a) displayed in greyscale. The extracted fluid–bed interface location hb(x, t) is shown
by a magenta line. (c) Time evolution of the bed height: 〈hb〉x(t) is shown as solid lines,
minx(hb) and maxx(hb) are shown as dashed lines. Black is used for case LC1 and red
for case LC2. (d) The same quantities as shown in (c), but for case TO1 (see also the
supplementary movies available at http://dx.doi.org/10.1017/jfm.2014.284).

measures unity if x is located inside any particle and zero elsewhere. Spanwise
averaging then yields 〈φp〉z(x, y, t), which is a direct measure of the instantaneous
two-dimensional solid volume fraction. The spanwise-averaged fluid–bed interface
location hb(x, t) is finally extracted by means of a threshold value, chosen as
〈φp〉thresh

z = 0.1 (Kidanemariam & Uhlmann 2014), i.e.

hb(x, t)= y|〈φp〉z(x, y, t)= 〈φp〉thresh
z , (2.1)

as illustrated in figure 3(b). The corresponding spanwise-averaged fluid height is then
simply given by hf (x, t) = Ly − hb(x, t). Figure 3(c,d) shows the time evolution of
the streamwise average of the bed height defined in (2.1), 〈hb〉x(t), as well as its
minimum and maximum values. It can be observed that after a small initial dilation
〈hb〉x quickly reaches an approximately constant value in all three cases. In contrast,
the maximum and minimum values of the bed elevation continue to diverge over the
simulated interval of approximately 1000 bulk time units, not reaching an equilibrium
state.

3. Results

Space–time plots of the sediment bed height fluctuation with respect to the
instantaneous streamwise average, defined as h

′
b(x, t) = hb(x, t) − 〈hb〉x(t), are shown

in figure 4. The emergence of dune-like patterns can be clearly observed, with a
streamwise succession of alternating ridges and troughs forming shortly after startup
in all three cases. In the two simulations in the laminar regime we obtain similar
fluctuation amplitudes. However, the propagation velocity is significantly larger in
case LC2 (i.e. at larger Shields number) than in case LC1. The turbulent case TO1,
on the other hand, is found to exhibit a higher growth rate, rapidly leading to
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FIGURE 4. Space–time evolution of the fluctuation of the fluid–bed interface location,
h
′
b(x, t)=hb(x, t)−〈hb〉x(t), normalized with the particle diameter D: (a) case LC1; (b) case

LC2; (c) case TO1.
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FIGURE 5. Close-up of the instantaneous spanwise-averaged solid volume fraction
〈φp〉z (plotted in greyscale) as well as the streamlines computed from a spanwise-averaged
instantaneous flow field in the final phase of the simulated interval: (a) case LC1;
(b) case TO1.

enhanced fluctuation amplitudes in comparison with both laminar cases. Furthermore,
these space–time plots show the occasional occurrence of dune mergers with a
subsequent increase of wavelength and an apparent decrease of the propagation speed.
For times t & 550H/ub the sediment bed patterns in the turbulent case TO1 (cf.
figure 4c) remain roughly invariant, with two distinct dunes featuring somewhat
different elevation amplitudes.

A visualization of the fluid–bed interface and the streamlines of the spanwise-
averaged flow field towards the end of the simulated intervals is shown in figure 5.
It is found that the patterns in the laminar cases indeed correspond to ‘small dunes’
in the terminology of Ouriemi et al. (2009), and to ‘vortex dunes’ with significant
separation on the lee side in the turbulent case (the graph for case LC2 is similar
to case LC1 and has been omitted). These results are, therefore, consistent with the
regime classification based upon the channel (or pipe) Reynolds number proposed by
these authors (cf. figure 2).

The instantaneous two-point correlation of the bed height fluctuation as a function
of streamwise separation rx, defined as Rh(rx, t) = 〈h′b(x, t) h

′
b(x + rx, t)〉x, exhibits a

clear negative minimum in all of the present cases (figure omitted). Therefore, we
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FIGURE 6. (a) Time evolution of the mean wavelength of the sediment bed height
normalized with the particle diameter. The dashed lines indicate the wavelengths of the
second to sixth streamwise harmonics in the current domain. (b) Time evolution of the
r.m.s. sediment bed height. The dashed line shows the fit obtained by Langlois & Valance
(2007, figure 6a) for their case with Re2H = 15 130, Θ = 0.099, H/D= 35. It should be
noted that this fit was obtained for t > 740ub/H (their first data point is indicated by
the symbol ‘B’). In both graphs solid lines with the following colours correspond to the
present cases: black line LC1, red line LC2, blue line TO1.

can define an average pattern wavelength λav as twice the streamwise separation at
which the global minimum of Rh occurs. The time evolution of the mean wavelength
λav, normalized by the particle diameter, is shown in figure 6(a). Also indicated
by horizontal dashed lines in the graph are the wavelengths of the second to
sixth harmonics in the present computational domain (it should be recalled that
Lx/D = 307.2 throughout the present work). It can be seen that for short times the
wavelength λav in the turbulent case TO1 exhibits several fast oscillations between
Lx/5 and Lx/2 before approximately settling at a value near Lx/3 (i.e. λav/D ≈ 102)
for some 200 bulk time units. Starting with time tub/H≈ 250, the average wavelength
then grows at an increasing rate, settling again at λav ≈ Lx/2= 153.6D until the end
of the simulated interval. In contrast, the two laminar cases have a less oscillatory
initial evolution. Case LC2 first settles into a plateau-like state (with λav ≈ Lx/3)
after approximately 250 elapsed bulk time units. Subsequently the wavelength
corresponding to the second harmonic (λav ≈ Lx/2) grows in amplitude and becomes
dominant after approximately 750 bulk units. Case LC1 does not appear to settle
into any of the harmonic wavelengths of the current domain, exhibiting an average
wavelength in the range of 100–150 particle diameters for the majority of the
simulated interval. In turbulent channel flow experiments, Langlois & Valance (2007)
have determined values of the initial pattern wavelength of λ/D≈ 100–150, roughly
independent of the grain size. Upon scaling with the equivalent boundary layer
thickness, the average pattern wavelengths in the three cases of the present work
measure 3–6.5H, except for a few initial bulk time units. This range is comparable
with the range found for the initial wavelength of the ‘small dunes’ in pipe flow
reported as 2.5–12.6H by Ouriemi et al. (2009, figure 7b) and for the ‘vortex dune’
data shown in their figure 3(c), where an initial wavelength of 4H is observed.

Let us turn to the amplitude of the sediment patterns. The evolution of the r.m.s.
value of the fluid–bed interface location is plotted in figure 6(b). The fact that
no saturation is observed by the end of the simulated intervals is consistent with
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experimental observations, where it was found that even after an order of magnitude
longer times the amplitude of the patterns continues to grow (the intervals simulated
in the current work correspond to roughly one minute in the experiments of Langlois
& Valance 2007, conducted over more than one hour). Both of the present laminar
cases exhibit growth at an approximately constant rate (with a slope of 6× 10−4 in
the units of figure 6b). In contrast, the time evolution in the turbulent case TO1 is
quasi-linear with different slopes in different time intervals. The initial growth of
the turbulent case (for times up to tub/H ≈ 200) and the growth in the interval
450. tub/H. 500 are approximately ten times higher than the growth in the laminar
cases, while in the remaining two intervals the growth rate is comparable with the
laminar value. As can be seen in figure 6(b), the time evolution in the final period
of case TO1 is roughly equivalent to the one determined by Langlois & Valance
(2007) in turbulent flow at comparable parameter values (Re2H = 15 130, Θ = 0.099,
H/D= 35).

The propagation speed of the patterns can be determined from the shift of the
maximum of the two-point/two-time correlation of the fluid–bed interface fluctuation
h
′
b(x, t). It turns out that the patterns in case LC1 propagate at a relatively constant

speed of approximately 0.011ub, while the propagation velocity decreases with time
during the coarsening process in cases LC2 and TO1, reaching values of 0.026ub and
0.035ub, respectively, in the final period of the current simulations. The latter number
is consistent with the range of values reported for ‘vortex dunes’ by Ouriemi et al.
(2009, figure 3b).

The volumetric particle flow rate (per unit spanwise length), qp(x, t), is analysed in
figure 7. The solid lines in figure 7(a,b) show the temporal evolution of the streamwise
average 〈qp〉x(t), which is observed to reach approximately constant values after a
few hundred bulk time units in all cases. The continuous growth of the pattern
amplitudes (cf. figure 6b) seems to have only a mild influence upon the total particle
flow rate, irrespective of the flow regime. These graphs also show for each instant the
maximum and minimum values (in space) of the particle flow rate, drawn as dashed
lines. Although these extrema curves are noisier, it can be observed that the maxima
continue to grow until the end of the simulations, consistent with the increase in the
amplitude of the propagating patterns. Of particular interest in view of applications
is the scaling of the particle transport rates, typically expressed as a function of
the Shields number Θ . Figure 7(c) shows the space-averaged values, additionally
averaged in time over the final part of the simulations, denoted as 〈qp〉xt. It is found
that the present values of 〈qp〉xt/qv (where qv = Ga2 ν) in the two laminar cases are
only slightly below the (approximately) cubic power law fitted by Kidanemariam &
Uhlmann (2014) to their simulation data for featureless bedload transport. (It should
be noted that in Kidanemariam & Uhlmann (2014) the Shields number (termed ΘPois
therein) was defined based upon the assumption of a parabolic fluid velocity profile
for consistency with the reference experiment. As a result, the fit represents even the
data points at larger values of the Shields number ΘPois with good accuracy.) It is
obviously not possible to infer scaling from two data points. However, if a power law
of the particle flow rate as a function of the Shields number is assumed, the present
laminar data suggest a cubic variation. Turning to the turbulent case TO1, figure 7(c)
shows that the value for 〈qp〉xt/qi (with the inertial scaling qi = ug D) is very close
to the value given by the empirical law of Wong & Parker (2006), which in turn is
a modified version of the Meyer-Peter & Müller (1948) formula for turbulent flow.
Wong and Parker’s formula is valid for plane sediment beds. The fact that the present
data agree well with that prediction together with the observed mild variation in time
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FIGURE 7. Analysis of the volumetric particle flow rate (per unit spanwise length), qp(x, t).
(a) The time evolution of the streamwise average value, 〈qp〉x(t), in cases LC1 (black) and
LC2 (red) is shown with solid lines. The viscous scale qv =Ga2 ν is used for the purpose
of normalization. Additionally, the two dashed lines in each case indicate the respective
minimum and maximum values (minx qp, maxx qp). (b) The same quantity in case TO1,
using the inertial scale qi = ugD for normalization. (c) The value of the time average
〈qp〉xt over the final part of the simulations plotted versus the Shields number Θ: black
circle, LC1; red circle, LC2; blue circle, TO1. One should note the different scalings (qv in
the laminar cases, qi in the turbulent case). The open circles are for featureless bedload
transport in laminar flow (Kidanemariam & Uhlmann 2014); the dashed line is the fit
〈qp〉xt/qv = 1.66Θ3.08 from that reference. The solid line is the Wong & Parker (2006)
version 〈qp〉xt/qi = 4.93 (Θ − 0.047)1.6 of the Meyer-Peter & Müller (1948) formula for
turbulent flow.

(cf. figure 7b) shows that the presence of ‘vortex dunes’ does not strongly affect the
net particle transport rate.

4. Summary and conclusion

We have performed DNS of the flow over an erodible bed of spherical sediment
particles above the two thresholds for particle mobility and for pattern formation.
Two cases in laminar flow (with different Galileo and Shields numbers) lead to
the formation of ‘small dunes’, while one case under turbulent flow conditions
exhibits ‘vortex dunes’, consistently with the regime classification of Ouriemi et al.
(2009). The reconstruction of the fluid–bed interface from a spanwise-averaged solid
volume fraction (involving a threshold value) has allowed us to analyse the length
scales, amplitude and propagation velocity of the sediment patterns in detail. In all
three respects, the results of the present simulations are found to be consistent with
available experimental data.

We have observed that the continuing growth of the dune patterns, which have
not reached a statistically stationary state after approximately 1000 bulk time units,
does not strongly affect the net volumetric particle transport rates. In the two laminar
cases the particle flow rate (per unit span) is consistent with a cubic power law as
a function of the Shields number; these values are found to be not far from those
obtained in featureless bedload transport. The value pertaining to the turbulent case
is very well predicted by the transport law of Wong & Parker (2006), which is
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derived for turbulent flow in the presence of a plane mobile bed. The present results
therefore seem to suggest that the presence of ‘small dunes’ as well as that of ‘vortex
dunes’ up to the amplitudes encountered in the present simulations does not lead to a
modification of the net particle transport rate which would require a correction of the
respective transport laws. This conclusion should be reassessed in the future when
much longer temporal intervals can be covered.

The present work demonstrates that the DNS–DEM approach to sediment pattern
formation is feasible today. Although still costly in terms of computational resources,
it is already possible to address some of the outstanding questions with this method.
Some aspects that are of importance in geophysical applications (such as reaching
the fully rough turbulent regime, guaranteeing an asymptotically large computational
domain and integrating over asymptotically long temporal intervals) still present a
considerable computational challenge.

As a next step, the streamwise length of the computational domain should be
extended in order to reduce the influence of the discreteness of the numerical
harmonics upon the pattern wavelength. Conversely, shrinking of the box length
would allow the smallest amplified wavelength of the sedimentary patterns to be
revealed. Finally, an in-depth investigation of the flow field that develops over the
time-dependent sediment bed could be carried out based upon the simulation data.
Preliminary visualization suggests that in the turbulent case the coherent structures
leave their footprint in the bed shape, visible as longitudinal ridges and troughs
superposed on the roughly two-dimensional dune patterns. Such an analysis is left
for future work.
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