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Jon E. Mound1,† and Christopher J. Davies1,2

1School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
2Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of

California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0225, USA

(Received 16 March 2017; revised 27 July 2017; accepted 31 July 2017;
first published online 5 September 2017)

Convection in the metallic cores of terrestrial planets is likely to be subjected to
lateral variations in heat flux through the outer boundary imposed by creeping flow
in the overlying silicate mantles. Boundary anomalies can significantly influence
global diagnostics of core convection when the Rayleigh number, Ra, is weakly
supercritical; however, little is known about the strongly supercritical regime
appropriate for planets. We perform numerical simulations of rapidly rotating
convection in a spherical shell geometry and impose two patterns of boundary heat
flow heterogeneity: a hemispherical Y1

1 spherical harmonic pattern; and one derived
from seismic tomography of the Earth’s lower mantle. We consider Ekman numbers
10−4 6E610−6, flux-based Rayleigh numbers up to ∼800 times critical, and a Prandtl
number of unity. The amplitude of the lateral variation in heat flux is characterised by
q∗L = 0, 2.3, 5.0, the peak-to-peak amplitude of the outer boundary heat flux divided
by its mean. We find that the Nusselt number, Nu, can be increased by up to ∼25 %
relative to the equivalent homogeneous case due to boundary-induced correlations
between the radial velocity and temperature anomalies near the top of the shell. The
Nu enhancement tends to become greater as the amplitude and length scale of the
boundary heterogeneity are increased and as the system becomes more supercritical.
This Ra dependence can steepen the Nu ∝ Raγ scaling in the rotationally dominated
regime, with γ for our most extreme case approximately 20 % greater than the
equivalent homogeneous scaling. Therefore, it may be important to consider boundary
heterogeneity when extrapolating numerical results to planetary conditions.

Key words: Bénard convection, geophysical and geological flows, rotating flows

1. Introduction

Convection arises in many natural systems, from oceans and atmospheres to
terrestrial mantles and liquid metal planetary cores. These systems often operate
in dynamical regimes that cannot be attained in current laboratory experiments or
numerical models. Significant effort has therefore focused on elucidating scaling
relationships between the independent variables and diagnostics of the system

† Email address for correspondence: j.e.mound@leeds.ac.uk
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behaviour. A particularly important diagnostic is the Nusselt number, Nu, a global
measure of the efficiency of heat transport in the convecting system. This study is
motivated by convection in low viscosity liquid metal planetary cores where rotation
and the spherical geometry significantly affect the dynamics and convection in the
overlying silicate mantles sets the thermal boundary conditions at the top of core.
Lateral variations in the temperature field at the bottom of silicate mantles can be
very large relative to those expected in the metallic cores, resulting in correspondingly
large lateral variations in the thermal boundary conditions imposed on the underlying
core. We focus here on the impact of such heterogeneous boundary conditions on the
heat transfer behaviour of rapidly rotating convection in spherical geometry.

1.1. Heat transport in convecting systems
The canonical system used to understand convective heat transfer is a conducting fluid
sandwiched between two parallel plates oriented normal to the gravity vector, with
an imposed temperature difference 1T across the layer. The system is characterised
by the Rayleigh number, Ra, measuring the strength of the convective driving and
the Prandtl number, Pr = ν/κ , where ν is the kinematic viscosity and κ the thermal
diffusivity. For a given value of Pr, as Ra is increased more heat is transported by
advection and so Nu = εRaγ , with ε, γ > 0. Malkus (1954) assumed that 1T is
accommodated predominantly by conduction in two identical thermal boundary layers
at the top and bottom of the system; by further assuming that the local Rayleigh
number of the boundary layer equals the critical value for stability he found that
Nu∝ Ra1/3. Numerical and physical experiments have produced a variety of scalings,
which also depend on Pr. Grossmann & Lohse (2000) (see also Grossmann & Lohse
2001, 2002; Stevens et al. 2013) argued that these differences depend on whether
the boundary layers or the bulk of the fluid dominate the kinematic and thermal
dissipations, which divides Ra–Pr space into four regimes, each of which is divided
into two subregimes based on the relative thickness of the thermal and kinetic
boundary layers.

When the convecting system is rotating an additional non-dimensional parameter,
the Ekman number, E, quantifies the relative strength of the viscous and Coriolis
forces. The Coriolis force has a stabilising effect on the convection such that the
critical Rayleigh number for the onset of convection, RaC, depends on E. When
convection is geostrophic, that is the first-order force balance is between the Coriolis
force and pressure gradients, a heat transport scaling of Nu∝Ra3E4 has been proposed
(King, Stellmach & Aurnou 2012) following the same reasoning as Malkus (1954).
However, in rapidly rotating systems a substantial interior temperature gradient can
be maintained even to high Ra (Sprague et al. 2006; Julien et al. 2012b; King,
Stellmach & Buffett 2013; Gastine, Wicht & Aubert 2016; Julien et al. 2016), which
enhances diffusive heat transport and alters Nu relative to an equivalent non-rotating
case. Experiments and numerical simulations in Cartesian geometry suggest that γ
increases as E decreases into the rotationally dominated regime (Stellmach et al.
2014; Cheng et al. 2015). At E = 10−7 a value of γ = 3.6 has been found, with
no indication that the scaling had yet reached an asymptotic limit with reducing E
(Cheng et al. 2015). Reduced equations valid in the asymptotic limit of small E
(Sprague et al. 2006) also find γ > 3 at low E when the effect of Ekman pumping
from no-slip boundary conditions is included (Stellmach et al. 2014; Aurnou et al.
2015; Julien et al. 2016; Plumley et al. 2016). Conversely, with free-slip boundary
conditions the scaling at low-E appears to saturate with γ = 3/2, which is expected
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Heat flow and boundary heterogeneity in rotating convection 603

for a turbulent quasi-geostrophic regime where the heat transport is independent of
both the thermal and viscous diffusivities (Gillet & Jones 2006; Julien et al. 2012a;
Stellmach et al. 2014).

In the spherical geometry considered in this paper, the boundary layer analysis
is further complicated by asymmetric boundary layers, with the asymmetry in
boundary layer thicknesses and temperature drops depending on both the radius ratio
between the inner and outer boundaries and on the radial dependence of gravitational
acceleration within the shell (Gastine, Wicht & Aurnou 2015). In the absence of
rotation the Nu–Ra scaling in the shell is similar to that of the plane layer (Gastine
et al. 2015). At sufficiently high Ra buoyancy forces will dominate Coriolis forces
resulting in effectively non-rotating dynamics and Nu–Ra scaling. In the presence of
rotation Gastine et al. (2016) obtained the diffusivity-free scaling Nu ∝ Ra3/2E2 in
a small region of parameter space with E . 10−6 and RaE4/3

' 10, conditions that
placed the simulations in a dynamical regime that was both strongly nonlinear and
dominated by rotation.

1.2. Heterogeneous boundary conditions for the core
Liquid metal planetary cores have higher thermal conductivity, and much lower
viscosity, than their overlying solid silicate mantles. The resultant asymmetry in the
thermal evolution of these systems implies that when considering thermal core–mantle
interaction in simulations of core convection the use of fixed-flux boundary conditions
would apply, whereas fixed-temperature boundary conditions would apply for the
mantle (Olson 2003, 2016). Choosing fixed-temperature or fixed-flux boundary
conditions results in different formulations of the Rayleigh and Nusselt numbers;
these differences are outlined in § 2. However, after appropriate translation between
the fixed-flux and fixed-temperature formulations the Nusselt–Rayleigh scaling is the
same in both cases (Otero et al. 2002; Ahlers, Grossmann & Lohse 2009; Johnston
& Doering 2009; Calkins et al. 2015; Goluskin 2015).

Mantle convection is much slower and supports much larger lateral variations in
fluid properties (e.g. density, temperature, composition) than core convection (Olson
2003, 2016). It is therefore widely believed that convection in planetary cores must
respond to a laterally varying pattern of heat flow imposed at the core–mantle
boundary by mantle convection (Amit et al. 2015a). For the present-day Earth, a
pattern of heat flux (figure 1b) is suggested by seismic tomography (e.g. Masters
et al. 1996), which reveals two large low shear velocity provinces (LLSVPs) at the
base of the mantle interpreted as hot, dense thermochemical piles in roughly antipodal
locations beneath the Pacific Ocean and Africa (Garnero, McNamara & Shim 2016).
Seismically fast material between these LLSVPs is interpreted as the cold remnant
of subducted lithospheric slabs. The largest component of this tomographic pattern
is spherical harmonic of degree and order two (Y2

2 ), although other components
also contribute. Inclusion of this pattern of heat flux in numerical models of the
geodynamo can produce features in the spatial structure and temporal variation of
the magnetic field similar to those observed for the Earth (Bloxham 2000; Olson
& Christensen 2002; Gubbins, Willis & Sreenivasan 2007; Willis, Sreenivasan &
Gubbins 2007; Davies et al. 2008; Amit, Aubert & Hulot 2010; Amit, Deschamps &
Choblet 2015b; Olson 2016).

The present-day Earth is but one example of the pattern, and amplitude, of
core–mantle boundary heat-flux heterogeneity that can arise in planetary mantle
convection. During the assembly of super-continents, a primarily hemispheric (Y1

1 )
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(a) (b)

–0.08 0.17 0.42 0.67 0.92

Pseudocolor
Var: Heat flux

–0.08 0.17 0.42 0.67 0.92

Pseudocolor
Var: Heat flux

FIGURE 1. (Colour online) Patterns of core–mantle boundary heat flux with hemispheric
(a) and tomographic (b) perturbations added to the mean. The projection is centred on
the negative x-axis (the Pacific). In both cases q?L = 2.3 and the choice of normalisation
results in a mean heat flux of approximately 0.42; note that only the deepest purples are
associated with a negative (i.e. radially inward) heat flux.

pattern of mantle convection and hence core–mantle boundary heat flux (figure 1a)
may have existed (Zhong et al. 2007; Zhang & Zhong 2011; Olson et al. 2013; Olson
2016). A hemispheric heat-flux pattern has also been suggested for Mars to explain
the Tharsis bulge (Zhong 2009; Šrámek & Zhong 2010), for the Moon to generate a
non-axial magnetic field (Takahashi & Tsunakawa 2009; Oliveira & Wieczorek 2017),
and for hot tidally locked terrestrial exoplanets (Gelman, Elkins-Tanton & Seager
2011).

The amplitude of the lateral variations in the heat flux conducted through the outer
boundary can be expressed as

q?L =
qmax − qmin

qave − qad
, (1.1)

where qmax, qmin and qave are the maximum, minimum and horizontally averaged heat
flux through the boundary, respectively, and qad is the heat flux conducted down
the adiabatic gradient of the core at the boundary. q?L is challenging to precisely
determine for Earth because it depends on the convective fluctuations as well as
material properties of the mantle; it also will have varied through time. Estimates
of the present-day total heat flow across the core–mantle boundary generally fall in
the range QCMB = 5–20 TW (Lay, Hernlund & Buffett 2008; Nimmo 2015; Kavner
& Rainey 2016). Mantle convection simulations predict (qmax − qmin)/qave = O(1) for
Earth (Nakagawa & Tackley 2008; Olson et al. 2015). Recent upward revisions of
the thermal conductivity of liquid iron mixtures increase qad so that it is comparable
to estimates of qave (Lay et al. 2008; Davies 2015), in which case q?L > O(1). The
lateral variations that we include in our model all have zero mean, therefore values
of q?L > 2 imply that for some portion of the outer boundary the heat flux is radially
inward, although the integrated flux would remain outward. The average heat flux
through the core–mantle boundary enters into the flux Rayleigh number for the core,
for each flux Rayleigh number we will have a set of homogeneous and heterogeneous
cases. Examples of the heat flux through the core–mantle boundary with q?L= 2.3 are
shown in figure 1 for both hemispheric and tomographic perturbations to the mean.

Numerical (Zhang & Gubbins 1993, 1996; Gibbons, Gubbins & Zhang 2007;
Davies, Gubbins & Jimack 2009; Dietrich, Hori & Wicht 2016) and physical (Sumita
& Olson 1999, 2002) experiments have investigated rotating convection with laterally
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varying thermal boundary conditions for a variety of imposed patterns and q?L� 1 up
to q?L = O(1). The previous numerical work, conducted predominantly at Ra a few
times critical, has shown that imposed boundary heterogeneity can have a substantial
influence on the spatial patterns and time dependence of convection in the fluid shell,
particularly when the wavelength of the imposed pattern is large. However, to our
knowledge, the only previous study that compared heat transfer behaviour in rotating
spherical shells with and without heterogeneous outer boundary forcing was that
of Dietrich et al. (2016) who carried out simulations of internally heated rotating
spherical shell convection with a Y1

1 outer boundary heat-flux pattern at Pr = 1 and
E= 2.5, 5× 10−5 (using the definition of E in § 2.1) and flux-based Rayleigh numbers
up to 400 times critical for E = 5 × 10−5. Estimating 1T based on the maximum
and minimum values of T in the domain Dietrich et al. (2016) found that Nu is
reduced by up to 50 % from the homogeneous case as the amplitude of heterogeneity
is increased up to q?L = 2 (using our definition (1.1)).

Here we present results from 106 numerical simulations of bottom-heated rotating
convection in a spherical shell with values of E as low as 10−6. We include two
patterns of boundary heterogeneity and extend to flux-based Rayleigh numbers several
hundred times critical. We focus in particular on heat transport within these models
and the impact of the boundary heterogeneity on Nu as a measure of convective
efficiency. In § 2 we outline our theoretical basis for exploring heat transport in
rotating convection; in § 3 we present summary results of all of our numerical
simulations and more extended discussion of certain illustrative cases.

2. Theory
2.1. Governing equations and non-dimensionalisation

We employ a numerical model of convection of a homogeneous Boussinesq
fluid confined within a rotating spherical shell (Willis et al. 2007). The fluid is
characterised by its constant thermal diffusivity, κ , kinematic viscosity, ν, coefficient
of thermal expansion, α, and reference density, ρ0. The thermal diffusivity can be
expressed as κ= k/ρ0CP, where k is the thermal conductivity and CP the heat capacity
of the fluid. The shell is defined in spherical coordinates, (r, θ, φ), by the inner and
outer boundaries, ri and ro, respectively, and rotates with a constant angular velocity
Ω =Ω ẑ. The governing equations for conservation of momentum, energy and mass
can be written (

∂u
∂t
+ (u · ∇)u

)
+ 2Ω × u=−

1
ρ0
∇P̃+

ρ

ρ0
g+ ν∇2u, (2.1)

∂T
∂t
+ (u · ∇)T = κ∇2T, (2.2)

∇ · u= 0. (2.3)

The modified pressure, P̃, includes the centrifugal potential. Gravity varies linearly
with radius such that g=−(go/ro)r, where go is the gravitational acceleration at r= ro.

The fluid is incompressible (2.3) and so the velocity, u, can be decomposed into
toroidal, T , and poloidal, P , components such that

u=∇× (T r̂)+∇×∇× (P r̂). (2.4)

The toroidal and poloidal scalar fields can then be expressed in terms of spherical
harmonics, Ym

` , with radially varying harmonic coefficients τm
` (r) and pm

` (r) respectively.
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606 J. E. Mound and C. J. Davies

In this work we make use of the Schmidt semi-normalised spherical harmonics
common in geomagnetic studies (e.g. Kono 2015). The boundary conditions on the
velocity are non-penetrative and no slip such that u= 0 on r= ri, ro.

The temperature field, T , can be written as

T = TC + T ′, (2.5)

where TC is the steady-state temperature in the absence of flow and T ′ is the
fluctuation about this state. We denote the coefficients of the spherical harmonic
expansion of T by ϑm

` (r). Fixed-flux thermal boundary conditions are imposed such
that ∇TC =−(β/r2)r̂ at the inner and outer boundaries. Thus the total heat flow, Q,
is equal through the inner and outer surfaces and, for example, on the outer boundary

Q= 4πr2
oqave = 4πr2

o(−k∇TC)= 4πkβ. (2.6)

We introduce the following notation for radial, spherical surface and time averages,
respectively

{f (r)} =
1
h

∫ ro

ri

f (r) dr, (2.7)

〈 f (r, θ, φ)〉 =
1

4πr2

∫ π

0

∫ 2π

0
f (r, θ, φ)r2 sin θ dφ dθ, (2.8)

f (t)=
1
τ

∫ t0+τ

t0

f (t) dt, (2.9)

where h= ro − ri is the shell thickness and τ is the duration of the time averaging.
The control parameters that characterise the convecting system are derived from non-

dimensionalisation of the governing equations (2.1)–(2.3). We scale length by the shell
thickness, h, time by the thermal diffusion time, τd = h2/κ , and temperature by β/h.
With this choice of scaling the Ekman number, Prandtl number and modified Rayleigh
number can be defined as

E=
ν

2Ωh2
, Pr=

ν

κ
, R̃a=

αgoβ

2Ωκ
, (2.10a−c)

and the resultant non-dimensional governing equations are

E
Pr

(
∂u?

∂t?
+ (u? · ∇?)u?

)
+ ẑ× u? =−∇?P̃? + R̃aT ′?r? + E∇?2u?, (2.11)

∂T?

∂t?
+ (u? · ∇?)T? =∇?2T?, (2.12)

∇
?
· u? = 0. (2.13)

In all of our models Pr= 1 and the radius ratio of the shell is set to ri/ro= 0.35, the
value for Earth’s core. The modified Rayleigh number is related to a flux Rayleigh
number by

RaF =
αgoβh2

νκ
=

R̃a
E
. (2.14)

To convert from flux-based to temperature-based Rayleigh number we need to relate
β to the temperature drop across the convecting system, 1T . The solution to the
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spherical shell conduction problem (see (2.22)–(2.25) below) gives β = 1TCriro/h,
which in combination with our expression for the Nusselt number ((2.30) below) leads
to

RaT =
αgo1Th3

νκ
=

RaF

Nu
h2

riro
, (2.15)

where 1T is taken to be 1〈T〉, the measured time-averaged temperature drop across
the convecting system.

Below we will generally present results relative to the advection time scale, τa =

h/U, where U is a characteristic velocity for the flow. The ratio between thermal
diffusion and advection time scales is the thermal Péclet number, Pe= τd/τa =Uh/κ .
The thermal Péclet number is the product of the Prandtl and Reynolds numbers; since
we set Pr=1 in all of our models we have Pe=Re=Uh/ν. The characteristic velocity
is derived from the kinetic energy and after non-dimensionalisation we have

Pe= Re=U?
=

√
2KE?

Vs?
, (2.16)

where Vs? is the non-dimensional volume of the domain and KE? is the non-
dimensional kinetic energy of the system defined by

KE? = 1
2

∫∫∫
Vs?

u?2 dV?. (2.17)

2.2. Heat transport
The Nusselt number provides a global measure of the efficiency of heat transport in a
convecting system by comparing the total heat flux through the system to that which
could be transferred by conduction alone. Equation (2.2) can be written as

ρ0CP
∂T
∂t
+∇ · q= 0, (2.18)

where the total heat flux
q= ρ0CPuT − k∇T (2.19)

is the sum of the advective and diffusive contributions.
We first revisit the canonical example of a plane layer of thickness of d and fixed

temperature difference across the layer of 1T . In this case the Nusselt number is

Nu=
〈q · ẑ〉

k1T/d
, (2.20)

where the total vertical heat flux, q · ẑ, can be averaged over any horizontal surface
and the conduction solution gives (∇TC) · ẑ = −1T/d. It can be particularly useful
to consider the top or bottom surface, where q · ẑ is purely conductive, such that the
Nusselt number can be written

Nu=
−〈(∇T) · n̂〉|top

−(∇TC) · n̂|top
=
〈(∇T) · n̂〉|bottom

(∇TC) · n̂|bottom
, (2.21)

where n̂ is the outward normal with respect to the domain.
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In numerical or physical experiments with fixed-temperature boundary conditions
the Nusselt number can thus be evaluated by determining 〈q · n̂〉 for a sufficiently large
averaging time. Fixed-flux boundary conditions set ∇T =∇TC on both boundaries at
every instant in time, in which case (2.21) suggests Nu= 1 regardless of convective
vigour. Although the non-penetration condition requires that all heat is transferred
by conduction across the boundaries, within the fluid interior the advective heat
transport will reduce the temperature gradient. In experiments where 〈q · n̂〉 is fixed,
the temperature drop across the system is the quantity to be determined in (2.20).

In our model, with fixed-flux boundaries and spherical shell geometry, the
conduction problem is

κ

r2

d
dr

(
r2 dTC

dr

)
= 0, (2.22)

subject to boundary conditions

dTC

dr

∣∣∣∣
r=ro

=−
β

r2
o

,
dTC

dr

∣∣∣∣
r=ri

=−
β

r2
i
. (2.23a,b)

The solution is
dTC

dr
=−

β

r2
, TC =

β

r
+ B, (2.24a,b)

where B is a constant of integration that is not constrained by the flux boundary
conditions. Therefore, the temperature drop across the shell in the conduction only
case is

1TC = β

(
1
ri
−

1
ro

)
=
βh
riro

. (2.25)

The total heat flux of the convecting system is found by time averaging equation
(2.18) for a duration that is sufficiently long to reach a statistical steady state, in
which case ∇ · q = 0 within the domain, a consequence of the absence of internal
heat sources. It follows that∫∫∫

Vs
∇ · q dV = 0=

∮
q · n̂ dS= 4πr2

o〈q · r̂〉|r=ro − 4πr2
i 〈q · r̂〉|r=ri (2.26)

and, since the volume of integration is arbitrary, 4πr2
〈q · r̂〉 is independent of r. The

imposed boundary conditions require ur|r=ri = ur|r=ro = 0, ∂T/∂r|r=ro = −β/r
2
o, and

∂T/∂r|r=ri =−β/r
2
i , therefore

4πr2
〈q · r̂〉 = 4πr2

o〈−k∂T/∂r〉|r=ro = 4πr2
i 〈−k∂T/∂r〉|r=ri = 4πkβ (2.27)

and
〈q · r̂〉 = kβ/r2

=−k(dTC/dr). (2.28)

Although 4πr2
〈q · r̂〉 is independent of r, the advective and diffusive contributions

to the total radial heat flux will vary. The global balance between the advective and
diffusive contributions requires integration with respect to r, leading to the following
expression for the Nusselt number based on fluxes

NuF =
{〈q · r̂〉}

{〈−k∂T/∂r〉}
. (2.29)
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Using (2.28) allows us to recast NuF as

−
k
h

∫
(dTC/dr) dr

−
k
h

∫
(d〈T〉/dr) dr

=
1TC

1〈T〉
=NuT . (2.30)

The order of the horizontal and temporal averaging in 1〈T〉 is interchangeable and in
practice we determine 1〈T〉. Note that when considering the non-dimensional form of
(2.30) our geometry and choice of temperature scaling results in 1T?C≈1.2 rather than
unity, as would be typical for Cartesian geometry (e.g. Otero et al. 2002; Goluskin
2015) (see also appendix A).

Let us consider the implications of a change in Nusselt number between two models
with the same value of RaF but different patterns or amplitudes of boundary heat-flux
variation. Equation (2.30) shows that a change in Nu corresponds to a change in the
temperature drop across the system since 1TC is set by β (recall (2.25)), and hence
by RaF. Furthermore, equations (2.19) and (2.28) imply that any change in 〈∂T/∂r〉
must be compensated by a complementary change in 〈urT〉. Changing the efficiency
of heat transport requires alteration of both the temperature and velocity fields.

The time-averaged temperature drop across the system can be expressed using the
spherical harmonic expansion of the temperature field as

1〈T〉 = ϑ0
0 (ri)− ϑ

0
0 (ro); (2.31)

any change in NuT induced by the heterogeneous boundary condition must influence
the Y0

0 spherical harmonic component of the temperature field. The imposed
patterns of boundary heterogeneity have zero mean and hence the homogeneous
and heterogeneous thermal boundary conditions have identical Y0

0 components for
a given RaF. Since there is no interaction between harmonics in the diffusive part
of the energy equation (2.2), any change in 1T , and hence ϑ0

0 (r), must arise from
nonlinear interaction between the flow and temperature fields. This can be seen by
writing equation (2.28) as

〈urT〉 = κ
d
dr

(
ϑ0

0 − TC

)
. (2.32)

The radial component of velocity depends only on the poloidal component of the
velocity field, thus spherical harmonic expansion of the variables on the left-hand side
of (2.32) leads to

1
r

∑
`,m

(
`(`+ 1)
2`+ 1

)
pm
` ϑ

m
` = κ

d
dr

(
ϑ0

0 − TC

)
, (2.33)

where we have made use of the orthogonality of the (Schmidt-normalised) spherical
harmonics. Equation (2.3) implies that p0

0 = 0 and thus we see that ϑ0
0 must be

modified by interactions between flow and temperature at other harmonics.
Consider, for example, a homogeneous model to which is added a Y1

1 heat-flux
heterogeneity at the outer boundary. In this case we anticipate that the heat-flux
heterogeneity will increase ϑ1

1 near the top of the fluid core, relative to the
homogeneous boundary case. This temperature perturbation in the core then generates,
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on average, some amount of p1
1 flow by promoting (inhibiting) downwelling in regions

of enhanced (reduced) outward heat flux across the boundary. Any resultant increased
correlation between the hemispheric patterns in radial flow and temperature (i.e.
an increase in p1

1ϑ
1
1 for radii near ro) implies an altered dϑ0

0/dr and hence NuT .
Correlations at harmonics other than those of the imposed heterogeneity could also
be promoted by the boundary heterogeneity through some more complex set of
dynamics. Regardless, for fixed RaF the total heat transport through the system
remains unchanged and an increase in Nu with heterogeneous boundary conditions,
which reflects a repartitioning of heat transport from conduction to advection, requires
an increased correlation between ur and T and a smaller average radial temperature
gradient. This reorganisation of flow and temperature fields could occur throughout
the domain or be limited to a relatively restricted region, for example near the outer
boundary. In the following section we present the heat transport results for our suite
of models. We will not present a detailed analysis of the association between flow
and Nu for all simulations, but any case for which the heterogeneous boundary
conditions have altered Nu relative to the equivalent homogeneous case must have
some reorganisation of the time-averaged flow in accordance with the principles
outlined here.

3. Results and discussion
3.1. Numerical model, parameters and convergence tests

The pseudo-spectral method used in this work is described in Willis et al. (2007);
it passes the dynamo benchmark and performs comparably to other pseudo-spectral
methods (Matsui et al. 2016). The velocity field is decomposed into toroidal and
poloidal scalars, which ensures that the divergence-free condition is satisfied exactly.
All scalars are then expanded in Schmidt-normalised spherical harmonics on each
spherical surface and represented in radius by second-order finite differences. The
finite difference points are located at the zeros of the Chebyshev polynomials,
providing finer spacing near the upper and lower boundaries. Time stepping is
accomplished in spectral space using a predictor–corrector scheme that treats
diffusion terms implicitly, while the Coriolis, buoyancy and nonlinear terms are
treated explicitly. Nonlinear terms are transformed into real space at each time step
using the spherical transform method (Orszag 1971). At each radius multiplications
are performed on a Gauss–Legendre grid with (3/2)`max colatitude points and 3`max

longitude points. The number of radial grid points, Nr, and the maximum spherical
harmonic degree and order, `max = mmax, for all runs are given in appendix B. Our
choices of `max are similar to those used by Gastine et al. (2016) for comparable
control parameters.

In this work we focus on the global heat transport of rotating convection in a
spherical shell with variable heat-flux boundary conditions. To do so we have run
a suite of 106 numerical simulations with: Ekman number, E = 10−4, 10−5, 10−6;
flux Rayleigh number, 3 × 105 6 RaF 6 1.8 × 1010; Prandtl number, Pr = 1. Strong
rotation inhibits the onset of convection; for our thermal and mechanical boundary
conditions, and choices of Ekman and Prandtl numbers, linear stability analysis of the
homogeneous cases (for details see Gibbons et al. 2007; Davies et al. 2009) indicates
that our simulations fall in the range 1.2RaC . RaF . 800RaC (the critical Rayleigh
number, R̃aC, and most unstable mode at onset, mC, for our cases are given in table 1).
The control and output parameters for all runs are detailed in appendix B.
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E R̃aC mC

10−4 16.4 5
10−5 24.7 12
10−6 41.0 25

TABLE 1. Critical Rayleigh number and critical azimuthal wavenumber for our simulations.
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Advection times
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(a) (b)

FIGURE 2. (Colour online) (a) Convergence of all models as measured by the difference
between the time average of the buoyancy production, P, and viscous dissiaption, εU , both
integrated over the volume of the shell. (b) Convergence of the time-averaged Nusselt
number for all models as measured by the difference between NuF and NuT . Symbol
shapes indicate the value of E, symbol size and colour indicate the nature of the boundary
conditions.

We consider three different patterns of heat flux imposed at the outer boundary.
Simulations with a homogeneous outer boundary have q?L = 0. Cases with the
hemispheric pattern described by the Y1

1 spherical harmonic (figure 1a) are referred
to using Hq?L, in these simulations qmax (qmin) is aligned with the negative (positive)
x axis. Cases with boundary heterogeneity derived from the observed pattern of
seismic velocity variations in the lowermost mantle (Masters et al. 1996) (figure 1b)
are referred to using Tq?L. The amplitude of the heat-flux heterogeneity is set to
Hq?L, Tq?L = 2.3 or 5.0; values based on a proposed scaling from seismic velocity to
temperature following the work of Nakagawa & Tackley (2008).

The spatial convergence of each simulation is evaluated by checking that the
buoyancy production throughout the volume, P, is matched by the viscous dissipation,
εU, in the time average (see e.g. Gastine et al. 2015). Figure 2(a) shows |P− εU|/P
for all cases, this residual is always less than 10−2. We compute the thickness of the
viscous boundary layers at r = ri, ro based on the location of the local maxima in
the radial profile of horizontal velocity variations following the method described in
King et al. (2013) and report the number of grid points within the boundary layers
for each simulation in appendix B. With one exception, there are at least 7 points in
both boundary layers and the majority of simulations have many more points than
this (the lowest Rayleigh homogeneous model at E = 10−5 has 28 radial grid points
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FIGURE 3. (Colour online) KE? (dash-dot green line, right-hand axis), NuT (blue solid
line, left-hand axis), and the running average of NuT (dotted red line, left-hand axis) for
the run with E= 10−4, RaF = 2.25× 106 and Hq?L = 5.0. The representative flow patterns
for the low- and high-Nu states shown in figure 4 were found by averaging over the time
periods indicated by the grey shading. Time is measured by the advection time scale.

within the boundary layer near ri, but only 5 within the boundary layer near ro).
These boundary layer resolutions are comparable to those used by Stevens, Verzicco
& Lohse (2010) for resolving the radial structure of thermal boundary layers in
Rayleigh–Bénard convection.

After removal of the initial transient, time averages are constructed over a span of at
least 10 advection times and in general of around 100 advection times. The Reynolds
number allows conversion from advection to diffusion times; the durations of the runs
mostly lie between 0.01 and 10 diffusion times. Convergence of the Nusselt number
is tested by considering the difference between NuF and NuT as determined by time
averaging over the run. As shown in figure 2(b) the difference between these two
methods of calculating the Nusselt number is of the order of 1 % or less.

The case with E = 10−4, RaF = 2.25 × 106 and Hq?L = 5.0 (the rightmost point in
figure 2b) required over 450 advection times to reach our 1 % convergence target,
significantly longer than the other runs. The kinetic energy and instantaneous Nu time
series for this case display large amplitude fluctuations (figure 3). The system switches
between two states each of which persists for several advection times, with times of
higher (lower) KE? correlated with periods of higher (lower) Nu; Re = 67.3 for this
run, so the period of the oscillations is approximately 0.1 diffusion times. There is a
time lag between the total and zonal kinetic energies of the system suggesting that the
convection generates progressively stronger zonal flow until the resultant shear disrupts
the convective rolls. Similar relaxation oscillations have been seen in homogeneous
rotating spheres (see e.g. Busse 2002, for a review), here the boundary heterogeneity
modulates convection activity such that localised convection is concentrated in the
hemisphere that is most strongly cooled by the overlying mantle.

Representative flow patterns for the low- and high-Nu states were found by
averaging over the time periods indicated by the grey shading in figure 3, each
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Var: ur

Pseudocolor
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Streamline
Var: uph

(a)

(b)

FIGURE 4. (Colour online) Time-averaged flows for the run with E= 10−4, RaF = 2.25×
106, and Hq?L = 5.0 averaged over a period of high Nu (a) and a period of low Nu (b),
the averaging periods are indicated by the grey bands in figure 3. The equatorial plane
is coloured by u?r in the plane (green–magenta), streamlines of the time-averaged velocity
field are coloured by u?φ (blue–red), and the inner boundary is coloured by temperature
anomaly relative to the horizontal average (brown–orange–white). On the outer boundary
qmin is aligned with the positive x-axis and qmax is aligned with the negative x-axis. The
rotation vector points in the positive z direction.

of which corresponds to approximately three advection times. The flow pattern in
the low-Nu state (figure 4b) consists of a well-developed zonal flow in the shell
interior interacting with convective rolls aligned with the rotation axis. Relatively
hot fluid accumulates near the outer boundary in the positive x hemisphere below
qmin, which tends to suppress the formation of convective rolls, and hence radial flow,
above mid-depth in that hemisphere. Conversely, qmax in the negative x hemisphere
tends to enhance radial flow. The high-Nu state (figure 4a) is characterised by two
large-scale circulations anchored by a large downwelling beneath qmax. Peak upwelling
velocities in the high-Nu state are similar to those of the low-Nu state; however,
peak downwelling velocities have approximately 50 % greater amplitude. The strong
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FIGURE 5. (Colour online) Scaling of NuT against RaT . Dashed green lines are fits to
the Ra homogeneous cases, giving Nu∝ Ra0.98

T , Nu∝ Ra1.69
T and Nu∝ Ra1.86

T for E= 10−4,
E=10−5 and E=10−6, respectively. For comparison, black lines are scalings of Nu∝Ra1/3

T

(solid) and Nu∝Ra2/7
T (dotted) for non-rotating convection and Nu∝Ra3

TE4 for rotationally
constrained convection (dash-dot, for E = 10−6). Symbol shapes indicate the value of E,
symbol size and colour indicate the nature of the boundary conditions.

downwelling is relatively effective at transporting cold material deep within the shell
such that the high-Nu state has a long-wavelength azimuthal temperature anomaly
at the equator of the inner boundary, in addition to the general pattern of positive
(negative) temperature anomalies at high (low) latitudes seen at all times in this
model. The higher average velocities and changed pattern of convection increase the
global correlation between radial velocity and temperature and correspondingly reduce
the average temperature drop across the shell during the high-KE?–high-Nu state.

3.2. Nusselt–Rayleigh scaling

Figure 5 plots NuT against RaT for all of our simulations. For a given value of E the
slope of the Nu–RaT scaling is shallow at relatively low Ra in the weakly nonlinear
regime, steepens as the Rayleigh number increases, and shallows again at the highest
values of RaT , particularly for the runs with E = 10−4 (see also figures 6 and 7 for
plots of several compensated Nu scalings). Due to the computational expense we have
performed a limited number of runs at E=10−6, concentrating on Ra values where we
expect to be in a regime of nonlinear rotating convection, which is our main region
of interest. Gastine et al. (2016) produced a regime diagram (their figure 20) showing
that the rapidly rotating regime is expected for only a small span of RaT for our
values of E, being bounded below by the weakly nonlinear regime (when Ra6 6RaC)
and above by a regime they term transitional, in which rotational effects no longer
dominate even if the effectively non-rotating regime has not been reached. Our model
has a different aspect ratio, radial gravity profile and thermal boundary conditions than
Gastine et al. (2016) so an exact correspondence between our results and their regime
diagram is not to be expected; however, we observe similar regime transitions.
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FIGURE 6. (Colour online) Compensated Nusselt number, NuRa−2/7, against proposed
parameters controlling the transition out of the rotationally dominated regime. For clarity,
and to focus on behaviour above the weakly nonlinear regime, only cases with RaF >7RaC
are shown. (a) RoC = (RaE2/Pr)1/2, the convective Rossby number (Gilman 1977). (b)
RaE8/5, based on the local Rossby number of the thermal boundary layer (Gastine et al.
2016). (c) RaE3/2, based on thermal and viscous boundary layer crossing (King et al.
2012). Symbol shapes indicate the value of E, symbol size and colour indicate the nature
of the boundary conditions, as in figure 2.
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FIGURE 7. (Colour online) Compensated versions of the Nusselt number as a function of
Rayleigh number. In each case NuT is divided by the value of NuT for the homogeneous
case at equivalent RaF. For clarity, and to focus on behaviour above the weakly nonlinear
regime, only cases with RaF > 7RaC are shown. Symbol colours, shapes and sizes as in
figure 5. (a) Runs with E= 10−4. (b) Runs with E= 10−5. (c) Runs with Tq?L= 5.0 plotted
as a function of supercriticality.

There is a clear decrease in the slope of the Nu∝ RaγT scaling for the highest RaT
cases with E = 10−4; we do not, however, have sufficient results at high Rayleigh
to adequately determine a best-fit scaling. As examples, in figure 5 we plot both
Nu∝Ra1/3

T and Nu∝Ra2/7
T scalings for comparison with the highest Rayleigh number

results with E = 10−4. It is unlikely that a single scaling is appropriate over a wide
range of Rayleigh number. Previous work in spherical geometry found that continuous
changes in flow properties occur within the transitional regime (where our high-RaT ,
E = 10−4 results lie), including a reduction in the exponent of the Nu–RaT scaling
as supercriticality increases and the importance of rotational forces is progressively
reduced (Gastine et al. 2015, 2016).

The transition from rotationally dominated to non-rotating convection corresponds to
buoyancy becoming dominant over Coriolis forces; the most appropriate parameterisa-
tion of this transition remains an open question. In figure 6 we plot NuRa−2/7

T against
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three proposed transition parameters; to focus on the transition to the non-rotating
regime at high Rayleigh number we plot only runs with RaF > 7RaC, which removes
cases within the weakly nonlinear regime identified by Gastine et al. (2016). The
global-scale force balance can be expressed by the convective Rossby number,
RoC = (RaTE2/Pr)1/2, such that the transition to non-rotating convection might be
expected when RoC = O(1) (Gilman 1977; Zhong et al. 2009). We find that all
of our runs have RoC < 1 (figure 6a) and do not support a RoC = O(1) transition
parameter, which agrees with previous numerical and laboratory studies (King et al.
2009; Stellmach et al. 2014; Cheng et al. 2015). Given the importance of the Ekman
and thermal boundary layers in controlling heat transport through the system King
et al. (2012) used the intersection of scaling laws for the thicknesses of these two
boundary layers to suggest that the transition should occur for RaTE3/2

=O(1). If the
transition is governed by the loss of geostrophic balance within the thermal boundary
layer, scaling of the local Rossby number for the layer leads to a transition occurring
at RaTE8/5

=O(1) (Julien et al. 2012a; Gastine et al. 2016). This latter scaling does
a somewhat better job of collapsing our results (compare figure 6b,c). We would
require significantly more high-Ra runs to properly characterise both the slope of
the Nu–RaT scaling and the transition parameter for the regime in which Coriolis
effects no longer dominate buoyancy. Figures 5 and 6 suggests that few (if any) of
our E = 10−4 runs fall within the nonlinear and rotationally dominated regime, but
our runs at lower Ekman do sample this regime, a result consistent with the regime
diagram of Gastine et al. (2016).

We fit straight lines to each set of four consecutive runs (in terms of their Ra) for
the q?L=0 simulations at E=10−4 and 10−5 and take the line of best fit with maximum
slope as the Nu–RaT scaling for the rotating regime. Although all of the runs that
end up contributing to this fit may not be rotationally dominated, they are at least
rotationally influenced. In both cases the line of steepest slope also corresponds to
the four consecutive runs that are best fit by a straight line, although we note that
these fits span a limited range of RaT values. For E= 10−6 we fit a straight line to the
three q?L=0 simulations. As the Ekman number decreases, the exponent of the Nu–RaT
scaling increases from 0.98 for E= 10−4, to 1.69 for E= 10−5, to 1.86 for E= 10−6;
such steepening of the Nu–RaT scaling with decreasing E has previously been seen in
both numerical and laboratory studies of rotating convection in a variety of geometries
(e.g. King et al. 2012; Cheng et al. 2015; Gastine et al. 2016). Our scaling is steeper
than the diffusivity-free scaling of Nu∝Ra3/2

T E2 expected at low E for convection with
free-slip boundaries (Gillet & Jones 2006; Julien et al. 2012a; Stellmach et al. 2014).
We employ no-slip boundary conditions for which the effect of Ekman pumping has
been shown to increase the efficiency of heat transport and hence the slope of the Nu–
RaT scaling (Stellmach et al. 2014; Aurnou et al. 2015; Julien et al. 2016). Although
the scaling exponents for our low-E runs lie above the diffusivity-free scaling, they
are well below the scaling exponents of ∼3 found in studies with no-slip boundaries
in cylindrical and Cartesian geometries at similar E (King et al. 2012; Cheng et al.
2015).

3.3. Nu enhancement by heterogeneous boundaries
Our particular interest is whether different boundary heterogeneities alter the amplitude
of Nu for a given value of Ra or even the slope of the associated scaling law; to more
clearly show such differences figure 7 presents compensated Nu values. In this figure,
the Nu for each run is divided by the value obtained from the q?L = 0 case at the
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same RaF. There is little difference between the Tq?L = 2.3 cases and the equivalent
q?L=0 cases. However, in the other cases the heterogeneity in outer boundary heat flux
tends to enhance the efficiency of heat transport; the enhancement tends to become
greater as Ra becomes more supercritical, the wavelength of the imposed boundary
heterogeneity increases, or the amplitude of q?L increases. Investigations of relatively
low-Ra convection in high-Pr fluids (Zhang & Gubbins 1993; Davies et al. 2009) have
found that the effect of outer boundary heterogeneity on the underlying fluid is greater
when larger-wavelength lateral variations are applied, consistent with our results at
Pr= 1 and more highly supercritical Ra.

We find that addition of outer boundary heterogeneity tends to increase Nu relative
to equivalent q?L = 0 cases, whereas Dietrich et al. (2016) found a nearly linear
reduction in Nu with increasing Hq?L for simulations with Ra/RaC = 25, E = 10−4

and a range of 0 6 Hq?L 6 2.0 (see figures 11 and 13 of their paper and note that
their definition of q? is equal to one half our Hq?L). This difference arises from the
fact that we use 〈1T〉 in determining NuT , whereas Dietrich et al. (2016) estimate
1T =Tmax−Tmin, where Tmax and Tmin are the maximum and minimum values of T in
the domain (Dietrich, personal communication). When there are large lateral variations
in boundary heat flux, and hence fluid temperature, the point-wise maximum approach
can significantly overestimate the average temperature drop across the system and
thus underestimate NuT . We have found that calculating 〈1T〉 for their simulations
yields an increase in Nu for boundary-forced cases compared to the corresponding
homogeneous case.

Differences in the Nusselt number between our Hq?L = 5.0 and q?L = 0 cases at
equivalent RaF can be as much as 20–25 % and appear to saturate as the simulations
reach the regime where rotation no longer dominates the force balance; this saturation
effect is most evident for our E = 10−4 cases (figure 7a) as the regime without
rotational dominance is more easily reached for larger Ekman number. Since the
difference in Nu between the Hq?L = 5.0 and q?L = 0 cases grows with Ra in the
rotationally dominated regime, they are characterised by different exponents for
the Nu–RaT scaling; for example, we find an exponent of 2.05 for E = 10−5 and
Hq?L = 5.0, significantly above the 1.69 exponent for q?L = 0. Although each scaling
determination uses only four simulations from a relatively limited range of RaT the
enhanced efficiency of heat transport in the Hq?L= 5.0 cases is clear and much greater
than the Hq?L= 2.3 cases, which reach at most ∼5 % enhancement. For the Tq?L= 5.0
cases enhancements of about 5 %–10 % are obtained for the three Ekman numbers
we consider, with a decrease in the enhancement of Nu as E is lowered (figure 7c).
For our lowest E cases we have not been able to reach the regime where rotation no
longer dominates the force balance; we expect that the enhancement of the Nusselt
number would continue to increase with supercriticality within the rapidly rotating
regime, before saturating at sufficiently large RaF/RaC.

To better understand the Nu enhancement by boundary heterogeneity we consider,
as an example, the simulations with E=10−5 and the highest applied Rayleigh number
(RaF = 1.3× 109). In figure 8 we plot radial profiles of temperature, 〈T?〉, advective
heat transport, 4πr?2

〈u?rT?〉, and diffusive heat transport, 4πr?2
〈−∂T?/∂r?〉. All five

cases have thermal boundary layers at the top and bottom of the shell, with the inner
boundary layer being more pronounced, and a small but non-zero temperature gradient
in the shell interior. For the purposes of plotting 〈T?〉 has been set to zero at the inner
boundary; differences in 〈1T?〉 are thus reflected by the average temperatures plotted
at r?o. The shape of the temperature profiles for the two q?L = 5.0 runs is noticeably
different near the top of the shell, with the development of a local maximum in
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FIGURE 8. (Colour online) (a) Radial profiles of 〈T?〉 for runs with E = 10−5 and
RaF = 1.3× 109; boundary conditions are indicated by colour and line style. In all cases
temperature is set to zero on the inner boundary for the purpose of plotting. (b) Profiles
of temporally averaged radial heat flow for these runs, solid lines indicate the advective
contribution, dashed lines indicate the diffusive contribution; the boundary conditions are
indicated by colour as in (a). The vertical dashed line indicates the radius for which maps
and spectra are plotted in figure 9.

〈T?〉 and hence a region where the radial temperature gradient is positive. There is a
corresponding change in the diffusive contribution to the heat transport such that for
both of these q?L= 5.0 runs there is a depth range near the outer boundary where the
net diffusive transport of heat is negative, that is, radially inwards. Since 4πr2

〈q · r̂〉 is
conserved, any change in the diffusive contribution is offset by an equal but opposite
change in the advective contribution. For the heterogeneous runs shown in figure 8 the
modification in heat transport relative to the homogeneous case is constrained to the
outer regions of the shell, with larger amplitude and longer-wavelength heterogeneity
resulting in changes that extend more deeply.

In figure 9 we plot maps of u?r overlain by contours of temperature anomaly, T? −
〈T?〉, as well as the spectra of (`(`+ 1)/(2`+ 1))pm

` ϑ
m
` . In all cases these quantities

have been determined for a radius of r? = 1.48 (the vertical dashed line in figure 8),
which lies near the peak in advective heat transport for the q?L = 5.0 cases. For the
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FIGURE 9. (Colour online) Flow and temperature correlations at a radius of r?= 1.48 for
all of the runs with E = 10−5 and RaF = 1.3 × 109; from (a–j) the boundary conditions
are: q?L = 0, Tq?L = 2.3, Tq?L = 5.0, Hq?L = 2.3, Hq?L = 5.0. (a,c,e,g,i) Maps of radial
velocity (green–magenta) overlain with contours of temperature anomaly (purple–orange);
the projection is centred on the negative x-axis, thus qmax is centred for the Hq?L cases
and one of the qmin is approximately centred for the Tq?L cases. (b,d, f,h,j) Spectra of
u?rT?; `-spectra (i.e. integration over all m and r for fixed `, dashed blue line), m-spectra
(i.e. integration over all ` and r for fixed m, solid green line). For the purpose of plotting,
spectra are truncated at `=m= 99.
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q?L= 0 case the largest single contribution to the advective heat transport comes from
the Y0

4 harmonic; the small-scale convection makes a secondary contribution, with a
broad peak in the correlation between u?r and T? centred at spherical harmonics of
approximately degree and order 40. For this q?L=0 case the polar regions are relatively
hot in the time average and temperature anomalies at low to mid-latitudes are weak.
For the runs with heterogeneous outer boundaries there is an increased correlation
between u?r and T? at long wavelengths, with particular enhancement in advective heat
transport at spherical harmonics that match the imposed boundary conditions. The
contributions identified in the spectra of the homogeneous case are still present,
but become relatively less important to the total advective transport as q?L is
increased.

For these runs anomalously hot material accumulates near the top of the fluid
shell under qmin. The formation of small-scale convection rolls is suppressed in these
hot regions, with a broad region of relatively weak outward flow favoured instead.
The heterogeneous runs also have regions where downwelling is promoted; the time
average of the q?L = 5.0 runs have regions of particularly intense downwelling near
the western edges of the anomalously hot regions. Individual snapshots of the flow
show the suppression of small-scale convection under qmin; however, the focusing
of downwelling is not obvious, emerging only in the time average. The promotion
of downwelling at the western boundary of hot regions in these simulations is
similar to the jet development observed by Sumita & Olson (1999, 2002) at the
front between hot and cold regions in their physical experiment. However, in our
numerical simulations the formation of a single spiralling front that spans the shell is
prevented by the presence of strong zonal flows of alternating sign in the shell interior.
Regardless, the formation of broad regions of weak upwelling and focused regions
of enhanced downwelling tends to increase advective heat transport near the top of
the shell in these heterogeneous cases and hence raise the Nusselt number relative to
the homogeneous case. For the Tq?L = 2.3 case there is increased advective transport
relative to the homogeneous case at some spherical harmonics, most substantially
at Y2

2 ; however, these increases do not offset a reduction in the Y0
4 contribution

by ∼15 %. For the Tq?L = 5.0 case the reduction in the Y0
4 contribution relative to

q?L= 0 is much smaller (∼1 %) and is more than compensated by increased advective
transport at other harmonics. For the Hq?L= 2.3 case the Y0

4 contribution at this radius
is increased relative to the homogeneous case by ∼10 %; the relative increase in
advective heat transport at Y1

1 is much larger, but the absolute difference is similar
for both harmonics. For the Hq?L = 5.0 case the Nusselt number enhancement is
dominated by the increased correlation between radial velocity and temperature at Y1

1 .
The results in figure 9 are for one particular radius and a single set of simulations,
but are representative of the changes seen near the top of the fluid layer when
heterogeneous boundary conditions are imposed.

All simulations for which the heterogeneous outer boundary condition increases the
Nusselt number must do so by increasing the radial advective transport of heat over
some radial extent, which is generally restricted towards the outer regions of the shell
in our simulations. There is a corresponding reduction in the diffusive contribution
to radial heat transport and thus 〈∂T/∂r〉 becomes less negative in the affected
region, relative to the equivalent homogeneous case. In some of our simulations (for
example, the q?L = 5.0 cases in figure 8) the time-averaged temperature gradient even
becomes positive in a region near the outer boundary, an apparent stable stratification.
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In principle, our use of the Boussinesq approximation could be invalidated in such
cases. The Boussinesq approximation requires that density variation across the system
in the background state is sufficiently small (Spiegel & Veronis 1960). Although
commonly used in models of planetary cores, this thin layer approximation is only
marginally satisfied for Earth’s core (see e.g. Jones 2015), which remains true for
our investigation. The Boussinesq approximation would also be invalid if the system
dynamics produces sufficiently large fluctuations in density (Spiegel & Veronis 1960).
Although the time-averaged temperature anomalies in our most extreme heterogeneous
cases are large compared to those found in homogeneous convection, the fluctuations
at any point in time remain smaller than the static variations of the background state
and the Boussinesq approximation still holds.

The large lateral variations in the time-averaged temperature near the top of the
shell that arise in these cases are associated with strong variations in local dynamics,
with regions of both inhibited and enhanced small-scale convection (figure 9). This
situation is in some sense the complement of the physical experiments of Alboussière,
Deguen & Melzani (2010) investigating stratification at the bottom of the core due to
partial melting of the inner core; they injected fluids that were both compositionally
dense and buoyant at the bottom of a tank and found that the upwellings of buoyant
fluid did not prevent the formation of a dense, stably stratified layer. We have
strong lateral variations in thermal buoyancy generated at the top of the shell;
however, the strong localised convection does not preclude the formation of an
average stratification, as in the physical experiment. Stratification at the top of Earth’s
core has been hypothesised based on both seismic and geomagnetic observations, with
both thermal and compositional stratification mechanisms proposed (see e.g. Helffrich
& Kaneshima 2013). Heterogeneous outer boundary conditions that increase Nu by
reorganising flow near the top of the core will necessarily make the average radial
temperature gradient more positive in the affected region and can potentially create a
thermal stratification signature in the average temperature profile.

4. Conclusions

In planetary settings it is expected that long-wavelength variations in the heat flux at
the top of metallic cores beneath convecting silicate mantles will be common, although
the pattern and amplitude of these variations are uncertain and will vary both between
bodies and through time. We have performed 106 numerical simulations, with three
Ekman numbers and five different thermal boundary conditions to investigate how
heat transport by thermal convection in rotating spherical shells is impacted by the
inclusion of heterogeneous heat flux at the outer boundary. The large amplitude and
long-wavelength boundary heterogeneity we considered tends to increase the Nusselt
number of the system relative to equivalent homogeneous cases (table 2).

The size of the Nusselt number enhancement tends to increase as the amplitude
and wavelength of the boundary heterogeneity increases. The enhancement also tends
to increase with the supercriticality of the system, although it may saturate as the
system enters the regime in which rotation no longer dominates the force balance. This
Rayleigh-dependent enhancement can significantly steepen the Nu−RaT scaling within
the rotationally dominated regime, particularly for the q?L = 5.0 cases. The Nusselt
number enhancement arises from an increased correlation between radial flow and
temperature, particularly near the top of the shell, due to the development of regions
of broad weak upwelling with relatively narrow regions at their western edge where
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E Boundary condition Nu–RaT exponent Maximum Nu enhancement (%)

10−4 q?L = 0 0.98 N/A
10−4 Tq?L = 2.3 1.07 1.5
10−4 Tq?L = 5.0 1.25 11.1
10−4 Hq?L = 2.3 1.02 5.8
10−4 Hq?L = 5.0 1.19 20.5
10−5 q?L = 0 1.69 N/A
10−5 Tq?L = 2.3 1.73 0.9
10−5 Tq?L = 5.0 1.80 7.0
10−5 Hq?L = 2.3 1.79 4.9
10−5 Hq?L = 5.0 2.05 24.1
10−6 q?L = 0 1.86 N/A
10−6 Tq?L = 2.3 1.85 <0.1
10−6 Tq?L = 5.0 1.95 4.9

TABLE 2. Heat transport enhancement results organised by Ekman number and applied
boundary condition: exponent of the Nu∝RaγT scaling in the rotationally dominated regime;
and the largest seen enhancement of Nu relative to the equivalent homogeneous RaF case.

downwelling is strongly promoted. The fixed-flux boundary conditions require that
any increase in the advective contribution to the time-averaged radial heat transport
is accompanied by a decrease in the diffusive contribution and hence a modification
of the time-averaged temperature profile. In our simulations these effects generally
occur near the top of the shell and in some cases can produce an apparent thermal
stratification in the time-averaged temperature profile, despite the presence of regions
of strong convection at all radii.
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Appendix A. The non-dimensionalisation of 1TC

The temperature drop across the spherical shell with fixed-flux boundary conditions
in our pure conduction case is 1TC = βh/riro (2.25). After non-dimensionalisation of
length by h= ro − ri and temperature by β/h we have

1T?C =
1

r?i r?o
. (A 1)
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Therefore, when expressed in terms of the non-dimensional temperature we have

NuT? =
r?i r?o
1〈T?〉

. (A 2)

We set our model to match Earth, so ri = 1.22× 106 m, ro = 3.48× 106 m and thus
NuT? ≈ 1.2/1〈T?〉. We highlight this result in contrast to the plane layer geometry for
which NuT? = 1/1〈T?〉 (e.g. Otero et al. 2002).

Since our temperature scaling depends on shell geometry, it is possible to construct
a spherical shell for which NuT? = 1 as in the plane layer case. The combination of
temperature and length non-dimensionalisation would then imply

1=
1

r?i r?o
, (A 3)

1= r?o − r?i . (A 4)

The solution is

r?i =

√
5

2
−

1
2
=

1
ϕ
, (A 5)

r?o =

√
5

2
+

1
2
= ϕ, (A 6)

giving a radius ratio ri/ro= 1/ϕ2
≈ 0.382, not far from the value of ∼0.351 for Earth.

Appendix B. Tables of results

Summary tables of the model resolution, control parameters and selected output
parameters for all simulations. In all cases Pr = 1 and the radius ratio ri/ro = 0.351.
Nr is the number of radial points within the fluid shell. Nδi and Nδo are the number of
radial points within the mechanical boundary layer at the inner and outer boundary,
respectively. `max = mmax is the maximum degree and order of spherical harmonic
expansion. Definitions of the Ekman number and modified Rayleigh number are
given in (2.10). The amplitude of the heterogeneity in outer boundary heat flux is
defined in (1.1); q?L = 0 are homogeneous cases, Tq?L are cases with a pattern of
heat flux derived from mantle tomography, Hq?L are cases with a hemispheric (Y1

1 )
pattern. NuT is given by (2.30). The Reynolds number is determined by (2.16) and
hence the kinetic energy integral (2.17). Repol is found by retaining only the poloidal
component of velocity (recall (2.4)) in the kinetic energy integral. Rezon is found by
retaining only the m = 0 components from the spherical harmonic expansion of the
toroidal component of velocity in the kinetic energy integral. P is the time average of
the buoyancy production throughout the shell, εU is the time average of the viscous
dissipation throughout the shell.
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Boundary R̃a NuT Re Repol Rezon P εU Nr `max Nδi Nδo

q?L = 0 30 1.19 15.0 5.7 2.2 4.78021× 105 4.78022× 105 64 48 10 26
q?L = 0 90 1.62 38.8 14.9 13.9 4.09815× 106 4.10101× 106 64 64 10 10
q?L = 0 100 1.71 40.4 15.8 14.0 4.24413× 106 4.25138× 106 60 48 9 19
q?L = 0 150 1.89 50.1 21.5 17.0 7.52380× 106 7.54178× 106 80 64 12 12
q?L = 0 225 2.16 64.0 29.5 21.7 1.58309× 107 1.58508× 107 80 92 12 11
q?L = 0 550 3.36 96.9 51.6 27.2 5.10257× 107 5.10242× 107 80 92 10 11
q?L = 0 900 4.27 124.3 68.8 36.0 9.23021× 107 9.23000× 107 80 92 9 10
q?L = 0 2 000 5.92 193.4 107.1 70.2 2.24262× 108 2.24184× 108 96 96 12 13
q?L = 0 4 000 7.44 276.3 152.9 113.4 4.67205× 108 4.66904× 108 96 96 12 13
q?L = 0 6 000 8.35 332.8 189.0 129.4 7.08226× 108 7.08971× 108 128 128 15 18
q?L = 0 13 000 10.16 483.1 273.3 215.0 1.56626× 109 1.56477× 109 128 128 16 18

Tq?L = 2.3 30 1.18 14.6 5.5 3.0 4.53139× 105 4.53161× 105 64 64 10 25
Tq?L = 2.3 90 1.56 36.2 14.0 14.7 3.79416× 106 3.79750× 106 64 64 10 10
Tq?L = 2.3 225 2.15 61.7 28.6 23.3 1.58478× 107 1.58566× 107 80 92 12 11
Tq?L = 2.3 550 3.38 93.3 50.7 29.3 5.11910× 107 5.12066× 107 80 92 10 10
Tq?L = 2.3 900 4.33 125.3 68.8 33.6 9.28297× 107 9.28697× 107 80 92 10 10
Tq?L = 2.3 2 000 5.97 190.3 107.6 49.9 2.24701× 108 2.24704× 108 96 96 12 13
Tq?L = 2.3 4 000 7.47 265.7 153.9 78.0 4.66833× 108 4.66660× 108 96 96 12 13
Tq?L = 2.3 6 000 8.41 322.3 186.7 107.3 7.11691× 108 7.11134× 108 128 128 15 17
Tq?L = 2.3 13 000 10.32 459.7 276.4 132.8 1.57402× 109 1.57212× 109 128 128 15 18

Tq?L = 5.0 30 1.20 16.0 5.9 4.0 4.88902× 105 4.88902× 105 64 64 10 24
Tq?L = 5.0 90 1.56 37.2 13.8 17.1 4.08174× 106 4.08853× 106 64 64 19 10
Tq?L = 5.0 225 2.16 57.3 28.0 25.3 1.61914× 107 1.61994× 107 80 92 10 11
Tq?L = 5.0 550 3.57 93.8 50.8 33.4 5.40076× 107 5.40223× 107 80 92 10 10
Tq?L = 5.0 900 4.59 121.9 68.3 38.7 9.67341× 107 9.67580× 107 80 92 10 10
Tq?L = 5.0 2 000 6.43 184.8 106.3 54.7 2.33029× 108 2.33003× 108 96 96 12 13
Tq?L = 5.0 4 000 8.21 261.0 153.7 67.4 4.83518× 108 4.83796× 108 96 96 12 13
Tq?L = 5.0 6 000 9.24 316.8 188.8 82.2 7.33091× 108 7.33801× 108 128 128 15 17
Tq?L = 5.0 13 000 11.28 456.5 275.5 122.9 1.60985× 109 1.61080× 109 128 128 15 18

Hq?L = 2.3 30 1.19 13.8 5.9 1.5 4.77130× 105 4.77107× 105 64 48 10 10
Hq?L = 2.3 90 1.66 40.3 16.0 14.0 4.70090× 106 4.70703× 106 64 64 10 10
Hq?L = 2.3 225 2.17 62.8 29.5 22.9 1.61102× 107 1.61326× 107 80 92 12 11
Hq?L = 2.3 550 3.47 103.0 52.6 32.7 5.24670× 107 5.25358× 107 80 92 10 11
Hq?L = 2.3 900 4.41 134.5 70.5 42.7 9.39105× 107 9.39404× 107 80 92 10 11
Hq?L = 2.3 2 000 6.20 204.9 110.1 66.0 2.27285× 108 2.27356× 108 96 96 12 13
Hq?L = 2.3 4 000 7.78 287.5 157.9 98.2 4.69832× 108 4.70235× 108 96 96 12 13
Hq?L = 2.3 6 000 8.76 348.5 194.7 118.2 7.15230× 108 7.15039× 108 128 128 16 18
Hq?L = 2.3 13 000 10.76 502.3 283.2 169.8 1.58059× 109 1.57940× 109 128 128 16 18

Hq?L = 5.0 30 1.42 22.5 8.8 5.7 1.30797× 106 1.30797× 106 64 48 10 17
Hq?L = 5.0 90 1.73 42.7 17.1 16.6 5.64898× 106 5.66254× 106 64 64 10 10
Hq?L = 5.0 225 2.33 67.3 31.5 26.0 1.86103× 107 1.86548× 107 80 92 12 11
Hq?L = 5.0 550 3.78 106.7 55.2 37.0 5.75056× 107 5.75666× 107 80 92 10 11
Hq?L = 5.0 900 5.00 141.3 74.0 46.0 1.02083× 108 1.02217× 108 80 92 10 11
Hq?L = 5.0 2 000 7.10 211.8 114.0 67.6 2.41234× 108 2.41658× 108 96 96 12 13
Hq?L = 5.0 4 000 8.92 296.3 162.3 102.9 4.94373× 108 4.94661× 108 128 128 16 19
Hq?L = 5.0 6 000 10.07 359.5 197.8 130.4 7.48688× 108 7.49483× 108 128 128 16 19
Hq?L = 5.0 13 000 12.25 509.5 286.1 187.4 1.64536× 109 1.64421× 109 128 128 16 20

TABLE 3. Summary of all runs for E= 10−4.
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Boundary R̃a NuT Re Repol Rezon P εU Nr `max Nδi Nδo

q?L = 0 30 1.03 7.1 3.4 0.7 4.30198× 105 4.30198× 105 80 64 28 5
q?L = 0 90 1.25 38.5 16.5 14.5 1.34837× 107 1.34839× 107 90 80 22 7
q?L = 0 150 1.43 65.7 27.0 21.6 3.98206× 107 3.98214× 107 90 80 22 8
q?L = 0 225 1.58 86.2 35.3 34.1 8.12987× 107 8.13030× 107 90 128 9 7
q?L = 0 550 2.29 150.2 71.8 51.1 3.74397× 108 3.74562× 108 90 128 7 8
q?L = 0 900 3.13 199.0 101.2 62.9 7.58361× 108 7.58773× 108 90 128 7 8
q?L = 0 1 200 3.75 234.2 121.7 69.3 1.09936× 109 1.09929× 109 90 128 7 8
q?L = 0 2 000 5.14 316.1 167.4 95.0 2.06032× 109 2.06007× 109 128 144 9 10
q?L = 0 2 500 5.88 361.2 190.4 121.1 2.67403× 109 2.67356× 109 128 144 9 10
q?L = 0 4 000 7.67 472.3 249.8 170.4 4.52798× 109 4.52712× 109 192 192 14 14
q?L = 0 6 000 9.47 598.3 310.3 259.7 7.02322× 109 7.02222× 109 192 192 14 14
q?L = 0 13 000 13.29 927.8 456.6 512.4 1.58024× 1010 1.57922× 1010 256 256 16 14

Tq?L = 2.3 30 1.02 6.5 2.8 2.3 3.64894× 105 3.64895× 105 128 96 28 7
Tq?L = 2.3 90 1.24 38.3 15.7 15.1 1.26866× 107 1.26866× 107 128 96 33 10
Tq?L = 2.3 225 1.60 89.4 36.3 34.5 8.45382× 107 8.45432× 107 128 96 33 10
Tq?L = 2.3 550 2.30 146.4 70.6 52.2 3.75773× 108 3.75913× 108 90 128 7 8
Tq?L = 2.3 900 3.14 195.0 99.4 62.7 7.62351× 108 7.62548× 108 90 128 7 8
Tq?L = 2.3 1 200 3.77 229.3 120.1 69.7 1.10618× 109 1.10655× 109 90 128 7 8
Tq?L = 2.3 2 000 5.17 310.2 164.3 94.4 2.06876× 109 2.06925× 109 128 144 9 10
Tq?L = 2.3 2 500 5.89 351.1 187.0 110.2 2.68093× 109 2.68059× 109 128 144 9 10
Tq?L = 2.3 4 000 7.65 456.4 244.0 161.8 4.52501× 109 4.52599× 109 192 192 14 14
Tq?L = 2.3 6 000 9.37 564.1 305.0 201.2 7.01606× 109 7.01647× 109 192 192 14 14
Tq?L = 2.3 13 000 13.13 861.3 452.2 402.3 1.57709× 1010 1.57698× 1010 192 192 14 14

Tq?L = 5.0 30 1.01 7.9 2.6 4.3 4.87080× 105 4.87079× 105 128 96 52 12
Tq?L = 5.0 90 1.27 41.6 16.9 13.5 1.48061× 107 1.48063× 107 90 96 23 16
Tq?L = 5.0 225 1.59 90.1 35.4 38.6 8.71763× 107 8.72294× 107 128 96 31 10
Tq?L = 5.0 550 2.38 145.6 69.9 59.7 3.95231× 108 3.95306× 108 90 128 7 8
Tq?L = 5.0 900 3.27 190.3 98.4 66.7 7.96897× 108 7.97092× 108 90 128 7 8
Tq?L = 5.0 1 200 3.92 223.2 118.0 73.5 1.15361× 109 1.15369× 109 90 128 7 8
Tq?L = 5.0 2 000 5.39 296.0 160.7 91.5 2.13375× 109 2.13370× 109 128 144 9 10
Tq?L = 5.0 2 500 6.16 336.6 183.8 101.5 2.76352× 109 2.76337× 109 128 144 9 10
Tq?L = 5.0 4 000 8.08 433.5 240.8 129.5 4.65028× 109 4.65196× 109 192 192 14 14
Tq?L = 5.0 6 000 10.00 540.7 300.1 179.4 7.19371× 109 7.19458× 109 192 192 14 14
Tq?L = 5.0 13 000 14.22 812.1 446.4 327.4 1.61015× 1010 1.61076× 1010 192 192 14 14

Hq?L = 2.3 30 1.04 10.7 4.7 1.1 1.04198× 106 1.04198× 106 80 64 34 12
Hq?L = 2.3 90 1.31 44.6 19.4 12.5 1.90383× 107 1.90388× 107 90 80 34 8
Hq?L = 2.3 225 1.62 91.8 38.0 33.3 9.29168× 107 9.30683× 107 90 128 23 8
Hq?L = 2.3 550 2.33 154.5 73.7 53.5 3.90540× 108 3.90853× 108 90 128 7 8
Hq?L = 2.3 900 3.19 205.7 103.3 66.7 7.80866× 108 7.81356× 108 90 128 7 8
Hq?L = 2.3 2 000 5.33 332.3 170.9 103.1 2.11004× 109 2.11030× 109 128 144 10 10
Hq?L = 2.3 4 000 8.00 493.1 253.9 191.6 4.59532× 109 4.59673× 109 192 192 14 14
Hq?L = 2.3 6 000 9.81 616.3 315.6 269.7 7.10168× 109 7.10107× 109 192 192 14 14
Hq?L = 2.3 13 000 13.74 938.2 466.5 492.8 1.59043× 1010 1.59169× 1010 256 256 20 20

Hq?L = 5.0 30 1.08 17.1 7.2 2.0 2.86108× 106 2.86107× 106 80 64 36 7
Hq?L = 5.0 90 1.48 62.8 25.7 22.8 4.47602× 107 4.47520× 107 96 96 25 10
Hq?L = 5.0 225 1.68 97.8 40.8 36.9 1.12445× 108 1.12655× 108 90 128 24 8
Hq?L = 5.0 550 2.42 160.5 77.1 59.5 4.29394× 108 4.29842× 108 90 128 7 8
Hq?L = 5.0 900 3.37 213.5 107.3 72.5 8.41615× 108 8.42580× 108 90 128 7 8
Hq?L = 5.0 2 000 5.77 339.3 175.2 101.6 2.22759× 109 2.23006× 109 128 144 10 10
Hq?L = 5.0 4 000 9.01 498.5 259.7 173.8 4.84436× 109 4.85116× 109 192 192 14 15
Hq?L = 5.0 6 000 11.39 622.6 321.5 246.0 7.45281× 109 7.46115× 109 192 192 14 15
Hq?L = 5.0 13 000 16.49 958.4 488.9 437.4 1.69246× 1010 1.70334× 1010 256 256 21 20

TABLE 4. Summary of all runs with E= 10−5.
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Boundary R̃a NuT Re Repol Rezon P εU Nr `max Nδi Nδo

q?L = 0 2 000 3.19 504.1 251.6 139.0 1.61586× 1010 1.61648× 1010 192 192 11 10
q?L = 0 6 000 6.51 951.9 488.2 308.6 6.00882× 1010 6.02028× 1010 224 224 12 12
q?L = 0 18 000 12.92 1670.0 849.7 689.4 1.70352× 1011 1.71287× 1011 320 320 16 15

Tq?L = 2.3 2 000 3.19 489.6 245.7 140.2 1.62591× 1010 1.62616× 1010 192 192 11 10
Tq?L = 2.3 6 000 6.50 926.9 482.1 282.8 6.28045× 1010 6.28064× 1010 224 224 12 12
Tq?L = 2.3 18 000 12.87 1768.5 893.8 790.8 2.10229× 1011 2.10222× 1011 320 320 16 15

Tq?L = 5.0 2 000 3.26 478.2 241.7 146.7 1.68536× 1010 1.68587× 1010 192 192 11 10
Tq?L = 5.0 6 000 6.75 881.6 460.8 274.3 6.07211× 1010 6.08708× 1010 224 224 11 12
Tq?L = 5.0 18 000 13.55 1698.9 873.6 693.6 2.08698× 1011 2.07256× 1011 320 320 16 15

TABLE 5. Summary of all runs with E= 10−6.
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