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In the flamelet regime of turbulent premixed combustion the enhancement in the burning
rates originates primarily from surface wrinkling. In this work we investigate the Reynolds
number dependence of burning rates of spherical turbulent premixed methane/air flames
in decaying isotropic turbulence with direct numerical simulations. Several simulations
are performed by varying the Reynolds number, while keeping the Karlovitz number
the same, and the temporal evolution of the flame surface is compared across cases by
combining the probability density function of the radial distance of the flame surface
from the origin with the surface density function formalism. Because the mean area of
the wrinkled flame surface normalized by the area of a sphere with radius equal to the
mean flame radius is proportional to the product of the turbulent flame brush thickness
and peak surface density within the brush, the temporal evolution of the brush and peak
surface density are investigated separately. The brush thickness is shown to scale with
the integral scale of the flow, evolving due to decaying velocity fluctuations and stretch.
When normalized by the integral scale, the wrinkling scale defined as the inverse of the
peak surface density is shown to scale with Reynolds number across simulations and as
turbulence decays. As a result, the area ratio and the burning rate are found to increase
as Re1.13

λ , in agreement with recent experiments on spherical turbulent premixed flames.
We observe that the area ratio does not vary with turbulent intensity when holding the
Reynolds number constant.

Key words: turbulent reacting flows, isotropic turbulence

1. Introduction

Technical combustion devices operate in the turbulent regime in order to increase
burning rates and achieve higher power densities than are otherwise possible in laminar
flows. Turbulence modulates the reactive front surface area through wrinkling and the
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906 A2-2 T. Kulkarni and others

mean burning rate per unit area through modifications to the flame structure. The former
effect dominates over the latter in the wrinkled and thin reaction zone regimes (Borghi
1985; Peters 1988, 1999) and is the focus of the present study.

The dimensionless turbulent burning velocity ST/SL depends on a variety of
dimensionless parameters such as the ratios of length and velocity scales of flame and
turbulence, Reynolds, Karlovitz and Damköhler numbers. Here, ST is the mean volumetric
burning rate normalized by a density and a suitable reference area, while SL is the
propagation speed for a freely propagating laminar flame. Understanding the dependence
of the turbulent burning velocity on various dimensionless groups is vital to turbulent
premixed combustion modelling.

Early experiments on turbulent burning rates focused primarily on their dependence on
the ratios u′/SL and l/δL. Here u′ is the turbulent velocity fluctuation, l the integral length
scale of turbulence and δL the laminar flame thickness. Damköhler (1940) proposed a
linear relation between ST/SL and u′/SL for ‘large-scale turbulence’ (small u′/SL). Pocheau
(1992) later showed that a power law of the form ST/SL = (1 + (u′/SL)

n)1/n satisfies scale
invariance in the corrugated flame limit. A spectral closure of the level-set equation led
Peters (1999) to propose an algebraic equation for the normalized burning velocity in
terms of the ratios of both length and velocity scales. More recently, Kolla, Rogerson &
Swaminathan (2010) also proposed an algebraic model for the burning rates based on the
closure of terms in the Reynolds averaged Navier–Stokes (RANS) equation for the scalar
dissipation rate of the progress variable.

Recent theoretical, experimental and numerical studies support the notion that the
burning rate depends on the Reynolds number, although not necessarily uniquely on
it. Kobayashi et al. (1996, 2005) measured mean burning rates in pressurized Bunsen
burners equipped with turbulence-generating grids, finding increasing values of ST/SL
for increasing pressures at constant values of u′/SL. When u′/SL was held constant
alongside the geometry of the burner and grids, giving a nearly constant integral
scale l also, the increase in ST/SL correlates with the increase in Reynolds number
brought by the decreasing kinematic viscosity with increasing pressure. Experiments of
turbulent spherical premixed flames at the University of Leeds postulated and explored
the dependence of ST/SL on Re ∼ u′l or Reλ ∼ u′λ (Andrews, Bradley & Lwakabamba
1975; Abdel-Gayed & Bradley 1977; Abdel-Gayed, Bradley & Gray 1981), where λ is the
transverse Taylor micro-scale (Taylor 1935).

Starting from the spectral closure of the level-set equation (Peters 1992), Chaudhuri,
Akkerman & Law (2011) proposed and later confirmed experimentally (Chaudhuri et al.
2012) a Re1/2 scaling for ST/SL in turbulent spherical premixed flames, where Re is
based on the turbulent flame radius and the reactants’ thermal diffusivity. Subsequent
experimental evidence corroborating the Re1/2 scaling includes measurements for a variety
of reactive mixtures, pressures and turbulence parameters (Chaudhuri, Wu & Law 2013;
Wu et al. 2015; Jiang et al. 2016). Some universality of the proposed scaling was also
demonstrated by collapsing the data from Kobayashi et al. (1996, 2005).

Liu et al. (2012) investigated the dependence of turbulent flame speeds in pressurized
premixed methane/air mixtures propagating in homogeneous isotropic turbulence up to
Reλ ≈ 100. By controlling independently u′ and l (via fan speed) and the reactants’
kinematic viscosity ν (via pressure), the authors were able to measure burning rates for
various values of u′/SL, while holding Reλ constant and experiments were repeated for
several values of the Reynolds number. The turbulent flame speed ST/SL was found to
increase with Reynolds number, remaining nearly constant as u′/SL varied at constant
Reynolds number. Ahmed & Swaminathan (2013, 2014) also reported ST/SL ∼ Re0.55
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Reynolds scaling of turbulent burning rates 906 A2-3

based on unsteady RANS simulations of methane/air and hydrogen/air flames, where
ReT = u′l/ν is the turbulent Reynolds number.

In this study we investigate the Reynolds dependence of burning rates of spherical
turbulent premixed flames in decaying isotropic turbulence with direct numerical
simulations (DNS). The simulations are conducted at increasing Reynolds number and
low values of the Karlovitz number, so that turbulent combustion occurs in the flamelet
limit (Libby & Bray 1980; Libby & Williams 1994; Peters 2000), where modifications to
flame propagation are negligible.

The statistical state of turbulence encountered by the propagating flame is characterized
solely by the velocity fluctuation u′, integral length scale l and kinematic viscosity ν.
Statistics are a function of time and radial distance from the centre of the spherical flame
only, so that ensemble averages are gathered over the polar and azimuthal angles at each
instant in time.

Freely decaying isotropic turbulence was preferred to forced turbulence for this study
due to the following considerations. Firstly, it is representative of many real devices in
which turbulence decays spatially, such as in jets; or temporally, such as in an internal
combustion engine. Secondly, decaying isotropic turbulence is well understood through
a vast literature (Batchelor & Townsend 1948a; Baines & Peterson 1951; Comte-Bellot
& Corrsin 1971; Huang & Leonard 1995), which allows us to identify and compensate
transient effects consistently across simulations with varying Reynolds number and
turbulence scales. We find the opportunity to compare against known results in decaying
turbulence preferable to introducing a forcing term in the momentum equation as
commonly done in isothermal flows, since theoretical results on forced variable density
flows do not exist to our knowledge.

The rest of the article is organized as follows. Section 2 describes the governing
equations and numerical methods. The configuration is presented in § 3. The temporal
evolution of integral properties of the turbulent flames, such as burning rates, flame radius
and flame surface area are discussed in § 4. Section 5 presents the analysis of the evolution
of the peak surface density function and turbulent flame brush thickness. Scaling laws are
proposed for both quantities separately in § 6 and a scaling law for the evolution of the
flame area ratio as a function of the Reynolds number is discussed. The article concludes
in § 7 with a summary of the results and prominent findings.

2. Governing equations

The evolution of the flow is described by the reactive multi-component Navier–Stokes
equations in the low Mach number limit (Tomboulides, Lee & Orszag 1997; Mueller
1999). The continuity and momentum equations read as

Dρ

Dt
= −ρ∇ · u (2.1)

and

ρ
Du
Dt

= −∇π + ∇ · T , (2.2)

respectively. Here D/Dt = ∂/∂t + u · ∇ denotes the material derivative, where u is the
mass averaged bulk velocity (Bird, Stewart & Lightfoot 2006). In the momentum equation,
T is the viscous shear stress tensor and π = π(x, t) is the hydrodynamic pressure, which is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.784


906 A2-4 T. Kulkarni and others

small compared to the spatially homogeneous background thermodynamic pressure p =
p(t). The mixture density ρ obeys the equation of state for a mixture of ideal gases

p = ρRT/W, (2.3)

where R is the universal gas constant and W the molar mass of the mixture and T
is temperature. Thus, spatial variations in density are related to spatial variations in
temperature and mixture composition, but not in pressure.

A Newtonian fluid model is used for closure of the viscous shear stress tensor

T = μ
(∇u + (∇u)T) − 2

3μ(∇ · u)I, (2.4)

where ∇u is the velocity gradient tensor and I is the identity tensor. A mixture-averaged
model is employed for the dynamic viscosity of the mixture μ (Wilke 1950; Bird et al.
2006).

The species densities are ρi = ρYi, where Yi is the mass fraction of the i-th species, and
obey the following transport equations (i = 1, . . . , M):

ρ
DYi

Dt
= −∇ · (ρiV i) + ωi. (2.5)

Here ωi and V i refer to the net rate of production of species i due to chemical reactions
and the mass diffusion velocity, respectively. Diffusive transport of species is modelled
with the Hirschfelder–Curtiss approximation (Hirschfelder et al. 1954; Poinsot & Veynante
2012)

V iXi = −Di∇Xi, (2.6)

where

Di = (1 − Yi)

/⎛
⎜⎝ M∑

j=1
j /= i

Xj/Dij

⎞
⎟⎠ . (2.7)

We denote by Xi the mole fraction of the i-th species. In the above equations, Dij and Di are
the binary and species diffusion coefficients, respectively. Closure for the mass diffusion
velocity reads as

ρiV i = −ρDi
Yi

Xi
∇Xi = −ρDi

∇ (WYi)

W
. (2.8)

This approximation is complemented by a small correction velocity uc in order to ensure
total mass conservation, yielding

∂ρi

∂t
+ ∇ · (ρi (u + uc)) = −∇ · (ρiV i) + ωi, (2.9)

where

uc = −
M∑

i=1

YiVi =
M∑

i=1

DiYi
∇W
W

+
M∑

i=1

Di∇Yi. (2.10)
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Reynolds scaling of turbulent burning rates 906 A2-5

The equation for the conservation of enthalpy is manipulated into a differential equation
for temperature:

ρcp
DT
Dt

= dp
dt

+ ∇ · (Λ∇T) −
M∑

i=1

cp,iρiV i · ∇T −
M∑

i=1

hiωi. (2.11)

The equation above assumes that viscous heating is negligible on account of the low speed
of the fluid and the fact that the pressure field p is spatially homogeneous, albeit varying
in time. A mixture-averaged model is employed for the thermal conductivity Λ (Mathur,
Tondon & Saxena 1967). The specific enthalpy and the specific heat at constant pressure
for species i are hi = hi(T) and cp,i = cp,i(T), respectively, and are evaluated from NASA
tables (McBride, Gordon & Reno 1993).

Closure for the source terms ωi is provided by a skeletal chemical kinetics mechanism
featuring 16 species and 73 elementary reactions of the Arrhenius type, obtained from
GRI-mech 3.0 (Smith et al. 1999). The use of a skeletal kinetics mechanism reduces
computational costs while modelling key properties accurately, such as ignition delay
time, laminar flame speed and thickness. More details on the kinetics mechanism and
a comprehensive suite of validation cases are given in Luca et al. (2018a).

The configuration is a closed vessel of constant volume V , so that the evolution of the
background pressure p(t) is obtained from the conservation of mass in the vessel,

p =
(∫

V

W
T

dV
)−1

mR, (2.12)

where m is the constant mass in the domain.

2.1. Numerical methods
Equations (2.1), (2.2), (2.5) and (2.11) are integrated in time with the finite difference
solver ‘NGA’ on a homogeneous Cartesian grid (Desjardins et al. 2008). The convective
and viscous terms in the momentum equation and the diffusive terms in the scalar
equations are discretized with second-order centred finite difference formulas on a
staggered grid. The third-order weighted essentially non-oscillatory scheme (Liu, Osher
& Chan 1994) is used for the convective terms in the scalar transport equations. Mass
conservation is enforced by solving a Poisson equation for the hydrodynamic pressure π
instead of the continuity equation. The discrete form of the pressure equation is obtained
with centred second-order finite difference formulas.

The advancement in time of the governing equations follows a splitting approach
(Pierce 2001). The momentum and pressure equations are coupled with the classic
pressure-correction method (Chorin 1968). The momentum equation is integrated in time
with a semi-implicit method featuring the explicit second-order Adams–Bashforth method
for the convective terms and the implicit Crank–Nicolson method for the linear viscous
terms (Kim & Moin 1985). The linear system ensuing from the viscous terms is solved in
factored form with the alternating direction implicit (ADI) method (Peaceman & Rachford
1955). The time advancement of the temperature and mass fractions is performed with a
first-order Lie splitting approach, whereby the integration of the convective and diffusive
terms is performed first for each scalar field independently and that of the reactive source
terms is handled at each grid point next. The temporal integration of the convective
and diffusive terms is semi-implicit with the convective terms treated explicitly and the
linear diffusive terms with the implicit Crank–Nicolson method and ADI factorization.
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The integration of the reactive source terms is performed pointwise with adaptive
backward differentiation formula methods as implemented in the CVODE solver for
systems of ordinary differential equations (Hindmarsh et al. 2005).

The variable coefficients pressure equation is solved with the library HYPRE (Falgout,
Jones & Yang 2006) using the preconditioned conjugate gradient iterative solver
coupled with the parallel alternating semi-coarsening multi-grid V-cycle preconditioner.
All governing equations are coupled together with an outer iteration loop and convergence
is found to be adequate after two iterations (Pierce 2001).

The grid is homogeneous and isotropic with spacing Δ = 20 μm and the time step
size is constant at Δt = 0.2 μs. The spatial and temporal resolutions are adequate, since
η/Δ � 0.5 and τη/Δt � 20, where η and τη are the Kolmogorov length and time scale,
respectively. Moreover, δL/Δ � 6, where δL is the thermal thickness of the flame, as
defined later in § 3. Extensive numerical tests to confirm adequate spatial resolution for
the reactive fronts were carried out for turbulent premixed jet flames (Luca et al. 2018b)
and are not repeated here.

3. Flow configuration

The configuration consists of a cubic box filled with a reactive mixture and initialized
with homogeneous isotropic turbulence. A spherical kernel of burnt gases is initialized at
the centre of the domain and a turbulent flame propagates outward into freely decaying
turbulence. Periodic boundary conditions are imposed in all three directions, so that the
computational domain represents a closed vessel. As burnt gases are produced behind the
flame, the background pressure increases and the mixture is compressed isentropically.
A schematic of the configuration is shown in figure 1.

The reactants are a fully premixed mixture of methane and air with equivalence
ratio 0.7. At the onset of the simulation, the temperature and pressure are 800 K and
4 atm, respectively. At these thermo-chemical conditions, the laminar flame speed is
SL = 1 m s−1, the thermal thickness is δL = (Tb − Tu)/max{|∇T|} = 0.11 mm and the
characteristic flame time τL = δL/SL = 0.11 ms. Here, Tb and Tu are the temperatures of
the products and reactants, respectively, and max{|∇T|} is the maximum value of the
temperature gradient across the laminar flame.

In this study a set of three primary simulations, denoted by R1, R2 and R3, are performed
at increasing Reynolds number (see table 1). The Reynolds number is adjusted by varying
the initial values of the fluctuation u′ and integral scale l. Thus, the initial Reynolds
number increases due to both u′ and l increasing from R1 to R3. On the other hand, the
Kolmogorov length scale η, velocity scale uη and time scale τη are unchanged. Since the
reactive mixture and associated flame scales SL, δL and τL are unchanged also, this results
in a constant initial Karlovitz number Ka = τL/τη = 25 for all three simulations.

Turbulence decays freely as the flame front moves from the centre outwards. The
statistical state of turbulence encountered by the propagating flame is characterized solely
by the velocity fluctuation u′, integral length scale l = u′3/ε based on the mean dissipation
rate ε of the turbulent kinetic energy k, and kinematic viscosity ν, which all evolve in
time. The eddy turnover time τ = k/ε is taken to represent a characteristic time for the
motion of the largest scales. The relevant Reynolds number characterizing turbulence is
Reλ = u′λ/ν, based on the transverse Taylor micro-scale λ2 = 15νu′2/ε.

All characteristic scales of turbulence are evaluated with samples gathered in the volume
occupied by the reactants only. Fluctuations are evaluated by subtracting the mean from
the instantaneous field and the mean is obtained by averaging along spherical shells as
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y

x

2L

z

R0

FIGURE 1. Turbulent spherical premixed flame in a cubic box of side 2L with periodic boundary
conditions. The instantaneous flame surface (orange colour) is surrounded by homogeneous
isotropic turbulence, represented by isosurfaces of vorticity (blue colour). The flame surface
corresponds to an isosurface of the progress variable. The kernel of burnt gases at the onset of
the simulation is shown as a sphere of radius R0 in the cut-out (red colour).

Simulation N 2RL/l0 2R0/l0 RL/R0 u′
0/SL l0/δL δL/η Reλ Ka τ0/τL

R1 5123 33.8 6.9 4.9 7.4 3.4 11.3 44 25 0.69
R2 10243 43.8 6.7 6.5 8.5 5.2 11.3 59 25 0.91
R3 20483 59.4 6.3 9.4 9.8 7.8 11.5 77 25 1.18
R3s 10243 29.7 6.3 4.7 9.8 7.8 11.5 77 25 1.18
R2a 10243 36.7 6.7 5.5 7.4 6.3 9.65 59 18 1.29

TABLE 1. Turbulence parameters at the onset of the simulations. Here N is the number of grid
points. The effective domain radius RL = 2(3/4π)1/3L ≈ 1.24L is defined based on L, half the
length of the side of the cubic domain. The flame properties are δL = 0.11 mm, SL = 1 m s−1

and τL = 0.11 ms. The Karlovitz number is defined as Ka = τL/τη.

appropriate (see § 4.3). As turbulence decays freely while the flame propagates, the ratios
u′/SL and l/δL vary in time, as shown in figure 2. It is apparent that u′/SL decreases as
time progresses, while l/δL increases slightly. The Karlovitz number decreases to Ka ≈ 4.
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3

FIGURE 2. Instantaneous values of u′/SL and l/δL on the Borghi–Peters diagram of turbulent
premixed combustion (Peters 2000): R1 (©), R2 (�), R2a (♦) and R3 (�). The arrow points in
the direction of increasing time. Also shown are lines of constant Reλ = u′λ/ν and Ka = τL/τη.

According to the Borghi–Peters classification (Peters 2000), all turbulent premixed flames
belong to the flamelet regime.

The computational domain is a cube with side of length 2L. For reasons that will
become clear later, we define the radius of a sphere, whose volume is equal to that of
the cubic domain, RL = 2(3/4π)1/3L ≈ 1.24L. It is apparent from table 1 that the size
of the computational domain is large compared to the integral length scale. For example,
2RL/l � 30 across all simulations. In particular, the extent of the domain is much larger
than typically required for DNS of isothermal homogeneous isotropic turbulence at the
same Reynolds number.

Because the computational domain is large, the extent of the flame’s surface may be
initialized (and later grow to be) large compared to the integral length scale l. Although a
rigorous quantitative definition will be given later in the article, the term ‘extent’ refers to
R, the mean of the surface averaged radial distance of the turbulent flame from the centre
of the domain. Since R � l throughout the evolution of the flame, the flame is wrinkled by
many eddies, the statistics are converged and spherically symmetric, and the flame remains
centred in the middle of the domain (see § 4.3).

The fact that the flame is large compared to the integral scale of the flow allows for
motions over the entire turbulent spectrum to interact with the surface and affect its
evolution. In other words, the entire spectrum of turbulence contributes to flame wrinkling,
folding and stretching. As articulated by Chaudhuri et al. (2011), if the integral scale were
larger than the spherical flame, it is reasonable to expect that the flame’s linear extent
would act as a cut-off scale, limiting the interaction between the flame and turbulence to
those scales smaller than the flame itself.

In keeping with the requirement that the initial flame kernel be large compared to
the integral scale, the radius of the spherical kernel of burnt gases at the onset of the
simulations R0 is rescaled to be consistent with l, so that the ratio 2R0/l ≈ 7 remains
approximately constant across configurations. On the other hand, the domain size RL/l
varies across simulations, although it is always large as discussed.

Two additional simulations, denoted by R2a and R3s, were conducted. Simulation R2a
features the same initial Reynolds number as R2, but the fluctuation u′ is lower, matching
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that of R1 and lowering the Karlovitz number. Comparisons between R1, R2a and R2
explore the dependence of the turbulent burning rates on u′/SL, l/δL and Reλ. Moreover, in
order to investigate the effect of domain size on the propagation of the turbulent spherical
premixed flame, simulation R3 was repeated with a domain of half the size and labelled
R3s. Simulation R3s showed that the domain size RL/l does not have any noticeable affect
on the statistics pertaining to the evolution of the flame surface, although the size does
affect the mean radial velocity induced by combustion (see § 4.3).

3.1. Initial conditions and turbulence decay
The initial homogeneous isotropic turbulence (HIT) is generated as follows. First,
preliminary HIT simulations at the target Reλ are performed with the linear forcing
scheme of Rosales & Meneveau (2005). Second, the velocity and dimensions are scaled
to obtain the desired values of u′ and l and several independent realizations of the velocity
field are patched together into a larger domain. The motivation for patching boxes of
homogeneous isotropic turbulence, rather than simulating fluid flow in the larger box,
is due to a well-known outcome of the forcing scheme, i.e. when a statistically stationary
state is attained, the integral scale l is approximately 20 % of the side of the cubic domain.
Discontinuities in the velocity field across patches disappeared upon advancing the state
over 2τη.

This patching strategy does not compromise the evolution of turbulence during decay
as shown by previous studies (Albin 2010; Albin & D’Angelo 2012) and all turbulence
statistics are consistent with the theory of decaying turbulence. In particular, the decay
of the turbulent kinetic energy follows the power law (Batchelor & Townsend 1948a,b;
Sinhuber, Bodenschatz & Bewley 2015),

k/k0 = (1 + t/t0)
−n, (3.1)

where t0 is the virtual origin, k0 the turbulent kinetic energy at t = 0 and n is the decay
exponent.

Experimentally, n is found to lie between 1 and 1.5. For decaying turbulence behind
passive grids, Batchelor & Townsend (1948a) find n = 1, Comte-Bellot & Corrsin (1971)
report 1.16 � n � 1.37, while Baines & Peterson (1951) find a higher value of n = 1.43.
Mohamed & Larue (1990) report that n = 1.25 fitted their data best. Here, instead of fitting
the parameters in (3.1) directly, we use the expression for the eddy turnover time

τ = k/ε = t0/n(1 + t/t0) = t0/n + t/n, (3.2)

so that n and t0 = nτ0 are related to the slope and intercept of a least-squares fit to τ(t).
Figure 3(a) shows fits and power laws for k/k0 and ε/ε0. In all simulations we find n =

1.55, which is slightly higher than the values reported in the literature. This discrepancy
may be due to the low Reynolds number of our configurations or the dependence of the
exponent on geometry, which differs between grid generated turbulence and simulations
of homogeneous isotropic decaying turbulence.

Figure 3(b) compares the decay of Reynolds number in reactive and isothermal
simulations from the same initial conditions. Statistics in the isothermal simulations are
consistent with the power law decay, while in the reactive simulations, the changes in the
background pressure and temperature cause minor deviations. While higher pressure and
temperature lead to modifications to the density and the viscosity of the mixture, they
are minor on the account of the fact that the maximum pressure rise is less than 20 %
across all simulations. Further, the differences at the end of the simulations are due in part
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FIGURE 3. Statistics of the decaying turbulence in the reactants. (a) Exponential decay of
turbulent kinetic energy k/k0 and its mean rate of dissipation ε/ε0 versus 1 + t/t0, where t0 =
nτ0. Lines represent power law expressions with n = 1.55. (b) Evolution of Reλ = u′λ/ν. Lines
represent decay in isothermal simulations, symbols represent data from reactive simulations: R1
(©), R2 (�), R2a (♦), R3 (�) and R3s (�).

to a decreasing number of samples available for statistics, since the reactants occupy a
region that decreases in volume as time progresses. We conclude that, apart from minor
differences that become more apparent at later times, the presence of a propagating flame
does not change the decay of turbulence.

Finally, we notice that the data for simulations R3 and R3s prove that changes in the
domain size do not have any noticeable effect on the statistics of decaying turbulence with
or without a propagating flame.

4. Overview of the evolution of the turbulent premixed flames

4.1. Basic definitions
Within the scope of the present study, the flame surface corresponds to an isosurface of
the reaction progress variable C(x, t) = c∗, which is defined as

C = 1 − YO2 − Yb
O2

Yu
O2

− Yb
O2

, (4.1)

where YO2 is the mass fraction of molecular oxygen and Yu
O2

and Yb
O2

are the mass fraction of
oxygen in the reactants and products, respectively. We let the iso-level c∗ = 0.73 define the
flame surface. This particular value of the progress variable corresponds to the maximum
value of the heat release rate, which is taken to mark the middle of the reaction zone. The
normal to the flame surface is n = −∇C/|∇C|, such that it points into the reactants. The
flame propagates in the direction of the normal with a displacement speed S relative to the
local fluid velocity, given by (Pope 1988; Chakraborty & Cant 2005)

S = 1
|∇C|

DC
Dt

= 1
|∇C|

(
∂C
∂t

+ u · ∇C
)

. (4.2)

The displacement speed is calculated from the progress variable field as follows. The
temporal derivative ∂C/∂t is computed at the intermediate time t1/2 = tn + Δt/2 with
a central finite difference formula based on two solutions at tn and tn+1 = tn + Δt. The
velocity and scalar fields are interpolated linearly in time to t1/2, the staggered velocity
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t/τ0η = 0

R1

R2

R3

t/τ0η = 10 t/τ0η = 20 t/τ0η = 30 t/τ0η = 40

FIGURE 4. Instantaneous flame surface shown at various dimensionless times for the
simulations R1, R2 and R3. The Reynolds number increases from top to bottom, while the
simulation time increases from left to right. Since τ 0

η is the same for all three simulations,
the flame surface is compared at the same physical time across simulations. The physical
dimension is the same for all three flames also.

components are interpolated linearly onto the centred grid used for the progress variable
scalar field, and a high-order central finite difference formula is used to evaluate the
gradient of C.

The displacement speed is calculated based on the material derivative instead of the
sum of the reactive and diffusive terms for the sake of computational convenience.
The use of mixture-averaged diffusion models make the numerical evaluation of the
diffusive term cumbersome. Also, the operator splitting approach coupled with the
semi-implicit time advancement leads to the evaluation of the reactive and diffusive terms
at different physical times, leading to ambiguity. Conversely, the solution field C(x, t) is
accurate to the method’s order at each discrete time step.

4.2. The evolution of the turbulent premixed flames
Figure 4 illustrates the evolution of the turbulent spherical premixed flame during
simulations R1, R2 and R3. The surface of the flame is visualized by the isosurface
C(x, t) = c∗, which marks the thin reaction zone of the flame. The flame, which is
initialized as a spherical kernel of products centred in the middle of the computational
domain, propagates radially outwards into the premixed reactants. Movies of the
propagating flames are provided in the supplementary material available at https://doi.
org/10.1017/jfm.2020.784.

It is apparent that the flame surface is wrinkled and folded by turbulence as the flame
propagates. Most patches of the flame surface are flat or posses only a slight curvature.
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Regions of high curvature are much less prevalent and appear as sharp cylindrical folds,
while cusps are infrequent. These qualitative observations are consistent with established
topological features of the surface of turbulent premixed flames (Cifuentes et al. 2014). If
the flames are compared at times when they are of similar size, the flame at the greatest
value of the Reynolds number (R3) displays the highest density of folds and wrinkles.
This is consistent with the qualitative interpretation that scale separation increases with
increasing Reynolds number.

As reactants are converted into products inside the closed domain, the background
pressure increases, leading to an increase in the reactants’ temperature Tu also. The
compression is isentropic. The simulations terminate when the mass fraction of burnt
gases is less than 25 % of the total, such that the effect of periodic boundary conditions is
negligible. This ensures a small change in Tu (�3 %) and p (�20 %) for all simulations.
Such small changes in pressure and temperature lead to negligible changes in the laminar
flame speed SL (�1 %) and flame thickness δL (�10 %).

4.3. Mean velocity field
The statistical analysis that follows assumes flow ergodicity in the polar and azimuthal
coordinates, allowing to gather samples on spherical shells from one simulation. Indeed,
one expects that the statistics of the flame surface are spherically symmetric far from the
periodic boundaries. Verification of such symmetry is thus critical to the analysis and is
explored here briefly for the mean velocity field.

Away from the flame brush, the density field is homogeneous and the general solution
of the Reynolds averaged continuity equation for a closed domain reads as

〈ur〉 = − 1
3γ

1
p

dp
dt

r + C1r−2, (4.3)

where ur = u · er is the radial component of velocity and C1 is a constant. The first term
in the equation above arises from the evolution of the reactants’ and products’ densities
due to compression, which is found to be isentropic. In the region occupied by products,
C1 = 0 since 〈ur〉 = 0 at r = 0, yielding

〈ur〉 = − 1
3γb

1
p

dp
dt

r, (4.4)

where γb is the ratio of specific heats of the burnt gases. Equation (4.4) shows that 〈ur〉 is
negative (dp/dt > 0) and varies linearly with r in the burnt gases.

At the domain boundary, the velocity is zero due to periodicity, but the boundaries’
radial location depends on the polar and azimuthal coordinates on the account of the
domain being a cube. Yet, since the mean radial velocity decreases as 1/r2, one expects
the effect of geometry on the radial velocity to be negligible away from the boundary.
Consequently, boundary conditions are imposed at an effective radial distance RL, defined
as the radius of a sphere with volume equal to that of the cubic domain

RL = 2(3/4π)1/3L. (4.5)

Then, the mean radial velocity component in the reactants reads as

〈ur〉 = − RL

3γu

1
p

dp
dt

[
r

RL
−

(
r

RL

)−2
]

, (4.6)

where γu is the ratio of specific heats of the reactants.
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0.4
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0.6 0.8 1.0

0

FIGURE 5. Reynolds averaged radial velocity 〈ur〉 normalized by the initial turbulence intensity
for simulation R2. Data at five times: t/τ0 = 1.50 (∗), 2.23 (©), 3.35 (�), 4.10 (�) and 5.20 (♦).
Thin lines represent the expressions in (4.4) and (4.6) evaluated with the instantaneous value of
p−1dp/dt. Data for r/RL � 0.8 (r/L � 1), which corresponds to the minimum distance from the
centre to the boundary.

Figure 5 shows 〈ur〉 at five instants in time during the R2 simulation. The mean is
obtained by averaging over Θ and Φ. The mean radial velocity matches the expressions
in (4.6) and (4.6) closely at radial locations occupied by either products or reactants
and away from the brush. In particular, on the reactants’ side, the theoretical expression
for 〈ur〉 is identical to the data from the simulation up to r/L = 1.0 (or r/RL = 0.8),
which corresponds to the minimum distance between the centre and the faces of the
cubic domain. We conclude that the mean flow retains spherical symmetry as if the
computational domain were a spherical vessel with radius RL.

The peak mean radial velocity within the brush increases at first. As the flame grows
in size, boundary conditions cause the peak mean radial velocity to decrease due to
confinement effects. The evolution of the peak mean radial velocity is qualitatively similar
to that of the mean radial velocity at the leading edge of the brush, where (4.6) is
applicable. While 1/p dp/dt increases continuously in time, the term inside the square
brackets decreases as R/RL increases and the product of the two is non-monotonic
giving rise to the behaviour in figure 5. This conclusion is supported further by the
observation that the peak mean radial velocity increases continuously for case R3, whereas
it shows a non-monotonic behaviour for case R3s, which has a domain of half the size
(not shown).

In the remainder of this article, turbulent statistics are assumed to be spherically
symmetric and statistics are gathered accordingly.

5. Turbulent burning velocity, area ratio and correction factor

The relation between the flame’s area and the fuel burning rate is of paramount
importance to the understanding of the role of scale separation in turbulent premixed
combustion applications.
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FIGURE 6. Dimensionless turbulent burning velocity ST/SL (©), area ratio χ (�) and
correction factor I (�). (a) R1 with error bars for the area ratio χ representing the variation
across four simulations, (b) R2 (open symbols) and R2a (filled symbols) and (c) R3 (open
symbols) and R3s (filled symbols).

The dimensionless turbulent burning velocity ST/SL is defined based on the mean
volumetric fuel burning rate Ωf and a suitable reference area A∗,

ST

SL
= Ωf

ρuYf SLA∗ , (5.1)

where ρu is the reactants’ density and Yf the mass fraction of the fuel in the reactants.
The mean volumetric fuel burning rate is Ωf (t) ≡ 〈Ω̃f (t)〉, where the brackets indicate

statistical expectation and Ω̃f (t) is a random process representing the instantaneous
volumetric burning rate at time t. Similarly, we define the mean flame radius R(t) ≡ 〈R̃(t)〉,
which is referred to simply as flame radius henceforth, and reference area A∗ = 4πR2. The
random process R̃(t) is the instantaneous surface averaged radial distance of the flame
surface from the centre of the domain. Finally, we define the mean of the flame surface area
A(t) ≡ 〈Ã(t)〉 as the expectation of the random process Ã(t), which is the instantaneous
flame area at time t.

Formal definitions of Ωf (t), R(t) and A(t) are provided later in this section, while
a comprehensive discussion of the relation between the random processes and their
expectations is given in appendix A.

The dimensionless turbulent burning velocity may be written as a product of two
quantities as

ST

SL
= Ωf

ρuYf SLA
A
A∗ = Iχ, (5.2)

where I = Ωf /(ρuYf SLA) is a correction factor and χ = A/A∗ is the area ratio. In the
thin reaction zone regime, I ≈ 1, χ � 1, and the area ratio controls the enhancement
of turbulent burning rates as quantified by the dimensionless turbulent burning velocity
ST/SL.

Figure 6 shows the temporal evolution of ST/SL, χ and I for the five simulations. We
observe that the correction factor I ≈ 1 as expected. The temporal evolution of the area
ratio is qualitatively similar across simulations, in that χ grows rapidly and reaches a
plateau afterwards.
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When measured in units of eddy turnover time τ0, the growth in χ lasts approximately
2τ0 for all three simulations. The asymptotic value reached by χ for later times is smallest
for R1 (χ → 2.8) and largest for R3 (χ → 4.5). Comparisons across R3 and R3s indicate
that the size of the domain does not affect the burning rates. As discussed later, the same
is observed for all other pertinent statistics.

The comparison of turbulent burning rates from R1, R2 and R2a points to the role of the
Reynolds number in controlling turbulent burning rates. Simulations R1 and R2a feature
the same turbulence intensity u′/SL, and yet R2a features higher burning rates than R1. On
the other hand, simulations R2 and R2a share the same Reynolds number, differing in both
u′/SL and l/δL, yet they feature identical area ratios χ when plotted versus t/τ0.

In (5.2) and related commentary above, Ωf (t), R(t) and A(t) are time dependent
expectations of random processes for which suitable estimators must be defined in a
manner consistent with the ergodicity of the flow. In this work we adopt the mathematical
framework of the flame surface density function (Pope 1988; Vervisch et al. 1995), which
is the expectation of the flame surface area per unit volume and defined formally as

Σ(r, t) ≡ 〈|∇C|δ(C − c∗)〉, (5.3)

where the surface density function Σ only depends on (r, t) due to the spherical symmetry
of the statistics of C(x, t) and the norm of its gradient |∇C|. Then, the mean flame surface
area and the flame radius are

A(t) =
∫

V
Σ dV = 4π

∫ ∞

0
r2Σ(r, t) dr, (5.4)

R(t) = 1
A(t)

∫
V
|x|Σ dV = 4π

A(t)

∫ ∞

0
r3Σ(r, t) dr, (5.5)

since |x| = r. The area ratio χ written in terms of Σ is

χ(t) =
∫ ∞

0
(r/R)2Σ(r, t) dr, (5.6)

using the definitions of A(t) and A∗(t) = 4πR(t)2. The mean volumetric fuel burning rate
is

Ωf (t) =
∫

V
〈ω̇f (x, t)〉 dV, (5.7)

where ω̇f (x, t) is the instantaneous local rate of consumption of fuel per unit volume.
In the present statistically unsteady flow, there are two manners of estimating

expectations: ensemble averaging over N repetitions (each simulation at the same nominal
conditions providing independent random fields) and spherical averaging over the polar
(Θ) and azimuthal (Φ) angles, which are coordinates over which the random fields are
ergodic,

Σ(r, t) ≡ 〈|∇C|δ(C − c∗)〉 ≈ 〈〈|∇C|δ(C − c∗)〉ΘΦ〉N , (5.8)

where 〈·〉N denotes ensemble averaging and 〈·〉ΘΦ denotes spherical averaging, and the ≈
sign indicates that the right-hand side of (5.8) is an estimate subject to statistical errors.

It is desirable to repeat each simulation N times in order to improve statistical
convergence. In the present study, we found that N = 1, i.e. one repetition, was sufficient
to obtain rather accurate estimates for the expectations on the account that spherical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.784


906 A2-16 T. Kulkarni and others

averages have small variance. This is explained by the fact that the flame radius R is large
compared to the integral scale of the flow l by design.

Repeating simulations was computationally prohibitive, except for the R1 simulation,
where the number of grid points was small enough to afford four repetitions at the same
nominal conditions. In the rest of this article, all statistical quantities presented for R2,
R2a and R3 rely on one simulation, while statistics for R1 rely on four simulations.
A more comprehensive discussion is included in appendix A.

5.1. Probability density function of radial distance of the flame surface
The remainder of this paper is concerned with the mechanisms responsible for the
evolution of the area ratio A/A∗ and its differences and similarities across simulations.
Before presenting a model for the area ratio and its scaling, it is useful to associate a
probability density function (PDF) to the distance of the flame surface, denoted by Pφ .
Here φ is the random variable representing the radial distance of the flame surface from
the origin. With this formalism, the mean flame radius R and the thickness of the turbulent
brush δT can be defined rigorously in terms of the moments of Pφ and their governing
equations be derived as shown later.

The expectation of the flame surface area inside a sphere of radius ϕ is

Aϕ = 4π

∫ ϕ

0
r2Σ(r, t) dr, (5.9)

so that the ratio Aϕ/A represents the probability P(φ < ϕ) and describes the cumulative
density function associated with Pφ . The PDF is obtained by differentiation with respect
to the sample space variable ϕ,

Pφ(φ = ϕ; t) = d(Aϕ/A)/dϕ = 4πA−1ϕ2Σ(r = ϕ, t), (5.10)

with support ϕ ∈ [0,∞). The mean μ and standard deviation σ of φ are the mean radial
distance and a scaled flame brush thickness:

μ = 〈φ〉 =
∫ ∞

0
ϕPφ(ϕ; t) dϕ = 4πA−1

∫ ∞

0
r3Σ(r, t) dr (5.11)

and

σ 2 = 〈(φ − 〈φ〉)2〉 =
∫ ∞

0
(ϕ − 〈φ〉)2Pφ(ϕ; t) dϕ = 4πA−1

∫ ∞

0
(r − R)2r2Σ(r, t) dr.

(5.12)
The flame radius and the turbulent brush thickness are defined based on μ and σ as
R = μ and δT = √

2πσ , respectively. The proportionality constant
√

2π is included in the
definition of δT for consistency with the common definition of the flame brush thickness
based on the mean gradient of the progress variable

δT =
√

2πσ ≈ 1/max{d〈C〉/dr}, (5.13)

where 〈C〉(r, t) is the mean progress variable and d〈C〉/dr its gradient under the hypothesis
of spherical symmetry. The two definitions of the brush thickness are equivalent under
the assumption that Pφ is normally distributed around the mean (e.g. see Chapter 4 in
Lipatnikov 2012).
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The evolution equation for Pφ is derived starting from that for the flame surface density
function. The flame surface density function Σ evolves according to (Pope 1988; Trouvé
& Poinsot 1994; Vervisch et al. 1995)

∂Σ

∂t
+ 1

r2

∂

∂r
(〈ur + Snr〉wΣ) = 〈K〉wΣ, (5.14)

where suitable simplifications due to spherical symmetry are made. Here, S is the
displacement speed as defined in (4.2) and ur and nr represent the radial components
of the velocity and normal vectors, respectively. The operator 〈·〉w denotes the gradient
weighted or surface average (Pope 1988).

The flame stretch K = a − 2Sκ contains two contributions: the tangential strain rate a =
−nT∇un + ∇ · u and the curvature-propagation term −2Sκ = S∇ · n. The tangential
strain rate depends only on the velocity field u and the orientation of the velocity gradient
tensor ∇u with respect to the flame normal n. The curvature term is non-zero only for
surfaces that propagate (S /= 0) in the presence of curvature (κ /= 0). In the case of a
material surface, K = a and surface stretch is due to tangential strain alone.

The rate of change of A is solely due to the stretch term of (5.14), as the volumetric
integrals of the convective and propagation terms on the left-hand side are zero. The
logarithmic time rate of change of the area = (1/A) dA/dt is therefore called the global
stretch and denoted by KG.

In light of (5.10), the rate of change of Pφ reads as

∂Pφ/∂t = (
4πr2/A

) {∂Σ/∂t − (Σ/A) dA/dt} . (5.15)

Substituting ∂Σ/∂t from (5.14) into (5.15) and simplifying, we obtain the evolution
equation for the PDF

∂Pφ/∂t = −∂/∂r
{〈ur + Snr〉wPφ

} + (〈K〉w − KG)Pφ. (5.16)

5.2. Characterization of Pφ and Σ

The mathematical framework presented in § 5.1 demonstrates that the mean area A, mean
radius R, turbulent flame brush δT and area ratio χ are related functionally to the surface
density function Σ . Further, (5.10) points to an equivalence between Σ and the probability
density function Pφ .

The temporal evolution of the flame radius and the turbulent flame brush thickness is
shown in figure 7.

The onset of a linear growth phase occurs at t/τ0 ≈ 1 for all configurations and the
non-dimensional growth rate R−1

0 τ0 dR/dt differs, being greatest for R3 and smallest for
R1. The flame brush δT/l0 increases monotonically in time across simulations as shown
in figure 7(b) and similar across simulations, which is a result of the scaling of the flame
brush thickness with the integral length scale of the flow as discussed later in § 6.1.

The PDF Pφ is closely approximated by a Gaussian distribution. This is demonstrated
in figure 8, which shows Pφ at four times for three simulations. Here we plot the PDF
normalized by σ and against ϑ , a sample space variable of the normalized brush coordinate
θ = (φ − μ)/σ . It is apparent that σPφ is well described by a standard normal distribution
N (0, 1), consistently with previous data reported in the literature for various flame
configurations (Lipatnikov & Chomiak 2002). The inset shows that the tails of the PDF
are also well approximated by the normal distribution, although the comparison becomes
less satisfactory for |ϑ | > 2, possibly due to statistical convergence.
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FIGURE 7. Evolution of (a) mean flame radius and (b) flame brush thickness for various
simulations. The mean flame radius is normalized by the initial kernel size R0, while the brush
thickness is normalized with the initial integral length scale l0: R1 (©), R2 (�), R2a (♦), R3 (�)
and R3s (�). Error bars shown for R1 simulation represent the sample variance based on four
realizations.
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FIGURE 8. (a) Representative planar slices of the instantaneous flame surface for simulation
R2 at t/τ0 = 4.2. Here x1–x2 denotes a quadrant of the Cartesian planes x–y, y–z and x–z. The
mean flame radius (thick red line) and several C = c∗ isocontours (thin black lines) are shown
alongside the shaded region r = R ± σ . Also shown in (b) and (c) is the σPφ at four times for
simulations R1 (©), R2 (�) and R3 (�) with the standard normal distribution for comparison
(thick black lines).

Figure 9 shows Σ at select times for simulations R1, R2, R3 and R2a. The surface
density function (SDF) is shown normalized by the initial thermal thickness δ0

L and
plotted versus r/RL, where RL is the effective domain radius (see table 1). The SDF is
transported radially outward, broadens, and its maximum value Σm decreases with time.
This behaviour is common across all cases. The broadening of Σ is consistent with the
increase in the flame brush and with experimental observations of spherical turbulent
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FIGURE 9. Surface density function at select times for (a) R1, (b) R2, (c) R3 and (d) R2a. The
normalized time t/τ0 is shown next to each profile. The surface density distribution broadens
and the peak reduces as the time progresses. Symbols denote evaluation of Σ using the
definition directly, while solid lines show surface density estimation based on (5.10) and a normal
distribution model for Pφ .

premixed flames evolving in freely decaying turbulence (Renou et al. 2002; Fries et al.
2019). Since the area ratio χ is related to the volumetric integral of Σ , broadening appears
to be closely related to the observed increase of χ in time. Yet, the peak of Σ decreases in
time, so that a more quantitative analysis is in order.

Using a Gaussian distribution as a model for Pφ , the surface density function is obtained
according to (5.10) and shown in figure 9 also. The surface density function Σ , obtained
assuming that Pφ is a normal distribution, is compared to its direct evaluation from the
gradient of the progress variable. The comparison is very satisfactory, indicating that the
two methodologies are consistent and further validating our approach. Nonetheless, Σ

computed from conditional statistics displays residual statistical noise, and, therefore, we
rely on the model to analyse the peak value Σm of the surface density function.

5.3. Model for the area ratio
We begin by noting that the surface density function admits a local maximum at radial
location r̂, which is the root of the equation

∂Σ

∂r

∣∣∣∣
r=r̂

= −2Pφ(r̂)/r̂3 + P ′
φ(r̂)/r̂2 = 0, (5.17)

2Pφ(r̂) − r̂P ′
φ(r̂) = 0, (5.18)
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where we let P ′
φ indicate the derivative with respect to ϕ. Based on (5.10), the maximum

value attained by the surface density function is

Σm ≡ Σ(r̂, t) = (4π)−1A
P ′

φ(r̂)

2r̂
= (4π)−1A

Pφ(r̂)
r̂2

. (5.19)

Substitution of (5.10) and (5.19) into (5.6) gives

χ = ΣmδTβ; β = 1
Pφ(r̂)δT

(
r̂
R

)2

. (5.20a,b)

Here β is a shape factor related solely to the functional form of Pφ(ϕ; t). Equation
(5.20a,b) illustrates that the area ratio χ is proportional to the product of the maximum
value of the surface density function, the thickness of the flame brush and a shape factor.

As shown in figure 8, Pφ(ϕ; t) is well approximated by a normal distribution. On the
account that Pφ is defined in [0,∞), a truncated normal distribution with parameters μ̄
and σ̄ 2 (Johnson, Kotz & Balakrishnan 1994) is required formally, rather than a normal
distribution with infinite support ϕ ∈ (−∞,∞). However, we find that for all simulations,
μ̄ � 3σ̄ (see figure 8), so that μ̄ ≈ μ, σ̄ 2 ≈ σ 2, and the normalization factor Z = 1 −
F(−μ̄/σ̄ ) ≈ 1, where F(z) is the cumulative distribution function of the standard normal
distribution.

Thus, for all practical purposes, the truncated normal distribution and the underlying
normal distribution are identical on the account of the negligible probability of φ taking
negative values. For simplicity, we ignore the small differences arising from the truncated
sample space at ϕ = 0 and model Pφ as a normal distribution with parameters μ = R and
σ 2 = δ2

T/(2π). This results in the following root of (5.18):

r̂ = 2Pφ(r̂)/P ′
φ(r̂) = R

(
1 +

√
1 − 8α2

)
/2. (5.21)

Here α = σ/μ (α � 0.33 for all times and simulations) is the relative standard deviation
of the radial distance. Substituting (5.21) into (5.20b), the shape factor reads as

β = β(α) = 0.25(1 +
√

1 − 8α2)2 exp
{
α2(

√
1 − 8α2 − 1)2/8

}
. (5.22)

Equation (5.22) indicates that the shape factor is a monotonic function of α. For α → 0,
β → 1 and decreases as α increases. For all simulations and times, we find that 0.875 �
β � 1.

Together with the fact that β ≈ 1, (5.20a) illustrates that the area ratio χ is equal to the
product of the maximum value of the surface density function Σm and the thickness of
the flame brush δT . The temporal evolution of these two quantities across simulations with
varying Reynolds number is explored closely in the remainder of the paper.

6. Scaling of the area ratio in spherical turbulent premixed flames

6.1. Scaling of the turbulent flame brush thickness
As defined in (5.13), the flame brush thickness δT(t) is a statistical measure of the distance
of the flame surface from its mean location. The brush thickness grows from zero as time
progresses and turbulence wrinkles the flame (figure 7b).

Under rather stringent assumptions and important approximations, Taylor’s theory
of turbulent diffusion has been applied to the evolution of the flame brush thickness
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(Lipatnikov & Chomiak 2002). First, the flame surface is assumed to evolve as a
collection of infinitesimal material surface elements and the variance of the distance of
the surface elements from their mean location is taken to represent the brush thickness.
Second, turbulence is assumed to be homogeneous and isotropic, although not necessarily
stationary. Under these assumptions, the rate of change of the variance of the distance is

dσ 2/dt = 2u′(t)
∫ t

0
u′( p)fL( p, t) dp, (6.1)

where fL denotes the Lagrangian velocity autocorrelation function and u′(t) is the
turbulence intensity at time t. For stationary turbulence, (6.1) is integrated assuming that
the autocorrelation function is exponential (Hinze 1975) to give

σ 2/l2 = 2t̃{1 − t̃−1[1 − exp(−t̃)]}, (6.2)

where t̃ = t/τ † and τ † = l/u′ is a constant reference time scale. The short and long time
behaviours described by (6.2) are σ 2 ∼ t2 for t � τ † and σ 2 ∼ t for t � τ †, respectively.

The short time limit has been shown to explain reasonably well the early and near-field
evolution of the brush for various experimental and numerical flame configurations,
including spherically expanding flames and turbulent Bunsen flames (Lipatnikov &
Chomiak 2002). For spatially inhomogeneous turbulent flows with a dominant direction,
a convective time related to distance is used in place of time. This model suggests that the
flame brush thickness scales with large, energy-containing scales of turbulence, since the
ratio σ/l is a function of the normalized time t/τ † alone.

Minor adjustments to (6.1) and (6.2) are required for spherical expanding flames in
decaying turbulence. Firstly, the brush thickness is defined in terms of the variance of
the radial distance, so that only the radial component of the velocity vector along the
Lagrangian trajectories should be considered. Since the radial direction varies along a
Lagrangian trajectory, the integrand includes an orientation factor also and reads as

dσ 2/dt = 2u′(t)
∫ t

0
u′( p)fL( p, t)〈cos αp,t〉 dp, (6.3)

where the orientation factor 〈cos αp,t〉 is the expectation of αp,t, the angle between two
position vectors on a Lagrangian trajectory at times p and t. The derivation of (6.3) is
presented in appendix B.

Since cos αp,t � 1, (6.1) overestimates the rate of change of the brush thickness
compared to (6.3). Nonetheless, the correction is small if the lateral movement on a
Lagrangian trajectory during temporal intervals for which the velocity remains correlated
is small compared to the radial distance of the material point. A comprehensive analysis of
the orientation factor requires an investigation of Lagrangian statistics and is outside the
scope of the present study. Thus, we interpret (6.1) as an upper bound on the rate of change
of the brush thickness in spherically expanding flames as approximated by Taylor’s theory
of turbulent diffusion.

A second aspect is related to the fact that turbulence in not stationary, rather it
decays in time. Batchelor & Townsend (1956) postulated that the Lagrangian velocity
autocorrelation in decaying isotropic turbulence is self-similar and argued that, if the decay
of the turbulent kinetic energy follows a power law (see § 3.1), there exits a characteristic
time scale τs for which u(t)(1 + t/t0)

−n/2 is a stationary random variable in the transformed
time coordinate s, defined so that ds = dt/τs. Batchelor & Townsend (1956) suggested
τs = t + t0, which was supported later by Huang & Leonard (1995) based on a model
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FIGURE 10. Temporal evolution of the flame brush thickness. (a) Brush thickness normalized
by the thermal thickness of the laminar flame, δ0

L, versus time normalized by the initial eddy
turnover time. (b) Normalized flame brush thickness δT/l versus the transformed time coordinate
s = log(1 + t/t0), where t0 = nτ0. The solid line shows the expression in (6.4), derived for the
dispersion of Lagrangian particles in freely decaying isotropic turbulence with a self-similar
power law decay. Symbols identify data from different simulations: R1 (©), R2 (�), R2a (♦),
R3 (�) and R3s (�).

spectrum of the Lagrangian velocity autocorrelation at high Reynolds numbers. Letting
s = log(1 + t/t0) with t0 = nτ0, all length and velocity scales in decaying turbulence are
exponential functions of s. Further, as shown by Huang & Leonard (1995), the Lagrangian
autocorrelation function depends on the lag between two transformed time coordinates,
i.e. fL(t1, t2) = fL(s1 − s2). The methodology for the estimation of the parameters t0 and n
was outlined in § 3.1.

Substituting the expressions for the turbulent kinetic energy (3.1) and eddy turnover
time (3.2), the temporal evolution of δ2

T reads as

δ2
T/l2 = (9πn2)

∫ s

0
dp

∫ p

0
dq fL(q − p) exp{(1 − n/2)( p + q − 2s)}. (6.4)

The factor in front of the integral in the above expression originates from the definition
of the eddy turnover time τ = 3l/2u′ = 3τ †/2 and τs = nτ . Equation (6.4) suggests that
δT/l = f (s) alone and that the instantaneous integral length scale of the flow l is the
obvious length to normalize the brush thickness δT .

Figure 10 shows the temporal evolution of the normalized flame brush δT/l for
all simulations alongside the theoretical prediction from (6.4). The expression for the
Lagrangian autocorrelation function given in Huang & Leonard (1995) was used to
evaluate the integrals on the right-hand side of (6.4).

Consistent with the observations in the literature, we report good agreement of the brush
thickness with the theory of turbulent diffusion early on (s < 0.2 or t/τ0 < 0.5) and a
near collapse across simulations. This agreement is rather remarkable considering that the
flame surface is defined based on the isosurface of a reactive scalar and propagates in a
variable density and variable properties flow, while Taylor’s theory of turbulent diffusion
applies to an ensemble of material points convected by an isothermal fluid. Nonetheless,
the agreement is best at early times and deviations from theory are apparent later. More
importantly, the evolution of δT/l appears to saturate towards a limit value, while theory
predicts continuous growth even in decaying turbulence.
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We briefly address the deviations from the turbulent diffusion theory through the
evolution equation for the brush thickness, which is derived next. The evolution equation
for the flame brush thickness is readily obtained by taking the second central moment of
(5.16) and reads as

dδ2
T

dt
= 4π

∫ ∞

0
〈ur + Snr〉w(r − R)Pφ dr + 2π

∫ ∞

0
〈K ′〉w(r − R)2Pφ dr, (6.5)

where K ′ = K − KG is the differential stretch rate. The first term on the right-hand side
of (6.5) describes the effect of transport on the brush and consists of contributions by the
mean radial velocity, velocity fluctuations and flame propagation.

We decompose the radial velocity as ur = 〈ur〉 + u′
r, where 〈ur〉 is the unconditional

Reynolds average, so that 〈u′
r〉w is not zero, and the evolution equation is manipulated to

read as

dδT

dt
= (2π/δT)

∫ ∞

0
〈u′

r〉w(r − R)Pφ dr + (2π/δT)

∫ ∞

0
〈ur〉(r − R)Pφ dr

+ (2π/δT)

∫ ∞

0
〈Snr〉w(r − R)Pφ dr + (π/δT)

∫ ∞

0
〈K ′〉w(r − R)2Pφ dr. (6.6)

In the order in which they appear on the right-hand side of (6.6), the terms represent
contributions from velocity fluctuations or turbulent transport (term I), transport due to
mean radial velocity (term II) and flame propagation (term III), and differential stretch
(term IV).

Figure 11 shows dδT/dt and the four terms on the right-hand side of (6.6). All terms are
normalized by the initial turbulence intensity u′

0. The rate of change of δT is positive for
all simulations, indicating that the brush grows throughout the evolution of the turbulent
flame and the behaviour and contribution of each term is similar across simulations, once
normalized by the initial turbulence intensity. As time progresses, dδT/dt approaches zero,
indicating that the brush thickness reaches a limit value, consistent with the temporal
evolution of δT in figure 7(b).

Early in the evolution, turbulent transport (term I) dominates and contributes to the
growth of the flame brush. The contribution of term I decreases in magnitude as time
progresses due to the decay of turbulence and associated decrease in the fluctuation u′.
Throughout the simulations, differential stretch (term IV) is negative, slowing down the
rate of growth of the brush. Its magnitude grows in absolute value as time progresses.
The sum of terms II (mean velocity) and III (flame propagation) is positive, but of limited
importance until much later in all simulations, when u′ is small.

This analysis demonstrates that the growth rate of the flame brush thickness in this
configuration is controlled by the balance between two mechanisms: turbulent transport
contributing to the growth of the brush and differential flame stretch impeding the growth.
The turbulent flame brush approaches a constant thickness when the two contributions
become equal in magnitude, but opposite in sign. We note that despite the deviations, the
scaling of δT with l is robust, as the evolution of δT/l is nearly the same across different
simulations. A quantitative discussion on these mechanisms and their scaling is deferred
to a later work.

6.2. Scaling of peak value of the surface density function
Next, we address the variation of the peak value of the surface density function across
simulations with varying Reynolds number. The surface density function associated with
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FIGURE 11. Contributions of different mechanisms in (6.6) to the growth of the flame brush
thickness: dδT/dt ——, turbulent transport (term I) — © —, mean convection and mean
propagation (sum of terms II and III) — · —, and differential stretch (term IV) — � —. All
terms are normalized by the initial turbulence intensity u′

0. Data shown for (a) R1, (b) R2, (c) R3
and (d) R2a.

the isosurface C = c (Vervisch et al. 1995) reads as

Σ(r, t; c) = 〈|∇C||C = c〉PC(c; r, t), (6.7)

where PC is the PDF of the progress variable C and angular brackets denote ensemble
averaging.

Figure 12(a) shows 〈|∇C||C = c〉 as a function of c at early times (t/τ0 = 0.75) and
towards the end (t/τ0 = 5.25) of simulation R2. The conditional mean of the gradient is
very close to that found across the one-dimensional laminar flame, confirming that the
turbulent flames belong to the thin flamelet regime (Peters 2000). Furthermore, at each
instant, the gradient is normalized by δ0

L in order to highlight that the effect of pressure
on the flame structure is minor as the peak value of the gradient changes by 10 % only.
Figure 12(b) shows the radial variation of 〈|∇C||C = c∗〉 across the brush at t/τ0 = 5.25,
indicating that the conditional gradient magnitude grows only very slightly across the
brush and may be considered constant for all practical purposes.

Thus, we conclude that the conditional gradient magnitude 〈|∇C||C = c∗〉 is
independent of radial location r and time t also, so that any spatial and temporal
dependence of the surface density function Σ is due to PC(c∗; r, t).

In order to investigate the scaling and spatial dependence of PC, we consider an
ensemble of two-dimensional plane cuts, whereby each plane contains the origin and its
normal is oriented randomly. On each plane cut, we consider a circle of radius r, centred
at the origin, and let et be the unit vector along the tangential direction. Let q be the arc
length distance from an arbitrary point along the circle (0 � q < 2πr). Figure 13(a) shows
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FIGURE 12. Conditional statistics of the gradient magnitude. Data from simulation R2.
(a) Conditional mean gradient magnitude from DNS (blue and red lines), one-dimensional
laminar flame (black lines) at two different times, normalized by the thermal thickness of the
laminar flame δ0

L. Data shown at t/τ0 = 0.75 (blue line with open circles) and t/τ0 = 5.25 (red
line with open squares). The error bars represent the conditional standard deviation. (b) Radial
distribution of the conditional mean gradient magnitude (C = c∗) at t/τ0 = 5.25. Scatter of
samples is represented with small solid circles. Gradients are multiplied by the laminar flame
thermal thickness δL(t).
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FIGURE 13. Flame surface crossings in a plane for simulation R2 at t/τ0 = 4.5. (a) Cut of the
flame surface C = c∗. (b) Progress variable field along a circle of radius r versus the normalized
arc length q/r.

a schematic representation of one such planar cut. The progress variable C as a function
of the coordinate q along one such circle is shown in figure 13(b).

Given the spherical symmetry of the statistics, the progress variable C and its gradient
∇C are ergodic along et. The probability P that C takes a value between c − dc/2 and
c + dc/2 on the circle is

P[c − dc/2 � C � c + dc/2] = PC(c; r, t) dc = 1
p2πr

p∑
j=1

mj∑
i=1

dqij, (6.8)

where dqij is an infinitesimal arc length centred at location qij such that C(qij) = c and
c − dc/2 � C(q) � c + dc/2 for qij − dqij/2 � q � qij + dqij/2 and mj is the number
of locations along circle j ( j = 1, . . . , p). Similar to the nomenclature used in the
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FIGURE 14. (a) The Υ factor and (b) alignment 〈| cos αnt||C = c〉 statistics for three simulations
at two select times: R1 (©), R2 (�) and R3 (�). (c) Peak surface density function Σm (thick line),
PDF of progress variable PC (�), and conditional mean of the gradient magnitude 〈|∇C||C = c〉
(©) at r = R(t), normalized by their corresponding values for c = c∗. Data from simulation R2.

Bray–Moss–Libby (BML) model (Bray & Moss 1977; Libby & Bray 1980), each of the qij
locations is referred to as a flame crossing.

Each infinitesimal arc length dqij is related to the projection of the gradient ∇C onto the
tangential vector et at the flame crossing i with circle of radius r on plane j:

dqij = dc/|∇C · et|ij. (6.9)

Let m indicate the total number of flame crossings summed over all planes. Rearranging
(6.8) and dividing by dc, we have

PC(c; r, t) = m
p2πr

1
m

p∑
j=1

mj∑
i=1

|∇C · et|−1
ij (6.10)

= �(r, t) 〈|∇C · et|−1|C = c〉, (6.11)

where �(r, t) = m/( p2πr) is the flame crossing frequency, defined as the number of
flame crossings per unit length. The average of |∇C · et|−1 over all crossings on circles of
radius r is simply the conditional average of |∇C · et|−1 at the radial location r.

Since the expression for Σ involves the conditional mean of |∇C|, it is beneficial to
relate the conditional mean of the inverse |∇C · et|−1 to the inverse of the conditional
mean directly as

〈|∇C · et|−1|C = c〉 = Υ 〈|∇C · et||C = c〉−1, (6.12)

where Υ is given by

Υ = 1 + Var {|∇C · et||C = c} /〈|∇C · et||C = c〉2 + . . . . (6.13)

We find that Υ ≈ 1.35 for 0.5 � c � 0.9 across all simulations at all times as shown in
figure 14(a). In the limit of infinitesimally thin turbulent premixed flames, Υ → 1.
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FIGURE 15. Comparison between the two expressions for Σ in (6.16) and the direct evaluation
from the gradients for three simulations at five times: (a) R1, (b) R2 and (c) R3. Time increases
from left to right.

Assuming that the projection of the flame normal n onto et and the gradient magnitude
are uncorrelated, we write

〈|∇C| |n · et||C = c〉 ≈ 〈|∇C||C = c〉〈|n · et||C = c〉. (6.14)

The assumption that the two are uncorrelated appears to be reasonable on the account that
turbulence in the reactants is isotropic. Then, PC reads as

PC(c; r, t) = �(r, t)Υ
〈|∇C||C = c〉〈| cos αnt||C = c〉 , (6.15)

where |n · et| = | cos αnt| and αnt is the angle between the normal n and the ergodic
direction et and represents the orientation of the flamelets with respect to the ergodic
direction. We find that the orientation angle αnt is nearly constant in time, independent of
the conditioning value c, and the same across simulations. As a result, Σ is independent
of the conditioning value c for 0.1 � c � 0.9 as shown in figure 14(c), since PC ∼
1/〈|∇C||C = c〉.

Based on the above analysis, an approximate expression for the surface density function
is

Σ(r, t; c) = �(r, t)Υ/〈| cos αnt||C = c〉. (6.16)

Figure 15 compares the left- and right-hand sides of (6.16) for c = 0.73, which are found
to be in good agreement. Since the factor Υ/〈| cos αnt||C = c〉 is approximately constant in
space, time and across simulations, the spatial and temporal dependence of Σ = Σ(r, t)
is solely due to that of the crossing frequency � = �(r, t).

This result is consistent with the Bray–Moss–Libby theory of turbulent premixed
combustion, whereby the surface density function is modelled in terms of the spatial
crossing frequency and a mean cosine factor as Σ = �/〈| cos αnt|〉 (Bray, Libby &
Moss 1984; Bray & Libby 1986). Here we find a similar expression with the additional
factor Υ = O(1), which provides a correction for the fact that premixed flames are not
infinitesimally thin and Υ is not strictly unity.

For a statistically stationary and planar turbulent premixed flame, the BML model
relates the crossing frequency � to the two-point, one-time autocorrelation function of
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the progress variable

F(q; x1) = 〈C′(x, t)C′(x + qeα, t)〉/σ 2
C, (6.17)

� = �(x1) = −2∂F/∂q|q=0, (6.18)

where x1 is the inhomogeneous coordinate normal to the plane of the flame, C′ = C − 〈C〉
is the fluctuation field, σ 2

C = 〈(C − 〈C〉)2〉 is the variance and eα is a unit vector in the
plane of the flame that identifies an ergodic direction. Under specific assumptions on the
functional form of the autocorrelation function F , the crossing frequency and surface
density function read as

� = A� 〈C〉(1 − 〈C〉)/L∗, (6.19)

Σ = AΣ〈C〉(1 − 〈C〉)/L∗, (6.20)

where 〈C〉 = 〈C〉(x1), A� and AΣ are constants of order unity, and L∗ is the so-called
wrinkling scale.

Since the crossing frequency is closely related to the autocorrelation function of the
progress variable (Bray et al. 1984; Bray & Libby 1986), L∗ likely reflects the entire
spectrum of the progress variable turbulent field C(x, t), although it is not clear how L∗

should scale with the Reynolds number and how a suitable autocorrelation length could
be defined from the autocorrelation function.

There exists significant controversy on the origin and values taken by the wrinkling
scale in the literature. Cant & Bray (1989) proposed the following closure for the wrinkling
scale,

L∗ ∝ k3/2ε−1, (6.21)

thereby advancing the hypothesis that the wrinkling scale is proportional to the integral
scale defined as l = u′3/ε and controlled by turbulence and energy-containing fluid
motions, rather than flame propagation. Deschamps et al. (1992) observed L∗ ≈ l for
conical turbulent premixed flames, while others (Veynante, Duclos & Piana 1994; Shy
et al. 2000) found that the wrinkling scale is about five times smaller than the integral scale
for V-shaped and planar turbulent premixed flames. Further, Shy et al. (2000) reported that
the wrinkling scale remained constant for two different turbulence intensities, while the
integral length scale changed by ≈50 %. However, inadequate resolution of the turbulent
flame surface may be responsible for this observation, as the wrinkling scale was found to
be of the size as the width of the averaging box used for the measurement of the surface
density function. Finally, dependence of L∗ on u′/SL has been postulated also, yet no
conclusive evidence exists.

Given that L∗ and 1/Σ are related to within constants of order unity, we define the
wrinkling scale as L∗ = (4Σm)−1, where Σm is the peak surface density in (5.19). The
factor of 4 is included so as to be consistent with (6.20), since the peak surface density
Σm occurs near 〈C〉 = 0.5. The proportionality L∗ ∝ 1/Σm highlights that both quantities
obey the same scaling laws.

Figure 16(a) shows the temporal evolution of Σm normalized by the thermal thickness
of the laminar premixed flame. It is apparent that Σm decreases in time several fold for
each simulation. Because δ0

L is constant across simulations and the variation in the flame
thickness is minimal during the propagation of the turbulent flames, figure 16(a) shows
conclusively that Σm does not scale with the thermal thickness of the laminar flame.
This behaviour is consistent with experiments on turbulent spherical flames in decaying
turbulence behind grids (Renou et al. 2002; Fries et al. 2019).
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FIGURE 16. (a) Peak flame surface density Σm normalized by the thermal flame thickness δ0
L.

(b) Ratio of length scales and power law fits aReb
λ (solid lines). We observe l/η ∼ Re1.5

λ , l/λ ∼
Re1.0
λ and l/L∗ ∼ Re1.13

λ . Thus, L∗ lies between η and λ with separation increasing with Reλ.
Symbols in both (a,b) represent data from various simulations: R1 (©), R2 (�), R2a (♦), R3 (�)
and R3s (�).

Figure 16(b) shows L∗ normalized by the integral scale l and plotted against Reλ. Data
from all flame configurations and several times during each simulation are shown. It is
apparent that over the range 30 � Reλ � 85, L∗ is about 5 to 10 times smaller than the
integral length scale. Further, the wrinkling scale falls between the Taylor scale λ and
Kolmogorov scale η, albeit closer to the former than to the latter. When scaled with l, the
data suggest the following power law fit for the wrinkling scale:

l/L∗ = 4Σml = 0.0756Re1.13
λ . (6.22)

Note that only data for t/τ0 > 0.5 have been used in the fit since it is necessary for turbulent
motions to wrinkle the flame past an initial transient, during which a power law scaling for
l/L∗ is not warranted.

The power law scaling from (6.22) shown in figure 16(b) is rather convincing, especially
because it holds across simulations and instantaneously even as Reλ and l vary in time
during the decay of turbulence. Nonetheless, studies over a broader range of Reynolds
number are obviously desirable.

The observation that η < L∗ < λ suggests that the peak surface density is governed
by small scales. The importance of small scales in controlling Σm has been postulated
by Huh, Kwon & Lee (2013), who analysed the surface density transport equation for
statistically planar flames and proposed that Σm scales with the inverse of the mean flame
surface curvature. Since Zheng, You & Yang (2017) demonstrated that the PDF of the
flame surface curvature is independent of the Reynolds number when normalized with the
Kolmogorov length, a case could be made that Σm ∝ η−1, independently of Reλ. Our data
do not support this conclusion, although they do highlight the fact that L∗ is smaller than
λ and its evolution is most likely related to processes at the dissipative end of the inertial
range of the turbulence spectrum.

The Darrieus–Landau (DL) instability (Darrieus 1938; Landau 1944) may provide an
additional mechanism for flame surface wrinkling (Fogla, Creta & Matalon 2013; Creta
et al. 2016), thereby influencing the surface density distribution and the wrinkling scale.
The instability may be particularly important towards the end of the simulations, as
pressure and flame radius increase, while turbulence decays leading to small u′/SL.
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The importance of the DL instability in the present flames may be assessed by
comparing the growth rates of the DL instability against the rates of flame wrinkling in
the range of wavenumbers where both effects are active. It is assumed that the range of
scales over which the DL instability is important is κ ∈ [1/R, 1/δL], while that of turbulent
wrinkling is κ ∈ [1/l, 1/η]. Since R > l and η < δL at all times, the overlap region is
κ ∈ [1/l, 1/δL]. Following the analysis in Yang et al. (2018), the ratio is

ωT(κ)/ωDL(κ) ≈ u′
κ/SL, (6.23)

where u′
κ = (ε/κ)1/3 is the eddy velocity associated with wavenumber κ . Since u′

κ/SL >
u′

η/SL > 1 for all κ in the overlap region, we conclude that all turbulent flames considered
in this study belong to the turbulence dominated regime (Yang et al. 2018), and the effect
of DL instability can be safely neglected.

6.3. Scaling of the area ratio
The findings in §§ 6.1 and 6.2 have critical implications with regard to the evolution of the
area ratio χ and its values across flame configurations. We begin by rearranging (5.20a)
into

χ = ΣmδTβ = (l/4L∗)(δT/l)β. (6.24)

Recalling that β is a shape factor that is nearly constant and substituting the scaling laws
for the brush and peak surface density function, we obtain

χ(t) = CχRe1.13
λ f (s), (6.25)

where Cχ is a constant and the dependence of δT/l on time is captured by f (s) with s =
log(1 + t/t0) indicating the transformed time coordinate. The area ratio χ and ST/SL ∼ χ

depend on time directly due to δT/l ∼ f (s) and indirectly due to Reλ = Reλ(t) in decaying
turbulence.

The most important implication of (6.25) is that

χ(t)Re−1.13
λ ∼ f (s), (6.26)

so that if two turbulent spherical flames are compared at the same logarithmic time s,
the area ratio χ scales as Re1.13

λ or as Re0.56, since Re = u′l/ν ∼ Re2
λ. This observation

is broadly consistent with the previously reported Reynolds dependence of burning
rates in spherical turbulent flames (Chaudhuri et al. 2012; Jiang et al. 2016; Ahmed &
Swaminathan 2013).

Figure 17(a) shows that χ varies in time and across flame configurations. For t/τ0 > 2,
χ reaches a limit value, which differ for each case by as much as a factor of 1.6. The same
data are shown in compensated form as χ(t)Re−1.13

λ versus s in figure 17(b). Note that only
data for t/τ0 > 0.5, which corresponds to s > 0.3, are shown because the scaling of Σm
implies that turbulent motions have had sufficient time to wrinkle the flame past an initial
transient, during which the power law scaling l/L∗ in (6.22) is not applicable.

The collapse in figure 17(b) is encouraging, albeit not perfect, especially for the data
from simulations R3 and R3s at later times s > 1. Despite minor inconsistencies, which are
related to the imperfect collapse of δT/l at later times as shown in figure 10(b), we conclude
that scale separation, as parametrized by the Reynolds number plays an important role in
controlling the area ratio and the dimensionless turbulent flame speed ST/SL ∼ χ across
flame configurations.
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FIGURE 17. (a) Area ratio versus time t/τ0. (b) Area ratio compensated with the proposed
Reynolds scaling versus the transformed time coordinate s = log(1 + t/t0) with t0 = nτ0.
Symbols represent data from simulations: R1 (©), R2 (�), R2a (♦), R3 (�) and R3s (�).

In order to investigate this important implication, three simulations are considered.
These include R2 and R2a, which share the same Reynolds number, but not the same
u′/SL, and simulations R1 and R2a, which share u′/SL, but not the same Reynolds number.
Note that u′/SL changes in time as reported in figure 3(c).

From the evolution of χ for R1, R2 and R2a in figure 17(a), it is clear that when the
Reynolds number is held constant and u′/SL changes (along with l/δL), the area ratio does
not change (R2 vs. R2a). On the other hand, when u′/SL is held constant and the Reynolds
number changes (along with l/δL), the area ratio is greater for the flame with the higher
Reynolds number (R1 vs. R2a). These results support the conclusion that, for a given
premixed mixture, ST/SL is not a function of u′/SL at constant Reynolds number for the
flame configuration and regime considered. A similar Reynolds dependence was proposed
by Chaudhuri et al. (2011) based on spectral analysis of the level-set equations. Because
when u′/SL is held constant as Reλ increases, the ratio l/δL increases proportionally also
(for the same reactive mixture, pressure and temperature), the observed trends in χ may
not be conclusively attributed solely to Reλ independently of l/δL and a broader set of
simulations are required.

In closing, we remark that in most experiments on turbulent premixed flames, the
integral scale of the flow remains approximately constant as u′ is varied by increasing flow
rates or fan speeds. This occurrence is due to the fact that the integral scales are largely
set by the geometrical details of the burner, turbulence-generating grids, or fans, which are
held fixed for practical reasons. The consequence is that both u′/SL and Re vary together at
l/δL ≈ const in most studies. Then, with l/δL constant as u′/SL increases holding premixed
reactants, kinematic viscosity (i.e. pressure), and burner geometry unchanged, one obtains
ST/SL ∼ (u′/SL)

0.55 since ST/SL ∼ Re0.55.

7. Summary and conclusions

The propagation of spherical turbulent premixed methane/air flames in decaying
turbulence was investigated at different conditions via direct numerical simulations.
The simulations feature detailed finite rate chemistry for methane oxidation and
mixture-average transport. The simulations are repeated for several values of the
Taylor-scale Reynolds number Reλ, where all properties of isotropic turbulence are defined
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in the reactants. By design, the extent of the turbulent flame is large compared to the
integral length scale of turbulence, guaranteeing that the flame surface is wrinkled by
motions across the entire spectrum of turbulence and that statistics are duly converged.
The flames belong to the thin reaction zone regime of turbulent premixed combustion
and are characterized by low values of the Karlovitz number, so that the dimensionless
turbulent flame speed is equal to the area ratio, defined as the ratio of the area of the flame
surface to a reference area based on the mean progress variable. Thus, enhancements to
the burning rate are brought by flame wrinkling, folding and stretching.

The data are analysed within the formalism of the surface density function and under
the assumption of spherical symmetry of the statistics. The analysis shows that the
dimensionless turbulent flame speed is equal to the product of the flame brush thickness,
the peak value of the surface density function and a non-dimensional shape factor of order
unity. This decomposition lies at the basis of our postulate that the area ratio of turbulent
premixed flames increases for increasing scale separation.

Once scaled by the instantaneous value of the integral length scale and plotted
versus a stretched logarithmic time coordinate consistent with the evolution of turbulent
kinetic energy in decaying homogeneous isotropic turbulence, the flame brush thickness
is found to be nearly self-similar across simulations, irrespective of the Reynolds
number of the flow. This result is significant because it indicates that the extent of the
turbulent flame brush is governed by the largest scales of the flow as suggested by past
experiments.

An ordinary differential equation that describes the evolution of the brush thickness is
derived and indicates that the growth of the brush is controlled primarily by the balance
of two mechanisms. Turbulent diffusion by velocity fluctuations leads to an increase in
the brush thickness, consistent with Taylor’s theory of turbulent diffusion, while spatial
variations of the statistics of flame stretch across the brush lead to a decrease in its
thickness. Early in the evolution, the brush grows rapidly due to turbulent transport, but
later the two contributions balance each other and the brush thickness appears to reach an
asymptotic limit.

Following the framework of the Bray–Moss–Libby model of turbulent premixed
combustion, we relate the peak value of the surface density function to the flamelet
spatial crossing frequency, so that its inverse is the wrinkling length scale. The concept of
wrinkling length is noteworthy because it allows us to scale the surface density function
across simulations. For all cases, we find that the wrinkling length is larger than the
Kolmogorov scale, but smaller than the Taylor micro-scale, being closer to the latter
than to the former. Most important, the ratio between the wrinkling scale and the integral
scale of the flow is proportional to Re−1.13

λ across all simulations. This result identifies the
wrinkling scale as a hydrodynamic scale related to turbulence and its spectrum.

The evolution and scaling of the brush and peak surface density function result in the
dimensionless turbulent flame speed scaling as ST/SLRe−1.13

λ ∼ f (s), where s is the suitable
logarithmic time coordinate for decaying turbulence and f (s) is a function that describes
the growth of the brush normalized by the integral scale. The scaling is shown to hold to
a very good approximation over several cases with 30 � Reλ � 80.

At present, the origin of the value of the scaling exponent is unclear and it is possible
that it is somewhat specific to the spherical flame configuration. Furthermore, the results
shown pertain to a modest range of Reynolds numbers and little separation exists between
the dissipative scales and the wrinkling scale. More definitive conclusions require higher
values of the Reynolds number. Finally, the flame configurations feature low values of the
Karlovitz number, so that it is unclear whether the ratio of the Kolmogorov time to the
flame time scale plays an additional role in the scaling.
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Despite the limitations in scope, our data support the notion that scale separation, as
parametrized by the Reynolds number, is a key parameter in controlling the burning rates
of the spherical turbulent premixed flames at the conditions explored in the simulations.
Broadly, the fact that ST/SL ∼ Re1.13

λ points to the key role of the integral length scale l
and kinematic viscosity ν, in addition to that of the velocity fluctuation u′, which is well
recognized in the literature. Our analysis provides a novel perspective that is consistent
quantitatively with recent experimental results.
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Appendix A. Estimation of R(t) and A(t)

Define the flame surface area as a random process Ã(t) with Ã(n)(t) denoting its
repetition n of N . Then, the mean of the flame surface area is

A(t) ≡ 〈Ã(t)〉 = 〈〈Ã(t)〉N 〉 =
〈

1
N

N∑
n=1

Ã(n)(t)

〉
, (A 1)

where 〈·〉 denotes statistical expectation and 〈·〉N indicates ensemble averaging over N
repetitions (Pope 2000).

The random process Ã(t) is functionally related to the progress variable random field
C(x, t) (Maz’ya 1985),

Ã(t) =
∫

V
|∇C(x, t)|δ[C(x, t) − c∗] dV, (A 2)

where δ is the Dirac delta function and C(x, t) = c∗ is the isosurface taken to represent
the flame, so that

A(t) ≡ 〈〈Ã(t)〉N 〉 =
〈〈∫

V
|∇C|δ(C − c∗) dV

〉
N

〉
. (A 3)
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Rearranging the order by which the statistical expectation, ensemble average and
volumetric integral are taken, we obtain

A(t) =
∫

V
〈〈|∇C|δ(C − c∗)〉〉N dV =

∫
V
〈〈Σ̃〉〉N dV, (A 4)

where we defined the spherically symmetric random field Σ̃(x, t) = |∇C|δ(C − c∗) with
expectation 〈Σ̃〉. For each repetition n of N , spherical averaging of Σ̃ ,

〈Σ̃〉ΘΦ = 1
4πr2

∫ 2π

0

∫ π

0
Σ̃(r,Θ,Φ, t)r2 sin Θ dΘ dΦ, (A 5)

is an estimate for 〈Σ̃〉 consistent with the statistical symmetry of the random field. Based
on (A 5), we rewrite (A 4) as

A(t) ≡ 〈Ã(t)〉 ≈
∫

V
〈〈Σ̃〉ΘΦ〉N dV = 4π

∫ ∞

0
r2〈〈Σ̃〉ΘΦ〉N dr. (A 6)

In the last step, we exploited the fact that 〈Σ̃〉ΘΦ depends on (r, t) only.
The mean of the flame surface area is the volumetric integral of the flame surface density

function Σ (Pope 1988; Vervisch et al. 1995),

A(t) =
∫

V
Σ dV = 4π

∫ ∞

0
r2Σ(r, t) dr, (A 7)

with Σ a function of (r, t) only in the present unsteady spherically symmetric
configuration. Equating (A 7) and (A 6) brings

A(t) = 4π

∫ ∞

0
r2Σ dr ≈ 4π

∫ ∞

0
r2〈〈Σ̃〉ΘΦ〉N dr, (A 8)

which implies, as expected, that 〈〈Σ̃〉ΘΦ〉N is an approximation to Σ and that the statistical
error inherent in the estimate of A(t) depends on the number of repetitions N and the
variance of the spherical average 〈Σ̃〉ΘΦ .

The central limit theorem may be applied to spherical averages of spatially discrete
solutions noting that surface averages are approximated by summations so that
Var[〈Σ̃〉ΘΦ] = Var[Σ̃]/Mr, where Var[U] indicates the variance of a random variable U
and Mr is the number of independent and identically distributed (i.i.d.) samples gathered
on the surface of radius r.

The present configurations were designed to have large R/l ratios, i.e. the flame radius
is large compared to the integral scale of velocity, leading to very many i.i.d. samples of
Σ̃ . Consequently, Var[〈Σ̃〉ΘΦ] is small and one repetition (N = 1) is sufficient to obtain
a close estimate of the mean of both the flame surface density function and flame surface
area at time t.
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Similar considerations apply to R(t) = 〈R̃(t)〉 by defining the random process (Maz’ya
1985)

R̃(t) = 1
A(t)

∫
V

r(x)|∇C(x, t)|δ[C(x, t) − c∗] dV, (A 9)

which is the instantaneous surface averaged Euclidean (radial) distance r(x) = |x| of the
flame surface from the origin located at the centre of the computational domain. Then

R(t) ≡ 〈R̃(t)〉 = 〈〈R̃(t)〉N 〉 ≈ 4π

A(t)

∫ ∞

0
r3〈〈Σ̃〉ΘΦ〉N dr. (A 10)

Appendix B. Dispersion relation in spherical coordinate system

Taylor’s theory of turbulent diffusion (Taylor 1922) describes the dispersion of material
points in homogeneous isotropic turbulence. Its application to dispersion in radial
coordinates requires modifications to account for changes in the radial direction along
Lagrangian trajectories. Consider an ensemble of particles released on a sphere of radius
R0 at time t = 0 in decaying homogeneous isotropic turbulence. The radial distance r(a, t)
of a particle with index a at t > 0 is given by

r(a, t) = |x(a, t)|, (B 1)

where x is the position vector of the particle with respect to the origin.
The evolution of the particle’s radial distance is governed by

dr(a, t)
dt

= u(x(a, t), t) · ir(a, t), (B 2)

where u denotes the local fluid velocity vector at the particle location and ir is the unit
vector in radial direction ir(a, t) = x(a, t)/|x(a, t)|. Integrating the ordinary differential
equation with initial condition r(a, 0) = R0 gives the particle’s distance for t > 0,

r(a, t) = R0 +
∫ t

0
u(x(a, p), p) · ir(a, p) dp. (B 3)

Here p represents the dummy variable of integration.
Following Taylor (1922), the variance σ 2 of the radial distance in the absence of mean

radial velocity is

1
2

dσ 2

dt
=

〈
(r(a, t) − R0)

dr
dt

(a, t)
〉

=
〈
u(a, t) · ir(a, t)

∫ t

0
u(a, p) · ir(a, p) dp

〉
, (B 4)

since the mean radial distance is constant and equal to R0. In the above expression, angular
brackets denote average over the ensemble of particles and the dependence of u on x(a, p)
is written as u(a, p).
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The above integral reads as

1
2

dσ 2

dt
=

∫ t

0

〈
ux(a, t)ux(a, p)

x(a, t)x(a, p)

r(a, t)r(a, p)

〉
dp

+
∫ t

0

〈
uy(a, t)uy(a, p)

y(a, t)y(a, p)

r(a, t)r(a, p)

〉
dp

+
∫ t

0

〈
uz(a, t)uz(a, p)

z(a, t)z(a, p)

r(a, t)r(a, p)

〉
dp, (B 5)

where ux , uy, uz and x, y, z denote the Cartesian components of vectors u and x,
respectively.

In homogeneous turbulence the velocity vector u is uncorrelated with the position vector
x. Also, due to isotropy, the Lagrangian autocorrelation functions of all components of
velocity is the same. In light of these simplifications, the above equation becomes

1
2

dσ 2

dt
=

∫ t

0
〈ux(a, t)ux(a, p)〉

〈
x(a, t) · x(a, p)

|x(a, t)| |x(a, p)|
〉

dp, (B 6)

with a dependence on the mean cosine of the angle between radial vectors on Lagrangian
trajectories. Simplifying the above as in Taylor (1922), we obtain

1
2

dσ 2

dt
= u′(t)

∫ t

0
u′( p)fL( p, t)〈cos αp,t〉 dp, (B 7)

where fL denotes the Lagrangian autocorrelation function in decaying isotropic turbulence

fL(t1, t2) ≡ 〈ux(a, t1)ux(a, t2)〉
u′(t1)u′(t2)

, (B 8)

where u′(t) is the turbulence intensity at time t.
In (B 7), αp,t is the angle between position vectors on the Lagrangian trajectory at times

t and p. This implies that Taylor’s theory overestimates the variance, since cos αp,t � 1.
The orientation factor 〈cos αp,t〉 depends on the lateral movement of particles in the polar
and azimuthal directions compared to that in the radial one and is close to unity for small
values of the ratio between the two.
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