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Abstract

During the design of complex systems, a design process may be subjected to stochastic disruptions, interruptions, and
changes, which can be described broadly as “design impulses.” These impulses can have a significant impact on the tran-
sient response and converged equilibrium for the design system. We distinguish this research by focusing on the interactions
between local and architectural impulses in the form of designer mistakes and dissolution, division, and combination im-
pulses, respectively, for a distributed design case study. We provide statistical support for the “parallel character hypoth-
esis,” which asserts that parallel arrangements generally best mitigate dissolution and division impulses. We find that local
impulses tend to slow convergence, but systems also subjected to dissolution or division impulses still favor parallel
arrangements. We statistically uphold the conclusion that the strategy to mitigate combination impulses is unaffected by
the presence of local impulses.

Keywords: Collaborative Engineering; Complex Systems; Design Architecture; Distributed Design; Impulses; Process
Modeling

1. INTRODUCTION

In the design of complex systems, it is often necessary to de-
compose problems into their constituent parts. Decomposition
of complex systems simplifies their representation and breaks
them into manageable pieces that can be individually analyzed
(Bloebaum et al., 1992; Browning, 2001; Wiecek et al., 2005).
To acquire an understanding of the aggregate system, design
managers generally follow a three-step process: deconstruct
the system into its component parts, analyze the parts to under-
stand them individually, and reassemble the individually
understood parts to obtain system-level knowledge.

Because decomposition forms the basis for analyzing engi-
neering problems, it is natural for it to play an important role in
the structure of design processes. Design problems that have
been decomposed into a set of individually solved subprob-
lems separated by spatial, temporal, or organizational boun-
daries are called decentralized design problems. In this paper,
we examine a specific type of decentralized problem for com-
plex system design called distributed design. In distributed de-
sign each subsystem minimizes its own individual objective

function subject to a set of constraints by modifying the value
of those design variables under their unilateral control.

Distributed design problems have been widely studied by
the design community (Yang & Jin, 2008; Wernz & Desh-
muk, 2010). An increasing number of problems fall under
the category of distributed design systems. For example, there
is a growing tendency for large corporations to shift a portion
of their design work to suppliers (Ward et al., 1995; Engardio
& Einhorn, 2005). In most studies of distributed design, the
subsystems exhibit deterministic behavior. However, at times
a design process will experience unexpected disruptions, inter-
ruptions, and changes, or “design impulses.” These impulses
can have a significant impact on the convergence time of the
overall system (Gurnani & Lewis, 2008).

In this paper we examine distributed design in the context
of two types of design impulses: local and architectural.
Although these impulses have been individually studied (De-
vendorf & Lewis, 2010; Ghosh et al., 2012), the interactions
between distinct categories of impulses occurring in a design
system have not been rigorously investigated. We provide sta-
tistical support for the architectural impulse mitigation strat-
egy suggested in Ghosh et al. (2012). We propose and empiri-
cally demonstrate the “parallel character hypothesis,” which
states that architectures that feature increasingly parallel
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arrangements generally yield the fastest convergence times
after the application of dissolution or division impulses. We
then examine the interaction between local and architectural
impulses, because the strategies recommended for mitigating
them directly conflict with one another.

Using a 5 designer, 16 design variable distributed design
system as a benchmark case study, we investigate the relation-
ship between the strategies recommended to mitigate local
and architectural impulses. We study the role of impulses in
the transient response of the case study using a Monte Carlo
simulation to evaluate each configuration. We examine the
convergence time of transient system responses in this work
and consider the changes in convergence times that occur
due to architectural changes and impulses. We do not focus
on the convergence properties of the individual subsystem
optimization problems. The results of the simulation provide
the fitness function for identification of the architecture with
the fastest mean convergence time and with the least variation
across convergence time using a genetic algorithm.

To establish the underlying basis for the Monte Carlo
simulation, we discuss the definition and simulation method
for each impulse type in Section 3. In Section 4 we discuss
the experimental design and case study parameters, and ana-
lyze the results. We provide background into distributed
design in Section 2.

2. DISTRIBUTED DESIGN SYSTEMS

The properties used to evaluate distributed design systems
include stability and transient response. We discuss these
properties in Section 2.2 and 2.3 in conjunction with the con-
cept of solution–process architecture. The game theoretic
concept of noncooperation underlies both properties, and
we discuss these assumptions in Section 2.1.

2.1. Problem assumptions

Distributed design principles provide a model to analyze
the behavior of decomposed design problems with nonco-
operating or noncoordinated subsystems. In decomposition
approaches, either the overall design system is naturally de-
composed or a design manager delegates design responsibil-
ities to different subsystems.

A distributed design process is iterative, and it possesses a
nonhierarchical design structure with design subsystems that
selfishly minimize their own objective function. Design sub-
systems have responsibility to determine the value of their as-
signed design variables. The major advantages of distributed
design, as compared to other multidisciplinary optimization ap-
proaches, are that it is straightforward to implement for a design
system and requires limited oversight in its execution. Such ap-
proaches include game theoretic formulations (Vincent, 1983)
and other multidisciplinary design optimization approaches of
independent subspaces (Martins & Lambe, 2013).

The disadvantages of the distributed design approach in-
clude the potential for the design process to diverge and

that there is no guarantee the converged solution is optimal.
In spite of this, distributed design models provide insight
into many design problems. The noncooperative subsystem
properties that characterize distributed design include the fol-
lowing: designers have knowledge of only their own objective
function; designers act unilaterally to minimize their own ob-
jective function; designers have complete control over specific
local design variables; and designers communicate by sharing
the current value of their local design variables.

Distributed design problems exist as stand-alone problems
and as subproblems in a larger design task. As long as these
subproblems fulfill the four assumptions of noncooperation,
distributed design techniques can effectively model the sys-
tem behavior. For example, when the number of iterative
loops in a design structure matrix cannot be reduced to
zero, the subproblem can often be modeled as a distributed
design problem (Denker et al., 2001).

Distributed design problems have two characteristics of
primary concern for system analyzers. The first is the equilib-
rium stability, which determines if the system equilibrium is
convergent, divergent, or a saddle point. The second is the
transient response, which determines the time required to
reach the equilibrium solution for convergent systems. We
discuss these characteristics in the next sections.

2.2. Equilibrium stability

Vincent (1983) established the foundation for stability in
distributed design using a game theoretic approach. Chanron
and Lewis (2004, 2006) extended Vincent’s game theoretic
model by representing the subsystem objective functions
using a state space to apply control theoretic principles to de-
termine system stability. Another approach analyzed equilib-
rium and convergence rates of coupled systems using only
subsystem input/output information found in a design struc-
ture matrix representation (Smith & Eppinger, 1997). Chan-
ron et al. (2005) demonstrated that some design systems
have multiple equilibria, each of which may be stable, un-
stable, or a saddle point. The approach in Chanron et al.
(2005) included nonquadratic objective functions using
nonlinear system theory and Lyapunov functions to identify
convergent regions of the design space. While this paper con-
siders systems with linear rational reaction sets, Chanron’s
characterization of nonlinear systems demonstrates the broad
applicability of these techniques and the ability to expand our
research to more general nonlinear cases.

Initial research in distributed design assumed that the struc-
ture of the design problem, called the solution process archi-
tecture, played no role in determining system stability (Smith
& Eppinger, 1997; Chanron & Lewis, 2004). However,
Devendorf and Lewis (2011) demonstrated that process archi-
tecture changes can influence the stability, and they presented
an approach to determine the stability for a set of parallel/se-
quential architectures. The influence of solution process
architecture on transient response was first investigated by
Devendorf and Lewis (2013), and they showed that the rate
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and characteristic shape (e.g., exponential decay or decreas-
ing amplitude sinusoidal) of convergence could be changed
with architecture changes. Before examining the broader
role of solution process architecture in determining the prop-
erties of distributed design systems, we first discuss transient
response and then process architecture in Section 2.3.

2.3. Transient response

The transient response of a system describes the convergence
rate and the shape of the convergence curve for the entire sys-
tem. We refer to convergence rate in this work as the settling
time as measured by the number of iterations. An iteration
represents a single step through the entire system optimization
process with each subsystem solving its individual optimiza-
tion problem once. We do not consider the algorithmic conver-
gence related to the solution of each subsystem’s individual
optimization problem. In this paper, we examine the settling
time aspect of transient response. Our definition of settling
time, consistent with control theory, is the number of iterations
required for a system to converge to within 2% of its final value
as measured from its initial value (Ogata, 2005). We use set-
tling time as a metric for our experiments to provide a repeata-
ble definition for convergence and to remain consistent with
previous work examining transient response. Previous research
(Devendorf & Lewis, 2013) demonstrated the dependence of
settling time on process architecture. From a heuristic per-
spective, social network theory has shown that the settling
time is dependent on the relationship between the process
architecture and subsystem coupling (Devendorf et al., 2010).

Taken collectively, previous work examining equilibrium
stability and transient response has demonstrated that process
architecture is fundamental to the analysis of distributed design
systems. In the context of distributed design, the term architec-
ture refers to the ordering of the solution process. It does not refer
to product architecture, which is an independent and significant

area of design research (Ulrich & Eppinger, 2012). Instead, it re-
fers to the ordering in which the design subsystems are solved.
This ordering can include both parallel/sequential and simulta-
neous elements. We show an example of a purely parallel or se-
quential and a purelysimultaneous architecture in Figure 1 along
with a hybrid architecture that incorporates aspects of both.

A change to the process architecture modifies design vari-
able sharing in the system. When subsystems iterate in paral-
lel with one another, they cannot share their design variable
determination until the next iteration. For example, in the
case of the hybrid architecture in Figure 1, Subsystem 3
will perform its optimization based on the new value of y be-
fore Subsystem 1 has the opportunity to incorporate y into the
determination of its own design variable values.

From a structural perspective, specifying the process architec-
ture is the only way to modify the behaviorof a distributed design
system without changing its constituent subsystems or violating
the underlying noncooperative assumptions. Understanding the
underlying deterministic behavior of distributed design systems
remains important, but it neglects those cases when the system
experiences stochastic inputs, interruptions, and changes. We
discuss and define these design impulses in Section 3.

3. IMPULSES IN THE DESIGN PROCESS

Understanding the manner in which stochastic elements or dis-
ruptions propagate through decentralized decision networks is
of critical importance. In this paper, we remain consistent with
the definitions presented in Ghosh et al. (2012) and refer to the
stochastic elements present in distributed design process as
design impulses and define a design impulse as

unintended inputs occurring during a design process that
cause a change to the aggregate process architecture or
in the designers’ variable values, variable ownership,
objective functions, or constraints.

Fig. 1. Solution process architectures.
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We deliberately use the term impulse because it is consistent
with the terminology used to describe stochastic elements in
control theoretic representations, which have been extensively
applied to model decentralized decision networks. Because
our focus is on the process architecture of distributed design sys-
tems, an impulse could potentially alter the equilibrium and tran-
sient response of the system. These changes may not always re-
sult in inferior system performance or a decrease in convergence
time. However, they introduce uncertainty into iterative decision
processes. Our goal is to identify mechanisms to remain resilient
to impulses, potentially at the cost of beneficial impulses.

The definition of a design impulse is intentionally broad
due to the variety of different impulses. We break design im-
pulses into three categories, based on how they interact with
the design system: local impulses, external impulses, and
architectural impulses. An event triggers impulses that influ-
ence a design system, and a single event can result in multiple
impulses. Decomposing events into their constituent impul-
ses and identifying a verifiably exhaustive set of impulses
is an area of future work. The impulses we identify in this
work describe a large number of commonly observed events.
This paper examines the interaction between local and archi-
tectural impulses, and we define these impulses in Sections
3.1 and 3.3, respectively, and discuss the techniques used
to model each impulse type. In Section 3.2, we define exter-
nal impulses by way of presenting our definition for architec-
tural impulses in Section 3.3, although formally modeling
external impulses is a topic of future work.

3.1. Local impulses

The first type of impulse, a local impulse, describes impulses
that originate within a decision network and are defined as

impulses caused by an event whose origin can be attrib-
uted to design resources controlled by, and whose initial
impact occurs in, a single design subsystem.

Local impulses propagate across decision networks as subsys-
tems share and exchange decision information across the net-
work. The propagation path depends on the coupling that exists
between subsystems in decentralized decision networks.

In this paper, we consider the local impulses that occur due
to bounded rational designers. In bounded rationality, deci-
sion makers have deterministic preferences but make stochas-
tic choices (Thurston, 2001). Gurnani and Lewis (2008) used
bounded rationality to model mistakes in distributed design
and to analyze the equilibrium properties of bounded ra-
tional decision makers. The model we use in this paper is
consistent with Gurnani and Lewis’s work and is identical
to the model used by Devendorf and Lewis (2010) to inves-
tigate the role of local impulses in transient response.
Figure 2 provides a general formulation for a bounded rational
decision maker.

In Figure 2, X* is the expressed preference of the decision
maker for decision variable X, V( p,q) is a value function that

represents the precise preference of the decision maker,
while 1 represents the stochastic portion of the decision.
The value function V( p,q) is dependent on p, the local vari-
ables controlled by the designer, and q, the nonlocal vari-
ables in the system not controlled by the designer. Together,
p and q yield the designer’s rational reaction set, which em-
bodies the value function V and is a direct representation of
the fully rational and precise preference of the decision ma-
ker. We represent 1 as a normal distribution centered at the
origin, and the standard deviation of 1 captures the level of
irrationality the decision maker exhibits. As the distance
from the precise preference in Figure 2 increases, the deci-
sion becomes more irrational.

3.2. External impulses

In contrast to local impulses, we define external impulses
accordingly:

an impulse caused by an event outside the decision net-
work whose origin cannot be traced to any design sub-
system in the system.

In the same way coupling between subsystems can cause
changes from a local impulse to propagate across a decision
network, changes from an external impulse can have a similar
impact. For example, a common example of an external im-
pulse for an automotive manufacturer would be a change in
global petroleum prices, affecting demand for certain types of
vehicles. As noted earlier, formally modeling these impulses
is not the focus of this paper.

3.3. Architectural impulses

Local and external impulses both describe changes to individ-
ual subsystems in a distributed design system. Architectural
impulses address broader scenarios where the structure of
the decision network itself changes. We define an architec-
tural impulse as

an impulse caused by events that originate either locally or
externally and cause a restructuring of the process
architecture.

In contrast to local or external impulses, which we define as
affecting the specific parameters internal to the subsystem de-
sign problem, architectural impulses change the coupling
links between subsystems and are not restricted in their origin.

Fig. 2. Bounded rational decision maker.
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We distinguish architectural impulses from local and external
impulses based on their influence on the actual structure of
the process.

Examples of potential architectural impulses might be a
breakdown or enhancement in communication between sub-
systems, the removal or addition of a subsystem from or to a
decision network, or the development or degradation of ties
between subsystems. We further subdivide architectural im-
pulses into three classifications: dissolution, combination,
and division, and discuss them in Sections 3.3.1, 3.3.2, and
3.3.3.

3.3.1. Dissolution impulse

Dissolution impulses eliminate one or more design subsys-
tems from the aggregate design system. Strategies to handle
the design variables associated with the dissolved subsystem
include distributing them to the remaining design teams,
assigning them a new subsystem, or freezing them at their
previous value. Freezing design variables is an attractive op-
tion to respond to a dissolution impulse because reassigning
them can destabilize the system due to design variable cou-
pling effects. Investigating the difference between the strate-
gies used to mitigate this impulse is a topic of future work. An
event that may result in a dissolution impulse is the bank-
ruptcy of the organization controlling the design of one of
the subsystems. Figure 3 provides a graphical representation
for a five-subsystem distributed design system undergoing a
dissolution impulse.

The representation in Figure 3 shows five individual sub-
systems, D1 to D5. The arrows connecting the subsystems
represent their dependence on design variable information
from another subsystem. For example, in Figure 3 the arrow
from D4 to D5 indicates that a design variable from D4 ap-
pears in the objective function of D5. The dissolution impulse
shown by Figure 3 illustrates the removal of D1 from the de-
sign process. This removal leaves two subsystems, D2 and
D3, previously linked to D1 without a source to specify those
design variables. D4 does not directly require input from D1,
but it now has less influence on the decision process because
it can no longer indirectly control the other subsystems
through inputs passed through D1. To continue the design
process, a design manager or the subsystems must agree on

a strategy to deal with the loss of D1, including reassigning
or freezing design variable values.

3.3.2. Division impulse

While dissolution impulses remove subsystems from a de-
sign system, a division impulse increases the number of
subsystems. Division impulses occur when an event divides
a design subsystem into two or more separate and distinct
subsystems. Each subsystem has its own design variables, ob-
jective function, and constraints, which must encompass at
least the original shared design variables and may create
new shared variables. An event that may cause a division im-
pulse is the sale of a division of an organization working on a
project still in process by the parent company. We graphically
represent division impulses in Figure 4.

We represent a division impulse in Figure 4 as D4 splitting
into two subsystems. One challenge associated with division
impulses is partitioning design responsibilities to the emerg-
ing subsystems. Even when dividing design responsibilities is
easy, dividing the design variables themselves presents a
challenge. Furthermore, new design variable coupling from
the now independent subsystems may also emerge due to
the division.

3.3.3. Combination impulse

In contrast to division impulses, combination impulses oc-
cur when two or more design teams merge into a single
subsystem. Combination impulses reduce the number of sub-
systems in a design process like a dissolution impulse, but the
affected subsystem retains a presence in the design system.
The combined subsystem retains control of design variables
associated with each subsystem and may have a new aggre-
gate objective function. An example of an event causing a
combination impulse is a buyout or a merger. Figure 5 shows
a combination impulse for a five-subsystem design problem.

We represent a combination impulse in Figure 5 by com-
bining D3 with D5. This combination requires the merging
of objective functions for D3 and D5. The resultant subsys-
tem can influence the stability and transient response of the
overall system. We examine all three types of architectural
impulses in conjunction with local impulses in Section 4
using a five-subsystem case study.

Fig. 3. Dissolution impulse.
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4. AGGREGATE IMPULSE EXPERIMENT

In this section we examine process architecture in the context
of a system subjected to local and architectural impulses.
We differentiate this work from Ghosh et al. (2013) by
statistically validating our hypothesis on which architectures
perform best in the presence of architectural impulses and by
examining the statistical significance for the aggregate impulse
results. We describe the experimental design in Section 4.2
and discuss the results in Section 4.3. First we introduce the
five-subsystem problem used as our case study in Section 4.1.

4.1. Case study problem structure

Our experiment examines the same case study used in the in-
itial study of large distributed design systems as well as pre-
vious individual studies of local impulses and architectural
impulses. We use this case study because it is large enough
to have a variety of potential architectures and the behavior
of the system is largely well understood because previous re-
search has used this case study to demonstrate more general
insights into distributed design systems (Chanron et al.,
2005; Chanron & Lewis, 2006). The five-subsystem example
shown conceptually in Section 3.3 to illustrate the types of

architectural impulses has couplings consistent with this
case study. We explicitly give the objective function associ-
ated with each subsystem in Table 1 and provide the design
variables controlled by each subsystem. The objective func-
tions shown in Table 1 are all quadratic and to be minimized,
and each subsystem controls at least two design variables.
These design variables couple every subsystem to at least
one other subsystem as shown in the functional dependence
table in Table 2.

The breadth of different process architectures for a five de-
signer problem means a wide range of potential settling times
exist for the system. Figure 6 demonstrates the wide range of
potential settling times across the design system.

In Figure 6 the architectures are grouped into bins based on
the number of iterations required to converge. The height of the
bars indicates the number of process architectures with a spe-
cified range of convergence times shown on the x axis. The
mean convergence time for the simulated architectures is 25
iterations. The two fastest converging architectures are shown
in Figure 7a. The slowest converging architecture is shown in
Figure 7b and took 39 iterations to reach an equilibrium.

One interesting result of the architectures shown in Figure 7
is the relative strength in the link between the different sub-
systems, roughly measured by the number of connections to
other subsystems in Table 2. Conventional wisdom has held
that subsystems with strong links to one another should be ar-
ranged sequentially while subsystems with weak links are ar-
ranged in parallel (Rogers, 1996). For example, the other four
subsystems are all strongly linked to SS2. However, in the
fastest converging architectures, SS2 is not arranged sequen-
tially as previous work has suggested is appropriate.

For the study of local impulses in (Devendorf et al., 2010),
it was found that one of the fastest converging architectures,

Fig. 5. Combination impulse.

Fig. 4. Division impulse.

Table 1. Five subsystem case study

Subsystem 1: x1, x2

f1(x) ¼ 9.41x2
1 + 1.80x2

2 + 6.06x1 + 1.62x2 + 8.16x1x3 + 2.82x2x4

+ 6.20x2x5 + 9.82x1x6 + 4.26x2x7 + 2.37x1x8 + 1.25x1x9 + 2.23x2x10

+ 3.47x1x11 + 0.23x2x12

Subsystem 2: x3, x4, x5

f2(x)¼ 6.55x2
3 + 7.57x2

4 + 5.68x2
5 + 4.29x3 + 8.84x4 + 5.25x1x5 + 2.13x5x8

+ 5.34x5x9 + 3.58x5x15 + 2.34x5x14 + 4.57x4x15 + 4.12x5x16

Subsystem 3: x6, x7

f3(x) ¼ 7.81x2
6 + 5.49x2

7 + 5.43x6 + 7.51x7 + 7.87x1x6 + 4.57x2x7

+ 4.52x3x6 + 1.23x4x6 + 2.12x3x7 + 3.26x6x10

Subsystem 4: x8, x9, x10, x11, x12

f4(x) ¼ 9.88x2
8 + 9.86x2

9 + 6.49x2
10 + 9.48x2

11 + 6.4x2
12 + 5.43x8 + 1.23x9

+ 7.84x10 + 0.32x11 + 5.43x12 + 1.30x3x9 + 1.94x3x11 + 5.75x3x12

+ 4.32x4x8 + 0.12x4x10 + 4.56x4x11 + 3.26x4x13 + 4.89x5x8 + 2.3x5x9

+ 1.51x5x10 + 3.20x5x11

Subsystem 5: x13, x14, x15, x16

f5(x) ¼ 9.52x2
13 + 7.75x2

14 + 9.93x2
15 + 8.12x2

16 + 2.79x13 + 0.5x14

+ 9.37x15 + 6.53x16 + 5.43x3x13 + 6.41x3x14 + 0.12x3x16 + 6.27x4x13

+ 5.43x4x15 + 1.232x5x14 + 6.77x5x16 + 1.38x8x13 + 4.31x10x14

+ 2.64x10x15 + 3.41x10x16
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[1,2,4] ! [3,5], was also the most robust to impulses. This
was because the local impulse propagated most quickly
through that architecture, and that in turn enabled each sub-
system to adjust to its presence. This is important, because
it means that the same propagation property that enabled
the system to remain robust to impulses also enables it to
converge quickly to its equilibrium.

4.2. Statistical testing of the parallel character
hypothesis for dissolution and division impulses

Strategies for mitigating architectural impulses as investi-
gated in Ghosh et al. (2012) yielded a preference for systems
that featured the fewest number of serial connections when
applying dissolution or division impulses, which in this
work we term as the parallel character hypothesis. That is,
architectures that featured increasingly parallel arrangements
generally yielded the fastest convergence times after the ap-
plication of dissolution or division impulses. Combination
impulses did not uphold this hypothesis, because of the inher-

ent instability that these impulses cause, which is discussed in
further detail by Ghosh et al. (2012).

Before investigating whether the parallel character hypoth-
esis also applies to our evaluation of aggregated design im-
pulses, we evaluate its validity via statistical testing. For these
tests, we generate architectures and measure their transient re-
sponse using the same procedure as described in Ghosh et al.
2012), except that each architecture is now run for a total of
500 trials as opposed to 10. This sample size allows us to as-
sume that the mean iteration count produced for each archi-
tecture is representative of that architecture’s performance.

Using the mean convergence time data, we categorize each
architecture into subpopulations according to the number of
sequential connections it exhibits, bounded by zero for a fully
parallel architecture and four for a fully sequential architec-
ture. Because we draw these results from the final population
of the genetic algorithm, they represent the best architectures
from within their subpopulation. We then conduct two-
tailed t tests between each subpopulation to test whether the
number of sequential connections is a significant predictor

Fig. 6. Five-subsystems deterministic convergence time.

Table 2. Functional dependence table

f1 f2 f3 f4 f5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

f1
f2
f3
f4
f5
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of convergence time (i.e., whether the subpopulations are
from the same distribution or are distinct). We summarize
the paired t tests that yielded statistical significance in Table 3.

Overall, we see that the majority of subpopulation pairs
tested uphold the parallel character hypothesis, asserting
that reducing the number of sequential connections does re-
duce postimpulse mean convergence time for architectures
that undergo dissolution and division impulses. We observe
that 4-connection architectures are not present among the sig-
nificance tests. It is very difficult to generate many purely
sequential, 4-connection architectures using a genetic algo-
rithm consistent with the experimental procedure of Ghosh
et al. (2012) and related previous studies (Devendorf et al.,
2010), because these architectures perform poorly enough
to be eliminated from consideration from the final population
of architectures produced by the genetic algorithm. The lack
of results for 4-connection architectures is specific to this case
study, because four connections represent the extreme case of
a purely sequential architecture for 5-subsystem systems.
Generalizing these results to systems of n subsystems with
n . 5 will result in similar extreme cases when the architec-
ture exhibits n – 1 connections. Thus, the lack of statistical
power for tests concerning 4-connection architectures due
to their underrepresentation in the final population agrees
with our assertion of their poor performance relative to archi-
tectures that feature fewer sequential connections.

The remaining subpopulation paired test not represented is
0 versus 1 for division experiments. In this case, paired t tests
demonstrated the opposite relationship, where 1 sequential
connection architectures yielded a statistically significantly
lower time than a purely parallel 0-connection architecture.

Given the way division impulses are modeled in Ghosh
et al. (2012), where the child subsystems are inserted in par-
allel at the location of the original parent subsystem, and with
child subsystems sharing identical objective functions and
design variables as the parent, a 0-sequential architecture un-
der division can be thought of as a purely parallel architecture
subjected to no impulses at all. Thus, because the fastest per-
forming architectures in the case study used in Ghosh et al.
(2012) yielded one sequential connection (see Fig. 7), this
result agrees with our current intuition of division impulse be-
havior. Conducting sensitivity analysis on 0-connection ar-
chitectures and their child architectures to determine whether
our intuitive understanding of this behavior is correct is a
topic of future study.

Having validated the parallel character hypothesis for a
majority of dissolution and division impulse cases, we now
turn our attention to experiments studying the simultaneous
application of local and architectural impulses.

4.3. Experimental design

In this section, we describe the simulation parameters, the im-
plementation details of local and architectural impulses, and
specifics regarding the experimental design used.

4.3.1. Simulation parameters

Each architecture is evaluated as part of a genetic algorithm
that determines the fastest converging architecture. We use
the results of the genetic algorithm to identify the properties
of the fastest converging architectures and to differentiate be-
tween the best architectures with different numbers of stages.
The parameters of this genetic algorithm are shown in Table 4.
We cap the maximum number of iterations at 250, which is a
sufficiently large number to allow for effective observation of
the system behavior. After a system reaches 250 iterations, we
assume it to be divergent or an extremely slow architecture.

A critical aspect to evaluating the convergence time is the
actual convergence criteria. We define convergence for these
simulations to occur when all the design variables for a sys-
tem have progressed to within 2% of their equilibrium value,
as measured from the initial starting location. To maintain
consistency across the experiments, we normalize the equi-
librium point for each system to the origin and recalculate
the convergence criteria when an architectural impulse occurs

Fig. 7. (a) Fastest converging architectures for 14 iterations and (b) slowest
converging architecture for 39 iterations.

Table 3. Parallel character hypothesis
testing for dissolution and division impulses

Impulse Type Significant Connection Pairs

Dissolution 0 vs. 1** 2 vs. 3**
1 vs. 2**

Division 1 vs. 2** 2 vs. 3*

*p , 0.01. **p , 0.001.

Table 4. Genetic algorithm parameters

Parameter Value

Mutation rate 5%
Elitism Top 10%

Bottom 5%
Min change in pop. mean 10%
Min change in stand. dev. 15%
Min exploration 15%
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that modified the equilibrium. The stability of the studied ar-
chitectures depends on the coupling between the subsystems
and the independence of the design variables controlled by a
single subsystem.

4.3.2. Local impulse implementation

Local impulses are implemented according to the bounded
rational decision maker model discussed in Section 3.1.
These impulses change the value of a given design variable
based on a normal distribution centered on the true value of
the design variable with standard deviation equal to a percent-
age of its value. Furthermore, there is a random chance that
such a mistake could occur in the first place. Thus, the rele-
vant parameters to control are severity, which indicates the
magnitude of the standard deviation used in the mathematical
model for mistakes, and probability, which represents the
chance for an error to occur during a given iteration of the
simulation.

4.3.3. Architectural impulse implementation

As noted in Section 3.3, there are three types of architec-
tural impulses we consider in this work. To examine dissolu-
tion impulses, we remove a single subsystem from a given
process architecture. For instance, a dissolution impulse ap-
plied to Subsystem 2 in the architecture [1,2,4]! [3,5] results
in the new architecture [1,4] ! [3,5]. For this investigation
we assume the design variables of the dissolved system are
frozen in place when a dissolution impulse occurs. This as-
sumption reflects the unwillingness of subsystems to change
the parameters of a system they do not understand, or the in-
ability of the subsystems to agree who should be given juris-
diction over those variables.

We implement the division of a subsystem by splitting a
single subsystem into two distinct subsystems. We randomly
assign the design variables to the new subsystems with the re-
quirement that neither subsystem can control all the design
variables; each subsystem maintains its original objective
functions. We also preserve the relative ordering of the sub-
systems in the design process. For example, consider a divi-
sion impulse applied to subsystem 2 in [1,2,4,5] ! [3] that
creates subsystems 6 and 7. The resultant architecture is
[1,6,7,4,5]! [3]. Similar to dissolution impulses, a division
impulse does not have an impact on the stability of the system
and may be applied to any arbitrary system. Division im-
pulses do not influence stability because the design variables
controlled by a subsystem are linearly independent.

Finally, combination impulses combine two distinct sub-
systems into a single subsystem. Because the stability of the
system can be influenced by which subsystems are combined,
we only combine subsystems that are decoupled from one an-
other, in order to avoid the chance of automatic divergence.
Once again, the necessity that a subsystem has linearly inde-
pendent design variables precludes some combinations. We
combine the objective functions for the new combined sub-
system by adding them together, and the new subsystem
has control over all the design variables of its constituent sub-

systems. The location in the process architecture for the com-
bined subsystem is at the place where the original subsystems
were ordered. For example, consider a combination impulse
including Subsystems 3 and 5 that results in the creation of
Subsystem 6. For the architecture [1,2,4,5]! [3], the postim-
pulse architecture is then [1,2,4,6]! [6].

A number of the assumptions we make in implementing
architectural impulses in this investigation are made to pre-
serve process stability. For instance, in Section 3.3.1, we
note the advantage to freezing design variables as opposed
to reassigning them for dissolution impulses, and for combi-
nation impulses we note the necessity to combine subsystems
that are decoupled from one another. While these assump-
tions may limit the number of cases to potentially investigate,
they are made to produce meaningful results to study (where
generating heuristics for systems that fundamentally fail to
converge is a futile exercise). Further discussion on the lim-
itations to our modeling approach for architectural impulses
can be found in Ghosh et al. (2012).

4.3.4. Experimental design

For each experiment described in the following section, 90
architectures are randomly generated in accordance with pre-
vious studies using this five-subsystem example to provide a
wide range of architectures for an initial population. We then
run the architectures through the genetic algorithm described
in Section 4.1 for a total of 10 independent trials. During the
simulations, the number of iterations is recorded, and the re-
sulting mean and standard deviation across the 10 trials for
each architecture are collected, representing our measures
for system transient response in this work. Depending on
the results from these experiments, we determine which ex-
periments require further study with larger populations and
statistical analysis.

In the next section, we investigate the amalgamated effects
of architectural and local impulses on distributed design sys-
tems. The set of experiments investigated are summarized in
Table 5. The experiment column displays the shorthand name
of the experiment being run. For instance, division-(20,10)
refers to an experiment with the simultaneous application of
division impulses and local impulses with severity and prob-
ability parameters set to 20% and 10%, respectively, which
were chosen to mirror previous studies.

4.4. Experimental results

In this investigation of amalgamated local and architectural
design impulses, we use results from our prior investigation
of architectural impulses in Ghosh et al. (2012) as a control
and for comparative purposes to inform our conclusions in
this work. The three baseline experiments that are used as a
standard of comparison in this work are random dissolution,
random division, and random combination. These experi-
ments were conducted identically to what is described in
Section 4.2, except without the simultaneous application of
local impulses.
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4.4.1. Dissolution experiments

The results from the random dissolution experiment from
Ghosh et al. (2012) along with the results from the dissolu-
tion-(10,10) and dissolution-(20,10) experiments are dis-
played graphically in Figure 8a–c, respectively. These figures
show the relationship between mean convergence time and
number of sequential connections for each of the 90 architec-
tures investigated for each experiment. The number of se-
quential connections is a measure for the parallel character
of a system architecture, displaying a count of how many se-
quential steps an architecture has. For instance, while a purely
parallel architecture has zero sequential connections, a purely
serial one has four.

In Ghosh et al. (2012), we note that for systems that are sub-
jected to dissolution impulses only, there is a strong preference
for systems with a low number of sequential connections. This
trend is evident in Figure 8a, where each of the 11 total gener-
ated architectures that have four parallel subsystems in se-
quence with the remaining subsystem outperforms each of
the 22 total generated architectures with three sequential steps.

In Figures 8b and 8c, we see the results of the dissolution-
local impulse experiments. Our first observation is that there
appears to be a similar preference for parallel architectures in
these experiments, albeit less resolute than in the random dis-
solution experiment. For instance, in dissolution-(10,10) and
dissolution-(20,10), we find at least one three-sequential-step
architecture among the top 10 performing architectures of
both experiments: one in dissolution-(20,10) and three in dis-
solution-(10,10). Nonetheless, the exhibited parallel prefer-
ence is evident when considering that the top performing
architectures in each experiment show the least number of se-
quential connections among the randomly generated architec-
tures for those experiments, where the best performing archi-
tectures for dissolution-(10,10) and dissolution-(20,10) are
[2,3,4,5] ! [1] and [1,2,5] ! [3,4], respectively. Further-
more, the top 10% of architectures for dissolution-(20,10)
all exhibit only one serial connection, the minimum encoun-
tered among the 90 randomly generated architectures.

An additional observation to make concerns the magnitude
of iterations required for dissolution-(10,10) and dissolution-
(20,10) architectures to converge, which are notably greater
than the random dissolution experiment. This finding is con-

sistent with results from Devendorf et al. (2010), where the
addition of a local impulse had been shown to delay conver-
gence time for systems.

Thus, treating the random dissolution experiment as a
baseline, we find that the introduction of local impulses has
produced two notable effects: to unilaterally delay the conver-
gence of architectures and to somewhat dampen the strength
of the parallel architecture preference exhibited by systems
subjected to architectural impulses. These two effects can
be considered somewhat complementary, because the sto-
chastic nature of mistakes induced by local impulses not
only serves to postpone system convergence but also can be
somewhat disproportionate, affecting some architectures
more by chance than others. This may explain the dampening
of the parallel preferences for dissolution-local impulse sys-
tems, an effect whose underlying mechanics we discuss as
a topic of future work.

Table 5. Experimental design

Experiment Name

Architectural
Impulse
Applied

Local
Impulse
Severity

Local
Impulse

Probability

Dissolution-(10,10) Dissolution 10% 10%
Dissolution-(20,10) Dissolution 20% 10%
Division-(10,10) Division 10% 10%
Division-(20,10) Division 20% 10%
Combination-(10,10) Combination 10% 10%
Combination-(20,10) Combination 20% 10%

Fig. 8. Sequential connections versus convergence time for dissolution
experiments.
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Finally, this discussion highlights an intriguing observa-
tion: that local and architectural impulses have an additive ef-
fect on one another. In other words, it would seem that adding
local impulses to dissolution experiments has not produced a
novel aggregated behavior; rather, the results above would
seem to suggest that the effects of local impulses act indepen-
dently of the effects of architectural impulses.

4.4.2. Division experiments

The results from the random division experiment along
with the results from the division-(10,10) and division-
(20,10) experiments are displayed graphically in Figure 9a–
c, respectively. Figure 9a displays a similar trend to dissolu-
tion, where systems subjected to division impulses prefer
increasingly parallel arrangements to mitigate the effects of
the impulse.

The division-local impulse results of Figure 9b and 9c ex-
hibits similar relationships to Figure 9a as Figure 8b and 8c
show to Figure 8a, though with a caveat: while there appears
to be a similar delayed convergence and dampened strength
of parallel architecture preferences, the effects seem to be
less pronounced than when local impulses were introduced
to dissolution impulses. This trend reveals itself over Figure
9a–c, where bands of architectures on each gridline for the
number of sequential connections occupy roughly the same
ranges of mean convergence time, whereas for the dissolution
experiments, there was a visible offset between random disso-
lution and dissolution-(10,10) and dissolution-(20,10) in
terms of mean convergence times.

Tracking differences in performance for a given architecture
for the dissolution and division experiments reveals this trend.
For dissolution, while the top five architecture [1,5]! [2,3,4]
converged in an average of 15.00 iterations for random disso-
lution, the same architecture required an average of 18.38 itera-
tions for the dissolution-(20,10) experiment.

Conversely, the top five random division architecture [1]
! [2,3,4,5] required an average of 15.54 iterations to conver-
gence, while the division-(20,10) experiment required an
average of 15.67 iterations, delaying convergence only mar-
ginally (by about 0.8% of the nonlocal impulse value)
when compared to the dissolution experiments (which exhibit
a 22% increase in convergence time). Thus, we conclude that
systems subjected to division impulses are better at handling
the application of local impulses than are similar systems sub-
jected to dissolution impulses.

4.4.3. Combination experiments

The results from the random combination experiment
along with the results from the combination-(10,10) and
combination-(20,10) experiments are displayed graphi-
cally in Figure 10a–c, respectively. As noted in Ghosh
et al. (2012), there is no visible correlation between the par-
allel character of a system architecture and its mean conver-
gence time with respect to random combination impulses,
and we see a similar case for the combination-(10,10)
and combination-(20,10) experiments in Figure 10b and

10c, respectively. This is in contrast to the results from dis-
solution and division experiments, suggesting that parallel
structures are not universally better for all types of architec-
tural impulses (with or without the addition of local im-
pulses). This may be a symptom of the inherent stability as-
sociated with subsystem combinations (a previously noted
caveat to these experiments is that subsystems to be com-
bined must be sufficiently decoupled).

An additional observation regarding these experiments
can be found in Table 6, which displays the worst perform-
ing architecture for each combination experiment consid-
ered in this work. One common feature among these sys-
tems is that they all feature the [1,3] subsystem parallel
pair, set in series with the remaining subsystems. The inher-
ent instability of this subarchitecture had been well docu-
mented in Ghosh et al. (2012), and we find that the combi-

Fig. 9. Sequential connections versus convergence time for division experi-
ments.
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nation-(10,10) and combination-(20,10) experiments sup-
port this prior finding. Thus, we find a similar trend to the
dissolution and division experiments where the application
of local impulses does not necessarily remove the character
of behavior of systems subjected to architectural impulses
alone.

4.5. Statistical testing of the parallel character
hypothesis for aggregated impulses

In this section, we describe the hypothesis testing used to va-
lidate the correlations observed in Section 4.4. In particular,
we examine the parallel character hypothesis in the dissolu-
tion-(10,10), dissolution-(20,10), division-(10,10), and divi-
sion-(20,10) experiments. We do not conduct such hypoth-
esis testing on the combination experiments, because the

results of Section 4.3.3 do not present correlations that frame
this investigation for statistical significance.

For these tests, we generate architectures and measure their
transient response using the same procedure as in Section
4.3.4. Similar to the testing of the parallel character hypoth-
esis conducted earlier for dissolution and division impulses
alone in Section 4.2, each architecture is now run for a total
of 500 trials instead of 10, enabling us to assume the mean
iteration count for each architecture to be representative of
that architecture’s performance.

As in Section 4.2, we categorize each architecture into sub-
populations according to the number of sequential connec-
tions it exhibits. As before, these results are drawn from the
final population of the genetic algorithm, representing the
best architectures from within their subpopulation. We then
conduct two-tailed t tests between each subpopulation to
test whether the number of sequential connections is a signif-
icant predictor of convergence time. We summarize the sig-
nificant results of the t tests in Table 7.

From Table 7, we observe that a majority of sequential con-
nection subpopulation pairings bear statistically significant
results, thus supporting the parallel character hypothesis.
Thus, we see an overall trend where an increase in the number
of sequential connections for dissolution-local and division-
local experiments (outlined in Table 7) is associated with sta-
tistically significant increases in mean convergence time.
Similar to the analysis in Section 4.2, many of the pairings
that were not statistically significant feature 4-connection,
purely sequential architectures. As we note earlier, these are
generally poor candidates for the final population generated
for analysis by the genetic algorithm, inherently performing
worse in terms of convergence time when compared to fewer
sequential connection architectures. In addition, the 0-con-
nection case for the division-(10,10) and division-(20,10) ex-
periments remain somewhat limited in the insights they can
offer based on how division impulses are currently modeled,
as noted earlier in Section 4.2. Notably, however, the majority
of cases support our earlier observations that the mitigation
strategy for architectural impulses remains dominant, despite
its direct contradiction with local impulse mitigation strategy.

Fig. 10. Sequential connections versus convergence time for combination
experiments.

Table 6. Worst performing architecture by experiment
considered

Experiment Worst Performing Design Architecture

Random combination 1
3

[ ]
� 2[ ] � 4[ ] � 5[ ]

Combination-(10,10) 4
5

[ ]
� 1

3

[ ]
� 2[ ]

Combination-(20,10) 2
5

[ ]
� 1

3

[ ]
� 4[ ]
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5. CONCLUSIONS AND FUTURE WORK

In this work, we identified design impulses as stochastic in-
puts during the optimal solution of decentralized design sys-
tems; these inputs have the potential to affect the transient
response and equilibrium solutions of such systems. We pro-
vided statistical validation for the parallel character hypoth-
esis, which asserts that architectures that are more parallel
in character tend to handle the effects of dissolution and divi-
sion impulses on convergence time best. We then studied the
effects of the simultaneous application of local and architec-
tural impulses, and examined the interactions between pro-
cess architecture and the transient response of systems sub-
jected to these impulses.

For dissolution-local experiments, we found that despite
the concurrent application of local impulses, systems sub-
jected to these pair of impulses still tend to favor architectures
with parallel arrangements, the predominant mitigation strat-
egy for the application of dissolution impulses. This is in spite
of the tendency of local impulses to delay overall system con-
vergence and to dampen the parallel preference relative to
systems that only face dissolution impulses (i.e., without local
impulses). For division-local experiments, we found a similar
preference for parallel architectures. Finally, in the case of
combination impulses, we found evidence to suggest that
the simultaneous application of local impulses does not affect
heuristics determined to mitigate combination impulses alone
as determined in previous work. In all cases we examined ar-
chitectures for the same 5-subsystem case study. These con-
clusions provide the basis to initiate a broader investigation
that examines the applicability of the parallel character hy-
pothesis for a general distributed design system.

Overall, the results across these experiments suggest that
the simultaneous application of architectural and local im-
pulses do not create new aggregate transient responses in a
system; rather, their effects on system response appear to be
somewhat independent of one another. In addition, the influ-
ence of a local impulse may be more pronounced on some
architectural impulse types than others. For example, in the
division-local experiments, the influence of local impulses
in dampening the division-only mitigation strategy of favor-
ing parallel architectures is less pronounced than in the case
of dissolution-local experiments.

The broad applicability of these results is apparent when
one considers the wide range of scenarios that architectural
and local impulses can represent. Architectural impulses
can represent the effects of events such as natural disasters
(which may disable a subsystem, simulating a dissolution im-
pulse, for instance) or corporate restructuring (where division
and combination impulses represent the spin-off and mergers
of subsidiaries, respectively). In contrast, local impulses
represent one of the most common disruptive inputs: designer
mistakes. Studying the amalgamated effects of these impulses
in simulations can inform designers of the best mitigation
strategies to pursue in response to the application of such
impulses in real-world scenarios.

Areas for future work include more comprehensive large-
scale statistical validation of the conclusions above for arbi-
trary architectures. Other areas for future study include the in-
vestigation of external impulses, which represent unintended
inputs emerging from outside the design system (such as mar-
ket forces or shifts in consumer demand for a type of product).
Such studies, when paired with the results from this paper and
earlier work on impulses, will equip the designer with the
proper tools to react to a wide array of disruptive events.
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