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SUMMARY
Robotic manipulators that have interacted with uncalibrated
environments typically have limited positioning and tracking
capabilities, if control tasks cannot be appropriately encoded
using available features in the environments. Specifically,
to perform 3-D trajectory following operations employing
binocular vision, it seems necessary to have a priori know-
ledge on pointwise correspondence information between two
image planes. However, such an assumption cannot be made
for any smooth 3-D trajectories. This paper describes how
one might enhance autonomous robotic manipulation for 3-
D trajectory following tasks using eye-to-hand binocular
visual servoing. Based on a novel encoded error, an
image-based feedback control law is proposed without
assuming pointwise binocular correspondence information.
The proposed control approach can guarantee task precision
by employing only an approximately calibrated binocular
vision system. The goal of the autonomous task is to
drive a tool mounted on the end-effector of the robotic
manipulator to follow a visually determined smooth 3-
D target trajectory in desired speed with precision. The
proposed control architecture is suitable for applications that
require precise 3-D positioning and tracking in unknown
environments. Our approach is successfully validated in a
real task environment by performing experiments with an
industrial robotic manipulator.

KEYWORDS: Binocular correspondence; Binocular vision;
Robot control; Task encoding; Trajectory following; Visual
servoing.

1. Introduction
Robotic manipulators have been widely employed in distinct
environments in industry. Sensor-based design is known to
be effective in providing precision and flexibility. Among the
various sensors, vision is capable of measuring, recognizing,
and object tracking in open workspace. Recent progress
in computing makes vision a much more popular sensor.
Therefore, vision-based control of robots has been an
active research field and is being integrated into industrial
applications.1,2

Due to a variety of task requirements, robotic arms would
usually need precise positioning and tracking to accomplish
complicated tasks. Typical tasks of this type include contour
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following, trajectory tracking, as well as manufacturing-
related tasks that demand motion tracking control.3,4,5,6

Shen et al.7 presented an asymptotic trajectory tracking
control approach using uncalibrated eye-to-hand visual
feedback. The robotic fingertip can be driven to follow a
predetermined reference trajectory in the vision frame. This
controller is especially useful in applications where hand-
eye precalibration is not possible. Xiao et al.8 developed
an adaptive hybrid visual and force servoing approach to
achieve a hybrid position/froce control task in an unknown
environment. The manipulator was visually guided to follow
a 3-D trajectory with six-axis force measurements in
addition to an eye-to-hand vision sensor. Akella9 introduced
an adaptive position-tracking control approach for planar
robotic manipulator with eye-to-hand visual feedback. All
vision sensors above are in fixed camera configuration, which
are feasible for systems requiring both the manipulator and
the environment to be observed by the camera at the cost
of online or offline camera calibration. On the other hand,
eye-in-hand configuration has the advantage of formulating
problems in task frame but it generally allows only local
workspace due to the restricted camera field of view. Gangloff
and Mathelin10 proposed an eye-in-hand visual servoing of
a six-DOF manipulator for unknown 3-D profile following.
The profile has an unknown curvature, but its cross section
is known. In11, Bettini et al. presented the design and
implementation of a vision-assisted planar manipulation
system using virtual fixtures at millimeter to micrometer
scales. An eye-in-hand vision sensor provides the reference
trajectory for path following tasks. These earlier works on
trajectory following did not seem to have considered using
a binocular vision system to observe an unknown smooth
3-D target trajectory. In fact, to perform 3-D trajectory
following, control with only eye-to-hand binocular vision
is a challenging problem since no pointwise correspondence
information between the two image planes is available.

In this paper, a tool is mounted on the end-effector of a
rigid robotic manipulator. The control task is to drive the
tool tip to precisely follow a visually determined 3-D target
trajectory using an approximately calibrated binocular vision
system. The paper is organized as follows. The preliminary
definitions and problem formulation are described in Sec-
tion 2. Section 3 then presents the proposed encoded error and
control approach for point-to-trajectory positioning tasks.
Moreover, the modified encoded error and control law for
point-to-trajectory tracking tasks are introduced in Section 4.
Section 5 reports the experimental results and Section 6 the
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conclusion, where the significance of the experiments and
the perspectives of the research are addressed.

2. Preliminaries

2.1. Notation
Let bold uppercase denote matrix, calligraphic alphabet
denote set, bold lowercase denote vector, prime denote
transpose, superscripts + denote pseudoinverse, and leading
superscripts identify the space a quantity is written in.
Moreover:

− X ,V, IX : the robot workspace X ⊂ R
3, the

binocular-camera field of view V ⊂ R
3, and the

binocular image space IX �= R
2 ⊕ R

2;
− r, r∗: the position of the robot and the target in

X ;
− Ir, Ir∗: the position of the robot and the target in

IX ;
− u ∈ R

3: the robot control input;
− cn ∈ R

3, fn: the position of the optical center and
focal length of camera n respectively, n = 1, 2;

− SO3: special orthogonal group of order 3;
− [xn, yn, zn]′ ∈ SO3: the rotation matrices of

camera n, n = 1, 2;
− on: the image centers in the image plane of

camera n, n = 1, 2;
− G : V → IX : binocular-camera model;
− Irn ∈ R

2: the robot position in the image plane

of camera n, Irn
�= [Irnx,

Irny]′, n = 1, 2;
− Ir∗

n ∈ R
2: the target position in the image plane

of camera n, Ir∗
n

�= [Ir∗
nx,

Ir∗
ny]′, n = 1, 2;

− Irdn
∈ R

2: the minimal-distance desired position

in the image plane of camera n, Irdn

�=
[Irdnx

, Irdny
]′, n = 1, 2.

2.2. System description
The problem of interest is to perform 3-D unknown trajectory
following control of a robotic manipulator employing only
binocular visual feedback as illustrated in Fig. 1. The goal
of the autonomous task is to drive the tool tip of a robotic
manipulator to a visually determined 3-D smooth trajectory
and continue tracking the trajectory in desired speed with
precision. The robotic manipulator is equipped with a
binocular vision system that does not need to be precisely
calibrated. The target 3-D trajectory is assumed unknown and
arbitrary. A visual detection and tracking system provides the
evolution of the binocular image projections of the tool tip
and the target trajectory in real time. This visual information
allows the robotic manipulator to perform 3-D trajectory
following tasks.

To perform such an autonomous 3-D trajectory following
task employing only binocular vision, one would actually
find difficulty when trying to encode such a task due to
the fact that no precise pointwise binocular correspondence
information can be easily observed. By pointwise binocular
correspondence we mean that the projection of each point
in a smooth 3-D trajectory onto binocular image space

Fig. 1. Configuration of the proposed visual servoing system
capable of autonomously positioning and trajectory following in
3-D space.

can be identified precisely. Therefore, one cannot precisely
determine a set-point in either image space or Cartesian space
to form an encoded error for controller design such that the
encoded error being zero implies the required task being
accomplished with precision.12−15

The problem of interest is to control the position of the
robotic tool tip in a prescribed workspace X ⊂ R

3 using
data observed by approximately calibrated binocular video
cameras. Specifically, it consists of driving the tool tip to
target positions in X determined by a 3-D trajectory C
in the binocular-camera field of view V ⊂ R

3. The observed
data consists of the tool tip position in X as well as target
trajectory which appear in V . Invariably X ⊂ V and both X
and V are compact subsets of R

3.

2.3. Problem formulation
The tool tip in X together with the target trajectory in V are
seen in the binocular image space IX �= R

2 ⊕ R
2 through

a fixed but imprecisely known, continuously differentiable,
readout function or perspective projection16 camera model
G : V → IX , which describes the binocular vision system.
Specifically, camera coordinate directions of the binocular
vision system are established as follows: for camera 1, x1

points to the right and y1 points downward in image plane
of camera 1, and z1

�= x1 × y1 points outward along the
camera optical axis. Camera coordinate directions for camera
2 are established similarly. Thus, G is the nonlinear function,
which maps from V to IX and is defined as

G(r)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1
x′

1 r
z′

1 r

f1
y′

1 r
z′

1 r

f2
x′

2(r + l)
z′

2(r + l)

f2
y′

2(r + l)
z′

2(r + l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, l
�= c1 − c2 (1)

where r is the robot position in X relative to c1.
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The position of the tool tip in the binocular image space is
a measured output Ir related to r by the formula

Ir = G(r). (2)

Similarly, the target position in the binocular image space is
an output Ir∗ related to the target or desired set-point r∗ by
the formula

Ir∗ = G(r∗). (3)

The velocity-controlled robotic manipulator is assumed to
admit a simple kinematic model of the form

ṙ = u (4)

where u is a velocity control vector taking values in R
3.

Differentiating Eq. (2) with respect to time, we have

Iṙ = J(r) u (5)

where the Jacobian of the nonlinear map G is defined as

J(r)
�= ∂G(r)

∂ r
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

z′
1 r

(
x′

1 − x′
1 r

z′
1 r z′

1

)
f1

z′
1 r

(
y′

1 − y′
1 r

z′
1 r z′

1

)
f2

z′
2(r+l)

(
x′

2 − x′
2(r+l)

z′
2(r+l) z′

2

)
f2

z′
2(r+l)

(
y′

2 − y′
2(r+l)

z′
2(r+l) z′

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

There are two subtasks in the 3-D trajectory following
task of interest. One is point-to-trajectory positioning and the
other is point-to-trajectory tracking. The point-to-trajectory
positioning control problem is to synthesize a feedback
control law u using only binocular visual measurements such
that

r −→ some r∗ ∈ C. (7)

As regards the point-to-trajectory tracking control problem,
one needs to synthesize a binocular visual feedback control
law u such that r precisely tracks the smooth 3-D trajectory
C in desired speed.

Generally speaking, one would expect G to be at least
an injective function in order for a stereo vision system
to provide the requisite information for positioning and
tracking tasks. We will assume that this is so. Clearly then,
driving r to r∗ is equivalent to driving Ir to Ir∗ if Ir and
Ir∗ can both been observed. In this case, existing result
has demonstrated effective control approaches.17 However,
in case the pointwise correspondence information for the
3-D target trajectory cannot be obtained, which further
implies that one would not be able to determine Ir∗, existing
control approaches would fail. Therefore, this paper is
concerned with how one might define effective encoded
errors and control laws to achieve precise positioning and
tracking when the binocular camera model G is not known
precisely.

In the sequel, a novel encoded error is defined. Based
on such an error, an image-based controller is proposed,

which can guarantee accomplishment of the point-to-
trajectory positioning task using only available binocular
visual information. In addition, another image-based control
law capable of driving a modified encoded error to zero for
point-to-trajectory tracking task is presented.

3. Point-to-trajectory positioning
To precisely drive the tool tip r to any set-point r∗
in an unknown smooth 3-D trajectory C ⊂ X using a
binocular vision system that is only approximately calibrated,
one must define a positioning error without assuming
pointwise binocular correspondence. Unlike traditional set-
point problems, the choice of an encoded error for such a
positioning task is not clear.

3.1. Encoding the positioning task
Due to the fact that the binocular correspondence information
about the desired set-point cannot be obtained (i.e., binocular
image points Ir∗

1 and Ir∗
2 that correspond to the same 3-D

point r∗ cannot be identified), Ir∗ cannot be determined.
Thus, the following intuitive encoded error defined in the
binocular image space cannot be applied to the considered
task.

e(t)
�= Ir(t) − Ir∗. (8)

Instead, the following encoded error is proposed, which
does not need any pointwise binocular correspondence
information about the desired set-point.

e(t)
�= Ir(t) − Ird (t). (9)

Specifically,

[
e1(t)

e2(t)

]
=

[ Ir1(t) − Ird1 (t)
Ir2(t) − Ird2 (t)

]
(10)

where Irdn
, n = 1, 2, are the minimal-distance desired

positions in image space of camera n, modeled by Gn, and
are defined as

Irdn
(t)

�= arg

{
min

Irc∈Gn(C)
‖Irn(t) − Irc‖

}
, n = 1, 2. (11)

Obviously, the proposed encoded error is zero if and
only if the tool tip touches the target trajectory C in
binocular image planes. This further implies that Ird1 and
Ird2 correspond to a physical point in C, and the desired
positioning task is precisely accomplished. For those system
configurations satisfying Assumption 3.1, this can actually
be made possible.

Assumption 3.1. The binocular vision system and the smooth
3-D trajectory C are configured such that any two points in
the 3-D trajectory are not coplanar with the optical centers
of binocular cameras c1 and c2.

Clearly, the assumption stated above requires that any
epipolar plane18 containing a point in the 3-D trajectory must
not intersect with this 3-D trajectory at any other points. In
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other words, the projection of C onto each of the binocular
image planes can be well defined by a function x = g(y),
where x and y are the horizontal and vertical coordinates,
respectively. Therefore, based on Assumption 3.1, it follows
that

e = 0 =⇒ ed = 0 and eb = 0 (12)

where

edn
(t)

�= Irn(t) − Ir∗
n, ebn

(t)
�= Ir∗

n − Irdn
(t), n = 1, 2

(13)

and

e(t) = ed (t) + eb(t) =
[

ed1 (t) + eb1 (t)

ed2 (t) + eb2 (t)

]
. (14)

This is due to the fact that as long as the controlled point
coincides with the trajectory in both the binocular image
planes, it physically contacts the trajectory at a single point.
If this is not so, the controlled point might stay at a
3-D point that is away from the trajectory but in the plane
containing the optical centers c1 and c2 while itself touching
the trajectory in binocular image space. Thus, e = 0 and there
is no correspondence between the two contacting points in
the trajectory on the binocular image planes. However, this
contradicts with the assumption that any plane containing
the optical centers c1 and c2 does not intersect with the 3-D
trajectory at more than one point.

3.2. Image-based control design
In the light of the image-based encoded error defined in
Eq. (9), it follows from Eq. (5) that

ė = J(r) u − Iṙd(t) (15)

where

Iṙd(t) = d

dt

⎡
⎢⎢⎣

arg

{
min

Irc∈G1(C)
‖Ir1(t) − Irc‖

}

arg

{
min

Irc∈G2(C)
‖Ir2(t) − Irc‖

}
⎤
⎥⎥⎦ and

‖Iṙd(t)‖ ≤ α < ∞. (16)

The reason why Iṙd(t) is finite is due to the fact that the
trajectory of the controlled point and the target trajectory
to follow are both smooth and, thus, the selected set-points,
Irdi

(t), i = 1, 2, must also be smooth.
Based on the process model defined in Eq. (15) and the

novel encoded error defined in Eq. (9), the following image-
based control law is proposed.

u = −kη(Ir, Ird )([ Q ◦ G−1](Ir))([ J ◦ G−1](Ir))′e (17)

where

η(Ir, Ird)
�= vmax(max{k‖ ([ Q ◦ G−1](Ir))

([ J ◦ G−1](Ir))′e ‖, vmax})−1 (18)

is a saturation function, k > 0 is a constant gain, vmax is the
maximum speed of the robot, Q(·)3×3 is a symmetric positive
definite matrix,1 and G−1 : IX → V is a continuously
differentiable left inverse of G. The control law in Eq. (17)
can drive e to zero exponentially.

If G is modelled only approximately by some perspective
projection function Gq : V → IX , with G−1

q a continuously
differentiable left inverse of Gq , the following feedback
control law is proposed.

u = −kη̂(Ir, Ird )
([

Q ◦ G−1
q

]
(Ir)

)([
Jq ◦ G−1

q

]
(Ir)

)′
e (19)

where

η̂(Ir, Ird )
�= vmax

(
max

{
k
∥∥([

Q ◦ G−1
q

]
(Ir)

)
([

Jq ◦ G−1
q

]
(Ir)

)′
e
∥∥, vmax

})−1
(20)

and Jq(r)
�= ∂Gq (r)

∂ r . The control law in Eq. (19) can still drive
e to zero exponentially provided that Gq were a good enough
approximate model of G.

3.3. Stability analysis
The exponential stability of the point-to-trajectory
positioning system employing visual feedback control law
in Eq. (17) can be established in Theorem 3.1.

Theorem 3.1. (Exponential stability) Let

B �= {Ir ∈ G(X ) | ‖Ir − Ir∗‖ ≤ ρ} (21)

such that S �= {r ∈ X | G(r) ∈ B} is bounded and G is
injective on S. Suppose that there exists a positive number
ν1 satisfying ν1 < 1 and such that for every Ir, Ir∗ ∈ B

‖eb‖ ≤ ν1‖ed‖†. (22)

For the system defined by Eqs. (14)–(17), there exist positive
numbers a and λ which depend only on S such that if
r(0), r∗ ∈ S,

‖r(t) − r∗‖ ≤ a · e−λt · ‖r(0) − r∗‖, ∀t ≥ 0. (23)

Proof of Theorem 3.1. Define a Lyapunov function
candidate

V = ‖ed‖2. (24)

Let w in IX be defined such that Q
1
2 J ′ed and Q

1
2 J ′w are

orthogonal in R
3 and span{w,ed}= span{eb,ed}. eb can thus

be expressed as

eb = αed + βw (25)

1 For example, [ Q ◦ G−1](Ir) can be chosen as the commonly used
pseudoinverse (([ J ◦ G−1](Ir))′([ J ◦ G−1](Ir)))−1.
† Note that the vision system is in incorrect correspondence
situations when ed = −eb.
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where (α, β) is the coordinate of eb with respect to the
basis {w,ed}. For the positioning task, Ir∗ is the set-point.
Therefore, one can see from Eq. (13) that

ėb(t) = −Iṙd (t). (26)

Differentiating V with respect to time, we have

V̇ = −2kηe′
d J Q J ′e (27)

= −2kη
(∥∥ Q

1
2 J ′ed

∥∥2 + e′
d J Q J ′eb

)
(28)

≤ −2kη
(∥∥ Q

1
2 J ′ed

∥∥2 − |e′
d J Q J ′eb|

)
(29)

= −2kη
(∥∥ Q

1
2 J ′ed

∥∥2 − |e′
d J Q J ′(αed + βw)|) (30)

= −2kη
(∥∥ Q

1
2 J ′ed

∥∥2 − ∥∥ Q
1
2 J ′ed

∥∥ · ∥∥ Q
1
2 J ′(αed )

∥∥)
.

(31)

Due to the fact that Q
1
2 J ′ed and Q

1
2 J ′w are orthogonal in

R
3, it follows from Eq. (25) that

∥∥ Q
1
2 J ′(αed )

∥∥ ≤ ∥∥ Q
1
2 J ′eb

∥∥. (32)

In the light of Eq. (22), it thus follows that

V̇ ≤ −2kη(1 − ν1)
∥∥ Q

1
2 J ′ed

∥∥2 ≤ 0. (33)

From Eq. (33), we see that y stays inside the ball B. In
other words, solution r never leaves S. Thus, S is a bounded
invariant set. Hence, r is bounded. Meanwhile, for all t ≥ 0

∫ t

0
|V̇ (τ )| dτ = −

∫ t

0
V̇ (τ ) dτ = V (0) − V (t) ≤ V (0).

(34)

We see that V̇ ∈ L1. Furthermore, one can check that V̈ is
piecewise continuous and bounded. Therefore, we conclude
that

V̇ −→ 0 as t → ∞ (35)

and thus

J ′(r) ed −→ 0 as t → ∞ (36)

since Q(r) is a symmetric positive definite matrix. From
binocular visual constraint17 we know that if ed is in the null
space of J ′(r), it must be true that r = r∗ for all r, r∗ ∈ S.
Therefore, we see that

r(t) −→ r∗ as t → ∞. (37)

Moreover, it can be shown17 that there exists a positive
number µ, which depends only on S such that for every
r , r∗ ∈ S

‖J ′(r)(G(r) − G(r∗))‖ ≥ µ‖G(r) − G(r∗)‖. (38)

Hence, it follows from Eq. (33) that

V̇ ≤ −2kη(1 − ν1)σ 2‖J ′(r) ed‖2 ≤ −2kη(1 − ν1)σ 2 µ V

(39)

where σ > 0 is the least singular value of Q1/2(r), r ∈ S.
Therefore, ‖ed‖ goes to zero exponentially fast. By

injectivity of G on S, one thus concludes that there exist
positive numbers a, λ, which depend only on S such that if
r(0), r∗ ∈ S,

‖r(t) − r∗‖ ≤ a · e−λ t · ‖r(0) − r∗‖, ∀t ≥ 0. (40)

�

The feedback control law in Eq. (19), in which the camera
model is assumed to be known approximately, is employed
to the system described by Eqs. (2), (4), (9), and (11).
Theorem 3.2 states that if the approximate camera model
is close enough to the true model and the initial positioning
error is small enough, the introduced image-based control
law can still guarantee exponential convergence and precise
positioning.

Theorem 3.2. (Robustness) Suppose that there exists a
positive number

ν < η̃σ 2µ (41)

and such that for every Ir ∈ B

δ(Ir) ≤ ν (42)

where

η̃
�= min

Ir∈B
{η̂(Ir, Ird )} (43)

µ > 0 is defined such that Eq. (38) holds for every r , r∗ ∈ S,
σ > 0 is the least singular value of Q1/2(r)∀r ∈ S, and

δ(Ir)
�=ν1

∥∥([ J ◦G−1](Ir))
([

Q◦G−1
q

]
(Ir)

)([
Jq ◦G−1

q

]
(Ir)

)′∥∥
+ ∥∥([ J ◦ G−1](Ir))(([ Q ◦ G−1](Ir))([ J ◦ G−1(Ir))′

− ([
Q ◦ G−1

q

]
(Ir)

)([
Jq ◦ G−1

q

]
(Ir)

)′)∥∥. (44)

The solution to the system defined by Eqs. (2), (4), (9),
(11), (19), (21), and (22) exists globally and r −→ r∗
exponentially if ‖ed (0)‖ ≤ h ρ for every h ∈ [0, 1).

Proof of Theorem 3.2. In the light of Eqs. (15), (19), and
(26), one can obtain the following equation by differentiating
Eq. (14) with respect to time.

ėd (t) = −kη̂ J Q J ′ed + kη̂ J
(

Q J ′ − [
Q ◦ G−1

q

]
[

J ′
q ◦ G−1

q

])
ed − kη̂ J

[
Q ◦ G−1

q

][
J ′

q ◦ G−1
q

]
eb

(45)
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By differentiating Eq. (24) with respect to time, one can see
that

‖ed‖d‖ed‖
dt

= e′
d ėd . (46)

It thus follows from Eqs. (45) and (46) that

‖ed‖d‖ed‖
dt

= −kη̂
∥∥ Q

1
2 Jed

∥∥2 + kη̂e′
d J(

Q J ′ − [
Q ◦ G−1

q

] [
J ′

q ◦ G−1
q

])
ed

− kη̂e′
d J

[
Q ◦ G−1

q

] [
J ′

q ◦ G−1
q

]
eb. (47)

From Eq. (38) and recalling that σ > 0 is the least singular
value of Q

1
2 (r), r ∈ S, we have

d‖ed‖
dt

≤ −η̂σ 2µ‖ed‖ + η̂
e′
d

‖ed‖
J
(

Q J ′ − [
Q ◦ G−1

q

][
J ′

q ◦ G−1
q

])
ed

−η̂
e′
d

‖ed‖ J
[

Q ◦ G−1
q

][
J ′

q ◦ G−1
q

]
eb. (48)

Observing the fact from Eq. (20) that η̂(Ir, Ird ) ∈ (0, 1] for
every Ir ∈ B, the definitions of η̃ in Eq. (43) and δ in Eq.
(44), and the condition in Eq. (22), one can further see that

d‖ed‖
dt

≤ −kη̃σ 2µ‖ed‖ + kδ‖ed‖. (49)

By using the variation of constant formula one concludes that

‖ed (t)‖ ≤ ‖ed (0)‖e−kη̃σ 2µt

+
∫ t

0
e−kη̃σ 2µ(t−τ )kδ(Ir(τ ))‖ed (τ )‖ dτ. (50)

Multiplying both sides by ekη̃σ 2µt , we have

ekη̃σ 2µt‖ed (t)‖ ≤ ‖ed (0)‖ +
∫ t

0
ekη̃σ 2µτ kδ(Ir(τ ))‖ed (τ )‖ dτ.

(51)

Applying the Bellman–Gronwall Lemma,19 one further
concludes that

ekη̃σ 2µt‖ed (t)‖ ≤ ‖ed (0)‖e
∫ t

0 kδ(Ir(τ ))dτ . (52)

Therefore,

‖ed (t)‖ ≤ ‖ed (0)‖e− ∫ t

0 k(η̃σ 2µ−δ(Ir(τ )))dτ , ∀ t ≥ 0.

(53)

It can be shown that if ‖ed (0)‖ ≤ hρ, ‖ed (t)‖ < ρ for all
t ≥ 0. In fact, by contradiction assume that there exists some
time t̄ for which ‖ed (t)‖ gets to be larger or equal to ρ.

That is,

‖ed (t̄)‖ = ρ and ‖ed (t)‖ < ρ, ∀ t ∈ [0, t̄). (54)

Hence, one can see that

δ(Ir(τ )) ≤ ν, ∀ t ∈ [0, t̄). (55)

From Eqs. (53) and (55), one concludes that

‖ed (t̄)‖ ≤ ‖ed (0)‖e− ∫ t̄

0 k(η̃σ 2µ−ν)dτ ≤ ‖ed (0)‖ ≤ hρ < ρ

(56)

which contradicts the definition of t̄ . Moreover, note that

‖ed (t)‖ < ρ, ∀ t ≥ 0 =⇒ δ(Ir(τ )) ≤ ν, ∀ t ≥ 0.

(57)

In the light of Eqs. (53) and (57), and the fact that ν < η̃σ 2µ,
one concludes that

‖ed (t)‖ ≤ ‖ed (0)‖e− ∫ t

0 k(η̃σ 2µ−ν)dτ → 0 as t → ∞.

(58)
�

The fact that ‖ed (t)‖ decays to zero exponentially is
equivalent to say that Ir coincides with Ir∗ in the binocular
image space. By injectivity of G on S and Assumption 3.1,
one further assures that the tip of the robot tool has reached
a point in the target trajectory with precision.

4. Point-to-trajectory tracking
In addition to precisely positioning the tool tip in an
observed target trajectory C without given pointwise
correspondence information, a more complicated task with
potential applications is to further drive the tool tip to
follow the trajectory. Since the pointwise correspondence
information is again not given, this tracking problem is
seemingly a challenging one. The encoded error for the
tracking task is modified from the positioning encoded error
by demanding required tracking trajectory in one of the
two binocular image planes. Under such a newly defined
image-based task encoding approach, feedback control laws
can be synthesized for driving the tool tip to track visually
determined smooth 3-D target trajectories in desired speed
with precision. Even if the vision system is not exactly
calibrated, precise tracking can still be guaranteed by the
proposed image-based feedback control law.

4.1. Target trajectory generation
For the control task that requires the tool tip to continue
tracking the smooth 3-D trajectory C after completing the
positioning task, the encoded error defined in Eq. (9) cannot
be directly applied since the tool tip is already on the
trajectory. In order to precisely track smooth 3-D trajectories,
the projection of the 3-D trajectory onto the image space
must be identified visually before the trajectory following
command can be determined in the image plane.
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For the trajectory following task illustrated in Fig. 1, the
target trajectory in image space can be extracted by the
vision system. Let gn denote the function that relates
the components of the projection of r∗ onto the image plane
of camera n by

I
r∗
nx

= gn

(
I
r∗
ny

)
, n = 1, 2. (59)

Given the desired vertical y-component of the tracking
velocity along the target trajectory, Iṙ∗

ny
(t) = v∗(t), the

horizontal x-component can be computed by

I
ṙ∗
nx

(t) = dgn

dIr∗
ny

I
ṙ∗
ny

(t), n = 1, 2. (60)

Therefore, the desired trajectory in the image space can be
defined as

Ir∗
n(t) =

⎡
⎢⎢⎢⎣

I
r∗
nx

(0) +
∫ t

0

dgn

dIr∗
ny

Iv∗(τ ) dτ

I
r∗
ny

(0) +
∫ t

0

Iv∗(τ ) dτ

⎤
⎥⎥⎥⎦ , n = 1, 2.

(61)

Similarly, with the given desired tracking speed, v∗(t),
along the projection of the 3-D trajectory onto the image
plane, the vertical y-component of the tracking velocity can
be computed by

Iṙ∗
ny

(t) = v∗(t)

⎛
⎝1 +

(
dgn

dIr∗
ny

)2
⎞
⎠

−1/2

, n = 1, 2.

(62)

Hence, the horizontal x-component of the tracking velocity
in image space can be obtained by Eq. (60). Meanwhile, the
desired trajectory in the image space can thus be defined by

Ir∗
n(t)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ir∗
nx

(0) +
∫ t

0

dgn

dIr∗
ny

Iv∗(τ )

⎛
⎝1 +

(
dgn

dIr∗
ny

)2
⎞
⎠

− 1
2

dτ

Ir∗
ny

(0) +
∫ t

0

Iv∗(τ )

⎛
⎝1 +

(
dgn

dIr∗
ny

)2
⎞
⎠

− 1
2

dτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

n = 1, 2.

(63)

4.2. Trajectory following control design
In order to perform the required trajectory following tasks,
the encoded errors can be defined by modifying the encoded
error for positioning tasks introduced in Eq. (9).

e1(t) = Ir1(t) − Ir∗
1(t) (64)

e2(t) = Ir2(t) − Ird2 (t) (65)

where Ir∗
1(t) is the visually determined target trajectory in the

image plane of camera 1 and Ird2 (t) is defined in Eq. (11).
Differentiating Eqs. (64) and (65) with respect to time, the
differential kinematic equations can be seen as

ė1(t) = J1(r)u(t) − Iṙ∗
1(t) (66)

ė2(t) = J2(r)u(t) − Iṙd2 (t). (67)

To make the tracking problem tractable, the encoded errors
in Eqs. (64) and (65) introduced above do not require any
a priori knowledge on binocular pointwise correspondence
of the target trajectory. The tracking control problem is to
develop a feedback control law capable of driving both e1

and e2 to zero exponentially. By injectivity of the binocular
camera model G and Assumption 3.1, e1 and e2 both driven
to zero exponentially implies that r(t) precisely tracks C with
zero steady-state error.

Nominal control laws with feedforward compensation for
the two tasks modelled by Eqs. (66) and (67) are introduced,
respectively, as

u(t) = J+
1 (r)

(−λ1e1(t) + Iṙ∗
1(t)

)
(68)

u(t) = J+
2 (r)

(−λ2e2(t) + Iṙd2 (t)
)
. (69)

Due to the fact that the desired trajectories in each
of the binocular image planes do not have pointwise
correspondence and the two nominal control laws in fact
disturb each other, appropriate constraints must be employed
before integrating these two feedback control laws for the
purpose of driving e1 and e2 to zero simultaneously.20 Let

P = I − J+
1 J1 (70)

be the projector onto the null space of the Jacobian J1

whose pseudoinverse J+
1

�= J ′
1( J1 J ′

1)−1. The control law
that drives the encoded error e2 to zero while maintaining
control action in the direction not affecting the control law
in Eq. (68) is then given by

u(t) = P ( J2 P)+
(−λ2e2 + Iṙd2 (t)

)
. (71)

In the light of Eqs. (68) and (71), the image-based feedback
control law capable of driving both encoded errors, e1 and
e2, to zero exponentially is proposed as

u(t) = J+
1 (r)

(−λ1e1(t) + Iṙ∗
1(t)

) + P( J2 P)+(−λ2e2 + Iṙd2 (t) − J2 J+
1

(−λ1e1(t) + Iṙ∗
1(t)

))
.

(72)

Specifically, the system modeled by differential kinematics in
Eqs. (66) and (67), when closed by the feedback connection
in Eqs. (72), appears to be exponentially stable. That is,

ė1(t) = −λ1e1 (73)

ė2(t) = −λ2e2. (74)
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Moreover, note that

e(t) =
[

e1(t)

e2(t)

]
=

[
ed1 (t)

ed2 (t) + eb2 (t)

]
(75)

where

edn
(t)

�= Irn(t) − Ir∗
n(t), ebn

(t)
�= Ir∗

n − Irdn
(t), n = 1, 2.

(76)

It follows directly from Assumption 3.1 and Eq. (12) that

ed1 (t), ed2 (t), and eb2 (t) → 0 as t → ∞. (77)

Therefore,

Irn(t) → Ir∗
n(t), n = 1, 2, as t → ∞ (78)

and thus

rn(t) → r∗
n(t), n = 1, 2, as t → ∞ (79)

which is equivalent to say that the 3-D trajectory following
task has been accomplished with precision.

If G is modeled only approximately by some perspective
projection function Gq : V → IX , with G−1

q a continuously
differentiable left inverse of Gq , the following feedback
control law is proposed.

u(t) = J+
1q

(Ir)
(−λ1e1(t) + Iṙ∗

1(t)
) + Pq( J2q

Pq)+(−λ2e2 + Iṙd2 (t) − J2q
J+

1q

(−λ1e1(t) + Iṙ∗
1(t)

))
(80)

where Jnq
(Ir)

�= [
∂Gnq

∂ r ◦ G−1
q ](Ir), n = 1, 2, and Pq

�= I −
J+

1q
J1q

. The control law in Eq. (80) can still drive e to zero
exponentially provided that the binocular model imprecision
is small, which is equivalent to say that Gq is a good enough
approximate model of G.

Fig. 2. Experimental setup.

5. Experiments

5.1. Experimental setup
As illustrated in Fig. 2, experiments in real-time conditions
are conducted on a smooth 3-D trajectory, which is generated
by projecting a laser line onto an arbitrary-shaped acrylic
fiber 3-D object. A Pentium IV 2.8 GHz PC running Windows
XP for image processing and control law computation is
connected via RS-232 serial link to a Mitsubishi industrial
robot RV-1A. Two Sony KMTV-63F1ND CCD video
cameras, placed 300 mm in front of the robot with 230 mm
baseline, are linked to a ADLink RTV-24 PCI image capture
board that grab binocular images of the observed scene. The
two CCD cameras are particularly configured not to have
parallel coordinate systems, and are only roughly calibrated
offline to demonstrate the robust performance of the proposed
visual feedback control law. The pixel pitch and the focal
length of the cameras are 0.0185 and 2.5 mm, respectively.
The travelling distance along the 3-D trajectory is around
500 mm. The sample rate of the real-time trajectory following
control system is 12 Hz.

5.2. Experimental tasks
Typical offline calibration procedure needs to be performed
for only approximate estimates of camera parameters.

Fig. 3. Observed binocular images from visual detecting and tracking system showing visually determined trajectory and tracking windows
for the tool feature.
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Fig. 4. Positioning and tracking of a manipulator on an unknown smooth 3-D trajectory with set-points velocity command (left column
figures), time-varying velocity command (middle column figures), and three different fixed speed commands (pixel/s)(right column figures).

https://doi.org/10.1017/S0263574707003505 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003505


624 Binocular Vision-Based 3-D Trajectory Following for Autonomous Robotic Manipulation

Fig. 5. Positioning and tracking errors of a manipulator on an unknown smooth 3-D trajectory with set-points velocity command (left
column figures) and time-varying velocity command (right column figures).

Meanwhile, the initial position of the tool must be
manipulated in open loop in order for the tool feature to
appear in the field of view of binocular cameras. Successive
stages in the autonomous positioning and tracking control of
an arbitrarily smooth 3-D trajectory are as follows.

Stage 1. Autonomously perform point-to-trajectory posi-
tioning task to drive the tool tip to the arbitrarily
smooth 3-D trajectory with precision by visual
feedback control law in Eq. (19).

Stage 2. Autonomously perform point-to-trajectory track-
ing task to drive the tool tip to continue tracking
the arbitrarily smooth 3-D trajectory in desired speed,
either set-points or sinusoidal reference signals, using
visual feedback control law in Eq. (80).

Note that by further specifying desired set-point in one of
the binocular image plane, the task performed in Stage 1 can
drive the tool tip to a particular point in the 3-D trajectory.

5.3. Visual detecting and tracking
During the initialization stage, one can locate and distinguish
features of interest in binocular image planes using
thresholding and connected component labeling. Once all
features of interest have been extracted, the use of a
computational efficient algorithm for continuing tracking
moving features is critical in real-time operation. Window-
based tracking technique2 is adopted in the experiments to

visually track the robot feature in real time as illustrated in
Fig. 3. There are two tracking windows, both 10 × 10 in
pixels, for the tool feature point Ir1 and Ir2. The positions of
these two tracking windows in binocular images are updated
based on current positions of those features of interest. As
regards the unknown arbitrary target trajectory, least squares
algorithm is applied to generate polynomial functions, g1 and
g2, for the observed trajectories in binocular image planes.

5.4. Experimental results
To validate the proposed point-to-trajectory positioning
and tracking control approaches, experiments have been
performed for the Mitsubishi industrial robotic manipulator
to precisely follow an unknown 3-D trajectory generated
by projecting a laser line onto an arbitrary-shaped acrylic-
fiber object. In Stage 1 for all experiments, the tool tip was
driven to the 3-D trajectory to accomplish point-to-trajectory
positioning task with precision. For the point-to-trajectory
tracking task, two types of vertical velocity commands on
the left image plane Iṙ∗

1y , 0.1 Hz square wave (high 6, low 2)
and 0.1 Hz sin wave (high 5, low 2), are employed in Stage
2. Meanwhile, three different tracking speed commands
specified on the left image plane ‖Iṙ∗

1‖, 3, 9, and 15 pixel/s,
are also tested in Stage 2 to see how fast the tracking system
could operate while compromising with tracking precision.

Figure 4 shows experimental measurements of a robotic
task following a 3-D smooth trajectory with either
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Fig. 6. Positioning and tracking errors of a manipulator on an unknown smooth 3-D trajectory with three different fixed speed commands
(pixel/s).

set-points (left column figures) or sinusoidal (middle column
figures) velocity commands. In these figures, one can see the
responses of the vertical image component Irny, n = 1, 2,
the horizontal image component Irnx, n = 1, 2, and the
resulting 3-D trajectories of the tool tip. With the tracking
velocity specified in the left image plane, the positioning
and tracking errors for the four directions in binocular
image planes, enx and eny, n = 1, 2, are presented in Fig. 5.
Meanwhile, comparison of three different tracking speeds,
i.e., ‖Iṙ∗

1‖ = 3, 9, and 15 pixel/s, is provided in Fig. 4 (right
column figures). Figure 6 shows the positioning and tracking
errors during these trajectory following tasks. In these
experiments, the proposed vision-based control approach has
demonstrated satisfactory performance on point-to-trajectory
positioning and tracking control even though imprecisely
calibrated binocular vision system is employed.

6. Conclusion
In this paper, point-to-trajectory positioning and tracking
tasks in uncalibrated environments are considered in a
binocular eye-to-hand configuration. Under the proposed
approach, a family of 3-D trajectory following tasks,
employing approximately calibrated binocular video
cameras, can be encoded and accomplished with precision.
In particular, an autonomous robotic manipulation system
capable of following unknown 3-D trajectories in desired

speed has been presented, analyzed, and validated in
experiments. The PC-based system enables a robotic
manipulator to interact with unknown environments and
precisely perform 3-D trajectory following tasks in real time.

Compared with earlier works, this research starts with
the selection of novel encoded errors for point-to-trajectory
positioning and tracking tasks. These encoded errors being
zero imply that the original tasks have been accomplished
with precision. In particular, the encoded errors are computed
purely based on the binocular vision sensor without assuming
pointwise binocular correspondence. This effectively reduces
the need to consider complicated epipolar constraints
that rely on precise calibration of camera parameters. A
simple proportional visual servo controller with feedforward
compensation, which is capable of driving the encoded
errors to zero, is proposed. The proposed method can be
readily employed to existing velocity-controlled robotic
manipulators for satisfactory performance in industrial
applications. It can also be easily extended to other types
of machine instruments and objects for manufacturing
purposes.

There are a number of challenging issues that remain
unresolved in our future work. In order to further perform
dexterous manipulation on a 3-D unknown surface, one needs
to actively project certain patterns onto the surface in order to
visually determine the pose of the tool relative to the surface
in a systematic way. Moreover, one could seek to encode
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hybrid force and pose control tasks using multicamera vision
and low-cost single-axis force sensors. More importantly,
such a seemingly novel approach should further allow robotic
manipulators to perform hybrid tasks in unstructured real
world with precision.
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