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ABSTRACT

The cross-classified chain ladder has a number of versions, depending on the dis-
tribution to which observations are subject. The simplest case is that of Poisson
distributed observations, and thenmaximum likelihood estimates of parameters
are explicit. Most other cases, however, including Bayesian chain ladder mod-
els, lead to implicit MAP (Bayesian) orMLE (non-Bayesian) solutions for these
parameter estimates, raising questions as to their existence and uniqueness. The
present paper investigates these questions in the case where observations are
distributed according to some member of the exponential dispersion family.
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1. INTRODUCTION

This paper is concerned with cross-classified (sometimes known as ANOVA)
chain ladder models in which the cell mean μkj for the (k, j) cell of the data
array is the product of a row effect and column effect: μkj = αkβ j .

Such stochastic chain ladder models have been in use for many years, having
been introduced by Hachemeister and Stanard (1975). Their model assumed a
Poisson distribution in each cell, and this assumption was retained in the liter-
ature for some time subsequently.

More recently, other distributions have been considered. For example, Eng-
land and Verrall (2002) subjected the Poisson distribution to over-dispersion.
Wüthrich (2003) discussed the more general case of a distribution from the
Tweedie family, and Wüthrich and Merz (2008) the even more general expo-
nential dispersion family (EDF).

The Poisson case provides explicit maximum likelihood estimates (MLEs)
of model parameters but in this it is unique in the EDF. For other members of
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2 G. TAYLOR

the EDF, solutions of the maximum likelihood (ML) equations are implicit. In
consequence, their existence is not obvious and, if they exist, their uniqueness
is not obvious.

A common approach to the establishment of uniqueness of an MLE is the
application of the Lehmann–Scheffé theorem, which provides that, under reg-
ularity conditions, an unbiased MLE based on a complete sufficient statistic is
unique and minimum-variance unbiased. It is known that a specific linear com-
bination of observations is a sufficient statistic for the location parameter of a
member of the EDF.

Thismight raise the hope that this approachmight provide a simplemeans of
establishing existence and uniqueness of parameter estimates in the EDF cross-
classified chain laddermodel. Such an approach is certainly useful in the Poisson
case. Indeed, Kuang et al. (2009) used it to prove uniqueness of the MLE, and
Taylor (2011) to prove minimum variance properties.

However, as will be shown in Section 3.1, the same approach does not work
for members of the EDF other than Poisson. In fact, Taylor (2011, Theorem
5.2) showed that, for such models, there is no minimal sufficient statistic for any
of the parameters that is a proper subset of the full data set. In short questions
of existence and uniqueness of MLEs remain open.

Similarly, the MAP estimators of various Bayesian chain ladder models are
seen to be solutions to implicit equations (Taylor, 2015), and parallel questions
of existence and uniqueness arise there. So, in general, the “chain ladder solu-
tions” mentioned in the title of the present paper refer to the solutions of MAP
estimation or ML equations in the cases of Bayesian or non-Bayesian chain
ladder models, respectively.

In the following, after a brief consideration of the mathematical setup of
the Bayesian and non-Bayesian forms of the EDF cross-classified chain ladder
model in Section 2, the existence (Section 3) and uniqueness (Section 4) ofMAP
estimators in the Bayesianmodel andMLEs in the non-Bayesian are considered.
Section 5 examines a numerical example in which multiple solutions of the ML
equations are found for the non-Bayesian model.

2. CHAIN LADDER FRAMEWORK AND NOTATION

2.1. Data framework and notation

Consider an array D of claim observations (random variables) Ykj > 0 with

• accident periods represented by rows and labelled k = 1, 2, . . . , K ;
• development periods represented by columns and labelled by j = 1, 2, . . . , J.

The nature of these observations is unspecified. They may be paid losses,
reported claim counts, claim finalisation counts, or any other quantities that
satisfy the conditions prescribed in Section 3. Those conditions are antici-
pated slightly here by noting that they will require independence between all
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observations. This would usually limit them to incremental, rather than cumu-
lative, observations.

The dimensions K and J are the arbitrary natural numbers, but conditions
will be placed on which observations Ykj can be absent from the array.

Consider the array as an undirected graph �(D), with the observations as
vertices, and define an edge as existing between two observations if and only if
they are either from the same row of D in adjacent columns or from the same
column of D (not necessarily adjacent rows).

Consider an array D satisfying the following three requirements:

A1. It contains a subset of precisely K + J − 1 observations such that, if
all other observations were deleted, the subset would form a sub-array S
of D.

A2. Each row of S contains at least one observation, and similarly each
column.

A3. �(S) is connected.

Such an array will be called regular. It may be noted that a regular array
must contain at least K + J − 1 observations. The sub-array S will be called a
core of D. The core need not be unique.

A regular array D may, in general, be of a considerably more general struc-
ture than the typical claims triangle included in the loss reserving literature.

A form of D of special interest is

D = {
Ykj : k = 1, 2, . . . , K, j = 1, 2, . . .min (J, K − k+ 1) , K ≥ J

}
,

An array of this form will be called trapezoidal. It includes the case of a
triangular array (K = J ) that occurs widely in the literature. A trapezoidal
array is trivially regular.

Kuang et al. (2008) discussed arrays that weremore general than trapezoidal,
but less general than the regular arrays defined above. These were rectangular
arrays, possibly with some upper and some lower diagonals deleted, called gen-
eralised trapezoids. Such arrays are automatically regular if conditions (A1) and
(A2) are satisfied.

Let R(k) denote the k th row and C( j) the j th column of D. Let
∑

j∈R(k)
denote summation over the entire rowR(k), and similarly

∑
k∈C( j) denote sum-

mation over the column C( j).

2.2. Non-Bayesian chain ladder model

Consider the model defined by the following conditions:

E1. The array D is regular.
E2. The random variables Ykj ∈ D are stochastically independent.
E3. For each k = 1, 2, . . . , K and j = 1, 2, . . . , J,
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a. Ykj is distributed according to a member of the EDF, specifically with
log-likelihood of Ykj = y as follows:

�(y|θkj , φkj ) = [
yθkj − κ

(
θkj

)]
/a

(
φkj

) + λ
(
y, φkj

)
, (2.1)

for parameters θkj , φkj (φkj > 0), and for functions a, κ, λ that do not
depend on k, j , with a continuous, κ twice differentiable, and λ such
as to produce a unit total probability mass. It will be further assumed
that the derivative κ′ (.) maps one-one onto the strictly positive half-
line, and that κ′′ > 0.

b. E[Ykj ] = αkβ j for some parameters αk, β j ≥ 0.
c.

∑J
j=1 β j = 1.

Henceforth, the function a(.) in (2.1) will be restricted to the case

a (φ) = φ. (2.2)

Condition (E3)(c) is required to remove one degree of redundancy from the
parameter set {αk, β j }. Alternative constraints on these parameter values pro-
duce an equivalent model.

This model is referred to as the EDF cross-classified model, as in Taylor
(2011). It consists of cross-classified multiplicative mean structure, as in (E3)(b),
supplemented by an EDF distribution in (E3)(a).

It will be convenient to express the log-likelihood (2.1) in a different repre-
sentation, as follows.

Let μkj denote E[Ykj ] = αkβ j . It is known (McCullagh and Nelder, 1989)
that

μkj = κ ′ (θkj ) , (2.3)

whence the following expressions:

θkj = c
(
μkj

)
, (2.4)

κ
(
θkj

) = d
(
μkj

)
, (2.5)

with c(μ) = (κ ′)−1(μ) and d(μ) = κ(c(μ)).
Then (2.1) may be re-written, taking account of (2.2), in the form

�(y|μkj , φkj ) = [
yc

(
μkj

) − d
(
μkj

)]
/φkj + λ

(
y, φkj

)
, (2.6)

or
�(y|αk, β j , φkj ) = [

yc
(
αkβ j

) − d
(
αkβ j

)]
/φkj + λ

(
y, φkj

)
(2.7)

Remark 2.1. Mack models
In addition to the EDF cross-classified model just introduced, the literature

identifies a different type of chain ladder, viz. the Mack model. This comes in
two variants: the distribution-free, or non-parametric, form (Mack, 1993), and
the EDF Mack model (Taylor, 2011). The literature gives explicit MLEs in the
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EXISTENCE AND UNIQUENESS 5

case of Mack models, and so existence and uniqueness is trivially established.
The paper will, therefore, be concerned with just cross-classified models.

Remark 2.2. Tweedie family
The Tweedie family is the sub-family of the EDF for which (Tweedie, 1984)

κ (θ) = 1
2 − p

[(1 − p) θ ](2−p)/(1−p), (2.8)

or equivalently
c (μ) = μ1−p/ (1 − p) , (2.9)

d (μ) = μ2−p/ (2 − p) , (2.10)

The parameter p will be referred to as the Tweedie index.
In the cases p = 1, 2, (2.9) and (2.10) must be replaced by their limiting

values as p approaches the relevant value:

lim
q→0

μq/q = ln μ. (2.11)

When the distributions of the EDF cross-classified model are restricted to
Tweedie, the model will be referred to as the Tweedie cross-classified model.

Remark 2.3. Poisson family
The Poisson family is the sub-family of the Tweedie family for which p = 1

so that, by (2.9)–(2.11),
c (μ) = ln μ, (2.12)

d (μ) = μ. (2.13)

Substitution in (2.6) yields

�(y|μkj , φkj ) = [
y ln μkj − μkj

]
/φkj + λ

(
y, φkj

)
(2.14)

For the special case φkj = 1,

�(y|μkj , φkj ) = ln
[
e−μkjμkj

y exp λ (y, 1)
]
. (2.15)

The normalizing function can be recognised to be λ(y, 1) = − ln y!, in which
case (2.15) is seen to be the Poisson log-likelihood. For the case φkj �= 1, (2.14)
is called the over-dispersed Poisson (ODP) log-likelihood.

When the distributions of the EDF cross-classified model are restricted to
ODP (or Poisson), the model will be referred to as the ODP (or Poisson) cross-
classified model.

Remark 2.4. Sufficient statistics
When (E3)(b) is recognised, (2.1) becomes

�(y|μkj , φkj ) = [
y

(
ln αk + ln β j

) − αkβ j
]
/φkj + λ

(
y, φkj

)
, (2.16)
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and summation over D yields

�=
⎡
⎣ K∑
k=1

ln αk
∑
j∈R(k)

ykj
φkj

+
J∑
j=1

ln β j

∑
k∈C( j)

ykj
φkj

−
∑

(k, j)∈D

αkβ j

φkj

⎤
⎦+

∑
(k, j)∈D

λ
(
y, φkj

)
,

(2.17)
where � without arguments denotes the log-likelihood for the entire array D.

Application of the Fisher–Neyman theorem to this likelihood proves that∑
j∈R(k) ykj/φkj is a sufficient statistic for αk and

∑
k∈C( j) ykj/φkj for β j .

As mentioned in Section 1, one might be encouraged to extend this result
beyond the Poisson family, perhaps to the Tweedie family. In this case, (2.16)
and (2.17) would be replaced by the following [by (2.6), (2.9) and (2.10)]:

�(y|μkj , φkj ) =
[
y

(
αkβ j

)1−p

1 − p
−

(
αkβ j

)2−p

2 − p

]
/φkj + λ

(
y, φkj

)
, (2.18)

� =
⎡
⎣ K∑
k=1

αk
1−p

∑
j∈R(k)

ykjβ j
1−p

(1 − p) φkj
−

∑
(k, j)∈D

(
αkβ j

)2−p

(2 − p) φkj

⎤
⎦ +

∑
(k, j)∈D

λ
(
y, φkj

)
.

(2.19)
The linear combination of observations that was previously a Fisher–

Neyman factor, representing a sufficient statistic for αk, now entangles the data
with the set of parameters {β j }. This does not produce a sufficient statistic. In-
deed, as mentioned in Section 1, it has been shown by Taylor (2011) that there
exists no minimal sufficient statistic that is a proper subset of D.

3. EXISTENCE OF CHAIN LADDER SOLUTIONS

3.1. Bayesian chain ladder model

Bayesian versions of EDF cross-classified model or special cases of it have been
studied in the literature (Verrall, 2000, England and Verrall, 2002; Verrall, 2004;
Gisler andMüller, 2007; Wüthrich, 2007, Gisler andWüthrich, 2008; Wüthrich
and Merz (2008); England et al., 2012; Shi et al., 2012; Wüthrich, 2012; Merz
et al., 2013; Taylor, 2015).

Different papers use different Bayesian structures. The present paper will
rely on Taylor (2015). That paper notes that its framework differs from those
used in the others. It may be of interest to others to investigate the possibility of
results parallel to those in Section 4 but subject to different priors.

Taylor uses (2.1) as the conditional log-likelihood ofYkj |αk, β j , and the prior
log-densities on c(αk), c(β j ) that appear in the model immediately below.

With the addition of those priors, the EDF cross-classified model of Section
2.2 becomes theBayesian EDF cross-classified model described in full as follows.
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B1. The array D is regular.
B2. αk, k = 1, . . . , K; β j , j = 1, . . . , J are stochastically independent,

non-negative random parameters, subject to the prior log-densities on
c(αk), c(β j ) (omitting terms that do not depend on αk, β j )

�
(α)prior
k (c (αk)) = [c (αk) Ak − d (αk)] /ψ

(α)
k , (2.20)

�
(β)prior
j

(
c
(
β j

)) = [
c
(
β j

)
Bj − d

(
β j

)]
/ψ

(β)

j , (2.21)

where c(.), d(.) are as defined in (2.4) and (2.5), Ak, ψ
(α)
k > 0 are location

and dispersion parameters, and so are Bj , ψ
(β)

j > 0.
B3. The random variables Ykj ∈ D are stochastically independent, condition-

ally, of the parameter set {αk, k = 1, . . . , K; β j , j = 1, . . . , J}.
B4. For each k = 1, 2, . . . , K and j = 1, 2, . . . , J,

a. Ykj is distributed conditionally on the parameters αk, β j according to
a member of the EDF, specifically with log-likelihood of Ykj = y as
follows:

�cond(y|αk, β j , φkj ) = [
yθkj − κ

(
θkj

)]
/φkj + λ

(
y, φkj

)
, (2.22)

for parameters φkj > 0 and θkj , defined in terms of αk, β j by (2.3) and
for functions a, κ, λ that do not depend on k, j , with a continuous, κ
twice differentiable, and λ such as to produce a unit total probability
mass. It will be further assumed that the derivative κ′ (.)maps one-one
onto the strictly positive half-line, and that κ′′ > 0.

b. E[Ykj |αk, β j ] = αkβ j .

The Bayesian EDF cross-classified model is the earlier non-Bayesian model
with its parameters αk, β j randomised according to priors that are conjugate
to the conditional log-likelihood (2.22). Note that condition (E3)(c) of the non-
Bayesian model is no longer required, as the imposition of a prior on the pa-
rameter set {αk, β j } means that these parameters can no longer be re-scaled at
will.

Remark 2.5. The non-Bayesian model of Section 2.2 may be recovered by the
selection of uninformative priors, i.e., by allowing all ψ(α)

k , ψ
(β)

j → ∞.

It will be notationally convenient, henceforth, to represent the conditional
log-likelihood �cond in the (k, j) cell by �condkj .

The posterior log-likelihood of the αk, β j (again omitting terms that do not
depend on the αk, β j ) is

�post
(
c (α) , c (β) |D; A, B, φ, ψ(α), ψ(β)

) = �cond + �prior, (2.23)
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8 G. TAYLOR

where c(α), c(β) denote the vectors of c(αk) and c(β j ) values, respectively, and
A, B, φ, ψ(α), ψ(β) are similar parameter vectors, and with

�cond =
∑

(k, j)∈D

�condkj , (2.24)

�prior =
K∑
k=1

�
(α)prior
k +

J∑
j=1

�
(β)prior
j . (2.25)

Thus, by (2.20)–(2.25), the posterior log-likelihood for the whole array D
takes the form

�post =
∑

(k, j)∈D

{[
ykj c

(
μkj

) − d
(
μkj

)]
/φkj + λ

(
y, φkj

)}

+
K∑
k=1

[c (αk) Ak − d (αk)] /ψ
(α)
k +

J∑
j=1

[
c
(
β j

)
Bj − d

(
β j

)]
/ψ

(β)

j , (2.26)

where (2.22) has been replaced by the more convenient form (2.6).

3.2. Mathematical preliminaries

It will be assumed that the observations Ykj ∈ D are compatible with any dis-
tribution subsequently imposed on them, e.g., Ykj > 0 if subject to a gamma
distribution.

Sections 3 and 4 will examine existence and uniqueness of maximum a pos-
teriori (MAP) estimates of the parameter set {αk, β j } in the case of the Bayesian
EDF cross-classified model. Existence and uniqueness of MLE estimates of the
same parameter set in the case of the non-Bayesianmodel will also be examined.

It is known (Hachemeister and Stanard, 1975; Renshaw and Verrall, 1998;
Taylor, 2000) that explicit MLEs exist for the parameters of the non-Bayesian
Poisson cross-classified model in the case where φkj is independent of k, j . Ex-
istence is, therefore, obvious.

However, now consider the general Bayesian EDF cross-classified model of
Section 3.1 with joint posterior log-likelihood function over D given by (2.23)–
(2.25). The conditions for MAP estimation of α, β are

∂
(
�cond + �prior

)
∂αk

= ∂
(
�cond + �prior

)
∂β j

= 0, k = 1, . . . , K; j = 1, . . . , J. (3.1)

Section 4.2 of Taylor (2015) derives the following solution {α̂k, β̂ j } of the
system (3.1):

α̂k = z(α)
k Ȳ(α)

k +
[
1 − z(α)

k

]
Ak, (3.2)
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with

z(α)
k =

∑
j∈R(k)

z(α)
kj , (3.3)

Ȳ(α)
k =

∑
j∈R(k)

z(α)
kj

[
Ykj/β̂ j

]
/

∑
j∈R(k)

z(α)
kj , (3.4)

z(α)
kj = β̂2

j c
′ (μ̂kj

)
φkj

/

⎡
⎣ ∑
j∈R(k)

β̂2
j c

′ (μ̂kj
)

φkj
+ c′ (α̂k)

ψ
(α)
k

⎤
⎦ , (3.5)

β̂ j = z(β)

j Ȳ(β)

j +
[
1 − z(β)

j

]
Bj, (3.6)

with

z(β)

j =
∑
k∈C( j)

z(β)

kj , (3.7)

Ȳ(β)

j =
∑
k∈C( j)

z(β)

kj

[
Ykj/α̂k

]
/

∑
k∈C( j)

z(β)

kj , (3.8)

z(β)

kj = α̂2
kc

′ (μ̂kj
)

ϕkj
/

⎡
⎣ ∑
k∈C(j)

α̂2
kc

′ (μ̂kj
)

ϕkj
+ c′ (β̂ j

)
ψ

(β)

j

⎤
⎦ . (3.9)

It may be noted immediately that the solution (3.2)–(3.9) is implicit because
the solution α̂k requires knowledge of β̂ j and vice versa.

As noted in Remark 2.5, the non-Bayesian model of Section 2.2 may be re-
covered by allowing all ψ(α)

k , ψ
(β)

j → ∞. This solution is also implicit.
Now expand to the MAP equations (3.1). Substitute (2.7) into (2.24), and

differentiate to obtain

∂�cond/∂αk =
∑
j∈R(k)

[
Ykj c′ (μkj

) − d ′ (μkj
)]

β j/φkj , k = 1, . . . , K (3.10)

∂�cond/∂β j =
∑
k∈C( j)

[
Ykj c′ (μkj

) − d ′ (μkj
)]

αk/φkj , j = 1, . . . , J (3.11)

Also, substitute (2.20) and (2.21) into (2.25), and differentiate to obtain

∂�prior/∂αk = [
c′ (αk) Ak − d ′ (αk)

]
/ψ

(α)
k , k = 1, . . . , K (3.12)

∂�prior/∂β j = [
c′ (β j

)
Bj − d ′ (β j

)]
/ψ

(β)

j , j = 1, . . . , J (3.13)

These equations can be simplified slightly if it is noted that, by the definition
of c(μ) and d(μ) in Section 2.2,

d ′ (μ) = κ ′ (c (μ)) c′ (μ) = μ c′ (μ) . (3.14)
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10 G. TAYLOR

If this result is substituted into (3.10)–(3.13), then substitution of the results
into (3.1) yields the final MAP estimation equations:∑
j∈R(k)

[
Ykj − μkj

]
c′ (μkj

)
β j/φkj + c′ (αk) [Ak − αk] /ψ

(α)
k = 0, k = 1, . . . , K,

(3.15)∑
k∈C( j)

[
Ykj − μkj

]
c′ (μkj

)
αk/φkj + c′ (β j

) [
Bj − β j

]
/ψ

(β)

j = 0, j = 1, . . . , J.

(3.16)

Remark 3.1. The first member of each of these equations case can be recognised
as a weighted sum of raw residuals Ykj −μkj . The second member can be recog-
nised as the deviation of the estimate αk from its prior location parameter Ak
(or β j from Bj ).

It is noted for future reference that

c′ (μ) = 1/κ
′′
(
c
′(μ)

)
> 0, (3.17)

by (B4)(a), and then
d ′ (μ) > 0, (3.18)

by (3.14).
Equations (3.15) and (3.16) do not yield explicit solutions for the parameter

set {αk, β j } in general. An example occurs in Taylor (2009), which examines the
non-Bayesian Tweedie cross-classified model. Hence, questions of existence and
uniqueness of solutions arise.

3.3. Existence of solutions

Most proofs of the existence of ML or MAP estimators rely on compactness
of the parameter space. In the case of the Bayesian EDF cross-classified model,
there is no explicit upper limit on any parameter. In the non-Bayesian case, there
is no upper limit on the parameters αk.

However, with somemild regularity conditions imposed, upper limits can be
shown to exist (see Lemma A.1 for the Bayesian case and Lemma A.2 for the
non-Bayesian). Specifically, it will be supposed that the function c satisfies the
following conditions.

R1. The function q(α, β) = c′(αβ)/c′(α)c′(β) = 1 (Tweedie), or else has the
following properties.
a. It is bounded within a fixed strictly positive finite interval [m,M] over

all α, β > 0.
b. q(α, β) → 1 as β → 0 or ∞, with uniform convergence over α.

R2. Either
a. μc′(μ) is bounded away from zero and infinity for all μ ∈ [0, ∞);
or
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b. μ2c′(μ) is bounded away from zero and infinity for all μ ∈ [0, ∞);
or

c. μc′(μ) is a monotone strictly decreasing function of μ, with the tail
convergence properties that, for any μ > 0, (tμ)c′(tμ)/μc′(μ) →
∞ as t → 0 and (tμ)c′(tμ)/μc′(μ) → 0 as t → ∞ (note that this
implies μc′(μ) → ∞ as μ → 0 and μc′(μ) → 0 as μ → ∞ ), and
μ2c′(μ) is a function of μ with one of the following properties.

i.It is strictly decreasing, with μ2c′(μ) → ∞ as μ → 0 and
μ2c′(μ) → 0 as μ → ∞;

ii.It is strictly increasing, with μ2c′(μ) → 0 as μ → 0 and μ2c′(μ) →
∞ as μ → ∞, and the function [μc′(μ)]2c′(μc′(μ)) is not of order
μ−1 as μ → 0.

Remark 3.2. By (2.9), any member of the Tweedie family with p ≥ 1 satisfies
conditions (R1)–(R2).

Theorem 3.3 assures the existence of an MAP estimate under these conditions.
The proof appears in the appendix.

Theorem 3.3. For the Bayesian EDF cross-classified model, subject to con-
ditions (R1)–(R2), there exists an MAP estimate for the parameter set
{αk, β j : k = 1, . . . , K; j = 1, . . . , J}, solving the system of equations (3.15) and
(3.16). This estimate lies within a closed (K + J) -dimensional co-ordinate rect-
angle RK+J

+ , in the positive orthant, with all boundary planes bounded away from
zero and infinity.

Remark 3.4. For future reference, let the co-ordinate rectangle RK+J
+ be

defined as

RK+J
+ =

{
αk, β j : k = 1, . . . , K; j = 1, . . . , J; αk ≤ αk ≤ ᾱk, β j

≤ β j ≤ β̄ j

}
,

(3.19)
for fixed 0 < αk, ᾱk, β j

, β̄ j < ∞.

Then define μ
kj

= αkβ j
and μ̄kj = ᾱkβ̄ j so that 0 < μ

kj
≤ μ̄kj < ∞.

Theorem 3.5 states the result corresponding to Theorem 3.3 for the non-
Bayesian case. Again, the proof appears in the appendix.

Theorem 3.5. For the non-Bayesian EDF cross-classified model, subject to
conditions (R1) and (R2), there exists an MLE for the parameter set
{αk, β j : k = 1, . . . , K; j = 1, . . . , J}, solving the system of equations (3.15) and
(3.16) with the terms involving ψ

(α)
k and ψ

(β)

j deleted. This estimate lies within a
closed (K + J) -dimensional co-ordinate rectangle RK+J

+ , in the positive orthant,
with all boundary planes bounded away from zero and infinity.
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4. UNIQUENESS OF CHAIN LADDER SOLUTIONS

4.1. Exponential dispersion family

Uniqueness of MAP estimators will be proved by establishment of convexity of
the posterior log-likelihood function �post defined by (2.20)–(2.25). This will be
done by reference to derivatives of that function for the Bayesian EDF cross-
classified model of Section 3.1 with respect to rk = ln αk, s j = ln β j .

Note that derivatives are taken here with respect to ln αk, ln β j rather than
αk, β j . An attempt to prove the results of the present sub-section by means of
derivatives with respect to αk, β j leads to hopeless mathematical entanglement.
The choice of derivatives arises ultimately from the multiplicative nature of the
model in (E3)(b).

The following lemma establishes conditions for convexity for the Bayesian
EDF cross-classified model. The proof appears in the appendix.

Lemma 4.1. For the Bayesian EDF cross-classified model, subject to conditions
(R1) and (R2), define the rectangle RK+J

+ as in Remark 3.4. Then a sufficient
condition for the log-likelihood � to be strictly convex upward overRK+J

+ is that,
for all (α1, . . . , αK , β1, . . . , βJ) ∈ RK+J

+ ,

Ak
αk

< 1 + d ′ (αk)
αkd ′′ (αk)

if d ′′ (αk) > 0,

or
Ak
αk

> 1 + d ′ (αk)
αkd ′′ (αk)

if d ′′ (αk) < 0, (4.1)

and
Bk
β j

< 1 + d ′ (β j
)

β j d ′′ (β j
) if d ′′ (β j

)
> 0,

or
Bj

β j
> 1 + d ′ (β j

)
β j d ′′ (β j

) if d ′′ (β j
)

< 0, (4.2)

and
Ykj
μkj

≤ 1 + d ′ (μkj
)

μkj d
′′ (

μkj
) whenever d ′′ (μkj

)
> 0,

or
Ykj
μkj

≥ 1 − d ′ (μkj
)

−μkj d
′′ (

μkj
) whenever d ′′ (μkj

)
< 0. (4.3)

Theorem 4.2 follows immediately from the lemma.

Theorem 4.2. For the Bayesian EDF cross-classified model, subject to conditions
(R1) and (R2), define the rectangle RK+J

+ as in Remark 3.4. Then a sufficient
condition for the existence of a unique MAP estimate of (α1, . . . , αK , β1, . . . , βJ)

is that conditions (4.1)–(4.3) hold.
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EXISTENCE AND UNIQUENESS 13

Onemay also consider the question of uniqueness for the non-Bayesian case.
In this case, it turns out within the proof of Lemma 4.1 that the log-likelihood
�cond is not strictly convex. However, when the constraint (E3)(c) is imposed,
�cond is found to be strictly convex on the admissible subspace of MAP estima-
tors. Lemma 4.3 states the relevant result, proven in the appendix.

Lemma 4.3. For the non-Bayesian EDF cross-classified model, subject to condi-
tions (R1) and (R2), define the rectangle RK+J

+ as in Remark 3.4. Then a nec-
essary and sufficient condition for the log-likelihood �cond to be strictly convex
upward over RK+J

+ is that (4.3) holds for all (α1, . . . , αK , β1, . . . , βJ) ∈ RK+J
+ .

Theorem 4.4 follows immediately from the lemma.

Theorem 4.4. For the non-Bayesian EDF cross-classified model, subject to con-
ditions (R1) and (R2), define the rectangle RK+J

+ as in Remark 3.4. Then
a necessary and sufficient condition for the existence of a unique MLE of
(α1, . . . , αK , β1, . . . , βJ) is that condition (4.3) holds.

4.2. Tweedie family

The following corollary applies Theorem 4.2 to the Tweedie family (proof in the
appendix).

Corollary 4.5. Consider the special case of Theorem 4.2 in which Ykj are sub-
ject to a Tweedie distribution with index p ≥ 1. Then conditions (4.1)–(4.3)
reduce to

Ak
αk

>
p − 2
p − 1

, (4.4)

and
Bj

β j
>

p − 2
p − 1

, (4.5)

and
Ykj
μ̄kj

≥ p − 2
p − 1

, (4.6)

with μ̄kj as defined in Remark 3.4.

Note that (p − 2)/(p − 1) ≤ 0 when 1 ≤ p ≤ 2, and so conditions (4.4)–
(4.6) are necessarily satisfied in this case, leading to the following corollary.

Corollary 4.6. Consider the special case of Theorem 4.4 in which Ykj are subject
to a Tweedie distribution with index p ≥ 1. Then condition (4.3) reduces to (4.6).

Corollary 4.7. Consider the special case of Theorem 4.2 in which Ykj are subject
to a Tweedie distribution with index 1 ≤ p ≤ 2. Then there is a unique MAP
estimate of (α1, . . . , αK , β1, . . . , βJ).

The same argument, applied to Theorem 4.4, yields the following result.
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14 G. TAYLOR

Corollary 4.8. Consider the special case of Theorem 4.4 in which Ykj are subject
to a Tweedie distribution with index 1 ≤ p ≤ 2. Then there is a unique MLE of
(α1, . . . , αK , β1, . . . , βJ).

ODP and gamma are the cases p = 1 and 2, respectively, and the compound
Poisson–gamma distributions occupy the interval 1 ≤ p ≤ 2, all of which are
special cases of Corollaries 4.7 and 4.8. Hence, the following result.

Corollary 4.9. Consider the special case of Theorem 4.2 in which Ykj satisfy one
of the following conditions.

a. All are subject to an ODP distribution (which includes simple Poisson as
a special case).
b. All are subject to a gamma distribution.
c. All are subject to a compound Poisson distribution with gamma severity
distribution.

Then there is a unique MAP estimator of the model parameters.
Similarly, there is a unique MLE of the model parameters in the special case

of Theorem 4.4 in which Ykj satisfy (a), (b) or (c).

4.3. Tweedie sub-family with p > 2

Consider Tweedie distributions with index parameter p > 2. The necessary
and sufficient conditions for convexity of the posterior log-likelihood �post are
still (4.4)–(4.6), but now (p − 2)/(p − 1) > 0, so these conditions are no longer
automatically satisfied. Indeed, sufficiently smallYkj/μ̄kj will violate (4.6), a nec-
essary condition for convexity.

It follows that, in any such cases, �post is not convex. However, in none of the
above results does non-convexity necessarily imply non-uniqueness. It is simply
that uniqueness is not established in these non-convex cases. The present sub-
section will, therefore, examine some additional conditions that lead to convex-
ity and uniqueness in the case p > 2. The issue of uniqueness will be explored
further in Section 5.

4.3.1. Non-Bayesian model. To commence, consider an array D that is per-
fectly proportional in the sense that Ykj = akb j . The non-Bayesian EDF cross-
classified model, applied to this array, has the obvious MLE αk = ak, β j = b j ,
and it is unique. This follows from Lemma 4.3, together with (A41), (A42), and
the fact that Ykj/μkj = 1.

One might conjecture a couple of things as a consequence of this:

a. that, for arrays that are close to proportional in some sense, a cross-
classified model fitted to any part of the array will be “close” to the model
fitted to the entire array; and

b. that an array will have a unique MLE chain ladder solution if it is “close
enough” to proportional.
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The results stated in the remainder of the current sub-section formalise these
intuitive ideas.

For a regular array D, consider Yrs /∈ S. By definition, S contains an ob-
servation Yr jr in row r and an observation Ykss in column s. The choice of these
observations may not be unique. In that case, it is arbitrary.

Also by definition, there exists a path γr, jr :ks ,s from Yr jr to Ykss . Denote this
path {Yri si , i = 1, 2, . . . ,m}, where (r1, s1) = (r, jr ) and (rm, sm) = (ks, s), and
further

• in the case s > jr , (ri+1, si+1) = (ri , si + 1) or (ri+1, si );
• in the case s < jr , (ri+1, si+1) = (ri , si − 1) or (ri+1, si );

and where, in the latter case of each alternative, (ri+1, si ) is just any other index
in the same column as (ri , si ).

Consider only the subset ηr, jr :ks ,s ⊂ γr, jr :ks ,s of edges between adjacent
columns in γr, jr :ks ,s , i.e., the above cases (ri+1, si+1) = (ri , si + 1) or (ri+1, si+1) =
(ri , si − 1), and define

πr, jr :ks ,s = Yrs
Yr jr

∏
ηr, jr :ks ,s

Yri si
Yri+1si+1

− 1 π̄rs = max
jr ,ks ,γr, jr :ks ,s

[
πr, jr :ks ,s

]
+π rs

= max
jr ,ks ,γr, jr :ks ,s

[−πr, jr :ks ,s
]
+,

(4.7)

where the maximum is taken over all possible choices of jr , ks and all possible
paths γr, jr :ks ,s from Yr jr to Ykss , and [.]+ denotes the non-negative part of the
argument.

Now define

π̄ (D) = max
S

max
{r,s:Yrs /∈S}

π̄rs π (D) = max
S

max
{r,s:Yrs /∈S}

π rs, (4.8)

where the maxima are taken over all possible choices of S as core of D.
Finally, define

ξ (D) = 1 + π̄ (D)

1 − π (D)
≥ 1. (4.9)

It may be remarked that, for a proportional array, the ratios Yri si /Yri+1si+1

in (4.7) all take the form Yri si /Yri ,si+1 = βsi /βsi+1 or Yri si /Yri ,si−1 = βsi /βsi−1,
independent of row ri , and these ratios proceed by single steps from column jr to
column s. It follows that πr, jr :ks ,s = 0, and hence, π̄(D) = π(D) = 0, ξ(D) = 1.
Thus, π̄(D), π(D) and ξ(D) aremeasures of the non-proportionality of a general
regular array D.
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16 G. TAYLOR

These measures could be defined more simply in the case of a trapezoidal
array. There one might define, again for fixed jr , ks :

π
trap
r, jr :ks ,s = Yrs

Yr jr

Yks jr
Ykss

− 1 π̄ trap
rs = max

jr ,ks

[
πr, jr :ks ,s

]
+π trap

rs

= max
jr ,ks

[−πr, jr :ks ,s
]
+ π̄ trap (D) = max

r,s
π̄rs π trap (D) = max

r,s
π rs . (4.10)

The results below are formulated as applying to just trapezoidal arrays. The
reason for this is mere simplicity. Extensions to non-trapezoidal arrays would
be possible, but their statements are tedious.

The results immediately below address conjectures (a) and (b) from earlier
in the present sub-section. Proofs appear in the appendix.

Theorem 4.10. Consider a trapezoidal array D that contains at least K + J − 1
observations. Let S be a core of D, and fit to S a non-Bayesian Tweedie cross-
classified model Ykj = α∗

kβ
∗
j (= μ∗

kj ) say, subject to multiplicative weights φkj =
(vkw j )

−1 (Lemma A.3 guarantees the possibility of this). Now fit the non-
Bayesian Tweedie cross-classified model μkj = αkβ j to the entire array D, and
subject to the same multiplicative system of weights. Then the following relations
hold:

[1 + π (D)] [ξ (D)]−(|Jk−s|+2) ≤ αkβs

α∗
kβ

∗
s

≤ [1 + π̄ (D)] [ξ (D)]|Jk−s|+2
, (4.11)

where Jk = min(J, K − k+ 1) = maximum value of j for which an observation
exists in row k.

Corollary 4.11. Consider the special case of Theorem 4.4 in which D is a trape-
zoidal array, and Ykj are subject to a Tweedie distribution with index p > 2 and
multiplicative weights φkj = (vkw j )

−1. Then a sufficient condition for convexity
of the log-likelihood �cond is

[ξ (D)]−(J+2) ≥ p − 2
p − 1

. (4.12)

This is, therefore, a sufficient condition for the uniqueness of theMLE of model
parameters.

It was noted in Section 2 that ξ(D) is a measure of the non-proportionality
of the array D. For a proportional array, ξ(D) = 1, and ξ(D) increases steadily
with increasing non-proportionality. Then Corollary 4.12 leads immediately to
the following result, already stated earlier in the present sub-section.

Corollary 4.12. Consider the special case of Theorem 4.4 in whichD is a propor-
tional trapezoidal array, and Ykj are subject to a Tweedie distribution with index
p > 2 and multiplicative weights φkj = (vkw j )

−1. Then the log-likelihood �cond is
convex upward, and there is a unique MLE of model parameters.
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Condition (4.12) for a unique MLE may be re-stated as follows:

p ≤ 2 + 1

ξ(D)
J+2 ,

which decreases monotonically from 3 to 2 as ξ(D) increases from 1 to ∞.
Thus, Corollary 4.11 shows that, as non-proportionality of D increases (i.e.
ξ(D) increases), satisfaction of the condition (4.12) for a unique MLE requires
a steadily decreasing Tweedie index p.

4.3.2. Bayesian model. Certain of the results of Section 4.3.1 are easily ex-
tended to the Bayesian Tweedie cross-classified model. Theorem 4.13 gives the
formal statement, with proof given in the appendix.

Theorem 4.13. Corollaries 4.11 and 4.12 also apply to the Bayesian Tweedie
cross-classified model, with �cond replaced by �post and the MLE replaced by the
MAP estimators.

5. MULTIPLE SOLUTIONS OF MAXIMUM LIKELIHOOD EQUATIONS

The foregoing sections established upward convexity of the relevant log-
likelihood function under certain circumstances, and uniqueness of chain ladder
solutions, whether MLEs or MAP estimators, followed in these cases.

Section 4, dealing with non-Bayesian chain ladder models, also demon-
strated that, under certain circumstances, the log-likelihood function is not con-
vex. The proofs of uniqueness, therefore, do not follow in these cases. As pointed
out in Section 4.3, this does not prove non-uniqueness but simply leaves the
question of uniqueness open.

One is left to consider whether uniquenessmight always occur but has simply
not been proven here. The present section investigates this question by examin-
ing a specific simple data set and searching for the existence of multiple MLEs.

The simplest form of regular array occurs in the case K = J = 2. By simply
re-scaling the array, which would simply re-scale the MLE and so not affect the
question of uniqueness, one of the elements of the array may be set to unity.
Therefore, consider an array of the form

D =
[
Y11 Y12
Y21 1

]
. (5.1)

In fact, even this degree of generality will not be required for present purpose,
and it will be sufficient to consider the more specific form

D =
[
1 Y
Y 1

]
, (5.2)

with inverse Gaussian (Tweedie, p = 3) error terms.
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18 G. TAYLOR

Remark 5.1. An extremely simple situation is under consideration. The data set
(5.2), containing four observations, has only one free variable, and the cross-
classified chain ladder model, when applied to it, has only three free parameters.

It is also possible to draw some inferences about the solutions of its ML
equations from the symmetry of the array (5.2). The array is symmetric under
interchange or rows, accompanied by interchange of columns. The conclusions
from this are as follows:

a. There must be a solution according to which α1 = α2, β1 = β2.
b. If there is a solution for which α1 �= α2 (or β1 �= β2 ), then there must be
further solution in which the values of α1, α2 (or β1, β2 ) are interchanged.

The ML equations for the case of general p, K, J are obtained from (3.15)
and (3.16) with all ψ(α)

k , ψ
(β)

j set to infinity, as the following:

αk =
∑

j∈R(k) Ykjβ j
1−p/φkj∑

j∈R(k) β j
2−p/φkj

,

β j =
∑

k∈C( j) Ykjαk
1−p/φkj∑

k∈C( j) αk2−p/φkj
.

The parameter set for this array is {αk, β j : k = 1, 2; j = 1, 2}. According to
(E3)(c), this parameter set can be subjected to the constraint α1 + α2 = 1, but
an equivalent model can be obtained by setting α1 = 1 instead. It will also be
assumed that φkj = 1.

The ML equations for the remaining parameters α2, β1, β2 when p = 3 are
then

b1 = 1 + a
1 + Ya2

, b2 = 1 + a
Y+ a2

, a = b1 + b2
Yb21 + b22

, (5.3)

where b j = β−1
j , a = α−1

2 .
The symmetry ofD suggest the solution α1 = α2, b1 = b2, and it may indeed

be checked that a solution of (5.3) is α1 = α2 = 1, b1 = b2 = 2/(1 + Y).
However, it is possible to search for other admissible solutions.

Substitution for b1 and b2 in the expression for a, and slight rearrangement,
yields

Ya5 − (
1 − Y+ Y2) a4 + 2Ya3 − 2Ya2 + (

1 − Y+ Y2) a − Y = 0.

As noted just above, this must have a root of a = 1, and so a factor of a − 1
may be removed from the left side, leaving

Ya4 − (1 − Y)2a3 − (
1 − 4Y+ Y2) a2 − (1 − Y)2a + Y = 0. (5.4)

It is evident that, if a = x is a root of this equation, then so is a = x−1. So
the left side of (5.4) must contain a factor of (a − x)(a − x−1) = a2 − Xa + 1,
where X = x+ x−1.
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Factorise the left side of (5.4) by equating coefficients of a4, a3, a0 in the
following:

Ya4 − (1 − Y)2a3 − (
1 − 4Y+ Y2) a2 − (1 − Y)2a + Y

= (
a2 − Xa + 1

) [
Ya2 +

(
XY− (1 − Y)2

)
a + Y

]
. (5.5)

The factorisation also requires equation of coefficient of a2, a1, which yields
the following additional conditions:

Y− X
[
XY− (1 − Y)2

]
+ Y = − (

1 − 4Y+ Y2) , (5.6)

XY− (1 − Y)2 − XY = −(1 − Y)2. (5.7)

Now (5.7) is an identity, and so adds no information. However, (5.6) requires
that

YX2 − (1 − Y)2X− (1 − Y)2 = 0,

which yields the strictly positive solution

X = Y− 1 i f Y > 1 = 1/Y− 1 i f Y < 1. (5.8)

Note that, for given Y, both Y and 1/Y lead to the same value of X, and
hence, the same values of x.

Now not all of these solutions in X lead to a solution in x since, for positive
x, X has a minimum value of 2 (at x= 1). Therefore, a solution in x is obtained
only if X ≥ 2, i.e., by (5.8), only if Y ≥ 3 or Y ≤ 1/3. This result is unsurprising,
because Corollaries 4.11 and 4.12 guaranteed a convex log-likelihood unless
array D was sufficiently “non-proportional.”

When Y satisfies this condition, the solutions a = x and a = 1/x of the ML
equations are given by

x = 1/2

[
(Y− 1) +

√
(Y− 1)2 − 4

]
. (5.9)

For the special cases Y = 3 or Y = 1/3, this yields no more than two addi-
tional solutions a = 1, so distinct multiple solutions will be found if and only
if Y > 3 or Y < 1/3. Then the following three distinct solutions of the ML
equations exist:

a = 1, 1/2

[
(Y− 1) ±

√
(Y− 1)2 − 4

]
. (5.10)

Note that the last two of these are reciprocals of each other. A statement of
this analysis is as follows.

Result 5.2. Consider the special case of Theorem 4.4 in which Ykj are subject to
an inverse Gaussian distribution (Tweedie with index p = 3 ), and the array D
is given by (5.2). The ML equations reduce to (5.3) and
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TABLE 1

VALUES OF NEGATIVE HESSIAN MINORS FOR VARYING Y.

Value of �q for

q Y = 2.5 Y = 2.9 Y = 2.99 Y = 3 Y = 3.01 Y = 3.1 Y = 3.5

1 +1.143 +1.026 +1.003 +1 +0.998 +0.976 +0.889
2 +1.306 +1.052 +1.005 +1 +0.995 +0.952 +0.790
3 +1.198 +0.027 +0.003 0 –0.002 –0.023 –0.082
4 0 0 0 0 0 0 0

a. have unique solution a = 1 if 1/3 < Y < 3; and

b. otherwise have the multiple solution a = 1, 1/2[(Y− 1) ±
√

(Y− 1)2 − 4].

Remark 5.3. These solutions are consistent with Remark 5.1.

A study of the convexity of the log-likelihood as Y increases through the
value 3 is of interest. Let H denote the Hessian matrix of �cond with respect to rk
and s j , evaluated at the solution corresponding to a = 1 by reference to (A25)–
(A27). Upward convexity of �cond occurs if H is negative definite, and this is the
case if and only if all leading principal minors of − − H are strictly positive.

For the present example, the dimension of −H is 4 × 4. Denote the q × q
leading principal minor by �q . Table 1 displays the values of these minor for a
sample of values of Y increases through the value 3.

The table shows that �4 = 0 throughout. This simply reflects the one degree
of redundancy in the parameter set {r1, r2, s1, s2}. This was removed in the above
calculations by the constraint a1 = 1, but the Hessian is free of any constraint.

If this constraint is applied for Y < 3, −H is seen to positive definite. How-
ever, an interesting phenomenon occurs as Y → 3. The Hessian tends to semi-
definiteness, which it attains at Y = 3. For Y → 3, it is not even positive
semi-definite. The interpretation of this is that the stationary point of the log-
likelihood �cond corresponding to a = 1 changes from a maximum when Y < 3
to a saddle point as one passes to Y > 3.

It is also of interest to enquire into the properties of �cond in the vicinity of
its other stationary points, seen to occur in the case Y > 3. This is done in the
following example.

Example 5.2. As an example, set Y = 3.5. This generates the solutions a =
1, 2, 1/2. Table 2 expresses these three solutions in their α, β parameterisations.

As is apparent from the reasoning leading to these three solutions, they are
stationary points of the log-likelihood, but the nature of the stationary points
is unknown at this stage. It is determined by reference to the Hessian matrix.
The negative of this matrix, evaluated at the three respective stationary points,
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TABLE 2

MULTIPLE SOLUTIONS OF ML EQUATIONS.

Value of

Solution a= α1 α2 β1 β2

1 1 1 2.25 2.25
2 1 0.5 5 2.5
0.5 1 2 1.25 2.5

TABLE 3

VALUES OF NEGATIVE HESSIAN MINORS FOR MULTIPLE SOLUTIONS AT Y = 3.5.

Value of �q for solution at

q a = 1 a = 2 a = 0.5

1 +0.889 +0.600 +1.20
2 +0.790 +0.720 +0.720
3 −0.082 +0.104 +0.104
4 0 0 0

is found from (A25)–(A27) to be as follows:

−H (a = 1) =

⎡
⎢⎢⎢⎣

+0.889 0

0 +0.889

−0.049 +0.938

+0.938 −0.049
−0.049 +0.938

+0.938 −0.049

+0.889 0

0 +0.889

⎤
⎥⎥⎥⎦ ,

−H (a = 2) =

⎡
⎢⎢⎢⎣

+0.60 0

0 +1.20

−0.12 +0.72

+0.72 +0.48
−0.12 +0.72

+0.72 +0.48

+0.60 0

0 +1.20

⎤
⎥⎥⎥⎦ ,

−H (a = 0.5) =

⎡
⎢⎢⎢⎣

+1.20 0

0 +0.60

+0.48 +0.72

+0.72 −0.12
+0.48 +0.72

+0.72 −0.12

+1.20 0

0 +0.60

⎤
⎥⎥⎥⎦ .

Table 3 displays the leading principal minors of these matrices, found from
(A25)–(A27), just as in Table 1. Once again, the zero values of �q merely reflect
the one degree of parameter redundancy.

The stationary point of the log-likelihood at a = 1 was already known to be
a saddle point, but the other two stationary points are seen here to be maxima.
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TABLE 4

VALUES OF (PARTIAL) LOG-LIKELIHOOD FOR MULTIPLE SOLUTIONS AT Y = 3.5.

Solution of ML equations Value of partial log-likelihood

a = 1 0.889
a = 2 0.900
a = 0.5 0.900

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4 4.5 5

gol fo tni op yranoit ats ta a fo eulaV
-

doohil ekil

Value of Y

MLE 

MLE 

MLE 

Saddle point 

Point of 
emergence of 

multiple MLEs 

FIGURE 1: Loci of stationary points of �cond with varying Y.

Although the two solutions at a = 2, 0.5 are local maxima, it is conceivable
that they are dominated by the saddle point at a = 1. Table 4 checks this by
tabulating values of the (partial) log-likelihood �cond and finds it not to be the
case. The two solutions at a = 2, 0.5 are global maxima.

The difference between the global maxima of �cond and its value at the saddle
point is very small in this case, raising a question about rounding error, but
further numerical investigation reveals that the difference between maxima and
saddle point grows systematically as Y increases. For example, at Y = 10, the
maximum is 0.61, compared with a value of 0.36 at the saddle point.

Empirically, then, the loci of stationary of �cond with varying Y are as illus-
trated in Figure 1.
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6. CONCLUSION

The MAP estimation equations (3.15) and (3.16) for the Bayesian EDF cross-
classified chain ladder model are implicit equations. In the absence of explicit
solutions, a question arises about the existence and uniqueness of solutions.
Similarly for the non-Bayesian version of this model, whose solution is given
by the same equations with all ψ(α)

k , ψ
(β)

j set to infinity.
Some papers in the literature (e.g. Taylor (2009, 2015)) derive iterative so-

lutions of these systems of equations. This assumes, in effect, that a unique so-
lution exists in the case of each problem considered. These numerical solutions
would be informed by a knowledge of the circumstances in which this assump-
tion holds.

Sections 3 and 4 obtain certain results in this direction. Subject to somemild
regularity conditions, existence always occurs. The results in relation to unique-
ness are clearest for Tweedie error distributions, where a uniqueMAP estimator
exists in the Bayesian model if the Tweedie index p lies in the closed interval
[1, 2].

The corresponding result for the Bayesian model and may be summarised
this way. A unique MLE exists provided that either:

a. the error distribution is sufficiently well-behaved (Tweedie index 1 ≤ p ≤
2 ); or

b. the data array is sufficiently well-behaved (close enough to proportional).

If both of these conditions are breached, i.e. both p > 2 and data array suf-
ficiently non-proportional, then the results of the cited sections do not establish
uniqueness. Indeed, it is shown in Section 5 that multiple solutions can occur in
the non-Bayesian model.

The data array in the example of Section 5 has been deliberately chosen to
be as simple as possible. It contains only four observations, has only one free
variable, and the cross-classified chain ladder model, when applied to it, has
only three free parameters. An “ill-behaved” inverse Gaussian (p = 3) error
distribution is assumed.

One might be forgiven for expecting the likelihood for this array to exhibit
reasonably bland behaviour, not so, however. As mentioned just above, unique-
ness ofMLE is not guaranteed as the single free parameter in the array is varied
to produce increasing non-proportionality. Beyond a critical point for this pa-
rameter, the following occur:

a. the stationary point of the likelihood that was indeed anMLE in the well-
behaved region continues to be a stationary point but becomes a saddle
point instead of an MLE.

b. two new stationary points emerge, coincident with the original one, di-
verging from the original as non-proportionality of the array increases
further, and these stationary points both become MLEs, with equal like-
lihood values, exceeding the likelihood at the saddle point.
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APPENDIX

Proof of Theorem 3.3

Lemma A.1. For the Bayesian EDF cross-classified model, subject to conditions (R1)–(R2),
there exists a (K + J) -dimensional co-ordinate rectangle RK+J

+ , in the positive orthant, with all
boundary planes bounded away from zero and infinity, and within which any MAP estimate of
the parameter set {αk, β j : k = 1, . . . , K; j = 1, . . . , J} must lie.

Proof. Recall the MAP estimation equations (3.15) and (3.16), and consider the first of
these. Divide through by c′(αk), and apply condition (R1), to obtain

∑
j∈R(k)

[
Ykj − αkβ j

]
c′ (β j

)
β j q

(
αk, β j

)
/φkj + [Ak − αk] /ψ

(α)

k = 0, k = 1, . . . , K, (A1)

with
0 < m ≤ q

(
αk, β j

) ≤ M< ∞. (A2)

An implicit solution for αk, β j is given by

αk =
∑

j∈R(k)
Ykj
β j

β2
j c

′ (β j
)
q

(
αk, β j

)
/φkj + Ak/ψ

(α)

k∑
j∈R(k) β

2
j c′ (β j

)
q

(
αk, β j

)
/φkj + 1/ψ(α)

k

, (A3)

β j =
∑

k∈C( j)
Ykj
αk

α2
kc

′ (αk) q
(
β j , αk

)
/φkj + Bj/ψ

(β)

j∑
k∈C( j) α

2
kc′ (αk) q

(
β j , αk

)
/φkj + 1/ψ(β)

j

. (A4)

The proof of the lemma considers four cases.

Case I: Condition (R2)(a) holds. By assumption, 0 < C < αkc′(αk), β j c′(β j ) < C̄ < ∞
for constants C, C̄. It then follows from (A3) that

αk < ψ
(α)

k

∑
j∈R(k)

YkjMC̄/φkj + Ak. (A5)
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Similarly, using (A4),

β j < ψ
(β)

j

∑
k∈C( j)

YkjMC̄/φkj + Bj. (A6)

Substitution of (A6) into (A3) yields

αk >
mC

∑
j∈R(k) Ykj/φkj + Ak/ψ

(α)

k

MC̄
∑

j∈R(k)

[
MC̄ψ

(β)

j

∑
k∈C( j) Ykj/φkj + Bj

]
/φkj + 1/ψ(α)

k

. (A7)

Thus, αk is bounded away from zero and infinity. A similar calculation establishes the
same property for β j .

Case II: Condition (R2)(b) holds. The proof is similar to Case I. This time, it is assumed
that 0 < C < α2

kc
′(αk), β2

j c
′(β j ) < C̄ < ∞ for constants C, C̄. It then follows from (A3) and

(A4) that

αk >
Ak/ψ

(α)

k∑
j∈R(k) MC̄/φkj + 1/ψ(α)

k

, (A8)

β j >
Bj/ψ

(β)

j∑
k∈C( j) MC̄/φkj + 1/ψ(β)

j

. (A9)

Substitution of (A9) into (A3) yields

αk <
MC̄

∑
j∈R(k)

Ykj
φkj

ψ
(β)
j
Bj

[
MC̄

∑
k∈C( j) 1/φkj + 1/ψ(β)

j

]
+ Ak/ψ

(α)

k

mC
∑

j∈R(k) 1/φkj + 1/ψ(α)

k

. (A10)

As in Case I, αk is bounded away from zero and infinity, and a similar calculation estab-
lishes the same property for β j .

Cases III and IV will be proved by contradiction. Let α denote the vector (α1, . . . , αK)

and β the vector (β1, . . . , βJ). Suppose that the statement of the lemma is untrue so that
a sequence of solutions {α(m), β(m),m = 1, 2, . . .} with some component (not necessarily the
same component for different m ) approaching either zero or infinity as m → ∞.

Since the number of components K+ J is finite, there is a sub-sequence for which α
(m)

k →
0 or ∞ or β

(m)

j → 0 or ∞ as m → ∞ with k, j now fixed as m varies. Consider such a

subsequence {β(m)} for which β
(m)

j → 0. There may be more than one such j , and β
(m)

j may
converge to zero at differing rates.However, since there is only a finite number of permutations
of β

(m)

j for fixed m, it is possible to find a sub-subsequence such that the ordering of the
components of β(m) (in ascending order, say) is the same for all m.

With slight abuse of notation, let this sub-subsequence now be denoted simply {β(m)},
and it is meaningful to speak of the subset of values j ∈ {1, . . . , J} for which β

(m)

j → 0

most rapidly, i.e., become negligible relative to all other β
(m)

j , and the ratios of pairs of the

most rapidly decreasing β
(m)

j remain bounded, as m → ∞. This subset will take the form

{1, . . . , j̄}, where β
(m)

j̄
, β

(m)

1 denote the greatest and least of the most rapidly converging β
(m)

j ,

and then β
(m)

j̄
/β

(m)

1 < C for some constant C > 0.
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Case III: Condition (R2)(c)(i) holds. Consider a sequence {β(m)

j1
} → 0, as introduced im-

mediately above. By condition (R2)(c)(i), [β(m)

j1
]2c′(β(m)

j1
) → ∞. Henceforth, the index m will

be omitted for brevity.
Let k be an arbitrary value in C( j1), and note that (A3) expresses αk as a weighted

average of terms Ykj/β j and Ak, with weights β2
j c

′(β j )q(αk, β j )/φkj and 1/ψ(α)

k . These
weights will be dominated by those involving β j → 0. Moreover, for these j ,
αk must be at least O(Ykj/β j(z) ) → ∞, where j(z) is the greatest of those β j → 0. It then
follows that αkc′(αk), α2

kc
′(αk) → 0.

Now consider β j1 , as given by (A4). Since k was arbitrary within C( j1), the summations
asymptotically contribute nothing, and β j1 → Bj1 . This contradicts the assumption that
β j1 → 0, which, therefore, cannot be a valid assumption.

Similar arguments dispose of the alternative assumptions that β j → ∞ or αk → 0 or ∞,
and so the assumption of the falsity of the lemma must itself be false.

Case IV: Condition (R2)(c)(ii) holds. Consider a sequence β j1 → 0, as in Case III, but
now with j1 such as to produce most rapid convergence to zero. By condition (R2)(c)(ii),
β j1c

′(β j1) → ∞, β2
j1
c′(β j1) → 0. Apply these conditions, together with the tail convergence

property of (R2)(c)(ii), to (A3) to obtain αk = O(β j1c
′(β j1)) → ∞ for any k ∈ C( j1). This

implies in turn that αkc′(αk) → 0, α2
kc

′(αk) → ∞.

Now apply these results to calculate β j1 from (A4). The numerator converges to
just Bj1/ψ

(β)

j1
, and so β−1

j1
= O(α2

kc
′(αk)) = O([β j1c

′(β j1)]
2c′(β j1c

′(β j1))). This con-
tradicts condition (R2)(c)(ii), and so the premise of the argument, β j1 → 0, must be
false.

Similar arguments dispose of the alternative assumptions that β j → ∞ or αk → 0 or ∞,
and so the assumption of the falsity of the lemma must itself be false. �

Proof of Theorem 3.3.

Existence is established, by means of an application of the Weierstrass theorem to the poste-
rior likelihood function (2.26) of D. This requires continuity of the likelihood as a function
of the parameter set {αk, β j }, and compactness of the admissible parameter space.

The first of these conditions amounts to continuity of c(= (κ ′)−1
) in (2.20) and (2.21),

and this is implied by the assumption in (E3)(a) that κ is twice differentiable. Compactness is
established in Lemma A.1. �

Proof of Theorem 3.5

The following lemma is the non-Bayesian counterpart of Lemma A.1.

Lemma A.2. The result of Lemma A.1 also holds for the non-Bayesian EDF cross-classified
model of Section 2.2, subject to conditions (R1) and (R2).

Proof.The proof commences as in the proof of LemmaA.1, except that all terms involving
ψ

(α)

k are now absent, so that (A3) and (A4) become

αk =
∑

j∈R(k)
Ykj
β j

β2
j c

′ (β j
)
q

(
αk, β j

)
/φkj∑

j∈R(k) β
2
j c′ (β j

)
q

(
αk, β j

)
/φkj

, (A11)
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FIGURE A1: Sub-rectangle of infinite α′s and zero β ′s.

β j =
∑

k∈C( j)
Ykj
αk

α2
kc

′ (αk) q
(
β j , αk

)
/φkj∑

k∈C( j) α
2
kc′ (αk) q

(
β j , αk

)
/φkj

. (A12)

The same four cases as in the proof of Lemma A.1 are considered.

Case I: Condition (R2)(a) holds. By (A11) and (A12)

αk <

∑
j∈R(k) YkjMC̄/φkj∑
j∈R(k) β jmC/φkj

, (A13)

β j >

∑
k∈C( j) YkjmC/φkj∑
k∈C( j) αkMC̄/φkj

, (A14)

where the constants m,M,C, C̄ are as in the proof of Case I of Lemma A.1.
Suppose that some β j1 → 0. By (A14), this can occur only if αk → ∞ for all k ∈ C( j1).

Select ki ∈ C( j1), and note from (A13) that αki → ∞ only if β j → 0 for all j ∈ R(ki ). This
yields a sub-array of points (ki , jh) for which αki → ∞, β jh → 0. By permutation of rows
and columns, the sub-array may be represented as a sub-rectangle in the top left corner of
the rectangle consisting of K rows and J columns.

The alternate application of (A14) and (A13) may be continued, with each application
possibly adding a row or column to sub-rectangle. At each stage, the sub-rectangle R11 ap-
pears within the full rectangle as illustrated by Figure A1. By condition (A2), there must be
an observation in R12 or R22.

Suppose the former. Then the column containing that observation may be added to
R11. Alternatively suppose that the observation is in R22. By (A3), it must be connected to
observations in R11, and this implies an observation in R12 or R21. Hence, another row or
column can be added to R11.

It follows that R11 will continue to expand until it coincides with the full rectangle. This
means that, if any β j1 → 0, then all β j → 0 and all αk → ∞. But then

∑J
j=1 β j → 0, in

violation of (E3)(c). Hence, all β j → 0 must be bounded away from zero, and then all αk
must be bounded away from infinity. Also by condition (E3)(c), all β j must be bounded away
from infinity, and all αk must be bounded away from zero.
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FIGURE A2: Arrangement of α′s and β ′s.

Case II: Condition (R2)(b) holds. In this case, (A11) and (A12) are replaced by

αk <

∑
j∈R(k)

(
Ykj/β j

)
MC̄/φkj∑

j∈R(k) mC/φkj
, (A15)

β j >

∑
k∈C( j)

(
Ykj/αk

)
mC/φkj∑

k∈C( j) MC̄/φkj
, (A16)

where the constants C, C̄ are now as in the proof of Case II of Lemma A.1.
As in Case I, one commences with the supposition that some β j1 → 0. The proof then

proceeds exactly as in that case.

Case III: Condition (R2)(c)(i) holds. Suppose that some β j1 → 0, with most rapid conver-
gence in the sense used in the proof of LemmaA.1. Then the proof of Case III of Lemma A.1
continues to hold up to the point of demonstrating that αk → ∞ for all k ∈ C( j1). Hence,
after suitable permutation of rows and columns, the full K× J rectangle may be placed in the
form illustrated by Figure A2, where observations in D are confined to the hatched regions.

LetR(k) denote the set of j ∈ R(k) for which β j → 0 with most rapid convergence, and
let R̄(k) the set of j ∈ R(k) for which β j converges to zero less rapidly or not at all. Suppose
that β j = εv j (ε) for j ∈ R(k), and β j = (1 − ε)w j (ε) for j ∈ R̄(k), where v j (.) and w j (.) are
weights (dependent on ε ): v j , w j > 0,

∑
j∈R(k) v j = ∑

j∈R̄(k) w j = 1.
Now suppose that ε → 0, with all v j , w j bounded away from zero. Expand the numerator

of (A11) as follows:

∑
j∈R(k)

Ykj
εv j (ε)

[
εv j (ε)

]2
c′ (εv j (ε)

)
q

(
αk, β j

)
/φkj

+∑
j∈R̄(k) Ykj (1 − ε) w j (ε) c′ ((1 − ε)w j (ε)

)
q

(
αk, β j

)
/φkj

= εc′ (ε)
∑

j∈R(k)
Ykj

φkj v j (ε)
v2
j (ε) c

′ (v j (ε)
)
q

(
αk, β j

)
q

(
v j (ε) , ε

)
+∑

j∈R̄(k) Ykjw j (ε) c′ (w j (ε)
)
(1 − ε) c′ (1 − ε) q

(
αk, β j

)
q

(
w j (ε) , 1 − ε

)
/φkj ,

(A17)

by condition (R1), and where q(., .) is the function introduced in (R1).
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Similarly, the denominator of (A11) may be expressed as

ε2c′ (ε)
∑
j∈R(k)

v2
j (ε) c

′ (v j (ε)
)
q

(
αk, β j

)
q

(
v j (ε) , ε

)
/φkj

+
∑
j∈R̄(k)

w2
j (ε) c

′ (w j (ε)
)
(1 − ε) c′ (1 − ε) q

(
αk, β j

)
q

(
w j (ε) , 1 − ε

)
/φkj . (A18)

Note that the second summations in each of (A17) and (A18) are of order unity, whereas
by condition (R2)(c)(i), ε2c′(ε) → ∞, and therefore, εc′(ε) → ∞ also, but at a lesser rate.
Therefore, substitution of (A17) and (A18) into (A11) allows αk to be expressed in the form

αk = ε−1D(k)
1 (ε)

[
1 + D(k)

2 (ε)

ε2c′ (ε)
+ o

(
1

ε2c′ (ε)

)]−1

, (A19)

where

D(k)
1 (ε) =

∑
j∈R(k)

Ykj
v j (ε)

v2
j (ε) c

′ (v j (ε)
)
q

(
αk, β j

)
q

(
v j (ε) , ε

)
/φkj∑

j∈R(k) v
2
j (ε) c′ (v j (ε)

)
q

(
αk, β j

)
q

(
v j (ε) , ε

)
/φkj

, (A20)

D(k)
2 (ε) =

∑
j∈R̄(k) w

2
j (0) c

′ (w j (0)
)
c′ (1) q

(
αk, β j

)
/φkj∑

j∈R(k) v
2
j (ε) c′ (v j (ε)

)
q

(
αk, β j

)
q

(
v j (ε) , ε

)
/φkj

≥ 0. (A21)

Note that 1/D(k)
1 (ε) is a weighted harmonic mean of the terms v j (ε)/Ykj , j ∈ R(k),

and so
1/D(k)

1 (ε) ≥ min
j∈R(k)

v j (ε) /Ykj = v jk (ε) /Ykjk for some jk ∈ R (k) . (A22)

In the same way as (A11) was represented as (A19), β j , as given by (A12), may be ex-
pressed as a weighted average, over i ∈ C( j), of terms

Yi j
αi

= εYi j
(
1/D(i)

1 (ε)
) [

1 + D(i)
2 (ε)

ε2c′ (ε)
+ o

(
1

ε2c′ (ε)

)]
> εYi j

(
1/D(i)

1 (ε)
)

≥ εYi j
v ji (ε)

Yi ji
.

Set j = ji to obtain
Yi ji
αi

> εv ji (ε) .

As already noted, β ji is a weighted average of these terms over i ∈ C( ji ), and so β ji >

εv ji (ε). But, by definition, β ji = εv ji (ε), creating a contradiction.
This proves that no β j can converge to zero. It is still necessary to consider the possibilities

of β j → ∞, αk → 0, αk → ∞. The first of these cannot occur because of condition (E3)(c).
The second possibility, αk → 0, can also be quickly eliminated. Suppose that this holds

for some k ∈ C( j). Then, by (R2)(c)(i), β j in (A12) is dominated by these k, for which
Ykj/αk → ∞. In this case, β j → ∞, which, as just noted, violates (E3)(c).

For the third possibility, αk → ∞, note that (A11) expresses αk as a weighted average
of terms Ykj/β j . These are all bounded, since β j have been shown to be bounded, and so αk
must be bounded.

Case IV: Condition (R2)(c)(ii) holds. Suppose that some β j1 → 0, with most rapid
convergence in the sense used in the proof of Lemma A.1. Then the proof of Case IV
of Lemma A.1 continues to hold up to the point of demonstrating that αk → ∞, and
αkc′(αk) → 0, α2

kc
′(αk) → ∞ for all k ∈ C( j1).

https://doi.org/10.1017/asb.2016.23 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.23


EXISTENCE AND UNIQUENESS 31

Select k1 ∈ C( j1) and consider any j2 ∈ R(k1). Calculate β j2 by means of (A12). Note
that the denominator includes the term α2

k1
c′(αk1) → ∞, whence β j2 → 0, with the possible

exception of the case where αk2 → 0 for some other k2 ∈ C( j2), for then the numerator
includes the term αk2c

′(αk2) → ∞.
Now, by (A11), the case αk2 → 0 can occur only if β j → ∞ for some j ∈ R(k2), and

this solution for β j would then violate (E3)(c). Thus, it follows that β j2 → 0 for any k1 ∈
C( j1), j2 ∈ R(k1). This yields a sub-array of points (ki , jh) for which αki → ∞, β jh → 0, just
as in Case I.

The proof then proceeds just as in Case I, with alternate applications of (A12) and (A11).
This proves that there cannot exist β j → 0 nor αk → ∞, and, in the process, that there cannot
exist β j → ∞ nor αk → 0. �

The proof of Theorem 3.5 is then exactly as for Theorem 3.3.

Proof of Theorem 4.2

The following derivatives may be calculated, where rk, s j are defined at the commencement
of Section 4.1

∂�cond/∂rk = (
∂�cond/∂αk

)
(∂αk/∂ln αk) = αk∂�cond/∂αk

=
∑
j∈R(k)

[
Ykj c′ (μkj

) − d ′ (μkj
)]

μkj/φkj =
∑
j∈R(k)

μkj
∂�cond

∂μkj
, (A23)

∂�cond/∂s j =
∑
C( j)

μkj
∂�cond

∂μkj
, (A24)

∂2�cond

∂r 2k
=

∑
j∈R(k)

∂

∂μkj

(
μkj

∂�cond

∂μkj

)
∂μkj

∂rk
=

∑
j∈R(k)

μkj
∂

∂μkj

(
μkj

∂�cond

∂μkj

)

=
∑
j∈R(k)

[
μ2
kj

∂2�cond

∂μ2
kj

+ μkj
∂�cond

∂μkj

]
, (A25)

∂2�cond

∂s2j
=

∑
k∈C( j)

[
μ2
kj

∂2�cond

∂μ2
kj

+ μkj
∂�cond

∂μkj

]
, (A26)

∂2�cond

∂rk∂s j
= μ2

kj

∂2�cond

∂μ2
kj

+ μkj
∂�cond

∂μkj
, (A27)

∂�prior

∂rk
= αk

∂�prior

∂αk
= (Ak − αk) d ′ (αk) /ψ

(α)

k , (A28)

∂2�prior

∂r 2k
= αk

∂

∂αk

(
αk

∂�prior

∂αk

)
= αk

[
(Ak − αk) d ′′ (αk) − d ′ (αk)

]
/ψ

(α)

k . (A29)

Similarly
∂2�prior

∂s2j
= β j

[(
Bj − β j

)
d ′′ (β j

) − d ′ (β j
)]

/ψ
(β)

j . (A30)

All other second derivatives of �prior are zero.
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Let v = (v1, . . . , vK)T and w = (w1, . . . , wJ)
T be real-valued vectors, where the upper T

denotes transposition. Let Qcond(v, w) denote the quadratic form associated with theHessian
of �cond, i.e.

Qcond (v, w) =
K∑
k=1

v2
k

∂2�cond

∂r 2k
+

J∑
j=1

w2
j

∂2�cond

∂s2j
+ 2

∑
D

vkw j
∂2�cond

∂rk∂s j

=
∑
D

(
vk + w j

)2 [
μ2
kj

∂2�cond

∂μ2
kj

+ μkj
∂�cond

∂μkj

]
, (A31)

by (A25)–(A27).
The corresponding quadratic form associated with the Hessian of �prior can be calculated

similarly. The prior is given by (2.20), (2.21) and (2.25):

�prior =
K∑
k=1

[c (αk) Ak − d (αk)] /ψ
(α)

k +
J∑
j=1

[
c
(
β j

)
Bj − d

(
β j

)]
/ψ

(β)

j .

Straightforward calculation, taking (3.14) into account, yields

∂�prior

∂rk
= αk

∂�prior

∂αk
= (Ak − αk) d ′ (αk) /ψ

(α)

k , (A32)

∂2�prior

∂r 2k
= αk

∂

∂αk

(
αk

∂�prior

∂αk

)
= αk

[
(Ak − αk) d ′′ (αk) − d ′ (αk)

]
/ψ

(α)

k . (A33)

Similarly
∂2�prior

∂s2j
= β j

[(
Bj − β j

)
d ′′ (β j

) − d ′ (β j
)]

/ψ
(β)

j . (A34)

Proof of Lemma 4.1.

The conditional and prior likelihoods are considered separately.

Conditional likelihood The second summand of the square bracket in (A31) may be inter-
preted by reference to (2.22) and (2.24):

μkj
∂�cond

∂μkj
= [

Ykj c′ (μkj
) − d ′ (μkj

)]
μkj/φkj = φ−1

kj

(
Ykj − μkj

)
d ′ (μkj

)
, (A35)

by (3.14).
From this result, differentiate ∂�cond/∂μkj a second time to obtain:

μ2
kj

∂2�cond

∂μ2
kj

= φ−1
kj

[
μkj

(
Ykj − μkj

)
d ′′ (μkj

) − Ykjd ′ (μkj
)]

. (A36)

By substitution of (A35) and (A36) into (A31)

−Qcond (v, w) = ∑
(k, j)∈D

(
vk + w j

)2 [
μkj d ′ (μkj

) − μkj
(
Ykj − μkj

)
d ′′ (μkj

)]
= ∑

(k, j)∈D

(
vk + w j

)2
μ2
kj d

′′ (μkj
) [

d ′(μkj )
μkj d ′′(μkj )

−
(
Ykj
μkj

− 1
)]

.
(A37)
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It follows that, when (4.3) holds, Qcond(v, w) ≤ 0 for all selections of v, w with equality
if and only if

vk + w j = 0 for all pairs k, j. (A38)

Prior likelihoodThe log-likelihood �prior will be convex upward if and only if all derivatives
∂2�prior/∂r 2k , ∂

2�prior/∂s2j < 0. Consider the first of these requirements. It requires that

(Ak − αk) d ′′ (αk) − d ′ (αk) < 0,

i.e.
Ak
αk

< 1 + d ′ (αk)
αkd ′′ (αk)

if d ′′ (αk) > 0,

or
Ak
αk

> 1 + d ′ (αk)
αkd ′′ (αk)

if d ′′ (αk) < 0. (A39)

Similarly, the requirement that ∂2�prior/∂s2j < 0 is equivalent to

Bk
β j

< 1 + d ′ (β j
)

β j d ′′ (β j
) if d ′′ (β j

)
> 0,

or
Bk
β j

> 1 + d ′ (β j
)

β j d ′′ (β j
) if d ′′ (β j

)
< 0. (A40)

Thus, if all three conditions (4.3), (A39) and (A40) hold, then the log-likelihood
�post(v,w) = �cond(v,w) + �prior(v, w) is strictly convex on RK+J

+ .

Proof of Theorem 4.4

Proof of Lemma 4.3. Recall from the proof of Lemma 4.1 that, when (4.3) holds,
Qcond(v, w) ≤ 0 for all selections of v, w with equality if and only if (A38) holds. Now, for
v = w = 1, Qcond(v,w) is the second derivative of � taken in the direction of vector (v, w).
So second derivatives in all directions are non-positive over R and in fact are strictly negative
except along directions for which (A38) holds.

Consider the interpretation of (A38). It is seen that w j = −v1 for all j and vk = −w1 for
all k. It follows that vk = v1 for all k. Thus, (A38) represents the direction described by a shift
of all rk = ln αk by the same increment, and a shift of all s j = ln β j by an equal and opposite
increment, i.e. μkj = αkβ j .

This shows that the second derivative of �cond is zero in any direction in which all μkj are
invariant. This is obvious from the fact that derivatives of �cond depend on onlyμkj (in fact, by
this reasoning, the first derivative of �cond is also zero in this direction). The second derivative
is strictly negative in any other direction.

By compactness of RK+J
+ , it contains at least one maximum of log-likelihood �cond (just

as in the proof of Theorem 3.3). Moreover, convexity over compact RK+J
+ also guarantees

uniqueness of the values {μkj } at which the maximum occurs.
This maximum will not correspond to a unique point (α1, . . . , αK , β1, . . . , βJ). Suppose

the maximum occurs at αk = α∗
k, β j = β∗

j . Then the same maximum also occurs at αk =
γα∗

k, β j = β∗
j /γ for any γ > 0. However, there is a unique maximum satisfying (E3)(c),

namely γ = ∑J
j=1 β∗

j .
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In summary, when and only when (4.3) holds, RK+J
+ contains a unique point

{μkj } that maximises the log-likelihood �cond, and this corresponds to a unique point
(α1, . . . , αK , β1, . . . , βJ) that satisfies (E3)(c). �

Proof of results in Section 4.2

Proof of Corollary 4.5. It follows from (2.10) that

d ′ (μ) = μ1−p > 0, (A41)

d ′′ (μ) = − (p − 1) μ−p ≤ 0, (A42)

whence (4.1) and (4.2) are immediately converted to (4.4) and (4.5). In addition, condition
(4.3) becomes

Ykj
μkj

≥ p − 2
p − 1

for all μ
kj

≥ μkj ≥ μ̄kj .

A necessary and sufficient condition for this is (4.6). �

Proof of Theorem 4.10

Lemma A.3. Suppose the array D is regular and contains exactly K + J − 1 observations,
subject to the non-Bayesian EDF cross-classified model defined by (E1)–(E3). Then a perfect
fit of model to observations (i.e. Ykj = μkj = αkβ j ) can be achieved, with explicit calculation
of αk, β j . This is the unique MLE.

Proof. Commence by setting β1 = 1. This value will be re-scaled later in accordance with
(E3)(c).

SinceD is regular and contains exactly K+ J−1 observations, it is uniquely its own core.
It is, therefore, possible to select a path γ in �(D) that connects an element of the first column
with an element of the last column of D. The existence of such a path is guaranteed by the
connectedness of �(D). By definition of the edges of the graph, γ consists of a sequence of
edges of the form (Ykj ,Yk, j+1) or (Ykj ,Yk+1, j ).

Consider just the first of these forms, and set

β j+1/β j = Yk, j+1/Ykj. (A43)

For fixed j , the estimator on the right exists for unique k, according to the following
argument. If it were not the case, one could find k1 �= k such that the foursome of observations
Ykj ,Yk, j+1,Yk1 j ,Yk1, j+1 exists. That is, four observations would be concentrated in two rows
and two columns. This would leave only K + J − 5 observations to account for (K − 2) +
(J − 2) = K+J−4 rows and columns, recalling that each row and each columnmust contain
at least one observation.

Assume, without loss of generality, that the four observations named above occur as the
top left 2 × 2 sub-array of D so that D takes the form

⎡
⎣ ∗ ∗

∗ ∗
S

⎤
⎦ ,
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with Sa (K − 2)×(J − 2) sub-array containing at least one observation per row and column.
This requires that all available K + J − 5 observations occur in S, in which case S is not
connected to the top left sub-array, contradicting the regularity of D.

By the above argument, unique values of β j+1/β j can be found explicitly for all j =
1, . . . , J−1. This, together with the initial assumption that β1 = 1, leads to calculation of all
β j , j = 1, . . . , J. These may now be re-scaled in accordance with (E3)(c). The ratios β j+1/β j

are unchanged by this operation.
Now calculate the αk as follows. Select an observation Ykj in row k and calculate

αk = Ykj/β j . (A44)

It remains to prove that this value of αk is independent of the observation Ykj in row k,
and therefore unique. Suppose that there is a second observation Ykj1 in the row. Choose a
path γ in �(D) that connects Ykj and Ykj1 . This path will take the form {Yr1s1 , . . . ,Yrmsm },
where (r1, s1) = (k, j), (rm, sm) = (k, j1) and (ri+1, si+1) = (ri ± 1, si ) or (ri , si + 1).

Now express
Ykj1
Ykj

= Yr2s2
Yr1s1

. . .
Yrmsm

Yrm−1sm−1

. (A45)

Each ratio on the right side of (A45) must take the form αi+1/αi , αi−1/αi or βi+1/βi . The
α ratios will cancel out, and the β ratios include all cases between j and j1 so that (A45)
becomes

Ykj1
Ykj

= β j1

β j
.

Rearranged, this is
Ykj1
β j1

= Ykj
β j

,

which shows that (A45) yields the same value of αk if based on Ykj1 instead of Ykj .
Since this solution is a perfect fit to the data, the associated likelihood assumes its maxi-

mum possible value, and so the solution is unique. �

Remark A.4. The result of Lemma A.3 applies more generally than most results used in the
proof of Theorem 4.10. Although that corollary relates to the Tweedie cross-classified model
with p > 2, Lemma A.3 applies to the more general non-Bayesian EDF cross-classified
model.

Lemma A.5. In the case of a non-Bayesian Tweedie cross-classified model applied to a trape-
zoidal array, and subject to the multiplicative weights φkj = (vkw j )

−1 the following relations
hold:

β
2−p
s+1 ws+1∑s
j=1 β

2−p
j w j

=
∑K−s

k=1 Yk,s+1μ
1−p
k,s+1/φk,s+1∑s

j=1

∑K−s
k=1 Ykjμ

1−p
kj /φkj

, s = 1, 2, . . . , J − 1, (A46)

α
2−p
r+1 vr+1∑r
k=1 α

2−p
k vk

=
∑Jr+1

j=1 Yr+1, jμ
1−p
r+1, j/φr+1, j∑r

k=1

∑Jr+1
j=1 Ykjμ

1−p
kj /φkj

, r = 1, 2, . . . , K − 1. (A47)

where Jk = min(J, K − k+ 1) =maximum value of j for which an observation exists in row k.
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Proof. Ṙecall (3.15) and (3.16) with all ψ(α)

k , ψ
(β)

j set to infinity to obtain the MLE equa-
tions for the non-Bayesian EDF cross-classifiedmodel, reproduced here in a slightlymodified
form: ∑

j∈R(k)

[
Ykj − μkj

]
c′ (μkj

)
μkj/φkj = 0, (A48)

∑
k∈C( j)

[
Ykj − μkj

]
c′ (μkj

)
μkj/φkj = 0. (A49)

The array D is equal to the union of all rows or all columns, and so

∑
(k, j)∈D

[
Ykj − μkj

]
c′ (μkj

)
μkj/φkj =

∑
k

∑
j∈R(k)

[
Ykj − μkj

]
c′ (μkj

)
μkj/φkj

=
∑
j

∑
k∈C( j)

[
Ykj − μkj

]
c′ (μkj

)
μkj/φkj = 0. (A50)

It is evident that, if one deletes any number of complete rows and columns from D, the
sum in (A50) remains zero. If columns beyond the s th, and rows beyond the (K − s) -th, are
deleted, the result is

K−s∑
k=1

s∑
j=1

[
Ykj − μkj

]
c′ (μkj

)
μkj/φkj = 0. (A51)

Now express (A49) for the (s + 1) -th column with explicit summation limits

K−s∑
k=1

[Yk,s+1 − μk,s+1] c′ (μk,s+1
)
μk,s+1/φk,s+1 = 0. (A52)

For the special case of the Tweedie cross-classified model, c(.) is given by (2.9). With this
substitution, with the special form of the weights recognised, and slight rearrangement, (A51)
and (A52) become (for fixed s ):

∑K−s
k=1 Yk,s+1μ

1−p
k,s+1/φk,s+1∑s

j=1

∑K−s
k=1 Ykjμ

1−p
kj /φkj

=
∑K−s

k=1 α
2−p
k β

2−p
s+1 vkws+1∑s

j=1

∑K−s
k=1 α

2−p
k β

2−p
j vkw j

. (A53)

Factorisation occurs in both numerator and denominator on the right side of this equa-
tion, to yield

∑K−s
k=1 Yk,s+1μ

1−p
k,s+1/φk,s+1∑s

j=1

∑K−s
k=1 Ykjμ

1−p
kj /φkj

= β
2−p
s+1 ws+1

∑K−s
k=1 α

2−p
k vk[∑s

j=1 β
2−p
j w j

] [∑K−s
k=1 α

2−p
k vk

] , (A54)

from which (A46) follows. The proof of (A47) is essentially the same with the roles of rows
and columns interchanged. �

LemmaA.6. Consider a trapezoidal arrayD that containsmore than K+J−1 observations. Let
S be a core ofD, and fit to S a non-Bayesian Tweedie cross-classified model Ykj = α∗

kβ
∗
j (= μ∗

kj )

say, subject to the multiplicative weights φkj = (vkw j )
−1. Lemma A.3 guarantees the possibility

of this. Now fit the Tweedie cross-classified model μkj = αkβ j to the entire arrayD, and subject
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to the same multiplicative system of weights. Then, the following relations hold for any s =
1, 2, . . . , Jk − 1:

[ξ (D)]−1

∑s
j=1 β∗

j β
1−p
j w j

β∗
s+1β

1−p
s+1 wJk

≤
∑s

j=1 β
2−p
j w j

β
2−p
s+1 ws+1

≤ ξ (D)

∑s
j=1 β∗

j β
1−p
j w j

β∗
s+1β

1−p
s+1 ws+1

, (A55)

[ξ (D)]−1

∑s
j=1 β∗

j β
1−p
j w j∑s+1

j=1 β∗
j β

1−p
j w j

≤
∑s

j=1 β
2−p
j w j∑s+1

j=1 β
2−p
j w j

≤ ξ (D)

∑s
j=1 β∗

j β
1−p
j w j∑s+1

j=1 β∗
j β

1−p
j w j

. (A56)

Proof. Select an arbitrary Yrs /∈ S, and a path γr, jr :ks ,s from Yr jr to Ykss , as defined in
Section 4.3. It will be assumed that s > jr ; a similar argument deals with the case s < jr . The
path γr, jr :ks ,s involves all the observations appearing in (4.7), and so πr, jr :ks ,s is defined.

By definition of γr, jr :ks ,s in Section 2

Yrs = (
1 + πr, jr :ks ,s

)
Yr jr

∏
ηr, jr :ks ,s

Yri+1si+1

Yri si
. (A57)

The observations Y appearing in the product lie within the core, to which the multiplica-
tive model Ykj = α∗

kβ
∗
j has been applied. It has been shown in the proof of Lemma A.3 that,

in this case, Yri si+1/Yri ,si = β∗
si+1/β

∗
si
or β∗

si−1
/β∗

si
, with si running from jr to s. Thus, (A57)

simplifies to the following:

Yrs = (
1 + πr, jr :ks ,s

)
Yr jr

β∗
s

β∗
jr

= (
1 + πr, jr :ks ,s

)
α∗
r β

∗
s . (A58)

Alternatively, ifYrs ∈ S, then immediatelyYrs = α∗
r β

∗
s , and then (A58) holds if one adopts the

convention πr, jr :ks ,s = 0 for Yr jr ,Ykss ∈ S. With this convention, (A58) holds for all Yrs ∈ D.
By (A46)

∑s
j=1 β

2−p
j w j

β
2−p
s+1 ws+1

=
∑s

j=1

∑K−s
k=1 Ykjμ

1−p
kj /φkj∑K−s

k=1 Yk,s+1μ
1−p
k,s+1/φk,s+1

=
∑s

j=1

∑K−s
k=1

(
1 + πk, jk:kj , j

)
α∗
kβ

∗
j α

1−p
k β

1−p
j vkw j∑K−s

k=1

(
1 + πk, jk:ks+1, s+1

)
α∗
kβ

∗
s+1α

1−p
k β

1−p
s+1 vkws+1

, (A59)

[by (A58)]

≤ ξ (D)

∑s
j=1

∑K−s
k=1 α∗

kβ
∗
j α

1−p
k β

1−p
j vkw j∑K−s

k=1 α∗
kβ

∗
s+1α

1−p
k β

1−p
s+1 vkws+1

,

[by definition of ξ(D) ]

= ξ (D)

[∑K−s
k=1 α∗

kα
1−p
k vk

] [∑s
j=1 β∗

j β
1−p
j w j

]
[∑K−s

k=1 α∗
kα

1−p
k vk

] [
β∗
s+1β

1−p
s+1 ws+1

] = ξ (D)

∑s
j=1 β∗

j β
1−p
j w j

β∗
s+1β

1−p
s+1 ws+1

. (A60)

A parallel argument produces a corresponding inequality in the opposite direction so that
(A55) holds.

https://doi.org/10.1017/asb.2016.23 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.23


38 G. TAYLOR

In order to prove (A56), note that (A46) leads easily to the following relation, correspond-
ing to the reciprocal of (A59) above:

∑s+1
j=1 β

2−p
j w j∑s

j=1 β
2−p
j w j

= 1 + β
2−p
s+1 ws+1∑s
j=1 β

2−p
j w j

=
∑s+1

j=1

∑K−s
k=1 Ykjμ

1−p
kj /φkj∑s

j=1

∑K−s
k=1 Ykjμ

1−p
kj /φkj

. (A61)

An argument may now be applied precisely parallel to that which led from (A59) to (A60),
and (A56) follows. �

Proof of Theorem 4.10.

There are two cases to be considered.

Case I: The array D contains exactly K + J − 1 observations.
Case II: The array D contains more than K + J − 1 observations.

Case I. By Lemma A.3, a unique solution exists, and it is the proportional solution Ykj =
αkβ j . Thus, αk = α∗

k, β j = β∗
j .

As remarked just after (4.9), ξ(D) = 1 in this case. It follows that (4.11) is satisfied.

Case II. This is the case of Lemma A.6, in whose proof (A58) is established. Substitute
this into (A48) to obtain

∑
s∈R(r)

[(
1 + πr, jr :ks ,s

)
α∗
r β

∗
s − αrβs

]
μrsc′ (μrs) /φrs = 0. (A62)

Now substitute (2.9) into (A62), recognise the special case of the weights, φ−1
kj = vkw j ,

and rearrange slightly, to obtain

∑
s∈R(r)

[(
1 + πr, jr :ks ,s

)
β∗
s − αr

α∗
r

βs

]
β1−p
s ws = 0. (A63)

It follows that

αr

α∗
r

=
∑

j∈R(r)

(
1 + πr, jr :ks ,s

)
β∗
j β

1−p
j w j∑

j∈R(r) β
2−p
j w j

,

and then

αrβs

α∗
r β

∗
s

=
∑

j∈R(r)

(
1 + πr, jr :ks ,s

)
β∗
j β

1−p
j w j∑

j∈R(r) β
2−p
j w j

× βs

β∗
s

≤ (1 + π̄)

∑
j∈R(r) β∗

j β
1−p
j w j∑

j∈R(r) β
2−p
j w j

× βs

β∗
s

, (A64)

by definition of π̄ .
For the trapezoidal array under consideration, the maximum value of j for which Ykj

exists in row k is defined in Lemma A.5 as Jk. It will be convenient to re-express (A64) in the
form

αkβs

α∗
kβ

∗
s

≤ (1 + π̄)

[
1 +

∑Jk−1
j=1 β∗

j β
1−p
j w j

β∗
Jk

β
1−p
Jk

wJk

]
/

[
1 +

∑Jk−1
j=1 β

2−p
j w j

β
2−p
Jk

wJk

]
× β∗

Jk

β∗
s

/
βJk

βs
. (A65)
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But Lemma A.6 yields the following for the special case s = Jk − 1:

ξ−1 ≤
∑Jk−1

j=1 β∗
j β

1−p
j w j

β∗
Jk

β
1−p
Jk

wJk

/

∑Jk−1
j=1 β

2−p
j w j

β
2−p
Jk

wJk

≤ ξ, (A66)

where, for brevity, the explicit dependence of ξ on D has been temporarily omitted.
It follows that the ratio of square bracketed terms in (A65) is subject to the same bounds

ξ−1 and ξ (a fortiori), and so (A65), together with the simple extension to a two-sided in-
equality, yields (

1 + π
)
ξ−1

β∗
Jk

β∗
s

/
βJk

βs
≤ αkβs

α∗
kβ

∗
s

≤ (1 + π̄) ξ
β∗
Jk

β∗
s

/
βJk

βs
, (A67)

where, again for brevity, the explicit dependence of π, π̄ on D has been temporarily omitted.
Inequalities can be placed on the ratio that appears on left and right of this result, as

follows. There are three cases to be considered: s < Jk, s = Jk and s > Jk, respectively.

Case II(a): s = Jk In this case (A67) reduces trivially to the following:

(
1 + π

)
ξ−1 ≤ αkβs

α∗
kβ

∗
s

≤ (1 + π̄) ξ. (A68)

Case II(b): s < Jk Commence with the observation that

β
2−p
Jk

wJk

β
2−p
s ws

=
(∑s

j=1 β
2−p
j w j

β
2−p
s ws

) (∑s+1
j=1 β

2−p
j w j∑s

j=1 β
2−p
j w j

)
. . .

(∑Jk−1
j=1 β

2−p
j w j∑Jk−2

j=1 β
2−p
j w j

) (
β
2−p
Jk

wJk∑Jk−1
j=1 β

2−p
j w j

)

=
(
1 +

∑s−1
j=1 β

2−p
j w j

β
2−p
s ws

)(∑s+1
j=1 β

2−p
j w j∑s

j=1 β
2−p
j w j

)
. . .

(∑Jk−1
j=1 β

2−p
j w j∑Jk−2

j=1 β
2−p
j w j

)(
β
2−p
Jk

wJk∑Jk−1
j=1 β

2−p
j w j

)
.

(A69)

All of the ratios on the right are of the form (subject to reciprocation) of the subject
quantities in inequalities (A55) and (A56). It, therefore, follows from these inequalities that

β
2−p
Jk

wJk

β
2−p
s ws

≤ ξ Jk−s
(
1 + ξ

∑s−1
j=1 β∗

j β
1−p
j w j

β∗
s β

1−p
s ws

)(∑s+1
j=1 β∗

j β
1−p
j w j∑s

j=1 β∗
j β

1−p
j w j

)
. . . . . .

(∑Jk−1
j=1 β∗

j β
1−p
j w j∑Jk−2

j=1 β∗
j β

1−p
j w j

)
(

β∗
Jk

β
1−p
Jk

wJk∑Jk−1
j=1 β∗

j β
1−p
j w j

)
≤ ξ Jk−s+1

(
1 +

∑s−1
j=1 β∗

j β
1−p
j w j

β∗
s β

1−p
s ws

) (∑s+1
j=1 β∗

j β
1−p
j w j∑s

j=1 β∗
j β

1−p
j w j

)
. . . . . .

(∑Jk−1
j=1 β∗

j β
1−p
j w j∑Jk−2

j=1 β∗
j β

1−p
j w j

)
(

β∗
Jk

β
1−p
Jk

wJk∑Jk−1
j=1 β∗

j β
1−p
j w j

)
= ξ Jk−s+1 β∗

Jk
β
1−p
Jk

wJk

β∗
s β

1−p
s ws

.

(A70)
Then

βJk

βs
/
β∗
Jk

β∗
s

≤ ξ Jk−s+1.

A lower bound can also be found by the same argument, yielding

ξ−(Jk−s+1) ≤ βJk

βs
/
β∗
Jk

β∗
s

≤ ξ Jk−s+1. (A71)

Substitution of (A71) into (A67) yields

(
1 + π

)
ξ−(Jk−s+2) ≤ αkβs

α∗
kβ

∗
s

≤ (1 + π̄) ξ Jk−s+2. (A72)
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Case II(c): s > Jk The argument runs parallel to that of Case II(b). It commences with
the following relation in place of (A69):

β
2−p
Jk

wJk

β
2−p
s ws

=
(

β
2−p
Jk

wJk∑Jk
j=1 β

2−p
j w j

) ( ∑Jk
j=1 β

2−p
j w j∑Jk+1

j=1 β
2−p
j w j

)
. . .

(∑s−2
j=1 β

2−p
j w j∑s−1

j=1 β
2−p
j w j

) (∑s−1
j=1 β

2−p
j w j

β
2−p
s ws

)
,

and then continues in parallel with Case II(b), leading ultimately to the following result in
place of (A72):

[1 + π (D)] [ξ (D)]−(|Jk−s|+2) ≤ αkβs

α∗
kβ

∗
s

≤ [1 + π̄ (D)] [ξ (D)]|Jk−s|+2 for all k, s. (A73)

Proof of Corollary 4.11

Use (A58) to express Ykj/μ̄kj in the form

Ykj
μ̄kj

=
(
1 + πr, jr :ks ,s

)
α∗
kβ

∗
j

μ̄kj
. (A74)

Now

1 − π ≤ 1 + πr, jr :ks ,s ≤ 1 + π̄ [by definition of π, π̄ ] , (A75)

so that (
1 − π

) α∗
kβ

∗
j

μ̄kj
≤ Ykj

μ̄kj
≤ (1 + π̄)

α∗
kβ

∗
j

μ̄kj
. (A76)

By Theorem 4.10

α∗
kβ

∗
j

(
1 − π

)
ξ−(|Jk− j |+2) ≤ αkβ j ≤ α∗

kβ
∗
j (1 + π̄) ξ |Jk− j |+2, (A77)

so set

μ̄kj = α∗
kβ

∗
j (1 + π̄) ξ |Jk− j |+2, μ

kj
= α∗

kβ
∗
j

(
1 + π

)
ξ−(|Jk− j |+2), (A78)

to convert (A77) to the condition μ
kj

< μkj < μ̄kj required in Theorem 4.4.
Then substitution of (A78) into (A76) yields

1 − π

1 + π̄
ξ−(|Jk− j |+2) ≤ Ykj

μ̄kj
≤ ξ−(|Jk− j |+2).

By definition of ξ in (4.9), the first ratio on the left may be replaced by ξ−1 and, since
1 ≤ Jk, j ≤ J,

ξ−(J+2) ≤ Ykj
μ̄kj

≤ ξ−2. (A79)

If condition (4.12) holds, then combination of it with (A79) yields condition (4.6).
Now under the conditions of Corollary 4.11, those of Corollary 4.6 also hold, in which

case (4.6) is a sufficient condition for a unique MLE of the model parameters. It then follows
that, in the present case, (4.12) is a sufficient condition, and Corollary 4.11 is proved. �
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Proof of Theorem 4.13

The proofs of both Corollaries 4.11 and 4.12 proceed by establishing the necessary convexity
property of the log-likelihood �cond. As was seen in the proof of Lemma 4.3, �cond is strictly
convex except in any direction in which all μkj are invariant, where �cond is also invariant.

It was also shown in the proof of Lemma 4.1 that �prior is strictly convex. Therefore, �post =
�cond + �prior is strictly convex. �
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