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We deal here with a mixed (hyperbolic{elliptic) system of two conservation laws
modelling phase-transition dynamics in solids undergoing phase transformations.
These equations include nonlinear viscosity and capillarity terms. We establish
general results concerning the existence, uniqueness and asymptotic properties of the
corresponding travelling wave solutions. In particular, we determine their behaviour
in the limits of dominant di® usion, dominant dispersion or asymptotically small or
large shock strength. As the viscosity and capillarity parameters tend to zero, the
travelling waves converge to propagating discontinuities, which are either classical
shock waves or supersonic phase boundaries satisfying the Lax and Liu entropy
criteria, or else are undercompressive subsonic phase boundaries. The latter are
uniquely characterized by the so-called kinetic function, whose properties are
investigated in detail here.

1. Introduction

Consider the following system of two conservation laws in one space dimension
arising in nonlinear elastodynamics:

¯ tv ¡ ¯ x ¼ (w) =  ¯ x(b(w) ¯ xv) ¡ ¬ ¯ x(a(w) ¯ x(a(w) ¯ xw));

¯ tw ¡ ¯ xv = 0:

)

(1.1)

Here, v 2 R and w > ¡ 1 represent the velocity and the deformation gradient
of some solid material or ®uid, respectively. The viscosity function b(w) and the

545

c® 2002 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210500001773 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001773


546 N. Bedjaoui and P. G. LeFloch

capillarity function a(w) are assumed to be smooth and bounded below by some
positive constants b0 and a0, respectively,

b(w) > b0 > 0; a(w) > a0 > 0 for all w > ¡ 1: (1.2)

The parameters  ; ¬ > 0 measure the relative strengths of the viscosity and capil-
larity terms in the material.

The stress function ¼ depends on the material under consideration; for materials
undergoing phase transformations, a typical shape is determined by the following
conditions:

w¼ 00(w) > 0 for all w 6= 0; ¼ 0(0) < 0;

lim
w ! ¡1

¼ (w) = ¡ 1; lim
w ! + 1

¼ 0(w) = +1:

)

(1.3)

As a consequence of (1.3), outside some interval (w ¤ ; w ¤ ) de ned by

¼ 0(w¤ ) = ¼ 0(w ¤ ) = 0; with ¡ 1 < w¤ < 0 < w ¤ ;

equation (1.1) forms a hyperbolic system of partial di¬erential equations, having
two real and distinct wave speeds, ¡ c(w) and c(w), where c is the sound speed,
de ned by

c(w) :=
p

¼ 0(w) for all w 2 ( ¡ 1; w ¤ ] [ [w ¤ ; 1):

Throughout, we restrict our attention to values in the hyperbolic region H¡ [ H + ,
where

H¡ = ( ¡ 1; w ¤ ]; H + = [w ¤ ; 1):

Equations (1.1) arise in continuum physics in the following `variational form’,

¯ tv ¡ ¯ x § (w; wx; wxx) =  ¯ x(b(w) ¯ xv);

¯ tw ¡ ¯ xv = 0;

where the stress § is de ned from the following nonlinear internal energy,

e(w; wx) = ° (w) + 1
2 ¬ ¶ (w)w2

x;

where ¶ (w) is a positive function and ° (w) is a smooth function. Precisely, we have

§ (w; wx; wxx) =
¯ e

¯ w
(w; wx) ¡

µ
¯ e

¯ wx
(w; wx)

¶

x

= ° 0(w) + 1
2 ¬ ¶ 0(w)w2

x ¡ ¬ ( ¶ (w)wx)x:

Setting ¼ (w) = ° 0(w) and a(w) =
p

¶ (w) yields exactly the model (1.1) under
consideration.

This paper is the second part of a series (see [3,4]) devoted to travelling solutions
associated with di¬usive-dispersive conservation laws. We search for solutions of
the system (1.1) depending only on the variable y := x ¡ ¶ t for some speed ¶
and connecting two constant states at in nity. Precisely, a travelling wave solution
y 7! (v(y); w(y)) satis es

¶ vy + ¼ (w)y = ¡  (b(w)vy)y + ¬ (a(w)(a(w)wy)y)y;

¶ wy + vy = 0:

)

(1.4)
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It is also required that

vy(y); wy(y); wyy(y) ! 0 when jyj ! 1;

v(y) ! v¡; w(y) ! w¡ when y ! ¡ 1;

v(y) ! v + ; w(y) ! w+ when y ! +1;

9
>=

>;
(1.5)

where v¡, w¡, v + , w + are given constants. To describe the travelling wave solutions,
we set

v0 := v¡; w0 := w¡

and we search for all of the right-hand states (v + ; w + ) that can be attained through
a travelling wave initiating at (v0; w0). By integration of (1.4) over some interval
( ¡ 1; y] and using (1.5), we obtain

¶ (v ¡ v0) + ¼ (w) ¡ ¼ (w0) = ¡  b(w)vy + ¬ a(w)(a(w)wy)y;

¶ (w ¡ w0) + v ¡ v0 = 0:

)

(1.6)

This is a system of second-order ordinary di¬erential equations.
We point out that the shock speed ¶ is determined by the Rankine{Hugoniot

relation

¶ (w ¡ w0) + v ¡ v0 = ¶ (v ¡ v0) + ¼ (w) ¡ ¼ (w0) = 0;

hence

¶ 2 =

8
<

:

¼ (w) ¡ ¼ (w0)

w ¡ w0
if w 6= w0;

¼ 0(w0) if w = w0:

(1.7)

Indeed, this follows immediately by letting y ! 1 in (1.6) and using (1.5). Obvi-
ously, ¶ must be real, which implies that ( ¼ (w) ¡ ¼ (w0))(w ¡ w0) > 0.

Observe that we can eliminate the variable v in (1.6) and derive an equation in
w only,

¡ ¶ 2(w ¡ w0) + ¼ (w) ¡ ¼ (w0) = ¶  b(w)wy + ¬ a(w)(a(w)wy)y: (1.8)

Setting z = a(w)wy, we reformulate (1.8) in the form of a  rst-order system in two
variables w and z,

a(w)wy = z;

¬ a(w)zy = ¡ ¶ 
b(w)

a(w)
z + g(w; ¶ ) ¡ g(w0; ¶ );

9
=

; (1.9)

with a right-hand side given by

g(w; ¶ ) := ¼ (w) ¡ ¶ 2w:

The boundary conditions (1.5) now read

wy(y); zy(y) ! 0 when jyj ! 1;

w(y) ! w¡; z(y) ! 0 when y ! ¡ 1;

w(y) ! w + ; z(y) ! 0 when y ! +1;

9
>=

>;
(1.10)
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Our objective in this paper is to establish general existence and uniqueness results
concerning the travelling wave solutions of (1.9), (1.10) for viscosity and capillarity
functions and stress functions satisfying solely (1.2), (1.3). We are also interested in
investigating their asymptotic behaviour in the viscosity dominant and capillarity
dominant limits.

Recall that the existence of travelling wave solutions was established by Shearer
and Yang [24] in the case of the cubic stress function

¼ (w) = w(w2 ¡ 1) for all w (1.11)

and for constant viscosity and capillarity a(w) := b(w) := 1 for all w. Importantly,
it was observed therein that some of the trajectories of the system do not satisfy
the standard Lax and Liu entropy conditions, and correspond to (undercompressive)
subsonic phase boundaries. By de nition, the propagating discontinuities associated
with such travelling waves have fewer incoming characteristics than observed with
classical compressive waves.

Subsonic propagating phase boundaries (for hyperbolic{elliptic systems), as well
as non-classical undercompressive shock waves (for hyperbolic but non-genuinely
nonlinear systems), have drawn a lot of attention in recent years. For references,
see [1,2,4,13,14,16{18,24{30]. In particular, the importance of the so-called kinetic
relation in characterizing propagating phase transitions was recognized by Abe-
yaratne and Knowles [1, 2] and Truskinovsky [29, 30]. The mathematical formu-
lation of the kinetic relation is due to LeFloch [17]. Hayes and LeFloch [13, 14]
extended the concept of kinetic relation to general (strictly hyperbolic, but not
genuinely nonlinear) systems of conservation laws and determined kinetic functions
numerically [15]. See also [18,19,30] for further background material and references.
Related works can be found in [6{9,11,12,20{23].

Our main results are as follows.

(1) The existence of subsonic phase boundaries and of the corresponding kinetic
function are established by relying on the approach of the authors in [3].

(2) The existence and properties of the classical shocks and supersonic phase
boundaries are also established.

(3) These results provide a description of the shock curve generated by the model
(1.1){(1.3).

(4) Moreover, asymptotic properties of the kinetic function (small speeds, large
amplitude, vanishing viscosity, vanishing capillarity) are determined.

Furthermore, some examples of systems will be studied for which some important
parameters or functions can be determined explicitly. The case when only the vis-
cosity is taken into account is covered by our analysis (by letting ¬ = 0).

An outline of this paper follows. In x 2, we state our main results concerning the
kinetic function (theorem 2.3), the shock curve (theorem 2.4) and the asymptotic
properties (theorem 2.5). In x 3, we prove the main existence results relying on
some of the results in [3]. Section 4 is devoted to asymptotic properties of the
kinetic function. Finally, in x 5, we treat a few examples for which explicit formulae
are available.
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2. Statements of the main results

Throughout the paper, we sometimes  rst disregard the constraint that the speed
de ned in (1.7) be real, and, next, enforce this condition by restricting the interval
of values under consideration. We begin by discussing some general properties of
the solutions of (1.9).

By de nition, an equilibrium point is a pair (w; z) for which the vector  eld in
the right-hand side of (1.9) vanishes. Clearly, z = 0 for such a point and we can
focus on the component w. In view of (1.3), if a left-hand state w0 and a speed ¶
are  xed, there exist at most three equilibria w (including w0 itself) satisfying

g(w; ¶ ) = g(w0; ¶ ): (2.1)

Assume  rst in the presentation that

w0 > w ¤

and that the speed remains in the range where three equilibria exist (precise condi-
tions being introduced below). Denote them by w2, w1 and w0, with the convention
that

¡ 1 < w2 6 w1 6 w0: (2.2)

Observe that one (at most) among the points w2 and w1 may well be in the elliptic
region. We want to study the system (1.9), (1.10) for a  xed left-hand state w0, by
using the speed ¶ or the right-hand states w + = w1 or w + = w2 as parameters.
Throughout this paper, for de niteness, we focus our attention on waves propagat-
ing to the right, that is,

¶ > 0:

We will need some notation concerning the graph of the function ¼ . In view
of (1.3), for any w 6= 0, there exists a unique line passing through the point of the
graph with coordinate w and being tangent to the graph at some other point, whose
coordinate is denoted by ’\(w) 6= w. In other words, we have

¼ 0(’\(w)) =
¼ (w) ¡ ¼ (’\(w))

w ¡ ’\(w)
for all w 6= 0; w > ¡ 1: (2.3)

Note that w’\(w) < 0 and, by continuity, ’\(0) = 0. Thanks to (1.3), the map
’\ : ( ¡ 1; 1) ! ( ¡ 1; 1) is monotone decreasing and onto, and so is invertible. Its
inverse function, denoted by ’¡\, satis es

¼ 0(w) =
¼ (w) ¡ ¼ (’¡\(w))

w ¡ ’¡\(w)
for all w 6= 0; w > ¡ 1: (2.4)

For each w0 > ¡ 1, we also set

¶ \(w0) =
q

¼ 0(’\(w0)); ¶ ¡\(w0) =
p

¼ 0(w0):

Loosely speaking, for each  xed w0, these values are lower and upper bounds,
respectively, among all shock speeds ¶ in (1.7). More precisely, this makes sense
only in the intervals where the speeds ¶ \(w0) and ¶ ¡\(w0) are real, i.e. only if
’\(w0) =2 (w ¤ ; w ¤ ) and w0 =2 (w¤ ; w ¤ ), respectively.
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De ning  rst the speed by

¶ = ¶ (w0; w) :=

8
>><

>>:

s
¼ (w) ¡ ¼ (w0)

w ¡ w0
if w 6= w0;

p
¼ 0(w0) if w = w0;

consider then the function

H(w0; w) =

Z w

w0

(g(s; ¶ (w0; w)) ¡ g(w0; ¶ (w0; w))) ds; w; w0 2 ( ¡ 1; 1): (2.5)

Multiplying (1.8) by wy and integrating over R, we obtain the following result.

Lemma 2.1. If there exists a travelling wave solution of (1.9), (1.10) connecting
w¡ = w0 to some w+ = w, then, necessarily,

H(w0; w) > H(w0; w0) = 0;

where the inequality is strict if w 6= w0 and  > 0.

Lemma 2.2. There exists a function ’[
1 : ( ¡ 1; 1) ! ( ¡ 1; 1), strictly monotone

decreasing and onto, such that, for all w0 > 0 (and, similarly, for w0 < 0),

’¡\(w0) 6 ’[
1 (w0) < ’\(w0)

and

H(w0; w) = 0 and w 6= w0 if and only if w = ’[
1 (w0):

Moreover, for all w0 > 0 and all w, we have

H(w0; w) > 0 if and only if ’[
1 (w0) < w < w0:

Geometrically, the function ’[
1 corresponds to the `equal-area’ condition (the

line connecting w0 to w cuts the graph of ¼ in two equal areas). Observe that ’[
1

is its own inverse; indeed, ’[
1 ¯ ’[

1 = id.
Combining the above two lemmas, we deduce, for instance, that if there exists a

travelling wave connecting w0 > w ¤ to w, then

’[
1 (w0) 6 w 6 w0:

Among these travelling waves, some correspond to classical shock waves (w > w ¤ )
and supersonic phase boundaries (w 6 w ¤ ), which satisfy the standard Liu entropy
condition, that is, for which the line connecting w0 to w does not intersect the
graph of ¼ (except, of course, at the end points),

w 2 [’¡\(w0); w0]: (2.6)

On the other hand, by de nition, subsonic phase boundaries satisfy

w 2 [’[
1 (w0); ’¡\(w0)]: (2.7)
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Based on the function ’[
1 , we also de ne a unique function ’]

1 by the two
conditions (here, w0 6= 0)

’]
1 (w0) 6= ’[

1 (w0);
¼ (w0) ¡ ¼ (’]

1 (w0))

w0 ¡ ’]
1 (w0)

=
¼ (w0) ¡ ¼ (’[

1 (w0))

w0 ¡ ’[
1 (w0)

:

Let us also set ¶ 1 (0) = 0 and, for w0 6= 0,

¶ 1 (w0) =

s
¼ (w0) ¡ ¼ (’[

1 (w0))

w0 ¡ ’[
1 (w0)

(as long an the quantity under the square-root is non-negative), which is the max-
imal admissible speed for the range of right-hand states w comprised between
’]

1 (w0) and ’\(w0), at least. Recall that ¶ \(w0) is a lower bound for the speeds.
To clearly express the constraint that the speed must be real, we introduce the

monotone increasing one-to-one function

~’ : [ ~w ¤ ; w ¤ ] [ [w ¤ ; ~w¤ ] ! [ ~w ¤ ; w¤ ] [ [w ¤ ; ~w ¤ ]

by
w 6= ~’(w); ¼ (w) = ¼ ( ~’(w)) with ~’(w ¤ ) = ~w ¤ and ~’(w ¤ ) = ~w¤ :

In other words, ~’(w) is connected to w by a stationary phase boundary. Observe
that ~’ is its own inverse; indeed, ~’ ¯ ~’ = id. A wave connecting the left-hand state
w0 to some right-hand state w satis es the condition

if w0 2 [w ¤ ; ~w ¤ ); then w =2 ( ~’(w); w ¤ ];

which precisely excludes imaginary speeds. Now, the so-called Maxwell states,
w < 0 < w, are uniquely de ned as the intersection points of the monotone func-
tions ’[

1 and ~’, as follows:

’[
1 (w) = w; ~’(w) = w:

Modulo some trivial rescaling, the travelling trajectories depend only upon the
ratio

¯ :=

p
¬


:

To state our result, for each left-hand state w0, we de ne the 2-shock set generated
by equations (1.9), (1.10) by

S2
¯ (w0) := fw j there is a travelling wave satisfying (1.9), (1.10),

with w¡ = w0 and w + = wg:

When searching for travelling wave solutions, one  rst identi es all of the states
w + = w2 associated with subsonic phase boundaries.

Theorem 2.3 (The kinetic function). Consider the travelling wave solutions of
(1.9), (1.10) under the assumptions (1.2), (1.3) and for a given di® usion-dispersion
ratio ¯ =

p
¬ = 2 [0; 1). There exists a continuous kinetic function

’[
¯ : [w; 1) ! ( ¡ 1; w¤ );
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which satis¯es

’[
1 (w0) < ’[

¯ (w0) 6 ’\(w0) for all w 2 [ ~w ¤ ; 1);

’[
1 (w0) < ’[

¯ (w0) 6 ~’(w0) for all w0 2 [w; ~w ¤ ]:

)

(2.8)

For each right-hand side w 2 [w; 1), there exists a (unique) subsonic phase bound-
ary connecting the left-hand state w0 to the right-hand state ’[

¯ (w0).

The function ’[
¯ completely characterizes the dynamics of the subsonic phase

boundaries. Of course, a kinetic function can also be de ned on the interval ( ¡ 1; w]
with similar properties. In view of theorem 2.3, a function

’]
¯ : [w; 1) ! ( ¡ 1; 1)

can be uniquely characterized by the two conditions

¼ (w0) ¡ ¼ (’]
¯ (w0))

w0 ¡ ’]
¯ (w0)

=
¼ (w0) ¡ ¼ (’[

¯ (w0))

w0 ¡ ’[
¯ (w0)

(2.9 a)

and

’\(w0) 6 ’]
¯ (w0) 6 w0 for w0 > w: (2.9 b)

Observe that (2.8) and (2.9) also imply

’]
¯ (w0) < ’]

1 (w0) 6 w0: (2.10)

Theorem 2.4 (The 2-shock curve). Under the same assumptions as in theorem
2.3, we have (tacitly excluding all states in the elliptic interval (w ¤ ; w ¤ ))

S2
¯ (w0) =

(
f’[

¯ (w0)g [ (’]
¯ (w0); w0] for w0 > w;

[w ¤ ; w0] for w0 2 (w ¤ ; w]:
(2.11)

Theorem 2.5 (Asymptotic properties).

(1) There exists a continuous function

µ\ : ( ¡ 1; ~w ¤ ) [ ( ~w¤ ; +1) ! [0; 1); w0 7! µ\(w0);

such that
’[

¯ (w0) = ’\(w0); provided ¯ µ\(w0) 6 1;

µ\(w0) ! +1 as w0 ! ~w¤ :

)

(2.12)

(2) For each w > w, we have

’[
¯ (w0) ! ’[

1 (w0) as ¯ ! 1:

The function µ\ can also be de ned on the interval ( ¡ 1; ~w ¤ ). The proofs of the
above results will be given in x 3 below. Further asymptotic properties will be
discussed in x 4.
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3. Existence of travelling waves

We will rely on the observation that system (1.9) formally reduces to the (scalar)
model studied in [3], provided the following transformation is applied, in which the
index s refers to the `scalar case’,

¶ =
p

¶ s ; ¶  =  s ; (3.1)

with obvious notation. Indeed, using (3.1), equation (1.8) transforms into

¼ (w) ¡ ¼ (w0) ¡ ¶ s (w ¡ w0) =  s b(w)wy + ¬ a(w)(a(w)wy)y: (3.2)

The existence and properties of the travelling wave solutions of (3.2) were investi-
gated in [3]. However, one source of di¯ culty in applying [3] is the fact that the
di¬usion parameter  s in (3.2) depends on the shock speed ( s = ¶  ). Another new
feature is the fact that the speed ¶ 2 = ¶ s must remain non-negative, a condition
that need not hold in the scalar case.

First of all, without loss of generality, we take

a(w) ² 1:

(Use the change of variable y 7! ¹ (y) with d ¹ = a(w) dy and rede ne the viscosity
accordingly.) By a straightforward rescaling of the travelling wave, we can also
assume that

¬ = 1:

Hence system (1.9) becomes

wy = z;

zy = ¡ ¶  b(w)z + g(w; ¶ ) ¡ g(w0; ¶ ):

)

(3.3)

De ne the function

G(w; w0; ¶ ) :=

Z w

w0

(g(s; ¶ ) ¡ g(w0; ¶ )) ds: (3.4)

Observe that ¯ wG(w; w0; ¶ ) = 0 if and only if (2.1) holds, i.e. if and only if w is
an equilibrium point. Recall that to each w0 and speed ¶ (in some interval) we
associate (see (2.1), (2.2)) two other equilibria w1 and w2.

Lemma 3.1. Given w0 > w ¤ and ¶ > 0 in the interval

¶ 2
(

( ¶ \(w0); ¶ ¡\(w0)) if w0 > ~w ¤ ;

(0; ¶ ¡\(w0)) if w0 2 (w ¤ ; ~w ¤ );
(3.5)

the function J(w) := G(w; w0; ¶ ) satis¯es

J 0(w) < 0 for all w < w2 or w 2 (w1; w0);

J 0(w) > 0 for all w 2 (w2; w1) or w > w0:

Moreover, if

¶ 2
(

( ¶ \(w0); ¶ 1 (w0)) if w0 > ~w ¤ ;

(0; ¶ 1 (w0)) if w0 2 (w; ~w¤ );
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we have
J(w0) = 0 < J(w2) < J(w1):

If ¶ = ¶ 1 (w0), then
J(w0) = J(w2) = 0 < J(w1):

If ¶ 2 ( ¶ 1 (w0); ¶ ¡\(w0)), then

J(w2) < 0 = J(w0) < J(w1):

Observe that the functions G and H are related in the following way:

G(w; w0; ¶ ) = H(w0; w) if and only if ¶ = ¶ (w0; w): (3.6)

In view of lemma 2.1, we must have H(w0; w) > 0 for the existence of a travelling
wave connecting w0 to w. Thus, from lemma 3.1,

if there exists a trajectory connecting w0 to w2,

then ¶ 2
(

[ ¶ \(w0); ¶ 1 (w0)] if w0 > ~w¤ ;

[0; ¶ 1 (w0)] if w0 2 (w; ~w ¤ ):

9
>=

>;
(3.7)

Fix a propagation speed ¶ > 0 and a left-hand state w0 > w ¤ , and search for trajec-
tories connecting w0 to the associated equilibrium w2 introduced in x 2. According
to our earlier discussion in x 2 and to (3.7), we can conclude that

w2 2 [’[
1 (w0); ’\(w0)]; ¶ 2 [ ¶ \(w0); ¶ 1 (w0)] if w0 > ~w ¤ ;

w2 2 [’[
1 (w0); ~’(w0)]; ¶ 2 [0; ¶ 1 (w0)] if w0 2 (w; ~w ¤ );

)

(3.8)

conditions to be assumed throughout this section.
On the other hand, the eigenvalues of system (3.3) at the equilibrium point are

found to be
· = 1

2 ( ¡  ¶ b(w) §
p

 2 ¶ 2b(w)2 + 4(¼ 0(u) ¡ ¶ 2)):

Speci cally (for  6= 0), we set

· (w; ¶ ;  ) = 1
2  ¶ b(w)

µ
¡ 1 ¡

s

1 + 4
¼ 0(w) ¡ ¶ 2

 2 ¶ 2b(w)2

¶
;

· (w; ¶ ;  ) = 1
2  ¶ b(w)

µ
¡ 1 +

s

1 + 4
¼ 0(w) ¡ ¶ 2

 2 ¶ 2b(w)2

¶
:

9
>>>>=

>>>>;

(3.9)

Lemma 3.2 (Equilibrium points). Fix some state w0 and speed ¶ and let w be any
equilibrium point.

If ¼ 0(w) ¡ ¶ 2 > 0, then w is a saddle point having two real eigenvalues, · < 0 < · .
If ¼ 0(w) ¡ ¶ 2 < 0, then Re(· ) and Re(· ) are both negative and w is referred to

as a stable point. Furthermore, if  2 ¶ 2b(w)2 + 4(¼ 0(w) ¡ ¶ 2) > 0, then w corre-
sponds to a stable node with two real negative eigenvalues · < · < 0. Otherwise,
if  2b(w)2 + 4(¼ 0(w) ¡ ¶ 2) > 0, w is a stable spiral with two complex conjugate
eigenvalues with negative real parts.

In view of the transformation (3.1), (3.2) given above, and using the results of
existence of non-classical trajectories derived in [3], we obtain the following result.
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Theorem 3.3 (Existence of subsonic phase boundaries). Given two states w0 > w
and w2 < w¤ , corresponding to a (real) propagation speed ¶ , also satisfying

¶ =

s
¼ (w2) ¡ ¼ (w0)

w2 ¡ w0
2

(
( ¶ \(w0); ¶ 1 (w0)] if w0 > ~w ¤ ;

[0; ¶ 1 (w0)] if w0 2 (w; ~w ¤ );

there is a unique di® usion  =  (w0; w2) > 0 such that w0 can be connected to w2

by a travelling wave solution of (3.3).

Lemma 3.4. De¯ne

¢ = f(w0; w2) 2 H + £ H¡ j w0 > w; w2 satis¯es (3.8)g

and consider the function

¢ 3 (w0; w2) 7!  (w0; w2);

which associates the (unique) value  such that there is a travelling wave connecting
w0 to w2 (theorem 3.3).

Then, for each ¯xed w0 > w,  (w0; w2) is a strictly monotone increasing function
of w2, mapping the interval given by (3.8) onto some interval [0;  \(w0)), where the
upper bound  \(w0) is ¯nite if w0 > ~w¤ , but  \(w0) = 1 if w0 2 (w; ~w ¤ ).

Following the terminology in [3], the value  \(w0) is called the critical di® usion
at w0. Subsonic phase boundaries leaving from w0 exist only when  <  \(w0).

Proof. Based on the transformation (3.1) and with an obvious notation, we have

 s (w0; w2) = ¶ (w0; w2) (w0; w2): (3.10)

Fixing w0 > w, let w2 and w0
2 be two reals in the interval given by (3.8) with

w2 < w0
2, associated with some speeds ¶ and ¶ 0, respectively. Then theorem 3.7

in [3] gives
 s (w0; w2) <  s (w0; w0

2):

On the other hand,
¶ > ¶ 0 > 0;

and so, using (3.10), we conclude that

 (w0; w2) <  (w0; w0
2):

Now, since the functions w2 7!  s (w0; w2) and w2 7! ¶ (w0; w2) are increasing and
decreasing, respectively, and using the boundedness of these functions, we deduce
that  remains in an interval of the form (0;  \(w0)), where  \(w0) is  nite if
w0 > ~w ¤ and  \(w0) = 1 if w0 2 (w; ~w ¤ ).

In view of lemma 3.4, for all  <  \(w0), there exists a unique subsonic travelling
wave of (3.3) connecting w0 to some point w2 = ’[(w0;  ) and associated with a
speed ¶ = ¶ (w0;  ). Equivalently, with the notation (3.1), ¶ s = ¶ s ( s ; w0). The
proof of theorem 2.3 is then completed.

Note also that lemma 3.4 implies immediately statement (1) in theorem 2.5.
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We now discuss the proof of theorem 2.4 decomposed in the two lemmas below.
Given w0 > w ¤ and  > 0, we study the existence of the (classical and supersonic)
travelling waves of (3.3) connecting w¡ = w0 to w + = w1. Recall that the shock
speed ¶ must lie in the interval (3.5).

Lemma 3.5. If w0 > w, then, for each  <  \(w0) and each speed ¶ satisfying
¶ ( ; w0) < ¶ < ¶ ¡\(w0), there exists a travelling wave connecting w¡ = w0 to
w + = w1.

If w0 > ~w ¤ , then, for each  >  \(w0) and each speed ¶ \(w0) 6 ¶ < ¶ ¡\(w0),
there exists a travelling wave connecting w¡ = w0 to w + = w1.

Proof. We  rst treat the case where w0 > w and  <  \(w0). The region
¶ ( ; w0) < ¶ < ¶ ¡\(w0) corresponds to the region ¶ s ( s ; w0) < ¶ s < ¶ ¡\

s (w0). On
the other hand, the parameter  s =  ¶ = 

p
¶ s satis es

 s > 
p

¶ s ( s ; w0) =  s (w0; ’[(w0;  )):

Thus, in view of the monotonicity of the function w0 7!  s (w0; w2) and theorem 5.1
in [3] applied to (3.2), there exists a travelling wave connecting w0 to w1.

Now, if w0 > ~w¤ and  >  \(w0), then, for all ¶ \
s (w0) 6 ¶ s < ¶ ¡\(w0), we have

 s = 
p

¶ s >  \(w0)
p

¶ s >  \(w0)

q
¶ \

s (w0) =  \
s (w0):

Applying again theorem 5.1 in [3], there exists a travelling wave of (1.9), (1.10)
connecting w0 to w1.

Lemma 3.6. If

¶ 2
(

( ¶ \(w0); ¶ (w0;  )) if w0 > ~w0;

(0; ¶ (w0;  )) if w0 2 (w; ~w0);
(3.11)

then there is no travelling wave connecting w¡ = w0 to w+ = w1.

Proof. The proof is similar to the one of the previous lemma. Suppose that
 <  \(w0). Then the interval given by (3.11) corresponds to the interval

¶ s 2
(

( ¶ \
s (w0); ¶ s ( s ; w0)) if w0 > ~w0;

(0; ¶ s ( s ; w0)) if w0 2 (w; ~w0);

and the parameter  s = 
p

¶ s satis es

 s < 
p

¶ s ( s ; w0) =  s (w0; ’[(w0;  )) <  s (w0; w2):

The proof is completed by relying on the monotonicity of the function w2 7!
 s (w0; w2) and on theorem 5.2 in [3] applied to (3.2).

4. Asymptotic properties of the kinetic functions

This section is devoted to deriving various asymptotic properties of the kinetic
function.
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Theorem 4.1. For each  > 0, the kinetic function w0 ! ’[(w0;  ) de¯ned above
on the interval (w; +1) can be extended by continuity up to w0 = w by setting
’[

¯ (w) = w. Moreover, it is di® erentiable at this point and

¯ ’[

¯ w0
(w;  ) =

¼ 0(w)

¼ 0(w)
> 0: (4.1)

Hence the kinetic function is strictly monotone increasing in a neighbourhood
of w0 = w, but is not globally monotone. Indeed, for large values of w, we have
limw0 ! + 1 ’[(w0;  ) = ¡ 1, while ¡ 1 < w = ’[

¯ (w).

Proof. The kinetic function is immediately extended by continuity in view of the
inequalities 0 < ¶ (w0;  ) 6 ¶ 1 (w0), in which ¶ 1 (w0) ! 0 as w0 ! w. Consider
now the implicit relation relating w0 and ’[(w0;  ), that is,

¼ (’[(w0;  )) ¡ ¼ (w0) ¡ ¶ (w0;  )2(’[(w0;  ) ¡ w0) = 0: (4.2)

By di¬erentiating equation (4.2) with respect to w0, we obtain

( ¼ 0(’[(w0;  )) ¡ ¶ (w0;  )2)
¯ ’[

¯ w0
(w0;  )

= ¼ 0(w0) ¡ ¶ (w0;  )2 ¡ 2 ¶ (w0;  )(’[(w0;  ) ¡ w0)
¯ ¶

¯ w0
(w0;  ): (4.3)

On the other hand, the inequalities

¶ (w;  ) = ¶ 1 (w) = 0 6 ¶ (w0;  ) 6 ¶ 1 (w0)

for w0 > w clearly imply that ¯ ¶ =¯ w0(w;  ) is  nite and

0 6 ¯ ¶

¯ w0
(w;  ) 6 ¯ ¶ 1

¯ w0
(w):

By letting w0 ! w in (4.3), we obtain (4.1).

Theorem 4.2.

(1) The critical di® usion is bounded below as follows (for all w0 > w),

 \(w0) > T (w0) :=
1p
2

p
G(’\(w0) ¡ G(w0))

¶ \(w0)(D(w0) ¡ D(’\(w0)))
; (4.4)

where D0(w) = d(w) and G was de¯ned in (3.4).

(2) In particular, suppose, for instance, that ¼ 0(w) ¹ Aw ® ¡1 as w ! +1, ¼ (w) =
o( ¼ 0(w)) as w ! ¡ 1 and d(w) 6 dM , where A and dM are positive constants
and ® > 1. Then we have

lim inf
w0 ! + 1

 \(w0) > 1

2dM

r
® ¡ 1

® + 1
: (4.5)

Proof. We will rely on equation (1.9) written in the phase plane (w; z),

z(w)
dz

dw
(w) = ¡ ¶ \(w0) \(w0)d(w)z(w) + g(w; ¶ \(w0)) ¡ g(w0; ¶ \(w0)): (4.6)
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We  x some values w0 > w and  =  \(w0) and consider the trajectory
z = z(w) connecting w0 to w2 = ’\(w0). The maximal negative value of the function
w ! z(w) is achieved at some point w3 2 (w2; w0). So we have

z3 := z(w3) = ¡ max
w

jz(w)j:

Integrating (4.6) over the interval [w2; w3], we get

1
2z2

3 ¡ ¶ \(w0) \(w0)

Z w3

w2

jz(w)jd(w) dw = G(w3) ¡ G(w2):

Since G(w3) ¡ G(w2) 6 0, we deduce that

1
2
z2

3 6 ¶ \(w0) \(w0)jz3j(D(w3) ¡ D(w2))

6 ¶ \(w0) \(w0)jz3j(D(w0) ¡ D(w2)): (4.7)

In other words, we have the following upper bound for the maximal value z¤ :

jz3j 6 2 ¶ \(w0) \(w0)(D(w0) ¡ D(w2)): (4.8)

Next we integrate (4.5) again, but now on the interval [w2; w0],

0 6 G(w2) ¡ G(w0)

= ¶ \(w0) \(w0)

Z w0

w2

jz(w)jd(w) dw (4.9)

6 ¶ \(w0) \(w0)jz3j(D(w0) ¡ D(w2)): (4.10)

Combining (4.8) and (4.10), we conclude that

 \(w0) > T (w0);

which establishes the  rst item of the theorem.
To prove the second claim, we observe that

2T (w0)2 > 1

¼ 0(w2)d2
M(w0 ¡ w2)2

Z w0

w2

( ¼ (w0) + ¼ 0(w2)(w ¡ w0) ¡ ¼ (w)) dw: (4.11)

On the other hand, w0 and w2 = ’\(w0), by de nition, are related by

¼ (w2) ¡ ¼ (w0) ¡ ¼ 0(w2)(w2 ¡ w0) = 0: (4.12)

When w0 ! +1, we also have w2 = ’\(w0) ! ¡ 1. By contradiction, if ¼ (w2) and
¼ 0(w2) remain bounded, then (4.12) would imply ¼ (w0) ¹ cw0, which contradicts
our assumption that ¼ 0(w0) ¹ Aw ® ¡1 with ® > 1. Therefore, for all w0 large enough,
we deduce from (4.12) that

¼ 0(w2) ¹ ¼ (w0)

w0
¹ A

®
w ® ¡1

0 : (4.13)

We now estimate the right-hand side of (4.11),
Z w0

w2

( ¼ (w0)+ ¼ 0(w2)(w ¡ w0) ¡ ¼ (w)) dw >
Z w0

0

( ¼ (w0)+ ¼ 0(w2)(w ¡ w0) ¡ ¼ (w)) dw:

(4.14)
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By using (4.13) and the behaviour of ¼ when w ! +1, we get
Z w0

0

( ¼ (w0) + ¼ 0(w2)(w ¡ w0) ¡ ¼ (w)) dw

¹ ¼ (w0)w0 ¡ 1
2 ¼ 0(w2)w2

0 ¡ A
w ® + 1

0

( ® + 1)(® )

¹ ( ® ¡ 1)Aw ® + 1
0

2 ® ( ® + 1)
: (4.15)

Finally, combining (4.15), (4.14), (4.13) and (4.4), we obtain (4.5).

Corollary 4.3. Under the asymptotic assumptions made in theorem 4.2, there
exists a constant C > 0 such that, for all  6 C and for all w0 > w, there
is a (unique) subsonic phase boundary connecting w0 to some right-hand state
w2 = ’[(w0;  ).

5. Examples of kinetic functions

This section focuses on a class of polynomial stress-functions (see (5.1) below). On
one hand, in theorem 5.1, the critical di¬usion introduced in our analysis in x 3
is determined explicitly. On the other hand, in the cubic case, following Shearer
and Yang [24], we explicitly compute the kinetic function. We reformulate Shearer
and Yang’s result in a convenient form by relying on the framework introduced
in x 2. For simplicity, the condition limw ! ¡1 ¼ (w) = ¡ 1 is no longer imposed and
problem (1.9), (1.10) is considered on the real line, that is, w 2 R.

Consider the polynomial stress function

¼ k;® (w) = wjwj® ¡1 ¡ k2w; ® > 1; k > 0: (5.1)

It satis es the scaling property

¼ 0;® (tw) = t ® ¼ 0;® (w); t > 0; (5.2)

which is the key to proving the following result.

Theorem 5.1. Consider the stress function (4.1) and constant di® usion and dis-
persion a(w) = b(w) ² 1. Then the corresponding critical di® usion  \

k;® (w0) (for
w0 > ~w ¤ ) is given by

 \
k;® (w0) = C ®

w
( ® ¡1)=2
0p

® (D ® w0) ® ¡1 ¡ k2
; (5.3)

where C ® and D ® are positive constants depending on ® only. In particular, D ® is
the positive solution D of

( ® ¡ 1)D ® + ® D ® ¡1 ¡ 1 = 0:

For instance, theorem 5.1 implies that, for all

 >
C®q

® D ®
( ® ¡1)

;
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model (1.9) admits no subsonic phase boundaries leaving from w0 2 ( ¡\
k;® ( ); +1),

where  ¡\
k;® is the inverse function of  \

k;® ,

 ¡\
k;® ( ) =

µ
k2 2

® D ®
( ® ¡1) 2 ¡ C2

®

¶1=( ® ¡1)

:

Proof. Given the function ¼ k;® and w0 > ~w¤ , one sees easily that w2 = ’\(w0) is
independent of k. We want to determine the viscosity  =  \

k;® (w0) for which w0

can be connected to w2 = ’[(w0). Rewrite equation (1.8) in the form

¡ ¼ 0
k;® (w2)(w ¡ w0) + ¼ k;® (w) ¡ ¼ k;® (w0) = ¶ \

k;® (w0) \
k;® (w0)wy + ¬ wyy : (5.4)

For ® > 1  xed, we set
 \

k = ¶ \
k;® (w0) \

k;® (w0); (5.5)

so that
¡ ¼ 0

k;® (w2)(w ¡ w0) + ¼ k;® (w) ¡ ¼ k;® (w0) =  \
kwy + ¬ wyy : (5.6)

Our main observation is that for all w 2 R

¡ ¼ 0
k;® (w2)(w ¡ w0)+ ¼ k;® (w) ¡ ¼ k;® (w0) = ¡ ¼ 0

0;® (w2)(w ¡ w0)+ ¼ 0;® (w) ¡ ¼ 0;® (w0);

which, in view of (5.6), implies

 \
k =  \

0: (5.7)

Consider now the transformation w 7! ~w = w=w0 and set ¼ = ¼ 0;® . In view of
the scaling property (5.2), we have

¼ (w) = w ®
0 ¼ ( ~w);

and (5.6) becomes

¡ ¼ 0( ~w2)( ~w ¡ 1) + ¼ ( ~w) ¡ ¼ (1) = w1¡ ®
0 ( \

k ~wy + ¬ ~wyy): (5.8)

By the transformation y 7! ¹ := yw
( ® ¡1)=2
0 , the last equation becomes

¡ ¼ 0( ~w2)( ~w ¡ 1) + ¼ ( ~w) ¡ ¼ (1) =  \
kw

(1¡ ® )=2
0 ~w ¹ + ¬ ~w ¹ ¹ : (5.9)

On the other hand, the parameter ~w2 = w2=w0 = ’[(w0)=w0 is a negative con-
stant independent of w0; it is the (unique) negative solution of

jxj ® + 1

jxj + 1
= ® jxj ® ¡1: (5.10)

We deduce that  \
kw

(1¡ ® )=2
0 is a constant C® independent of w0, i.e.

 \
k = C® w

( ® ¡1)=2
0 : (5.11)

Finally, using (5.5), (5.7), (5.11) and the expression of ¼ 0
k;® (w2), we obtain (5.3).

Consider next the case ® = 3 and k = 1 of the cubic function

¼ (w) = w(w2 ¡ 1):
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From the de nitions in x 2, we  nd

¡ w ¤ = w ¤ =
1p
3

; ~w ¤ = ¡ ~w¤ =
2p
3

; ¡ w = w = 1:

We also consider the following functions (de ned on the intervals of interest only):

’\(w) = ¡ 1
2
w if w 2 ( ¡ 1; ¡ 2=

p
3] [ [2=

p
3; +1);

~’(w) = ¡ 1
2(w +

p
4 ¡ 3w2) if w 2 ( ¡ 2=

p
3; ¡ 1) [ (1; 2=

p
3):

We also have

¶ \(w) =
q

3
4w2 ¡ 1 for w 2 ( ¡ 1; ¡ 2;

p
3] [ [2=

p
3; +1);

¶ ¡\(w) =
p

3w2 ¡ 1; ’¡\(w) = ¡ 2w

and
’[

1 (w) = ¡ w; ’]
1 (w) = 0; ¶ 1 (w) =

p
w2 ¡ 1:

First, we exclude the area 0 6 w0 < 1 for which the condition

¶ \(w0) =
q

3
4 w2

0 ¡ 1 < ¶ <
q

w2
0 ¡ 1 = ¶ 1 (w0)

is impossible.
For w0 > 1 and ¶ such that

q
3
4 w2

0 ¡ 1 < ¶ <

q
w2

0 ¡ 1;

there exist exactly two solutions w2 < w1 6 0 (plus w0) of the cubic equation

¶ 2 =
¼ (w) ¡ ¼ (w0)

w ¡ w0
= w2 + w0w + w2

0 ¡ 1;

given explicitly by

w1 = 1
2

³
¡ w0 +

q
4 ¶ 2 ¡ 3w2

0 + 4
´

; w2 = ¡ 1
2

³
w0 +

q
4 ¶ 2 ¡ 3w2

0 + 4
´

: (5.12)

To derive the kinetic function, we start from the equation in the phase plane
(w; z),

¬ z(w)
dz

dw
(w) +  ¶ z(w) = (w ¡ w0)(w ¡ w1)(w ¡ w2): (5.13)

(This is possible from the monotonicity of the non-classical travelling waves, estab-
lished in [3].) For simplicity in the notation, we take ¬ = 1. Then, following [24],
the travelling wave is sought in the (parabolic) form z(w) = M (w ¡ w0)(w ¡ w2).
After some simpli cation, we see that, necessarily, M = 1=

p
2 and

 ¶ = M (w0 + w2) ¡ w1

M
= ¡

µ
M +

1

M

¶
w1 = ¡ 3p

2
w1:

Using the expressions (5.12) for w1 and w2, we arrive at an explicit relation between
the di¬usion, the left-hand state and the shock speed,

 =  (w0; ¶ ) :=
3

2
p

2 ¶

³
w0 ¡

q
4¶ 2 ¡ 3w2

0 + 4
´

; (5.14)
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which is relevant as long as

¶ [(w0)2 = 3
4w2

0 ¡ 1 6 ¶ 2 < w2
0 ¡ 1 = ¶ 1 (w0)2: (5.15)

One can also express the shock speed ¶ in term of the left- and right-hand states.
Using (5.12) in (5.14), the di¬usion is expressed as a function of w0 and w2,

 :=  (w0; w2) :=
3

2
p

2

w0 ¡
p

4w2
2 + 4w0w2 + w2

0p
w2

0 + w0w2 + w2
2 ¡ 1

: (5.16)

This represents the di¬usion for which two given states can be connected by a
subsonic phase boundary.

To describe the kinetic function, we  x some di¬usion (recall that the capillarity
has been normalized to be 1) and we distinguish between two regimes.

First of all, considering equation (5.14), the range of  (for which a subsonic
phase boundary exists) is determined by letting the speed ¶ vary in the relevant
interval given by (5.15). Precisely, we  nd that

0 6  <  \(w0) :=

(
3w0=

p
2(3w2

0 ¡ 4) if w0 > 2=
p

3;

+1 if 1 < w0 < 2=
p

3:
(5.17)

On the other hand, for   xed in the range (5.17), we can inverse the relation (5.14)
and obtain the quadratic equation

(9 ¡ 2 2) ¶ 2 + 3
p

2 w0 ¶ ¡ 9(w2
0 ¡ 1) = 0;

and so

¶ = ¶ (w0;  ) :=

8
><

>:

¡ 3p
2

 w0 ¡
p

(18 ¡ 3 2)w2
0 + 4 2 ¡ 18

9 ¡ 2 2
if  2 6= 9

2
;

w0 ¡ 1=w0 if  2 = 9
2
:

(5.18)

Using that w0 + w1 + w2 = 0, we also obtain

w2 = ¡ w0 ¡ w1 = ¡ w0 + 1
3

p
2 ¶ :

Finally, in the case  2 6= 9
2 , the kinetic relation is found to be

’[(w0;  ) :=
w0(9 ¡  2) ¡ 

p
(18 ¡ 3 2)w2

0 + 4 2 ¡ 18

2 2 ¡ 9

when

8
><

>:
1 < w0 <

2
p

2p
6 2 ¡ 9

if  2 > 3
2 ;

w0 > 1 if  2 6 3
2
:

(5.19)

Now, if  2 = 9
2 , we  nd that

’[(w0; 9
2) := ¡ 1

w0
when 1 < w0 <

p
2: (5.190)

Second, for values of the di¬usion parameter for which (5.17) does not hold,
there is actually a connection between w0 and w2 = w1 = ¡ 1

2 w0 (see [24] and the
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discussion on classical trajectories in x 3). In this case, the kinetic function is trivial,

’[(w0;  ) = ¡ 1
2
w0 when  2 > 3

2
and w0 > 2

p
2p

6 2 ¡ 9
: (5.20)

Note that for all  xed  > 3
2 , the extension of the kinetic function de ned

by (5.20) is continuous, but there is a discontinuity in its derivative at the point

w0 =
2
p

2p
6 2 ¡ 9

:

Indeed, a simple calculation using the expression of ’[ given by (5.19) and (5.20)
shows that, for  2 6= 9

2 , the continuity of ¯ w0 ’[ would be equivalent to

4 4 ¡ 24 2 + 27 = 0;

which has two solutions,  2 = 9
2 and  2 = 3

2 , both outside the interval under
consideration.

In the case  2 = 9
2 , by using (5.190) and (5.20), we get

lim
w0 !

p
2

¡
¯ w0 ’[(w0;  ) = 1

2 ;

which is di¬erent from
lim

w0 !
p

2
+

¯ w0 ’[(w0;  ) = ¡ 1
2 :

On the other hand, observe that the kinetic function (5.19), (5.20) is de ned on
the whole interval w0 > 1. Also note that, by continuity, thanks to (5.15), we can
take, for all  xed  > 0, ’[(1;  ) = ¡ 1.

Now, in all the cases, one easily checks that

¯ w0 ’[(1;  ) = 1 (5.21)

In addition, since ’[(w0;  ) > ¡ 1
2w0, we deduce that ’[(¢;  ) is not monotone.

More precisely, by considering the expressions of ’[ given in (5.19), the equation
¯ w0

’[(w0;  ) = 0 has one solution w0 > 1 at most. Finally, by the arguments given
above, we deduce that the function ’[(¢;  ) is strictly monotone increasing in some
interval of the form (1; ŵ0( )) and strictly monotone decreasing in (ŵ0( ); +1),
where the value ŵ0( ) only depends on  .

Furthermore, we can check directly that, when  ! 1,

’[(w0;  ) !
(

~’(w0) = ¡ 1
2(w +

p
4 ¡ 3w2) if 1 < w0 < 2=

p
3;

’\(w0) = ¡ 1
2 w0 if w0 > 2=

p
3

and
’[(w0;  ) ! ’[

1 (w0) = ¡ w0 when  ! 0:
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