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We prove the existence of positive radial solutions to a class of semipositone
p-Laplacian problems on the exterior of a ball subject to Dirichlet and nonlinear
boundary conditions. Using variational methods we prove the existence of a solution,
and then use a priori estimates to prove the positivity of the solution.
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1. Introduction

We study positive, radial solutions to equations of the form

−∆pu = λK(|x|)f(u), x ∈ Ωe,

u = 0, |x| = r0,

u → 0, |x| → ∞,

⎫⎪⎬
⎪⎭ (1.1)

and
−∆pu = λK(|x|)f(u), x ∈ Ωe,

∂u

∂η
+ c̃(u)u = 0, |x| = r0,

u → 0, |x| → ∞,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.2)

where λ > 0 is a parameter,

∆pw = ∇ · (|∇w|p−2∇w),
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p > 1 is the p-Laplacian, and Ωe = {x ∈ R
N | |x| > r0, r0 > 0, N > p}. We assume

that the reaction term f : [0,∞) → R is a non-decreasing, continuous function such
that

(F1) there exist A, B ∈ (0,∞) and q ∈ (p − 1,∞) such that A(sq − 1) � f(s) �
B(sq + 1) ∀s � 0 (which implies that f is p-superlinear at infinity);

(F2) f(0) < 0 (semipositone); and

(F3) there exists θ > p such that for s sufficiently large, sf(s) > θF (s), where

F (s) =
∫ s

0
f(t) dt.

The weight K : [r0,∞) → (0,∞) is a continuous function such that

(K1) there exists µ ∈ (0, (N − p)/(p − 1)) so that K(r) � 1/rN+µ for r � 1, and

(K2) K(r) is decreasing on [R̃, ∞) for some R̃ � 1.

When analysing (1.2), we further assume that c̃ : [0,∞) → (0,∞) is continuous.
Here ∂u/∂η is the outward normal derivative.

Applying the change of variables ζ = |x| and t = (ζ/r0)(p−N)/(p−1) transforms
(1.1) and (1.2) to the boundary-value problems

−(φp(u′))′ = λh(t)f(u), t ∈ (0, 1),
u(0) = 0 = u(1),

}
(D)

and
−(φp(u′))′ = λh(t)f(u), t ∈ (0, 1),

u(0) = 0,

φp(u′(1)) + c(u(1))φp(u(1)) = 0,

⎫⎪⎬
⎪⎭ (NL)

respectively, where φp(s) = |s|p−2s,

h(t) =
(

p − 1
N − p

r0

)p

t−p(N−1)/(N−p)K(r0t
(1−p)/(N−p)),

and c(s) = (r0(p − 1)/(N − p)c̃(s))p−1.
Conditions (K1) and (K2) imply that

h ∈ L1(0, 1) ∩ C(0, 1] and ĥ = inf
t∈(0,1]

h(t) > 0.

Note that if one assumes that µ � (N −p)/(p−1), then h ∈ C[0, 1] and is a simpler
case to study. Here we allow µ < (N − p)/(p − 1), which may result in h being
singular at t = 0.

Now let

g(s) =
∫ s

0
c(t)φp(t) dt.
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We will assume that c(s) satisfies the growth condition:

(C1) for θ satisfying (F3), we have c(s)sp < θg(s) for s sufficiently large.

By a solution u to problem (D) (or (NL)), we mean a u ∈ C1[0, 1] and φp(u′) ∈
W 1,1(0, 1) satisfying (D) (or (NL)).

We will establish the following results.

Theorem 1.1. Assume that (F1)–(F3) and (K1), (K2) hold. Then (D) has a pos-
itive solution for λ ≈ 0.

Theorem 1.2. Assume that (F1)–(F3), (K1), (K2) and (C1) hold. Then (NL) has
a positive solution for λ ≈ 0.

In order to make use of variational techniques, we extend the functions f and c
to all of R by setting f(s) = f(0) and c(s) = c(−s) for s < 0.

Remark 1.3. Let f(s) = sq − 1 and c(s) = sn + 1, n > 0. Then, choosing θ =
1
2 (n + p + q + 1), f satisfies (F1)–(F3) and c satisfies (C1).

Remark 1.4. Given the extension of f(s) = f(0), s < 0, (F1) implies that

f(s) � B(|s|q + 1) ∀s ∈ R.

Furthermore, we note that (F1) implies that there exists constant A1 > 0 such that

A1(sq+1 − 1) � F (s) ∀s � 0,

and constant B1 > 0 such that

F (s) � B1(|s|q+1 + 1) ∀s ∈ R.

Similarly, if f satisfies (F3), then there exists a constant θ̃ > 0 such that

sf(s) > θF (s) − θ̃ ∀s � 0.

Finally, (C1) combined with the extension c(s) = c(−s), s < 0, implies that there
exists θ̃1 ∈ R such that θ̃1 < θg(s)−c(s)|s|p for all s ∈ R since g is an even function.

For a rich history of the study of existence results for the case of the Laplacian and
the p-Laplacian operator with Dirichlet boundary conditions on bounded domains,
see [2, 4–6, 8–11, 15–17]. In all of these works the authors studied equations of the
form

−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in R
N (including the cases in which Ω is a ball or an

annulus). Assuming that f ∈ C[0,∞), f(0) < 0 and f has p-superlinear growth at
infinity, they discussed the existence of a positive solution for λ ≈ 0. Recently, when
p = 2, Dhanya et al . [13] proved the existence of a positive radial solution when Ω is
the region exterior to a ball. Their study also included the case in which a nonlinear
condition (as in (1.2)) was satisfied on the inner boundary (i.e. the boundary of
the ball). The focus of this paper is to extend this result for all p > 1. In [13], the
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Dhanya et al . used variational methods (the mountain pass theorem) combined with
the properties of the Green function. In the p-Laplacian case (when p 	= 2), the help
of a Green function is unavailable, which necessitates a deeper analysis. Extending
recent ideas from [11] to the case of boundary-value problems with singular weights
as well as to boundary-value problems with nonlinear boundary conditions, we
establish our results in this paper.

In § 2 we recall the mountain pass theorem and an important property (the (S+)
property) of the p-Laplacian operator. In § 3 we prove theorem 1.1 and in § 4 we
prove theorem 1.2.

2. Preliminaries

We will use the mountain pass theorem, as in [3], which is stated below.

Theorem 2.1 (mountain pass theorem). Let X be a Banach space and let J ∈
C1(X; R) satisfy the following:

(I) (Palais–Smale condition) any sequence {un} ⊂ X such that J(un) is bounded
and J ′(un) → 0 as n → ∞ possesses a convergent subsequence,

(II) J(0) = 0,

(III) there exist α, R > 0 such that J(u) � α ∀‖u‖X = R, and

(IV) there exists v ∈ X such that ‖v‖X > R and J(v) < 0.

Furthermore, let

Γ := {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = v},

and
ĉ := inf

γ∈Γ
max

t∈[0,1]
J(γ(t)).

Then ĉ is a critical value of the functional J .

In order to apply the mountain pass theorem, we employ several Banach spaces,
W 1,p

0 (0, 1), C[0, 1], C1[0, 1] and Ls(0, 1), each equipped with the usual norms, ‖·‖1,p,
‖ · ‖∞, ‖ · ‖C1 and ‖ · ‖s, respectively. We also recall that W 1,p(0, 1) is compactly
embedded in C[0, 1], which implies the existence of a constant k > 0 such that
‖u‖∞ � k‖u‖1,p for every u ∈ W 1,p

0 (0, 1) (see [1]).
Finally, we recall the concept of the (S+) condition (see [7]). The proof of the

following proposition can be found in [14].

Proposition 2.2 ((S+) property). Let Ψ : W 1,p(0, 1) → [0,∞) be defined by

Ψ(u) =
1
p

∫ 1

0
|u′|p dx.

Then Ψ ′ exists,

〈Ψ ′(u), v〉 =
∫ 1

0
|u′|p−2u′v′ dx,

and if un ⇀ u and lim supn→∞〈Ψ ′(un), un − u〉 � 0, then un → u strongly in
W 1,p(0, 1).
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3. Proof of theorem 1.1

Let J : W 1,p
0 (0, 1) → R be defined by

J(u) =
1
p

∫ 1

0
(u′)p dx − λ

∫ 1

0
hF (u) dx. (3.1)

The second term in the definition of J is well defined since W 1,p
0 (0, 1) ↪→ C[0, 1]

and ∣∣∣∣λ
∫ 1

0
hF (u) dx

∣∣∣∣ � λ‖h‖1 max
−M1�s�M1

|F (s)|, where M1 = ‖u‖∞.

Furthermore, the map J is continuously differentiable and

〈J ′(u), v〉 =
∫ 1

0
|u′|p−2u′v′ dx − λ

∫ 1

0
hf(u)v dx ∀v ∈ W 1,p

0 (0, 1).

Clearly, the first term of J ′ is well defined. The second term is well defined since
W 1,p

0 (0, 1) ↪→ C[0, 1] and the extended function f ∈ C(R). Indeed, to show that J ′

is a continuous map, let us show that

Lu(v) :=
∫ 1

0
hf(u)v dx

is continuous for any v ∈ W 1,p
0 (0, 1).

Let ε > 0 be given. Since the extended function f is continuous, there exists
δ1 > 0 so that for every t1, t2 ∈ R such that |t2 − t1| < δ1, |f(t2)−f(t1)| < ε/k‖h‖1.
Choose δ = δ1/k so that when ‖u1 − u2‖1,p < δ, we have ‖u1 − u2‖∞ < δ1. Then
for any fixed v ∈ W 1,p

0 (0, 1) with ‖v‖1,p � 1,

|Lu1(v) − Lu2(v)| =
∣∣∣∣
∫ 1

0
h(f(u1) − f(u2))v dx

∣∣∣∣
�

∫ 1

0
h|f(u1) − f(u2)|‖v‖∞ dx

� k

∫ 1

0
h|f(u1) − f(u2)| dx

� k

∫ 1

0
h

ε

k‖h‖1
dx

= ε

for all u1, u2 with ‖u1 − u2‖1,p < δ. Hence,

‖Lu1 − Lu2‖ = sup
‖v‖1,p�1

{|Lu1(v) − Lu2(v)|} � ε.

Therefore, J is C1.
We will first establish the existence of a solution for (D) using the mountain pass

theorem and then prove that the solution thus obtained is positive.

Lemma 3.1. The critical point u ∈ W 1,p
0 (0, 1) of (3.1) is a solution of (D).
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Proof. If u is a critical point of (3.1), then∫ 1

0
φp(u′(s))v′(s) ds = λ

∫ 1

0
h(s)f(u(s))v(s) ds ∀v ∈ C∞

0 [0, 1].

Using integration by parts, we then have,∫ 1

0
(φp(u′(s))′ + λh(s)f(u(s)))v(s) ds = 0 ∀v ∈ C∞

0 [0, 1].

Hence, (φp(u′(x)))′ = −λh(x)f(u(x)) almost everywhere in (0,1). But since f is
continuous, u ∈ C[0, 1] and h ∈ C(0, 1), so (φp(u′(x)))′ = −λh(x)f(u(x)) holds for
every x ∈ (0, 1). Furthermore, since h ∈ L1(0, 1), f is continuous and u ∈ C[0, 1],
we have that (φp(u′))′ ∈ L1(0, 1), i.e. φp(u′) ∈ W 1,1(0, 1).

Let x0 ∈ (0, 1) so that u′(x0) = 0. Then

u′(x) = φ−1
p

(
−λ

∫ x

x0

h(s)f(u(s)) ds

)
.

For x ∈ (0, 1], h is continuous on [x0, x], and therefore, −λ
∫ x

x0
h(s)f(u(s)) ds is also

continuous. Since φ−1
p is also continuous, we find that u′ is continuous.

For x = 0, we have that

lim
x→0+

u′(x) = lim
x→0+

φ−1
p

(
−λ

∫ x

x0

h(s)f(u(s)) ds

)

= φ−1
p

(
−λ

∫ 0

x0

h(s)f(u(s)) ds

)

exists since φ−1
p is a continuous function and h ∈ L1(0, 1). Hence, u ∈ C1[0, 1].

3.1. Existence of a mountain pass solution

In the following theorem, we establish the existence of a mountain pass solution.

Theorem 3.2. Assume that (F1)–(F3) and (K1), (K2) hold. Then, for λ ≈ 0, the
hypotheses of the mountain pass theorem are satisfied, and there exists a solution
uλ to (D).

In order to prove theorem 3.2, we first prove several lemmas. Throughout the
calculations to follow, we let r = 1/(q + 1 − p).

Lemma 3.3. The map J satisfies the Palais–Smale condition (see theorem 2.1(I)).

Proof. First, we wish to show that any sequence {un} satisfying the hypotheses of
theorem 2.1(I) must be bounded. Assume to the contrary that {un} is a sequence
such that J ′(un) → 0, there exists some M > 0 such that |J(un)| < M ∀n � 1,
and ‖un‖1,p → ∞. Then consider the quantity

θJ(un) − 〈J ′(un), un〉
‖un‖1,p

,

https://doi.org/10.1017/S0308210517000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000452


Positive solutions for a p-Laplacian problem 415

where θ > p is chosen as in (F3). Taking the limit as n → ∞, we see that

lim
n→∞

θJ(un) − 〈J ′(un), un〉
‖un‖1,p

= 0,

since J(un) is bounded and J ′(un) → 0. Also, we can write

θJ(un) − 〈J ′(un), un〉 =
(

θ

p
− 1

) ∫ 1

0
(u′

n)p dx

− λ

∫ 1

0
h(θF (un) − f(un)un) dx.

Note that when un � 0, θF (un) − f(un)un � θ̃ and when un < 0,

θF (un) − f(un)un = θunf(0) − f(0)un

= (θ − 1)f(0)un.

Hence,

θJ(un) − 〈J ′(un), un〉

�
(

θ

p
− 1

) ∫ 1

0
(u′

n)p dx − λθ̃‖h‖1 − λ(θ − 1)|f(0)|‖un‖∞‖h‖1

�
(

θ

p
− 1

)
‖un‖p

1,p − λθ̃‖h‖1 − λk(θ − 1)|f(0)|‖un‖1,p‖h‖1.

But by dividing both sides through by ‖un‖1,p and taking a limit as n → ∞, we get
a contradiction. Hence, {un} is bounded in W 1,p

0 (0, 1), and therefore there exists a
subsequence, call it again {un}, that converges weakly in W 1,p

0 (0, 1) and strongly
in C[0, 1].

Since un → u strongly in C[0, 1], we have

lim
n→∞

∫ 1

0
hf(un)(un − u) dx → 0.

Furthermore, since {un} is a Palais–Smale sequence, J ′(un) → 0. Therefore, since
un − u is bounded in W 1,p

0 (0, 1), we obtain

lim
n→∞

〈J ′(un), un − u〉 → 0.

Hence,

〈J ′(un), un − u〉 + λ

∫ 1

0
hf(un)(un − u) dx = 〈Ψ ′(un), un − u〉 → 0.

Therefore, by the (S+) property, un → u strongly in W 1,p
0 (0, 1), and so J satisfies

theorem 2.1(I).

Lemma 3.4. There exists λ̄ > 0 and u ∈ W 1,p
0 (0, 1) such that if λ ∈ (0, λ̄), then

J(u) < 0.
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Proof. Let v1 ∈ W 1,p
0 (0, 1) be such that ‖v1‖1,p = 1, v1(x) > 0 ∀x ∈ (0, 1) (which

implies that v1 ∈ Lq+1(0, 1)), and let c1 = (2/pA1ĥ‖v1‖q+1
q+1)

r. Then, for s = c1λ
−r,

J(sv1) =
1
p

∫ 1

0
((sv1)′)p dx − λ

∫ 1

0
hF (sv1) dx

� sp

p
− λA1

∫ 1

0
h(sq+1vq+1

1 − 1) dx

� sp

p
− λA1s

q+1ĥ‖v1‖q+1
q+1 + λA1‖h‖1

= cp
1

(
λ−rp

p
− λĥA1c

q+1−p
1 λ−r(q+1)‖v1‖q+1

q+1

)
+ λA1‖h‖1. (3.2)

Now, substituting in our choice of c1, we have

J(sv1) � cp
1

(
λ−rp

p
− 2

p
λ1−r(q+1)

)
+ λA1‖h‖1

= cp
1λ

−rp

(
1
p

− 2
p
λ1−r(q+1−p)

)
+ λA1‖h‖1

= −cp
1λ

−rp 1
p

+ λA1‖h‖1

= λ−rp

(
−cp

1

p
+ λ1+rpA1‖h‖1

)
.

Hence, choosing λ̄ < (p‖h‖1A1c
−p
1 )−1/(1+rp), we see that for all λ ∈ (0, λ̄) there

exists s∗ (for example, s∗ = c1(λ̄/2)−r) such that J(u) < 0 for u = s∗v1.

Lemma 3.5. There exist τ ∈ (0, c1) and λ̃ > 0 such that if ‖u‖1,p = τλ−r, then
J(u) � c2(τλ−r)p for all λ ∈ (0, λ̃), where c2 = 1/4p.

Proof. Let ‖u‖1,p = τλ−r, where τ > 0 is to be chosen later. Then

J(u) =
(τλ−r)p

p
− λ

∫ 1

0
hF (u) dx

� (τλ−r)p

p
− λB1

∫ 1

0
h|u|q+1 dx − λB1‖h‖1

� (τλ−r)p

p
− λB1‖h‖1‖u‖q+1

∞ − λB1‖h‖1

� (τλ−r)p

p
− λkq+1B1‖h‖1‖u‖q+1

1,p − λB1‖h‖1

=
(τλ−r)p

p
− λkq+1B1‖h‖1(τλ−r)q+1 − λB1‖h‖1

� λ−rp

(
τp

2p
− λ1+rpB1‖h‖1

)
,

where τ < min{(1/2pB1‖h‖1k
q+1)1/r, c1} has now been chosen. Taking

λ̃ = τp/(1+rp)(4pB1‖h‖1)−1/(1+rp),
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we have
J(u) � c2τ

pλ−rp

for all λ ∈ (0, λ̃), which proves the claim.

3.1.1. Proof of theorem 3.2

We have already established that J ∈ C1(W 1,p
0 (0, 1); R). Observe that J(0) = 0

and by lemmas 3.3–3.5, for λ < min{λ̄, λ̃}, we have satisfied hypotheses (I)–(IV)
of the mountain pass theorem (where we note that the choice τ < c1 in lemma 3.5
is sufficient to ensure that ‖v‖X > R in hypothesis (IV)). Hence, there exists a
solution uλ to (D).

Remark 3.6. To show the simple existence of a mountain pass solution (not nec-
essarily positive) to (D), we may choose ‖u‖1,p sufficiently small and quickly get
the desired result. However, this solution likely has negative values and therefore
does not make sense in the context of problem (1.1) since f(s) is only defined for
s � 0.

3.2. Positivity of solution

Let uλ be the mountain pass solution to (D), as in theorem 3.2. We first establish
two a priori bounds on uλ that are necessary for establishing positivity.

Lemma 3.7. Let uλ be as in theorem 3.2. Then there exist an M0 > 0 and λ̂ > 0
such that

M0λ
−r � ‖uλ‖∞

for all λ ∈ (0, λ̂).

Proof. Recall that

J(uλ) � c2τ
pλ−rp for λ ∈ (0, λ̃),

0 > F̂ := inf
s∈R

F (s) > −∞ and f(s)s � B(|s|q+1 + |s|) ∀s ∈ R.

Letting

λ̂ = min
{(

(p − 1)c2τ
p

p|F̂ |‖h‖1

)1/(1+rp)

, (2B‖h‖1c
−1
2 τ−p)−1/(1+rp), λ̃

}
,

we have that

λ

∫ 1

0
hf(uλ)uλ dx =

∫ 1

0
|u′

λ|p dx

= pJ(uλ) + pλ

∫ 1

0
hF (uλ) dx

� pc2τ
pλ−rp − p|F̂ |‖h‖1λ

� c2τ
pλ−rp (3.3)
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for λ ∈ (0, λ̂). We further note that

c2τ
pλ−rp � λ

∫ 1

0
hf(uλ)uλ dx

� Bλ

∫ 1

0
h(|uλ|q+1 + |uλ|) dx

� Bλ

∫ 1

0
h(‖uλ‖q+1

∞ + ‖uλ‖∞) dx

� Bλ‖h‖1(‖uλ‖q+1
∞ + ‖uλ‖∞),

so that for λ < λ̂ � (2B‖h‖1c
−1
2 τ−p)−1/(1+rp), ‖uλ‖∞ � 1. We also have that

λ

∫ 1

0
hf(uλ)uλ dx � Bλ

∫ 1

0
h(|uλ|q+1 + |uλ|) dx

� Bλ

∫ 1

0
h(‖uλ‖q+1

∞ + ‖uλ‖∞) dx

� 2Bλ‖h‖1‖uλ‖q+1
∞ , (3.4)

since ‖uλ‖∞ � 1. We combine (3.3) and (3.4) and take M0 = (c2τ
p/2B‖h‖1)1/(q+1)

to complete the proof.

Lemma 3.8. Let uλ be as in theorem 3.2. Then there exist c3 > 0 and λ∗ > 0 such
that

‖uλ‖p
1,p � c3λ

−rp

for all λ ∈ (0, λ∗).

Proof. Let Ω+ = {x ∈ [0, 1] | uλ(x) � 0} and Ω− = [0, 1]\Ω+. Since uλ is a critical
point of J , and using remark 1.4,

‖uλ‖p
1,p = pJ(uλ) + pλ

∫
Ω−

hF (uλ) dx + pλ

∫ 1

0
hF (uλ) dx − pλ

∫
Ω−

hF (uλ) dx

� pJ(uλ) + pλ

∫
Ω−

huλf(0) dx + pλ

∫ 1

0
h

(
uλf(uλ)

θ
+

θ̃

θ

)
dx

− pλ

∫
Ω−

h

(
uλf(0)

θ
+

θ̃

θ

)
dx

= pJ(uλ) + pλ

(
1 − 1

θ

) ∫
Ω−

huλf(0) dx − pλ

∫
Ω−

h
θ̃

θ
dx

+
pλ

θ

∫ 1

0
huλf(uλ) dx + pλ

θ̃

θ
‖h‖1

� pJ(uλ) + pλk|f(0)|‖h‖1‖uλ‖1,p +
p

θ
‖uλ‖p

1,p + pλ
θ̃

θ
‖h‖1. (3.5)
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On the other hand, by the mountain pass characterization of uλ,

J(uλ) � max
s�0

{J(sv1)}

� max
s�0

{
sp

p
− λA1s

q+1ĥ‖v1‖q+1
q+1 + λA1‖h‖1

}
, (3.6)

as in (3.2). Let

p(s) :=
sp

p
− λA1s

q+1ĥ‖v1‖q+1
q+1 + λA1‖h‖1,

so that by solving p′(s) = 0 we find that p(s) is maximized when s = K̄λ−r, where

K̄ = (A1(q + 1)ĥ‖v1‖q+1
q+1)

−r.

Hence, if λ � 1, then λ−rp � λ, and therefore

pJ(uλ) + pλ
θ̃

θ
‖h‖1 � K̄pλ−rp − pλA1ĥK̄q+1λ−r(q+1)‖v1‖q+1

q+1 + λp

(
A1 +

θ̃

θ

)
‖h‖1

� K̄pλ−rp − pA1ĥK̄q+1λ−rp‖v1‖q+1
q+1 + λ−rpp

(
A1 +

θ̃

θ

)
‖h‖1

�
(

K̄p − pA1ĥK̄q+1‖v1‖q+1
q+1 + p

(
A1 +

θ̃

θ

)
‖h‖1

)
λ−rp

= c̃3λ
−rp, (3.7)

where

c̃3 = K̄p − pA1ĥK̄q+1‖v1‖q+1
q+1 + p

(
A1 +

θ̃

θ

)
‖h‖1.

By lemma 3.7, if λ < min{λ̂, (k/M0)−1/r}, then

‖uλ‖1,p � 1
k

‖uλ‖∞ � M0

k
λ−r � 1.

From (3.5) and (3.7), we have that

a‖uλ‖p
1,p � bλ‖uλ‖1,p + c̃3λ

−rp

for a = 1 − p/θ > 0 and b = pk|f(0)|‖h‖1 > 0. Since ‖uλ‖1,p � 1,

a‖uλ‖p
1,p � bλ‖uλ‖p

1,p + c̃3λ
−rp.

Hence, if

λ � a

2b
=

θ − p

2θpk|f(0)|‖h‖1
,

then
(a − bλ)‖uλ‖p

1,p � c̃3λ
−rp,

which implies that
1
2a‖uλ‖p

1,p � c̃3λ
−rp.

The lemma is proven taking c3 = 2c̃3/a and

λ∗ = min
{

1, λ̂,

(
k

M0

)−1/r

,
θ − p

2θpk|f(0)|‖h‖1

}
. �
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3.2.1. Proof of theorem 1.1

We prove the theorem by contradiction. Suppose that there exists a sequence
{(λj , uλj )}∞

j=1 ⊂ (0, 1) × C1[0, 1] of mountain pass solutions to (D), as in theo-
rem 3.2, such that λj → 0 and m({x ∈ (0, 1) | uλj (x) � 0}) > 0. Let wj =
uλj

/‖uλj
‖∞. Then we have

−(φp(w′
j))

′ = λjh
f(uλj )

‖uλj
‖p−1

∞
.

By (F1) and lemmas 3.7 and 3.8,

|λjf(uλj )‖uλj ‖1−p
∞ | � λjB(‖uλj ‖q+1−p

∞ + ‖uλj ‖1−p
∞ )

� λjB(k1/r‖uλj ‖
1/r
1,p + M1−p

0 λ−r(1−p))

� λjBc4(λ−1
j + λ

−r(1−p)
j ), (3.8)

where c4 = max{(c3k)1/r, M1−p
0 }. Hence, we observe from (3.8) that

|λjf(uλj )‖uλj
‖1−p

∞ | � Bc4 + Bc4λ
−r(1−p)+1
j

� Bc4 + Bc4λ
q/(q+1−p)
j

� 2Bc4 (3.9)

for λj sufficiently small. Hence, λjf(uλj (x))‖uλj ‖1−p
∞ converges to a limit, z1(x), for

every x ∈ [0, 1]. Furthermore, since λj‖uλj
‖1−p

∞ → 0 as j → ∞, and f is bounded
from below,

z1(x) = lim
j→∞

λjf(uλj (x))‖uλj ‖1−p
∞

� lim
j→∞

−λj |f(0)|‖uλj
‖1−p

∞

= 0.

Therefore,

λjh(x)f(uλj
(x))‖uλj ‖1−p

∞ → h(x)z1(x) =: z(x) ∀x ∈ (0, 1],

and z(x) � 0 ∀x ∈ (0, 1].
Let xj ∈ (0, 1) be a maximum of wj(x). Then

φp(w′
j(x)) =

∫ xj

x

−(φp(w′
j(s)))

′ ds

=
∫ xj

x

λjh(s)f(uλj
(s))‖uλj

‖1−p
∞ ds.

By (3.9), this implies that |φp(w′
j(x))| � 2Bc4‖h‖1 ∀x ∈ [0, 1], and therefore

|w′
j(x)| � (2Bc4‖h‖1)1/(p−1) ∀x ∈ [0, 1]. By the Arzelà–Ascoli theorem, this implies

that there exists w ∈ C[0, 1] such that wj → w in C[0, 1].
Meanwhile, again by (3.9), we have that |λjh(x)f(uλj (x))‖uλj ‖1−p

∞ | � 2Bc4h(x)
∀x ∈ (0, 1]. Since h ∈ L1(0, 1), by the Lebesgue dominated convergence theorem,
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we may choose a subsequence uλj with xj → x0 such that∫ xj

x

λjh(s)f(uλj (s))‖uλj ‖1−p
∞ ds →

∫ x0

x

h(s)z1(s) ds =
∫ x0

x

z(s) ds.

Hence,

φ−1
p

( ∫ xj

x

λjh(s)f(uλj
(s))‖uλj

‖1−p
∞ ds

)
→ φ−1

p

( ∫ x0

x

z(s) ds

)
,

and therefore∫ t

0
φ−1

p

( ∫ xj

x

λjh(s)f
(

uλj (s)
)

‖uλj
‖1−p

∞ ds

)
dx →

∫ t

0
φ−1

p

( ∫ x0

x

z(s) ds

)
dx.

Therefore, we see that wj(t) →
∫ t

0 φ−1
p (

∫ x0

x
z(s) ds) dx = w(t), and hence

w′
j(t) = φ−1

p

( ∫ xj

t

λjh(s)f(uλj
(s))‖uλj

‖1−p
∞ ds

)

→ φ−1
p

( ∫ x0

t

z(s) ds

)
= w′(t)

for all t ∈ [0, 1].
Hence, −(φp(w′))′ = z � 0 with w(0) = 0 = w(1). Since ‖wj‖∞ = 1, w 	≡ 0.

Hence, since w is concave, w > 0 in (0, 1), w′(0) > 0, and w′(1) < 0. Since wj → w
in C1[0, 1], we have wj(x) > 0 for all x ∈ (0, 1) for j sufficiently large. Hence,
uλj (x) > 0 for all x ∈ (0, 1) for j sufficiently large, which implies that m({x ∈
(0, 1); uλj

(x) � 0}) = 0 for all j sufficiently large, which is a contradiction. Hence,
there exists some λ̌ such that (D) has a positive solution for all λ ∈ (0, λ̌).

Remark 3.9. Note that since we now have a positive solution to (D), by reversing
the earlier change of variables, we have a positive radial solution to (1.1) on Ωe.

Remark 3.10. By lemmas 3.7 and 3.8, we have

‖wj‖1,p � c3

M0
,

where we note that c3 and M0 are independent of λ, and therefore independent of j.
In the case in which h ∈ C[0, 1] (that is, µ � (N − p)/(p − 1)), [12, proposition 3.7]
implies that the sequence {wj}∞

j=1 is uniformly bounded in C1,β
0 [0, 1] for some β ∈

(0, 1). We could then conclude that w ∈ C1,β∗
[0, 1] for some β∗ ∈ (0, β). This makes

the proof simpler when h ∈ C[0, 1].

4. Proof of theorem 1.2

We begin by establishing the appropriate variational formulation of the problem.
Let W := {u ∈ W 1,p(0, 1) | u(0) = 0}. Then W is a Banach space with the induced
norm of W 1,p(0, 1). Let E be defined on W as

E(u) = J(u) + g(u(1)), (4.1)
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where J(u) is as before. Once again, the compact embedding of W 1,p(0, 1) into
C[0, 1] implies that E is well defined.

Since we have already established that J is a C1 functional, we need only show
that H(u) := g(u(1)) is C1. Fix u ∈ W so that for any v ∈ W , 〈H ′(u), v〉 =
g′(u(1))v(1). It is clear that the function g(s) as previously defined is continuously
differentiable, and furthermore, since pointwise evaluation is a continuous operation,
we may conclude that H ′(u) is a continuous functional on W . Hence, E(u) is a C1

functional as it is the sum of two C1 functionals.

Proposition 4.1. Let

‖u‖W =
( ∫ 1

0
|u|p dx +

∫ 1

0
|u′|p dx

)1/p

be the norm induced on W as a subspace of W 1,p(0, 1), and let ‖u‖ = (
∫ 1
0 |u′|p dx)1/p

on W . Then ‖ · ‖ is equivalent to ‖ · ‖W on W .

Proof. Let u ∈ W . Then clearly, ‖u‖ � ‖u‖W . Furthermore, applying Jensen’s
inequality, we have ∫ 1

0
|u(x)|p dx =

∫ 1

0

∣∣∣∣
∫ x

0
u′(s) ds

∣∣∣∣
p

dx

�
∫ 1

0

( ∫ x

0
|u′(s)| ds

)p

dx

�
∫ 1

0

( ∫ 1

0
|u′(s)| ds

)p

dx

�
∫ 1

0

∫ 1

0
|u′(s)|p ds dx

=
∫ 1

0
|u′(s)|p ds,

which implies that

‖u‖W =
( ∫ 1

0
|u|p dx +

∫ 1

0
|u′|p dx

)1/p

�
(

2
∫ 1

0
|u′|p dx

)1/p

= 21/p‖u‖.

Hence, ‖ · ‖ is equivalent to ‖ · ‖W on W .

By proposition 4.1, we may continue our analysis using

‖u‖W =
( ∫ 1

0
|u′|p dx

)1/p

.

Lemma 4.2. The critical point u ∈ W of (4.1) is a solution of (NL).

Proof. If u is a critical point of (4.1), then∫ 1

0
φp(u′(s))v′(s) ds + g′(u(1))v(1) = λ

∫ 1

0
h(s)f(u(s))v(s) ds ∀v ∈ C∞

0 [0, 1].
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Using integration by parts and the fact that v(1) = 0, we have that∫ 1

0
(φp(u′(s))′ + λh(s)f(u(s)))v(s) ds = 0 ∀v ∈ C∞

0 [0, 1].

As in the proof of lemma 3.1, we have that (φp(u′(x)))′ = −λh(x)f(u(x)) ∀x ∈
(0, 1), φp(u′) ∈ W 1,1(0, 1), and u ∈ C1[0, 1].

Clearly, u(0) = 0 since u ∈ W . Let C̃ = {v ∈ C∞[0, 1] | v(0) = 0}. Then since
C̃ ⊂ W and u is a critical point of (4.1),∫ 1

0
φ(u′(s))v′(s) ds + g′(u(1))v(1) = λ

∫ 1

0
h(s)f(u(s))v(s) ds ∀v ∈ C̃.

Hence, using integration by parts,

φp(u′(1))v(1) −
∫ 1

0
(φp(u′(s)))′v(s) ds + g′(u(1))v(1)

= λ

∫ 1

0
h(s)f(u(s))v(s) ds ∀v ∈ C̃,

which implies that, for all v ∈ C̃,

(φp(u′(1)) + c(u(1))φp(u(1)))v(1) = φp(u′(1))v(1) + g′(u(1))v(1)

=
∫ 1

0
((φp(u′(s)))′ + λh(s)f(u(s)))v(s) ds

= 0

since (φp(u′(x)))′ + λh(x)f(u(x)) = 0 almost everywhere in (0, 1). Since v(1) is
arbitrary, we may conclude that φp(u′(1)) + c(u(1))φp(u(1)) = 0, and therefore the
boundary conditions are satisfied.

4.1. Existence of a mountain pass solution

Again, our goal will be to establish the existence of a mountain pass solution.

Theorem 4.3. Assume that (F1)–(F3), (K1), (K2) and (C1) hold. Then, for λ ≈
0, the hypotheses of the mountain pass theorem are satisfied and there exists a
solution uλ to (NL).

We again establish several lemmas that will help to prove the theorem.

Lemma 4.4. The map E satisfies the Palais–Smale condition (see theorem 2.1(I)).

Proof. As before, we first wish to show that any sequence {un} satisfying the
hypotheses of theorem 2.1(I) must be bounded. Assume to the contrary that {un}
is a sequence such that E′(un) → 0, there exists some M > 0 such that |E(un)| <
M ∀n � 1, and ‖un‖W → ∞. Then, choosing θ > p satisfying (F3) and (C1), we
note that

lim
n→∞

θE(un) − 〈E′(un), un〉
‖un‖W

= 0.
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Also note that

θE(un) − 〈E′(un), un〉 = (θJ(un) − 〈J ′(un), un〉) + (θg(un(1)) − c(un(1))(un(1))p)

�
(

θ

p
− 1

)
‖un‖p

W − λθ̃‖h‖1

− λk(θ − 1)|f(0)|‖un‖W ‖h‖1 + θ̃1

by combining the earlier estimate on θJ(un) − 〈J ′(un), un〉 with (C1). But this
implies that

0 = lim
n→∞

θE(un) − 〈E′(un), un〉
‖un‖W

� lim
n→∞

(θ/p − 1)‖un‖p
W − λθ̃‖h‖1 − λk(θ − 1)|f(0)|‖un‖W ‖h‖1 + θ̃1

‖un‖W

= ∞,

which is a contradiction. Hence, {un} is bounded in W and therefore contains a
subsequence that converges weakly in W and strongly in C[0, 1].

Since un → u strongly in C[0, 1], we have

lim
n→∞

∫ 1

0
hf(un)(un − u) dx → 0.

Furthermore, since {un} is a Palais–Smale sequence, E′(un) → 0. Therefore, since
un − u is bounded in W , we obtain

lim
n→∞

〈E′(un), un − u〉 → 0.

Finally, we note that

c(un(1)) · φp(un(1)) · (un(1) − u(1)) → 0

since un → u strongly in C[0, 1] implies pointwise convergence and c, φp are both
continuous functions. Hence,

〈E′(un), un − u〉 + λ

∫ 1

0
hf(un)(un − u) dx

−c(un(1)) · φp(un(1)) · (un(1) − u(1)) = 〈Ψ ′(un), un − u〉
→ 0.

Therefore, by the (S+) property, un → u strongly in W , and so E satisfies theo-
rem 2.1(I).

The following two lemmas are analogous to lemmas 3.4 and 3.5 presented in the
Dirichlet case, and rely heavily on the estimates there.

Lemma 4.5. Let u and λ̄ > 0 be as in lemma 3.4. Then, for λ ∈ (0, λ̄), E(u) < 0.

Proof. Choose v1 ∈ W 1,p
0 (0, 1) ⊂ W as in the proof of lemma 3.4. Then E(sv1) =

J(sv1) + g(sv1(1)) = J(sv1) since v1(1) = 0 and g(0) = 0. The conclusion follows
from lemma 3.4.
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Lemma 4.6. Let τ ∈ (0, c1) and let c2, λ̃ > 0 be as in lemma 3.5. Then if ‖u‖W =
τλ−r, E(u) � c2(τλ−r)p for all λ ∈ (0, λ̃).

Proof. Since g(s) � 0 ∀s ∈ R, we have that E(u) � J(u). From lemma 3.5, J(u) �
c2(τλ−r)p for all λ ∈ (0, λ̃). This completes the proof.

4.1.1. Proof of theorem 4.3

Again, E ∈ C1(W 1,p
0 (0, 1), R), E(0) = 0 and, by lemmas 4.4–4.6, for λ <

min{λ̄, λ̃} we have satisfied hypotheses (I)–(IV) of the mountain pass theorem.
Hence, there exists a solution uλ to (NL).

4.2. Positivity of solution

To follow the same argument as in the proof of theorem 1.1, we need two lemmas,
as before.

Lemma 4.7. Let uλ be as in theorem 4.3. For M0 > 0 and λ̂ > 0 as in lemma 3.7,

M0λ
−r � ‖uλ‖∞

for all λ ∈ (0, λ̂).

Proof. Using the same notation as in the proof of lemma 3.7, since uλ is a solution
to (NL) we have that

λ

∫ 1

0
hf(uλ)uλ dx =

∫ 1

0
|u′

λ|p dx + c(uλ(1))φp(uλ(1))uλ(1)

= pJ(uλ) + pλ

∫ 1

0
hF (uλ) dx + c(uλ(1))|uλ(1)|p

� pc2λ
−rp − p|F̂ |‖h‖1λ

� c2λ
−rp (4.2)

for λ ∈ (0, λ̂). The conclusion follows from the argument in the proof of lemma 3.7.

Lemma 4.8. Let uλ be as in theorem 4.3. There exist C3 > 0 and Λ∗ > 0 such that

‖uλ‖p
W � C3λ

−rp

for all λ ∈ (0, Λ∗).

Proof. Since uλ is a critical point of E and using remark 1.4,

‖uλ‖p
W = pE(uλ) + pλ

∫
Ω−

hF (uλ) dx + pλ

∫
Ω+

hF (uλ) dx − pg(uλ(1))

� pE(uλ) + pλ

∫
Ω−

huλf(0) dx + pλ

∫ 1

0
h

(
uλf(uλ)

θ
+

θ̃

θ

)
dx

− pλ

∫
Ω−

h

(
uλf(0)

θ
+

θ̃

θ

)
dx − pg(uλ(1))
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= pE(uλ) + pλ

(
1 − 1

θ

) ∫
Ω−

huλf(0) dx − pλ

∫
Ω−

h
θ̃

θ
dx

+
pλ

θ

∫ 1

0
huλf(uλ) dx + pλ

θ̃

θ
‖h‖1 − pg(uλ(1))

� pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W +
p

θ
‖uλ‖p

W

+
p

θ
c(uλ(1))φp(uλ(1))uλ(1) + pλ

θ̃

θ
‖h‖1 − pg(uλ(1))

= pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W +
p

θ
‖u‖p

W + pλ
θ̃

θ
‖h‖1

+
p

θ
(c(uλ(1))|uλ(1)|p − θg(uλ(1)))

� pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W +
p

θ
‖uλ‖p

W + pλ
θ̃

θ
‖h‖1 − p

θ̃1

θ
. (4.3)

Finally, if we choose λ � (|θ̃1|/M0)−1/rp, then −θ̃1 � M0λ
−rp, so that

‖uλ‖p
W � pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W +

p

θ
‖uλ‖p

W + pλ
θ̃

θ
‖h‖1 − p

θ̃1

θ

� pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W +
p

θ
‖uλ‖p

W + pλ
θ̃

θ
‖h‖1 + p

M0λ
−rp

θ
.

(4.4)

By the mountain pass characterization of uλ,

E(uλ) � max
s�0

{E(sv1)}

= max
s�0

{J(sv1)}

� max
s�0

{
sp

p
− λA1s

q+1ĥ‖v1‖q+1
q+1 + λA1‖h‖1

}
, (4.5)

by (3.2).
Now, note that the inequality (4.5) is identical to the inequality (3.6), except

that the functional J has now been replaced by the functional E. Hence, we may
conclude from (4.5) that

pE(uλ) + pλ
θ̃

θ
‖h‖1 � c̃3λ

−rp, (4.6)

where

c̃3 = K̄p − pA1ĥK̄q+1‖v1‖q+1
q+1 + p

(
A1 +

θ̃

θ

)
‖h‖1

as in lemma 3.8.
Hence, following the proof of lemma 3.8, we may combine (4.3) and (4.6) to

observe that
a‖uλ‖p

W � bλ‖uλ‖W + C̃3λ
−rp
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for a = 1 − p/θ > 0, b = pk|f(0)|‖h‖1 > 0 and C̃3 = c̃3 + pM0/θ. Now, choosing
λ � a/2b and taking C3 = 2C̃3/a, we may follow the proof of lemma 3.8 to conclude
that

‖uλ‖p
W � C3λ

−rp

for all λ ∈ (0, Λ∗), where

Λ∗ = min
{

1, λ̂,

(
|θ̃1|
M0

)−1/rp

,
θ − p

2θpk|f(0)|‖h‖1

}
. �

4.2.1. Proof of theorem 1.2

We again prove the theorem by contradiction. Suppose that there exists a se-
quence {(λj , uλj

)}∞
j=1 ⊂ (0, 1) × C1[0, 1] of mountain pass solutions to (NL), as in

theorem 4.3, such that λj → 0 and m({x ∈ (0, 1) | uλj (x) � 0}) > 0.
Let wj = uλj /‖uλj

‖∞. Then

−(φp(w′
j))

′ = λh
f(uλj

)

‖uλj ‖
p−1
∞

, x ∈ (0, 1),

wj(0) = 0,

φp(w′
j(1)) + c(uλj

(1))φp(wj(1)) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

and, as in the proof of theorem 1.1, wj → w strongly in C1[0, 1] with w satisfying

−(φp(w′))′ = z, x ∈ (0, 1),
w(0) = 0,

φp(w′(1)) + c(L)φp(w(1)) = 0,

⎫⎪⎬
⎪⎭ (4.8)

where L = limj→∞ uλj (1).
Since ‖wj‖∞ = 1, w 	≡ 0. Furthermore, since z � 0 and c(L) > 0, w is concave and

satisfies the nonlinear boundary condition at x = 1 so that w′(0) > 0, w′(1) < 0,
w(1) > 0, and w > 0 in (0, 1). The conclusion follows from the same argument as
in the proof of theorem 1.1.
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