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Abstract. We show that there is a measure-preserving system (X, B, μ, T ) together with
functions F0, F1, F2 ∈ L∞(μ) such that the correlation sequence CF0,F1,F2(n) = ∫

X
F0 ·

T nF1 · T 2nF2 dμ is not an approximate integral combination of 2-step nilsequences.
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1. Introduction
Let (X, B, μ, T ) be a measure-preserving system and let F0, F1, . . . , Fk ∈ L∞(μ).
Motivated in large part by applications in combinatorics and, in particular, to questions
about arithmetic progressions, there has been much interest in multiple correlation
sequences

CF0,...,Fk (n) :=
∫
X

F0 · T nF1 · · · T knFk dμ.

In fact, much more general types of correlation sequences in which the powers
T , T 2, . . . , T k appearing here are replaced bymeasure-preserving maps T1, . . . , Tk have
been studied, but here we restrict attention to this special form.

In the case k = 1, there is a very satisfactory spectral theory of such sequences and
indeed one has

CF0,F1(n) =
∫ 1

0
e−2πint dσ (t) (1.1)
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2712 J. Briët and B. Green

for some complex Borel measure σ of bounded total variation. This follows from the
Herglotz theorem on positive-definite sequences (which applies directly in the case F0 =
F1) and a depolarization identity.

It is natural to ask to what extent this generalizes to k � 2. In the words of Frantziki-
nakis [7]:

‘Finding a formula analogous to (1.1), with the multiple correlation sequences in place
of the single correlation sequences, is a problem of fundamental importance which
has been in the mind of experts for several years. A satisfactory solution is going to
give us new insights and significantly improve our ability to deal with multiple ergodic
averages.’

A result of Bergelson et al [2] describes the structure of multiple correlation sequences up
to an error in �1 or �2. To state their result, we need to recall the notion of a nilsequence.

Definition 1.1. (Nilsequence) Let k � 1 be an integer. A k-step nilsequence is a sequence
(φ(gnx0))n∈Z. Here, φ : G → C is a continuous function satisfying the automorphy
(essentially equivalently, φ is a function on the nilmanifoldG/�) condition φ(xγ ) = φ(x)

for all x ∈ G and all γ ∈ �, where G is a simply connected k-step nilpotent Lie group with
discrete and cocompact subgroup �, and g, x0 are fixed elements of G.

A careful discussion of this notion may be found in many places, for instance [2]. The
following result is [2, Theorem 1.9].

THEOREM 1.2. Suppose that (X, B, μ, T ) is a measure-preserving system and that
F0, F1, . . . , Fk ∈ L∞(μ). Suppose that ‖Fi‖∞ � 1. Then we have a decomposition

CF0,F1,...,Fk (n) = a(n)+ b(n),

where a(n) is a uniform limit of k-step nilsequences with ‖a‖∞ � 1, and b is small in the
sense that

lim|I |→∞
1
|I |

∑
n∈I

|b(n)| = 0

as I ranges over all subintervals of N.

For applications involving the behaviour of correlation sequences at a sparse sequence
of n, the error term here is too big. Frantzikinakis [7, Problem 1] has suggested, in the
context of seeking a generalization of (1.1), that a variant of Theorem 1.1 should hold with
an �∞ error term. Note that in (1.1), we have not just one nilsequence (e2πint )n∈N, but
an integral combination of (1-step) nilsequences. Frantzikinakis’s formulation generalizes
this concept to higher-step nilsequences.

Definition 1.3. An integral combination of k-step nilsequences is a sequence of the form

a(n) =
∫
M

am(n) dσ(m).

Here, M is a compact metric space, σ is a complex Borel measure of bounded variation
and the am are k-step nilsequences, where the map m �→ am(n) is measurable for each n.
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Our main theorem states that, even in the case k = 2, one cannot hope for a version of
Theorem 1.1 in which the error b is small in �∞, even if one allows a to be an integral
combination of nilsequences.

THEOREM 1.4. There is a measure-preserving system (X, B, μ, T ), functionsF0, F1, F2 ∈
L∞(μ) and an ε > 0 such that the correlation sequence

CF0,F1,F2(n) :=
∫
X

F0 · T nF1 · T 2nF2 dμ

cannot be written as a(n)+ b(n), where ‖b‖∞ � ε and a is an integral combination of
2-step nilsequences.

This theorem casts some serious doubt on the existence of a formula generalizing (1.1).
Theorem 1.2 does not provide a negative answer to [7, Problem 1], because Frantziki-

nakis allows the automorphic functions φ in the definition of a nilsequence to be merely
Riemann-integrable, rather than continuous. He calls these generalized nilsequences. An
explanation of why our construction does not allow one to establish an analogue of
Theorem 1.2 for generalized nilsequences is given in Appendix A. Note, however, that
the Riemann-integrable functions φ appearing in Appendix A are very singular and we
certainly do not expect that the corresponding generalized nilsequences have any important
role to play in the theory.

One reason for considering Riemann-integrable functions rather than just continuous
ones is that there is a somewhat natural and well-studied class of nilsequences in which φ is
not continuous, namely the bracket polynomial phases [3]. In this case, the corresponding
φ have only mild discontinuities, and our argument adapts easily to show that Theorem 1.2
remains true even if one allows a to be an integral combination of this more general class
of nilsequences. We sketch the argument at the end of §3.

A key motivation for Frantzikinakis in formulating [7, Problem 1] was that it provides a
potential route to understanding Szemerédi’s theorem with common difference in a sparse
random set, a problem for which our current understanding is extremely incomplete for
progressions of length 3 or longer (see [4] for recent progress). Whilst Theorem 1.2 seems
to rule this out as a viable strategy, our example unfortunately does not give any new
information about Szemerédi’s theorem with common differences from a random set,
which remains a tantalizing open problem.

Notation. Our notation is standard. We occasionally write Ex∈A for 1/|A| ∑
x∈A, where

A is a finite set. We write [N] = {1, 2, . . . , N} as usual, and sometimes we write
[0, N − 1] = {0, 1, 2, . . . , N − 1}. For real t, we write e(t) = e2πit .

2. Outline of the argument
Our argument is part deterministic and part random. It is random in the sense that we
do not explicitly construct a system (X, B, μ, T ) and functions F0, F1, F2 for which
the correlation sequence CF0,F1,F2(n) is not approximable by an integral combination
of nilsequences, but rather we show there are too many possibilities for the correlation
functions CF0,F1,F2(n) for this to be so.
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To do this, we first explicitly construct a certain infinite sequence S ⊂ N whose growth
is slower than exponential in the sense that

lim
N→∞

|S[N]|
log N

= ∞, (2.1)

where S[N] := #{n ∈ S : n � N}.
We show that for any choice of function η : S → {1, − 1

3 } there is a system
(X, B, μ, T ) and functions F0, F1, F2 such that CF0,F1,F2(n) = η(n) for n ∈ S.

For a random choice of η, such a function will almost surely not be approximable by
an integral combination of nilsequences. We give the details of this deduction, which uses
nothing about S other than the growth property (2.1), in Proposition 3.1.

The heart of the argument, then, is the construction of the system (X, B, μ, T ) and
the functions F0, F1, F2, given η : S → {1, − 1

3 }. This is assembled from a sequence of
finitary examples, via a (well-known) variant of Furstenberg’s correspondence principle,
and here the specific nature of S is critical.

The idea behind the construction of these finitary examples ultimately comes from
coding theory, and in particular a construction of Yekhanin [9]. We will only need the
most basic form of these ideas; for instance, we can replace all the finite-field theory in
Yekhanin’s work with the simple observation that the function ψ : Z → {−1, 1} defined
by ψ(0) = 1, ψ(1) = ψ(2) = −1, and periodic mod 3 has the property that

ψ(x)ψ(x + d)ψ(x + 2d) =
{
ψ(x), d ≡ 0 (mod 3),
1, d 	= 0 (mod 3).

The idea of using Yekhanin’s construction to give interesting examples in the additive
combinatorics of higher-order correlations first arose in the finite field setting, in a joint
work of the first author and Labib [5]. Those ideas have inspired the present work.

Remark. The sequence S we construct has |S[N]| 
ε (log N)2−ε; we do not know or
have any reasonable guess as to what might be the best possible growth rate for sequences
with the desired properties.

3. Entropy and nilsequences
PROPOSITION 3.1. Let S be an increasing sequence of natural numbers such that

lim
N→∞

|S[N]|
log N

= ∞. (3.1)

Then there is a function η : S → {1, − 1
3 } such that

lim
N→∞

1
|S[N]|

∑
n∈S[N]

η(s)a(s) = 0 (3.2)

for all nilsequences a.

Proof. The space of C∞-functions onG/� is dense in the space of continuous functions;
to approximate a continuous function by a smooth function, average with respect to a
smooth kernel supported near the identity on G. It therefore suffices to verify (3.2) for
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a(n) = φ(gnx) with φ ∈ C∞(G/�). Now we use the fact that there is a map

Complexity : {smooth nilsequences} → (0, ∞)

and a function M : (0, ∞)× (0, 1) → (0, ∞) such that the set

{a : Complexity(a) � C}
can be covered by NM(C,ε) balls of radius ε in �∞[N].

Results of this type were first observed by Frantzikinakis [6, Proposition 6.2], and in
fact Proposition 3.1 and its proof are very closely related to [6, Theorem 1.4]. A discussion
which gives what we need here is in the appendix of Altman [1] (note that (gnx0)n∈Z is a
particular example of a polynomial sequence as considered by Altman).

We pick the values of η(n) at random, choosing η(n) = − 1
3 with probability 3

4 and
η(n) = 1 with probability 1

4 , these choices being independent for different values of n ∈
S. Then Eη(n) = 0. By well-known large deviation estimates (Hoeffding’s inequality),
for any fixed 1-bounded function b and for any distinct n1, . . . , nm,

P

(∣∣∣∣
m∑
i=1

η(ni)b(ni)

∣∣∣∣ � t

)
� e−ct2/m, (3.3)

where c > 0 is absolute.
Let ω : N → (0, ∞) be some function tending to infinity, to be specified later.
For each N, let EN be the following event: for all 1-bounded nilsequences a of

complexity � ω(N), ∣∣∣∣
∑

n∈S[N]

η(n)a(n)

∣∣∣∣ � 1
ω(N)

|S[N]|. (3.4)

We estimate P(EN) as follows. Pick some collection {a1, . . . , aJ }, J � NM(ω(N),1/2ω(N))

of functions such that, for every 1-bounded nilsequence a of complexity at most ω(N),
there is some ai with ‖a − ai‖�∞[N] � 1/2ω(N). Note that we do not need to assume
that the ai are nilsequences (though this could be arranged if desired) and they are
automatically 2-bounded.

If we are not in EN , there is some ai such that∣∣∣∣
∑

n∈S[N]

η(n)ai(n)

∣∣∣∣ � 1
2ω(N)

|S[N]|. (3.5)

By (3.3), the probability of (3.5) happening, for some fixed i, is bounded above by
e−c′|S[N]|/ω(N)2 for some c′ > 0. Summing over i, it follows that

P(¬EN) � NM(ω(N),1/2ω(N))e−c′|S[N]|/ω(N)2 .

Choose ω (with ω(N) → ∞) so that

|S[N]|
log N

>
ω(N)2

c′
(10 +M(ω(N), 1/2ω(N)))
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for N sufficiently large. (Here, of course, we have used the assumption on S.) This then
means that

P(¬EN) � N−10

for large N. In particular,
∑
N P(¬EN) < ∞ which, by Borel–Cantelli, implies that almost

surely only finitely many of the ¬EN occur. In particular, there is some particular choice
of η such that (3.4) holds for all sufficiently large N. Because every nilsequence has finite
complexity, this implies the result.

Remark. There is, of course, nothing special about {1, − 1
3 }; any set containing both

positive and negative numbers would do.

To conclude this section, let us quickly sketch how one could extend Proposition 3.1 to
include the case where a() is a bracket polynomial or a product of such (and hence not
a nilsequence with a continuous automorphic function φ). Write χα,β(n) := e(αn
βn�).
The key point is that the set of functions χα,β(n), like the set of nilsequences of fixed
complexity, has polynomially bounded covering numbers in �∞[N].

To see why this is so, first note that χα,β depends only on α(mod 1), so we may
assume 0 � α < 1. Next, replacing β by β + k for k ∈ Z has the effect of multiplying by
a quadratic phase e(γ n2) (where γ = αk). However, the set of all quadratic phases e(γ n2)

is covered by �ε N
2 balls of radius ε in �∞[N], because we may assume 0 � γ < 1 and

changing γ by ε/N2 only changes e(γ n2) by O(ε), uniformly for n � N .
It therefore suffices to show that the covering numbers of the set � := {χα,β : 0 �

α, β < 1} are polynomially bounded in �∞[N]. Now, restricted to n � N , there are only
polynomially many functions 
βn� as β ranges in [0, 1). Indeed, the map β �→ (
βn�)n�N
is only discontinuous at the points where βn ∈ Z for some n � N , of which there are no
more than N2 with 0 � β < 1. Thus, χα,β = χα,β ′ , with β ′ varying in a set of size N2.
Changing α by ε/N2 only changes χα,β(n) by O(ε), uniformly for n � N . Therefore, the
covering number of � in �∞[N] is �ε N

4.
It follows immediately that, for fixed C, the set of functions of type e(

∑k
i=1 αin[βin]),

where k � C, is covered byNM(C,ε) balls of radius ε in �∞[N]. One could include various
types of 1-step nilsequence or bracket polynomial and obtain a similar result.

Bounds on covering numbers were all we needed to know about nilsequences, and the
rest of the argument goes over verbatim.

4. The heart of the construction
Define ψ : Z → {−1, 1} to be the function with ψ(0) = 1, ψ(1) = ψ(2) = −1, and
periodic mod 3. The crucial property of this function we use is the following, which is
easily checked:

ψ(x)ψ(x + d)ψ(x + 2d) = ψ(x) (4.1)

if d ≡ 0 (mod 3), and 1 if d 	= 0 (mod 3).
Fix, once and for all, a sequence M1 < M2 < · · · of positive integers such that:

(1) each Mi is a multiple of 3;
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(2) limk→∞ k−2 ∑k
i=1 log Mi = 0;

(3)
∏∞
i=1(1 − (3/Mi)) = γ > 0.

For instance, one could take Mi = 3i2.
Define

�k := {(x1, x2, . . .) : 0 � xi < Mi , xk+1 = xk+2 = · · · = 0}.
Later on we will need the technical variant

�̃k := {(x1, x2, . . .) : 0 � xi < Mi − 3, xk+1 = xk+2 = · · · = 0}.
Define also �k to consist of all sequences (x1, x2, . . .) with precisely two non-zero entries
xa , xb, both of which equal 1, and with xk+1 = xk+2 = · · · = 0. Write

� :=
⋃
k

�k , �̃ :=
⋃
k

�̃k , � :=
⋃
k

�k .

We have a bijective map

β : � → Z�0

defined by

β(x1, x2, . . .) = x1 +M1x2 +M1M2x3 + · · · .

Let S = β(�). Thus, S consists of the sums of two distinct elements of the sequence
{1, M1, M1M2, M1M2M3, . . .}. We claim that S satisfies the hypothesis (3.1) of Lemma
3.1, that is, limN→∞ |S[N]|/log N = ∞.

To see this, let k be maximal so that M1 · · ·Mk � N/2. Then |S[N]| � (
k
2

)
, whilst

log(N/2) �
∑k+1
i=1 log Mi . Therefore, it is enough that

lim
k→∞ k−2

k+1∑
i=1

log Mi = 0,

which follows immediately from assumption 2 above.
We now apply Proposition 3.1 to get a function η : S → {1, − 1

3 } satisfying (3.2).
Define

�+
k := {x ∈ �k : η(β(x)) = 1} and �−

k := {
x ∈ �k : η(β(x)) = − 1

3

}
.

Thus, �k = �−
k ∪�+

k .
We introduce one more piece of notation. If z ∈ �k and if x ∈ �k , then we write

σz(x) :=
∑

i∈[k]:zi=0

xi .

Now we come to the crucial definition. Let k ∈ N. For x ∈ �k define

fk(β(x)) =
∏
z∈�k−

ψ(σz(x)). (4.2)
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Note that β(�k) = [0, Nk − 1], where

Nk := M1 · · ·Mk , (4.3)

and so fk is a well-defined function on [0, Nk − 1], taking values in {−1, 1}.
Remark. As mentioned previously, the idea of making this definition ultimately comes
from coding theory (see [5] for further discussion). The important feature is that averages
of fk(n)fk(n+ d)fk(n+ 2d) over n simplify substantially by using (4.1); we give the
details of this in (4.5).

Define also the technical variant

f̃k(β(x)) := 1x∈�̃kfk(β(x)). (4.4)

Thus, f̃k is defined on [0, Nk − 1] and takes values in {−1, 0, 1}. Extend both fk and f̃k
to functions on all of Z�0 by defining fk(n) = f̃k(n) = 0 for n � Nk .

The following lemma is the heart of the argument. Here, recall that γ > 0 is just a
positive constant (appearing in point 3 of the list of properties satisfied by the Mi).

LEMMA 4.1. For d ∈ Z�0, write

Sk(d) := 1
Nk

∑
n∈[0,Nk−1]

f̃k(n)fk(n+ d)fk(n+ 2d).

Then for d ∈ S we have limk→∞ Sk(d) = γ η(d).

Proof. Let d ∈ S = β(�). For k large enough, d ∈ β(�k), and we assume this is so in
what follows.

From the definition of f̃k , we see that the sum over n ranges over n = β(x), x ∈ �̃k .
Now for n of this form and for d = β(y), y ∈ �k , we have x + y, x + 2y ∈ �k and,
moreover,

β(x + y) = β(x)+ β(y) = n+ d ,

β(x + 2y) = β(x)+ 2β(y) = n+ 2d .

Note that this ‘lack of carries’ was precisely the reason for defining the set �̃k . It follows
that

Sk(d) = Ex∈�k f̃k(β(x))fk(β(x + y))fk(β(x + 2y)),

for d = β(y), y ∈ �k . Substituting the definitions (4.2), (4.4) of fk , f̃k (and noting that σz
is linear), we see that

Sk(d) = Ex∈�k1x∈�̃k
∏
z∈�−

k

ψ(σz(x))ψ(σz(x)+ σz(y))ψ(σz(x)+ 2σz(y)).

From (4.1) it follows that

Sk(d) = Ex∈�k1x∈�̃k
∏

z∈�−
k :σz(y)≡0(mod 3)

ψ(σz(x)).
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Now both y and z here are vectors with only two non-zero entries and so σz(y) takes only
the values 0, 1, 2 with σz(y) = 0 if and only if y = z. Therefore,

Sk(d) =
{
Ex∈�k1x∈�̃kψ(σy(x)) if y ∈ �−

k ,
Ex∈�k1x∈�̃k if y ∈ �+

k .
(4.5)

The second expression is

Ex∈�k1x∈�̃k = |�̃k|
|�k| =

k∏
i=1

(
1 − 3

Mi

)
→ γ

as k → ∞. The first expression in (4.5) may be written explicitly as

|�̃k|
|�k|Ex∈�̃kψ(x1 + · · · + x̂i + · · · + x̂j + · · · + xk), (4.6)

where y has non-zero coordinates at i, j and the hat means that x̂i does not appear in the
sum. Note, however, that �̃k is a box with sidelengths Mi − 3, each of which is a multiple
of 3. Therefore x1 + · · · + x̂i + · · · + x̂j + · · · + xk is uniformly distributed mod 3, as x
ranges uniformly over �̃k , and the average in (4.6) is

|�̃k|
|�k| ·

(
− 1

3

)
= −1

3

k∏
i=1

(
1 − 3

Mi

)
→ −γ

3
.

This completes the proof.

5. Putting everything together
Our final task is to build a measure-preserving system from the functions constructed in
the last section. For this we need a slight variant of the usual Furstenberg correspondence
principle, proven in a very similar way. An essentially equivalent statement may be found,
for instance, in [8, Proposition 3.3].

PROPOSITION 5.1. Let A ⊂ R be a finite set. Suppose that for each k ∈ N we have
functions f0,k , · · · , fr ,k : Z�0 → A, and that (Nk)∞k=1 is an increasing sequence of
positive integers. Then there is a measure-preserving system (X, B, μ, T ) and functions
F0, F1, . . . , Fr ∈ L∞(μ) such that the following is true: if (d1, . . . , dr) is a tuple of
distinct positive integers such that

S(d1, . . . , dr) := lim
k→∞

1
Nk

∑
n∈[0,Nk−1]

f0,k(n)f1,k(n+ d1) · · · fr ,k(n+ dr)

exists, then

S(d1, . . . , dr) =
∫
X

F0 · T d1F1 · T d2F2 · · · T dr Frdμ.

We apply this with the functions constructed in the last section, taking r = 2, f0,k := f̃k ,
f1,k = f2,k = fk and Nk = M1 · · ·Mk as before.

By Proposition 5.1 and Lemma 4.1, there is a measure-preserving system (X, B, μ, T )
together with functions F0, F1, F2 ∈ L∞(μ) such that, writing CF0,F1,F2(d) := ∫

X
F0 ·
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T dF1 · T 2dF2 dμ, we have

CF0,F1,F2(d) = η(d) for d ∈ S. (5.1)

(Note it is clearly possible to scale the Fi to remove γ factor appearing in Lemma 4.1.) We
claim that it is impossible to write

CF0,F1,F2(n) = a(n)+ b(n)

with a an integral combination of 2-step nilsequences and ‖b‖∞ � 1/100. Suppose that
this were possible. Then, from (5.1) and the fact that η takes values in {1, − 1

3 }, we
would have (a(d)+ b(d))η(d) ∈ { 1

9 , 1} for all d ∈ S. However, |b(d)η(d)| � 1/100 and,
therefore,

�(a(d)η(d)) � 1
9

− 1
100

>
1
10

(5.2)

for all d ∈ S.
Suppose that

a(n) =
∫
M

am(n) dσ(m).

Here, M is a compact metric space, σ is a complex Borel measure of bounded variation
and the am are nilsequences, with the map m �→ am(n) being in L∞(σ ).

Then (5.2) implies that ∣∣∣∣ 1
|S[N]|

∑
n∈S[N]

a(n)η(n)

∣∣∣∣ � 1
10

.

On the other hand, we have∣∣∣∣ 1
|S[N]|

∑
n∈S[N]

a(n)η(n)

∣∣∣∣ �
∫
M

∣∣∣∣ 1
|S[N]|

∑
n∈S[N]

am(n)η(n)

∣∣∣∣ d|σ |.

However, by the choice of η (Lemma 3.1) we have

lim
N→∞

1
|S[N]|

∑
n∈S[N]

am(n)η(n) = 0

for all m. Therefore, by the dominated convergence theorem,

lim
N→∞

∫
M

∣∣∣∣ 1
|S[N]|

∑
n∈S[N]

am(n)η(n)

∣∣∣∣ d|σ | = 0.

Putting these statements together gives a contradiction, and this completes the proof of
Theorem 1.2.
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A. Appendix. Generalized nilsequences
In this appendix, we explain why our example does not seem to give a negative solution to
[7, Problem 1]. That is, we explain why our example (or similar ones) do not seem to be
able to rule out the possibility that CF0,F1,F2(n) is an approximate integral combination
of generalized 2-step nilsequences, in which the automorphic function φ is allowed
to be merely Riemann-integrable. In fact, our examples agree with 1-step generalized
nilsequences on the crucial set S.

Recall that S = A+̂A, where

A = {N0, N1, N2, . . .} and Ni :=
∏
j�i

Mj

(thus,N0 = 1,N1 = M1,N2 = M1M2 and so on). Here, A+̂A means the restricted sumset
of A with itself, that is, the set of sums of two distinct elements of A.

PROPOSITION A.1. There is θ ∈ R/Z such that the following is true. Let η : S → [−1, 1]
be any function. Then there is a Riemann-integrable function φ : R/Z → [−1, 1] such that
φ(θn) = η(n) for all n ∈ S.

Proof. Set θ := ∑∞
i=1 1/Ni . Because M1 < M2 < · · · , we certainly have Mj � j . As a

consequence, the usual proof that e is irrational may be adapted easily to show that θ is
irrational: if θ = p/q, then α := (M1 · · ·Mqp)/q ∈ (1/q)Z, but, on the other hand, the
fractional part of α satisfies

0 < {α} = 1
Mq+1

+ 1
Mq+1Mq+2

+ · · · � 1
q + 1

+ 1
(q + 1)(q + 2)

+ · · · < 1
q

.

Now define φ : R/Z → [−1, 1] as follows: φ(θn) = η(n) for all n ∈ S, and φ(x) = 0
if x /∈ θS. Because θ is irrational, this is a well-defined function.

We claim that it is Riemann-integrable, with integral zero. It is enough to show that for
every ε > 0, there is some finite collection of intervals, of total length < ε, whose union
covers θS.

Note that for every j we have

‖θNj‖R/Z = 1
Mj+1

+ 1
Mj+1Mj+2

+ · · · < 1
Mj+1 − 1

. (A.1)

Moreover, condition 3 in the definition of the Mj implies that

lim sup
j→∞

Mj

j
= ∞. (A.2)

In particular, we may choose k so that 1/(Mk+1 − 1) < ε/10k, and by (A.1) it follows that

‖θNj‖R/Z < ε

10k
for j � k.
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It follows that

θA ⊆ {θN0, . . . , θNk−1} ∪ I ,

where I = (−ε/10k, ε/10k) ⊆ R/Z. Therefore,

θS ⊆ θA + θA ⊆
⋃
i,j<k

{θ(Ni +Nj)} ∪
⋃
i<k

(θNi + I ) ∪ (I + I ),

which makes it clear that θS is contained in a finite union of intervals of length less
than ε.
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