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This work is devoted to the study of a Liouville-type comparison principle for entire
weak solutions of semilinear elliptic partial differential inequalities of the form

Lu + |u|q−1u � Lv + |v|q−1v,

where q > 0 is a given real number and L is a linear (possibly non-uniformly) elliptic
partial differential operator of second order in divergence form given by the relation

L =
n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

]
.

We assume that n � 2, that the coefficients aij(x), i, j = 1, . . . , n, are measurable
bounded functions on R

n such that aij(x) = aji(x) and that the corresponding
quadratic form is non-negative. The results obtained in this work were announced by
the author in 2005.

1. Introduction and definitions

This work is devoted to the study of a Liouville-type comparison principle for entire
weak solutions of semilinear elliptic partial differential inequalities of the form

Lu + |u|q−1u � Lv + |v|q−1v, (1.1)

where q > 0 is a given real number and L is a linear (possibly non-uniformly)
elliptic partial differential operator of second order in divergence form given by the
relation

L =
n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

]
. (1.2)

Henceforth, we assume that n � 2 is a natural number, the coefficients aij(x),
i, j = 1, . . . , n, are measurable bounded functions on R

n such that aij(x) = aji(x),
and the corresponding quadratic form is non-negative, i.e.

n∑
i,j=1

aij(x)ξiξj � 0 (1.3)

for all ξ = (ξ1, . . . , ξn) ∈ R
n at almost all x ∈ R

n.
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Remark 1.1. It is important to note that if u and v satisfy, respectively, the
inequalities

−Lu � |u|q−1u (1.4)

and

−Lv � |v|q−1v, (1.5)

then the pair (u, v) satisfies inequality (1.1). Thus, all the results obtained in this
work for solutions of (1.1) are valid for the corresponding solutions of the system
(1.4), (1.5).

Remark 1.2. Our main goal here is to study solutions of inequality (1.1) with
L = ∆, the Laplacian operator, and to obtain new sharp results in this case. Our
secondary goal is to show that the approach used can be applied to study solutions
of inequality (1.1) with L in a wide class of linear partial differential operators and
also to obtain new results which are ‘sharp over’ a function space directly associated
with the operator L.

Remark 1.3. The results obtained, which evidently have a comparison principle
character, we term Liouville-type comparison principles, since, in a particular case
when v = 0, they become Liouville-type theorems for solutions of inequality (1.4).
That it is possible to consider and compare arbitrary solutions (u, v) of inequal-
ity (1.1), not just solutions of a special form such as (u, 0), is the main difference
between the results in theorems 2.1–2.3, 2.5–2.7, 2.12 and their analogues in the
literature.

Note that a Liouville theorem for solutions of linear uniformly elliptic second-
order partial differential equations on R

n, n > 2, was first obtained in [2] under
some continuity assumptions on the coefficients of the equations and in [11] without
continuity assumptions on the coefficients of the equations. In the case of linear uni-
formly elliptic second-order partial differential equations on R

2, a Liouville theorem
is a direct consequence of a Harnack inequality first obtained in [10]. A Liouville
theorem for solutions of semilinear uniformly elliptic second-order partial differen-
tial equations on R

n, n > 2, was first obtained in [1], and a Liouville theorem for
solutions of semilinear (possibly non-uniformly) elliptic second-order partial differ-
ential inequalities of the form (1.4) on R

n, n � 2, was, seemingly, first obtained
in [6] (see also [7]).

Remark 1.4. The results obtained in this work were announced in [9]; they com-
plete similar results on solutions of quasilinear elliptic partial differential inequalities
which were announced in [8]. To prove these results we further develop the approach
that was proposed for solving similar problems in wide classes of partial differential
equations and inequalities in [6].

Remark 1.5. Note that the approach used in this paper can be applied, for exam-
ple, in the context of similar problems with sub-Laplacians on stratified Lie groups,
currently a research area of great and growing interest.
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Definition 1.6. Let q > 0, let q̂ = max{1, q} and let D be an arbitrary bounded
domain in R

n. By WL,q(D) we denote the completion of the function space C∞(D)
with respect to the norm

‖v‖W L,q(D) =
[ ∫

D

n∑
i,j=1

aijvxivxj dx

]1/2

+
[ ∫

D

|v|q̂ dx

]1/q̂

. (1.6)

Definition 1.7. Let q > 0. A function v belongs to the function space WL,q
loc (Rn)

if v ∈ WL,q(D) for every bounded domain D in R
n.

Definition 1.8. Let q > 0. By an entire weak solution of inequality (1.1) we mean
a pair (u, v) of functions u(x) and v(x) which are measurable on R

n, belong to the
function space WL,q

loc (Rn) and satisfy the integral inequality
∫

Rn

[ n∑
i,j=1

aijuxiϕxj − |u|q−1uϕ

]
dx �

∫
Rn

[ n∑
i,j=1

aijvxiϕxj − |v|q−1vϕ

]
dx (1.7)

for every non-negative function ϕ ∈ C∞(Rn) with compact support.

Analogous definitions for solutions of inequalities (1.4) and (1.5), which are the
special cases of inequality (1.1) for v = 0 and u = 0, respectively, can immediately
be obtained from definition 1.8.

Definition 1.9. Let q > 0. By an entire weak solution of inequality (1.4) (respec-
tively, (1.5)) we mean a function w(x) measurable on R

n which belongs to the
function space WL,q

loc (Rn) and satisfies the integral inequality
∫

Rn

n∑
i,j=1

aijwxi
ϕxj

dx −
∫

Rn

|w|q−1wϕ dx � 0 (respectively, � 0) (1.8)

for every non-negative function ϕ ∈ C∞(Rn) with compact support.

Remark 1.10. We understand formulae (1.7) and (1.8) in the sense discussed, for
example, in [5, 12].

2. Results

Theorem 2.1. Let n = 2, let q > 0 and let (u, v) be an entire weak solution of
inequality (1.1) on R

n such that u(x) � v(x). Then u(x) = v(x) on R
n.

Theorem 2.2. Let n > 2, 1 < q � n/(n − 2), and let (u, v) be an entire weak
solution of inequality (1.1) on R

n such that u(x) � v(x). Then u(x) = v(x) on R
n.

Theorem 2.3. Let n > 2 and q > n/(n − 2). Then there exists no entire weak
solution (u, v) of inequality (1.1) on R

n such that u(x) � v(x) and the relation

lim sup
R→+∞

R−n+2(q−ν)/(q−1)
∫

|x|<R

(u(x) − v(x))q−ν dx = +∞ (2.1)

holds with any given ν ∈ (0, 1).
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Example 2.4. To illustrate the sharpness of theorem 2.3 we note that, for n > 2,
q > n/(n − 2), and a suitable constant c > 0, the pair (u, v) of functions

u(x) = c(1 + |x|2)−1/(q−1) and v(x) = 0 (2.2)

is an entire weak solution of inequality (1.1) on R
n with L = ∆ such that, for any

given ν ∈ (0, 1), the relation

lim sup
R→+∞

R−n+2(q−ν)/(q−1)
∫

|x|<R

(u(x) − v(x))q−ν dx = C1, (2.3)

with C1 a certain positive constant, holds.

The following two statements are simple special cases of theorem 2.3.

Theorem 2.5. Let n > 2 and q > n/(n − 2). Then, for any given constants c > 0
and ν > 0, there exists no entire weak solution (u, v) of inequality (1.1) on R

n such
that u(x) � v(x) + c(1 + |x|2)−1/(q−1)+ν .

Theorem 2.6. Let n > 2 and q > n/(n − 2). Then, for any given constant c >
0, there exists no entire weak solution (u, v) of inequality (1.1) on R

n such that
u(x) � v(x) + c.

Theorem 2.7. Let n > 2 and 0 < q < 1 or n > 2 and q > n/(n − 2). Then there
exists no entire weak solution (u, v) of inequality (1.1) on R

n such that u(x) � v(x)
and the relation

lim sup
R→+∞

R2−n

∫
{|x|<R}∩{x∈Rn:u(x) �=v(x)}

(|u|q−1u−|v|q−1v)(u−v)−1 dx = +∞ (2.4)

holds.

Example 2.8. To illustrate the sharpness of theorem 2.7 in the case when n > 2
and 0 < q < 1, we note that, for n > 2, 0 < q < 1, 0 < µ < (n − 2)/n, and a
suitable constant c > 0, the pair (u, v) of functions

u(x) = c(1 + |x|2)1/(1−q) + (1 + |x|2)−µ, (2.5)

v(x) = c(1 + |x|2)1/(1−q) (2.6)

is an entire weak solution of inequality (1.1) on R
n with L = ∆ such that u(x) �

v(x) and the relation

lim sup
R→+∞

R2−n

∫
{|x|<R}∩{x∈Rn:u(x) �=v(x)}

(|u|q−1u − |v|q−1v)(u − v)−1 dx = C2, (2.7)

with C2 a certain positive constant, holds.

Example 2.9. We also note that for n > 2, 0 < q < 1, 0 < µ < (n − 2)/n,
λ > 1/(1 − q), and a suitable constant c > 0, the pair (u, v) of functions

u(x) = c(1 + |x|2)λ + (1 + |x|2)−µ, (2.8)

v(x) = c(1 + |x|2)λ (2.9)
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is an entire weak solution of inequality (1.1) on R
n with L = ∆ such that u(x) �

v(x) and the relation

lim sup
R→+∞

R2−n

∫
{|x|<R}∩{x∈Rn:u(x) �=v(x)}

(|u|q−1u − |v|q−1v)(u − v)−1 dx = 0 (2.10)

holds.

Example 2.10. To illustrate the importance of condition (2.4) in theorem 2.7, we
note that, for n > 2, 0 < q < 1, 0 < µ < (n − 2)/n, λ � (1 + µ)/(1 − q), a suitable
constant c > 0, and any given constant κ > 0, the pair (u, v) of functions

u(x) = c(1 + |x|2)λ + κ + (1 + |x|2)−µ, (2.11)

v(x) = c(1 + |x|2)λ (2.12)

is an entire weak solution of inequality (1.1) on R
n with L = ∆ such that u(x) �

v(x) + κ and the relation

lim sup
R→+∞

R2−n

∫
{|x|<R}∩{x∈Rn:u(x) �=v(x)}

(|u|q−1u − |v|q−1v)(u − v)−1 dx = 0 (2.13)

holds.

Example 2.11. To illustrate the sharpness of theorem 2.7 in the case when n > 2
and q > n/(n − 2), we note that, for n > 2, q > n/(n − 2), and a suitable constant
c > 0, the pair (u, v) of functions (2.2) is an entire weak solution of inequality (1.1)
on R

n with L = ∆ such that the relation

lim sup
R→+∞

R2−n

∫
{|x|<R}∩{x∈Rn:u(x) �=v(x)}

(|u|q−1u−|v|q−1v)(u−v)−1 dx = C3, (2.14)

with C3 a certain positive constant, holds.

Theorem 2.12. Let n > 2 and let q = 1. Then there exists no entire weak solution
(u, v) of inequality (1.1) on R

n such that u(x) > v(x).

3. Proofs

In what follows, a ‘smooth’ function is a C∞-function, and B(R) is an open ball
on R

n centred at the origin with radius r > 0.

Proof of theorem 2.1. Let n = 2, let q > 0 and let (u, v) be an entire weak solution
of inequality (1.1) on R

n such that u(x) � v(x). It then follows from (1.7) that the
inequality

∫
Rn

n∑
i,j=1

aij(u − v)xiϕxj dx �
∫

Rn

(|u|q−1u − |v|q−1v)ϕ dx (3.1)

holds for every non-negative function ϕ ∈ C∞(Rn) with compact support. Let R
and ε be arbitrary positive numbers, and let ζ : R

n → [0, 1] be a smooth function
which equals 1 on B(R/2) and 0 outside B(R). Without loss of generality, we
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substitute ϕ(x) = (w(x) + ε)−νζs(x) as a test function in inequality (3.1), where
w(x) = u(x)−v(x), ν > 1 and s � 2 are real numbers. Integrating by parts in (3.1)
we have

− ν

∫
B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1ζs dx

+ s

∫
B(R)

n∑
i,j=1

aijwxiζxj
(w + ε)−νζs−1 dx

≡ I1 + I2 �
∫

B(R)
(|u|q−1u − |v|q−1v)(w + ε)−νζs dx. (3.2)

Furthermore, using the obvious inequality

|I2| �
∫

B(R)
s

( n∑
i,j=1

aijwxiwxj

)1/2( n∑
i,j=1

aijζxiζxj

)1/2

(w + ε)−νζs−1 dx (3.3)

and estimating the integrand on the right-hand side of (3.3) by Young’s inequality

AB � ρAβ/(β−1) + ρ1−βBβ (3.4)

with ρ = 1
2ν and β = 2, we arrive at

|I2| � 1
2ν

∫
B(R)

n∑
i,j=1

aijwxi
wxj

(w + ε)−ν−1ζs dx

+
∫

B(R)
c1

n∑
i,j=1

aijζxi
ζxj (w + ε)1−νζs−2 dx. (3.5)

Henceforth, we use the symbols ci, i = 1, 2, . . . , to denote constants depending
possibly on n, q, s, ν, and the coefficients of the operator L but not on R and ε.
Now, from (3.2) and (3.5) we obtain the inequality

∫
B(R)

c1

n∑
i,j=1

aijζxiζxj (w + ε)1−νζs−2 dx

�
∫

B(R)
(|u|q−1u − |v|q−1v)(w + ε)−νζs dx

+ 1
2ν

∫
B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1ζs dx. (3.6)

Since ν > 1, the function w(x) is non-negative, and the first integral on the right-
hand side of (3.6) is also non-negative, from (3.6), we easily obtain the inequality

c2ε
1−ν

∫
B(R)

n∑
i,j=1

aijζxi
ζxj

dx �
∫

B(R)

n∑
i,j=1

aijwxi
wxj

(w + ε)−ν−1ζs dx. (3.7)
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Now, without loss of generality, for any R > 0, in (3.7) we choose the function ζ(x)
in the form ζ(x) = ψ(|x|/R), where ψ : [0,∞) → [0, 1] is a smooth function which
equals 1 on [0, 1

2 ] and 0 on [1,∞) and such that the inequality

|∇ζ| � c3R
−1 (3.8)

holds. Then, owing to the boundedness of the coefficients of the operator L, there
exists a constant, M , such that the inequality

n∑
i,j=1

aij(x)ξiξj � M |ξ|2 (3.9)

holds for all ξ = (ξ1, . . . , ξn) ∈ R
n at almost all x ∈ R

n and, therefore, relations
(3.7)–(3.9) yield the inequality

c4ε
1−νRn−2 �

∫
B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1 dx. (3.10)

Since n = 2, the integral on the right-hand side of (3.10) is bounded for all R > 0.
Hence, owing to the monotonicity, the relation

∫
B(Rk)\B(Rk/2)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1 dx → 0 (3.11)

holds for all sequences Rk → ∞. On the other hand, from (3.2), (3.3) we arrive at

s

∫
B(R)

( n∑
i,j=1

aijwxi
wxj

)1/2( n∑
i,j=1

aijζxi
ζxj

)1/2

(w + ε)−νζs−1 dx

�
∫

B(r)
(|u|q−1u − |v|q−1v)(w + ε)−ν dx. (3.12)

Estimating the integrand on the left-hand side of (3.12) by Hölder’s inequality, we
obtain

c5

( ∫
B(R)\B(R/2)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1 dx

)1/2

×
( ∫

B(R)

n∑
i,j=1

aijζxi
ζxj

(w + ε)1−ν dx

)1/2

�
∫

B(R/2)
(|u|q−1u − |v|q−1v)(w + ε)−ν dx. (3.13)

Now, as above, for any R > 0, in (3.13) we choose the function ζ(x) in the form
ζ(x) = ψ(|x|/R), where ψ : [0,∞) → [0, 1] is a smooth function which equals 1 on
[0, 1

2 ] and 0 on [1,∞) and such that the inequality (3.8) holds. Then, since ν > 1

https://doi.org/10.1017/S0308210506000552 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000552


146 V. V. Kurta

and w(x) is non-negative, (3.8), (3.9) and (3.13) yield the inequality

c6ε
(1−ν)/2R(n−2)/2

( ∫
B(R)\B(R/2)

n∑
i,j=1

aijwxi
wxj

(w + ε)−ν−1 dx

)1/2

�
∫

B(R/2)
(|u|q−1u − |v|q−1v)(w + ε)−ν dx. (3.14)

It then follows directly from (3.11) and (3.14) that for n = 2 the relation
∫

B(Rk/2)
(|u|q−1u − |v|q−1v)(w + ε)−ν dx → 0 (3.15)

holds as Rk → ∞. This in turn easily yields, from (3.15), that u(x) = v(x) on R
n.

Proof of theorem 2.2. Let n > 2, 1 < q � n/(n − 2), and (u, v) be an entire weak
solution of inequality (1.1) on R

n such that u(x) � v(x). By the inequality

(|u|q−1u − |v|q−1v)(u − v) � c1|u − v|q+1, (3.16)

which holds with any q � 1 and a certain positive constant c1 depending only on
q, from (1.7) we obtain the inequality

∫
Rn

n∑
i,j=1

aij(u − v)xiϕxj dx � c1

∫
Rn

(u − v)qϕ dx, (3.17)

which holds for every non-negative function ϕ ∈ C∞(Rn) with compact support;
actually, c1 = 21−q (see, for example, [3]), but we do not need the precise value of
this constant. Let R and ε be arbitrary positive numbers, and let ζ : R

n → [0, 1]
be a smooth function which equals 1 on B(R/2) and 0 outside B(R). Without loss
of generality, we substitute ϕ(x) = (w(x) + ε)−νζs(x) as a test function in (3.17),
where w(x) = u(x) − v(x), s � 2 and ν ∈ (0, 1) ∩ (0, q − 1). Integrating by parts
in (3.17) we obtain

− ν

∫
B(R)

n∑
i,j=1

aijwxi
wxj

(w + ε)−ν−1ζs dx

+ s

∫
B(R)

n∑
i,j=1

aijwxiζxj (w + ε)−νζs−1 dx

≡ I1 + I2 � c1

∫
B(R)

wq(w + ε)−νζs dx. (3.18)

As above, using the obvious inequality

|I2| �
∫

B(R)
s

( n∑
i,j=1

aijwxiwxj

)1/2( n∑
i,j=1

aijζxiζxj

)1/2

(w + ε)−νζs−1 dx (3.19)
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and estimating the integrand on the right-hand side of (3.19) by Young’s inequal-
ity (3.4) with ρ = 1

2ν and β = 2, we arrive at

|I2| � 1
2ν

∫
B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1ζs dx

+
∫

B(R)
c2

n∑
i,j=1

aijζxi
ζxj

(w + ε)1−νζs−2 dx. (3.20)

Also, as above, we use the symbols ci, i = 1, 2, . . . , to denote constants depending
possibly on n, q, s, ν, and the coefficients of the operator L but not on R and ε.
Furthermore, from (3.18) and (3.20) we have

∫
B(R)

c2

n∑
i,j=1

aijζxiζxj (w + ε)1−νζs−2 dx

� c1

∫
B(R)

wq(w + ε)−νζs dx

+ 1
2ν

∫
B(R)

n∑
i,j=1

aijwxi
wxj

(w + ε)−ν−1ζs dx. (3.21)

Estimating the integrand on the left-hand side of (3.21) by Young’s inequality (3.4)
with

ρ = 1
2c1 and β = (q − ν)/(q − 1),

we obtain

1
2c1

∫
B(R)\B(R/2)

(w + ε)q−νζs dx

+ c3

∫
B(R)

( n∑
i,j=1

aijζxiζxj

)(q−ν)/(q−1)

ζ(s−2)(q−ν)/(q−1) dx

� c1

∫
B(R)

wq(w + ε)−νζs dx

+ 1
2ν

∫
B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1ζs dx. (3.22)

Now, using (3.22), we estimate the integral
∫

B(R)
wqζs dx.

To this end, we substitute ϕ(x) = ζs(x) in (3.17) and arrive at

c1

∫
B(R)

wqζs dx � s

∫
B(R)

n∑
i,j=1

aijwxiζxj ζ
s−1 dx. (3.23)
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Estimating the right-hand side of (3.23) by using Hölder’s inequality, we have

c1

∫
B(R)

wqζs dx � s

( ∫
B(R)

n∑
i,j=1

aijζxiζxj (w + ε)ν+1ζs−2 dx

)1/2

×
( ∫

B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1ζs dx

)1/2

(3.24)

which holds with any ν ∈ (0, 1) ∩ (0, q − 1) and ε > 0. Since the inequality
∫

B(R)

n∑
i,j=1

aijζxiζxj (w + ε)ν+1ζs−2 dx

�
( ∫

B(R)\B(R/2)
(w + ε)d(1+ν)ζs dx

)1/d

×
( ∫

B(R)

( n∑
i,j=1

aijζxi
ζxj

)d/(d−1)

ζs−2d/(d−1) dx

)(d−1)/d

(3.25)

formally holds with any d > 1, then, by choosing for any sufficiently small ν from
the interval (0, 1) ∩ (0, q − 1) the parameter d = q/(1 + ν) such that d(1 + ν) = q,
from (3.24) and (3.25) we obtain the inequality

c1

∫
B(R)

wqζs dx � s

( ∫
B(R)

( n∑
i,j=1

aijζxiζxj

)d/(d−1)

ζs−2d/(d−1) dx

)(d−1)/2d

×
( ∫

B(R)\B(R/2)
(w + ε)qζs dx

)1/2d

×
( ∫

B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1ζs dx

)1/2

. (3.26)

Now estimating the last term on the right-hand side of (3.26) by using inequal-
ity (3.22), we have

c1

∫
B(R)

wqζs dx

� s

( ∫
B(R)

( n∑
i,j=1

aijζxi
ζxj

)d/(d−1)

ζs−2d/(d−1) dx

)(d−1)/2d

×
( ∫

B(R)\B(R/2)
(w + ε)qζs dx

)1/2d

×
(

c4

∫
B(R)

( n∑
i,j=1

aijζxiζxj

)(q−ν)/(q−1)

ζ(s−2)(q−ν)/(q−1) dx

+
c1

ν

∫
B(R)\B(R/2)

(w + ε)q−νζs dx − 2c1

ν

∫
B(R)

wq(w + ε)−νζs dx

)1/2

.

(3.27)
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In (3.27), passing to the limit as ε → 0 as justified by Lebesgue’s theorem (see, for
example, [4, p. 303]), we arrive at

∫
B(R)

wqζs dx � c5

( ∫
B(R)

( n∑
i,j=1

aijζxiζxj

)d/(d−1)

ζs−2d/(d−1) dx

)(d−1)/2d

×
( ∫

B(R)\B(R/2)
wqζs dx

)1/2d

×
( ∫

B(R)

( n∑
i,j=1

aijζxiζxj

)(q−ν)/(q−1)

ζ(s−2)(q−ν)/(q−1) dx

)1/2

,

(3.28)

which, in turn, yields, for sufficiently large s, the inequality

( ∫
B(R/2)

wq dx

)(2d−1)/2d

� c5

( ∫
B(R)

( n∑
i,j=1

aijζxiζxj

)d/(d−1)

dx

)(d−1)/2d

×
( ∫

B(R)

( n∑
i,j=1

aijζxiζxj

)(q−ν)/(q−1)

dx

)1/2

. (3.29)

Now, without loss of generality, for any R > 0, in (3.29) we choose the function
ζ(x) in the form ζ(x) = ψ(|x|/R), where ψ : [0,∞) → [0, 1] is a smooth function
which equals 1 on [0, 1

2 ] and 0 on [1,∞) and such that the inequality

|∇ζ| � c6R
−1 (3.30)

holds. Then, owing to the boundedness of the coefficients of the operator L, (3.29)
and (3.30) yield the inequality

( ∫
B(R)

wq dx

)(2d−1)/2d

� c7R
p, (3.31)

which holds with
p =

n − p1

p1
+

n − p2

2
, (3.32)

where

p1 =
2d

d − 1
and p2 =

2(q − ν)
q − 1

. (3.33)

It is easy to calculate that

p =
(n − 2)(2q − 1 − ν)

2q(q − 1)

(
q − n

n − 2

)
. (3.34)

It then follows from (3.34) that, for 1 < q < n/(n−2) and any ν ∈ (0, 1)∩(0, q−1),
the parameter p is negative. Therefore, in this case, (3.31) yields that∫

Rn

wq dx = 0
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and, therefore, that u(x) = v(x) on R
n. Also, it follows from (3.31) and (3.34) that

if n > 2 and q = n/(n − 2), then the integral∫
Rn

wq dx

is bounded. Hence, owing to the monotonicity, the relation∫
B(Rk)\B(Rk/2)

wq dx → 0 (3.35)

holds for all sequences Rk → ∞. On the other hand, from (3.28), for sufficiently
large s, owing to the boundedness of the coefficients of the operator L, we have

∫
B(R/2)

wq dx � c5

( ∫
B(R)\B(R/2)

wq dx

)1/2d

×
( ∫

B(R)
|∇ζ|2d/(d−1) dx

)(d−1)/2d

×
( ∫

B(R)
|∇ζ|2(q−ν)/(q−1) dx

)1/2

. (3.36)

Now, by choosing in (3.36) the function ζ(x) of the form indicated above, from
(3.30) and (3.36) we arrive at

∫
B(R/2)

wq dx � c8R
p

( ∫
B(R)\B(R/2)

wq dx

)1/2d

, (3.37)

where p is given by (3.34). Furthermore, (3.34), (3.35) and (3.37) imply directly,
for n > 2 and q = n/(n − 2), the relation∫

B(Rk)
wq dx → 0, (3.38)

which holds as Rk → ∞. This, in turn, again implies that∫
Rn

wq dx = 0

and, therefore, that u(x) = v(x) on R
n.

Proof of theorem 2.3. The proof is by contradiction. Let n > 2 and q > n/(n − 2).
Assume that there exists an entire weak solution (u, v) of inequality (1.1) on R

n

such that u(x) � v(x) and relation (2.1) holds with any given ν ∈ (0, 1). From (1.7)
and (3.16) we then have the inequality

∫
Rn

n∑
i,j=1

aij(u − v)xiϕxj dx � c1

∫
Rn

(u − v)qϕ dx, (3.39)

with c1 the constant from (3.16), which holds for every non-negative function ϕ ∈
C∞(Rn) with compact support. Let R and ε be arbitrary positive numbers, and
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let ζ : R
n → [0, 1] be a smooth function which equals 1 on B(R/2) and 0 outside

B(R). Without loss of generality, we substitute ϕ(x) = (w(x) + ε)−νζs(x) as a test
function in inequality (3.39), where w(x) = u(x) − v(x), s � 2 and 1 > ν > 0. By
integrating by parts in (3.39) we arrive at

− ν

∫
B(R)

n∑
i,j=1

aijwxi
wxj

(w + ε)−ν−1ζs dx

+ s

∫
B(R)

n∑
i,j=1

aijwxi
ζxj

(w + ε)−νζs−1 dx

≡ I1 + I2 � c1

∫
B(R/2)

wq(w + ε)−νζs dx. (3.40)

Since

|I2| �
∫

B(R)
s

( n∑
i,j=1

aijζxi
ζxj

)1/2( n∑
i,j=1

aijwxi
wxj

)1/2

(w + ε)−νζs−1 dx, (3.41)

estimating the integrand on the right-hand side of (3.41) by Young’s inequality (3.4)
with ρ = 1

2ν and β = 2, we obtain the inequality

|I2| � 1
2ν

∫
B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−ν−1ζs dx

+ c2

∫
B(R)

n∑
i,j=1

aijζxiζxj (w + ε)1−νζs−2 dx. (3.42)

As above, we use the symbols ci, i = 1, 2, . . . , to denote constants depending pos-
sibly on n, q, s, ν, and the coefficients of the operator L but not on R and ε.
Furthermore, from (3.40) and (3.42) we have

c2

∫
B(R)

n∑
i,j=1

aijζxiζxj (w + ε)1−νζs−2 dx �
∫

B(R)
wq(w + ε)−νζs dx. (3.43)

In (3.43), passing to the limit as ε → 0, as justified by Lebesgue’s theorem (see, for
example, [4, p. 303]), we have

c2

∫
B(R)

n∑
i,j=1

aijζxi
ζxj

w1−νζs−2 dx �
∫

B(R)
wq−νζs dx. (3.44)

Since, by the hypotheses of theorem 2.3, q > 1, in (3.44) choose s = 2(q−ν)/(q−1)
such that (s − 2)(q − ν)/(1 − ν) = s. Then, estimating the left-hand side of (3.44)
by Hölder’s inequality, we obtain

c3

( ∫
B(R)

( n∑
i,j=1

aijζxiζxj

)(q−ν)/(q−1)

dx

)(q−1)/(q−ν)

×
( ∫

B(R)
wq−νζs dx

)(1−ν)/(q−ν)

�
∫

B(R)
wq−νζs dx. (3.45)

https://doi.org/10.1017/S0308210506000552 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000552


152 V. V. Kurta

In turn, the inequality

c3

∫
B(R)

( n∑
i,j=1

aijζxi
ζxj

)(q−ν)/(q−1)

dx �
∫

B(R)
wq−νζs dx (3.46)

follows directly from (3.45). As above, without loss of generality, for any R > 0,
in (3.46) we choose the function ζ(x) in the form ζ(x) = ψ(|x|/R), where ψ :
[0,∞) → [0, 1] is a smooth function which equals 1 on [0, 1

2 ] and 0 on [1,∞) and
such that the inequality

|∇ζ| � c4R
−1 (3.47)

holds. Then, owing to the boundedness of the coefficients of the operator L, (3.46)
and (3.47) yield

c5R
n−2(q−ν)/(q−1) �

∫
B(R)

wq−ν dx. (3.48)

From (3.48) we arrive at the inequality

lim sup
R→+∞

R−n+2(q−ν)/(q−1)
∫

B(R)
(u(x) − v(x))q−ν dx < +∞, (3.49)

which holds with any fixed ν ∈ (0, 1), and which contradicts the hypotheses of
theorem 2.3; namely, it contradicts (2.1). Thus, we have a contradiction of our
assumption.

Proof of theorem 2.7. The proof is by contradiction. Let n > 2 and q > 0; namely,
we prove this theorem for n > 2 and all q > 0. Assume there exists an entire weak
solution (u, v) of inequality (1.1) on R

n such that u(x) � v(x) and relation (2.4)
holds. Then, from (1.7), we have the inequality

∫
Rn

n∑
i,j=1

aij(u − v)xiϕxj dx �
∫

Rn

(|u|q−1u − |v|q−1v)ϕ dx, (3.50)

which holds for every non-negative function ϕ ∈ C∞(Rn) with compact support.
Let R and ε be arbitrary positive numbers, and let ζ : R

n → [0, 1] be a smooth
function which equals 1 on B(R/2) and 0 outside B(R). Without loss of generality,
we substitute ϕ(x) = (w + ε)−1ζ2(x) as a test function in (3.50), where w(x) =
u(x) − v(x). Integrating by parts in (3.50) we obtain

−
∫

B(R)

n∑
i,j=1

aijwxiwxj (w + ε)−2ζ2 dx + 2
∫

B(R)

n∑
i,j=1

aijwxiζxj (w + ε)−1ζ dx

≡ I1 + I2 �
∫

B(R/2)
(|u|q−1u − |v|q−1v)(w + ε)−1 dx. (3.51)

Since

|I2| �
∫

B(R)
2
( n∑

i,j=1

aijwxiwxj

)1/2( n∑
i,j=1

aijζxiζxj

)1/2

(w + ε)−1ζ dx, (3.52)
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estimating the integrand on the right-hand side of (3.52) by Young’s inequality (3.4)
with ρ = 1

2 and β = 2, we arrive at the inequality

|I2| � 1
2

∫
B(R)

n∑
i,j=1

aijwxi
wxj

(w + ε)−2ζ2 dx + c1

∫
B(R)

n∑
i,j=1

aijζxi
ζxj

dx. (3.53)

As above, we use the symbols ci, i = 1, 2, . . . , to denote constants depending pos-
sibly on n, q and the coefficients of the operator L but not on R and ε. In turn,
(3.51) and (3.53) yield the inequality

c1

∫
B(R)

n∑
i,j=1

aijζxiζxj dx �
∫

B(R/2)
(|u|q−1u − |v|q−1v)(w + ε)−1 dx. (3.54)

Furthermore, as above, without loss of generality, for any R > 0, in (3.54) we choose
the function ζ(x) in the form ζ(x) = ψ(|x|/R), where ψ : [0,∞) → [0, 1] is a smooth
function which equals 1 on [0, 1

2 ] and 0 on [1,∞) and such that the inequality

|∇ζ| � c2R
−1 (3.55)

holds. Then, owing to the boundedness of the coefficients of the operator L, from
(3.54) and (3.55) we obtain the inequality

c3R
n−2 �

∫
B(R/2)

(|u|q−1u − |v|q−1v)(w + ε)−1 dx (3.56)

and, therefore, the inequality

c3R
n−2 �

∫
B(R/2)∩{x∈Rn:u(x) �=v(x)}

(|u|q−1u − |v|q−1v)(w + ε)−1 dx, (3.57)

which hold for all R > 0. In (3.57), passing to the limit as ε → 0 as justified by
Levi’s theorem (see, for example, [4, p. 305]), we arrive at

c3R
n−2 �

∫
B(R/2)∩{x∈Rn:u(x) �=v(x)}

(|u|q−1u − |v|q−1v)(u − v)−1 dx. (3.58)

Finally, from (3.58) we obtain the inequality

lim sup
R→+∞

R2−n

∫
B(R)∩{x∈Rn:u(x) �=v(x)}

(|u|q−1u − |v|q−1v)(u − v)−1 dx < +∞, (3.59)

which contradicts the hypotheses of theorem 2.7; namely, it contradicts (2.4). Thus,
we have a contradiction of our assumption.

Proof of theorem 2.12. The proof is by contradiction. Let n > 2 and q = 1. Assume
that there exists an entire weak solution (u, v) of inequality (1.1) on R

n such that
u(x) > v(x). Then, from (1.7), we have the inequality

∫
Rn

n∑
i,j=1

aij(u − v)xiϕxj dx �
∫

Rn

(u − v)ϕ dx, (3.60)
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which holds for every non-negative function ϕ ∈ C∞(Rn) with compact support.
Let R be an arbitrary positive number, and let ζ : R

n → [0, 1] be a smooth function
which equals 1 on B(R/2) and 0 outside B(R). Without loss of generality, we
substitute ϕ(x) = w−1ζ2(x) as a test function in inequality (3.60), where w(x) =
u(x) − v(x). Integrating by parts in (3.60), we obtain

−
∫

B(R)

n∑
i,j=1

aijwxi
wxj w

−2ζ2 dx + 2
∫

B(R)

n∑
i,j=1

aijwxi
ζxj

w−1ζ dx

≡ I1 + I2 �
∫

B(R)
ζ2 dx. (3.61)

Since

|I2| �
∫

B(R)
2
( n∑

i,j=1

aijwxi
wxj

)1/2( n∑
i,j=1

aijζxi
ζxj

)1/2

w−1ζ dx, (3.62)

by estimating the integrand on the right-hand side of (3.62) by Young’s inequal-
ity (3.4) with ρ = 1

2 and β = 2, we arrive at the inequality

|I2| � 1
2

∫
B(R)

n∑
i,j=1

aijwxi
wxj

w−2ζ2 dx + c1

∫
B(R)

n∑
i,j=1

aijζxi
ζxj

dx. (3.63)

As above, we use the symbols ci, i = 1, 2, . . . , to denote constants depending possi-
bly on n, q and the coefficients of the operator L but not on R. Furthermore, (3.61)
and (3.63) yield

c1

∫
B(R)

n∑
i,j=1

aijζxiζxj dx �
∫

B(R)
ζ2 dx. (3.64)

Now, without loss of generality, for any R > 0, we choose in (3.64) the function
ζ(x) in the form ζ(x) = ψ(|x|/R), where ψ : [0,∞) → [0, 1] is a smooth function
which equals 1 on [0, 1

2 ] and 0 on [1,∞) and such that the inequality

|∇ζ| � c2R
−1 (3.65)

holds. Then, owing to the boundedness of the coefficients of the operator L, from
(3.64) and (3.65) we obtain the inequality

c3R
n−2 � Rn, (3.66)

which holds for all R > 0. Thus, we have a contradiction of our assumption.
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10 L. Lichtenstein. Beiträge zur Theorie der linearen partiellen Differentialgleichungen zweiter
Ordnung vom elliptischen Typus. Unendliche Folgen positiver Lösungen. Rend. Circ. Mat.
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