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Abstract

A flow line is a conventional manufacturing system where all jobs must be processed on all machines with the same opera-
tion sequence. Line buffers allow nonpermutation flowshop scheduling and job sequences to be changed on different ma-
chines. A mixed-integer linear programming model for nonpermutation flowshop scheduling and the buffer requirement
along with manufacturing implication is proposed. Ant colony optimization based heuristic is evaluated against Taillard’s
(1993) well-known flowshop benchmark instances, with 20 to 500 jobs to be processed on 5 to 20 machines (stages). Com-
putation experiments show that the proposed algorithm is incumbent to the state-of-the-art ant colony optimization for flow-
shop with higher job to machine ratios, using the makespan as the optimization criterion.
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1. INTRODUCTION

A flow line is a conventional manufacturing system where all
jobs must be processed on all machines with the same opera-
tion sequence (Fig. 1). Jobs are processed only once by each
machine, as opposed to reentrant flow lines.

Examples of flow lines include transfer lines, assembly
lines, chemical plants, logistics, and many more (Rossi
et al., 2012, in press); the problem is scalable in many senses:
a job can be a part, the whole product, or a batch; machines (or
stages) can be a single operating unit, a cell, a line, or their
combinations; time is measured by nondimensional units
and can indicate seconds, hours, days, and so on. Flow line
is referred to as the physical layout; flowshop is the mathe-
matical model, as defined in the next chapter.

The flowshop scheduling problem occurs whenever it is
necessary to schedule a set of n jobs on m machines so that
each job visits all machines in the same order. In nonpermu-
tation flowshop (NPFS) scheduling, the most general flow-
shop case, which is examined here, the order in which all m
machines are visited by the n jobs changes, allowing job se-
quences to be different on subsequent machines.

In a permutation flowshop (PFS), the sequence in which
jobs visit machines (routing) is the same for all jobs, as for
nonpermutation. The sequence of jobs on all machines is

the same in PFS; instead, in NPFS the sequence of jobs can
be different on subsequent machines.

To allow nonpermutation, buffers between, on board, or
shared among machines are necessary. Examples of buffers
are shown in the U-shaped flow line of Figure 2: input and
output buffers are at the two ends and between machines,
cells, lines, or plants; they can be shared, in the form of an au-
tomatic warehouse or an open space. To allow permutations,
jobs travel through buffers between machines. The flow line
in the pictorial example itself is made of flow lines: a transfer
line and a flexible cell.

The buffer requirement has been formally included in the
proposed model. If buffers are not present, either the blocking
or the no-wait condition should be applied to the algorithm to
achieve a feasible schedule. In the former case, a job completed
on one machine may block that machine until the next down-
stream machine is free; in the latter case, the next machine
must be available before a job leaves the previous one.

As for the problem complexity, there are (n!)m different
schedules for ordering jobs on machines in NPFS; the num-
ber of schedules for PFS reduces to n!.

In this work, transport and setup times are neglected. This
hypothesis often applies when pallet changing systems on ma-
chines and fast transport and buffer loading/unloading devices
are present. The processing time can be increased by standard
transport and/or setup time, if it is relatively small with respect
to the processing time; a transport time to and from the ware-
house of hours can be considered negligible if the processing
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time is in the order of days, like in the case of welding, heat
treatments, painting, and inspection of large and bulky parts.

Operations and transport can be automated, like in compu-
ter-integrated manufacturing, or manual. Manual operations
can also be represented, using standard times.

Examples of scheduling optimization targets are minimiz-
ing total completion time (makespan) or weighted tardiness,
balancing mean flow time, and meeting due date. The problem
examined here is referred to as FmjBi ¼þ/ jCmax using Gra-
ham notation, where Fm stands for flowshop with m machines;
Bi ¼þ/ denotes that buffers with infinite capacity are pres-
ent, allowing nonpermutation schedules; and Cmax denotes
the makespan minimization as the optimization criterion.
Minimizing the makespan is one of the most common criteria
in the literature: lower total completion time is associated with
less idle time, higher machine utilization, and efficiency.

Some authors generate random problems or use data taken
from realistic cases to test the performance of their proposed
algorithms. Demanding benchmark problems allow compar-

ing objectively and quantitatively the performance of differ-
ent algorithms, also belonging to different classes (e.g., heur-
istics and metaheuristics). Among the most used flowshop
benchmarks is the set by Taillard (1993) considered in this
work, which includes small, medium, and large sets, as op-
posed to Demirkol, whose data set is limited to medium
size. Nonpermutation bounds from several authors are avail-
able at http://www.mathematik.uni-osnabrueck.de/research/
OR/fsbuffer/taillard2.txt (mirrored in http://www.ing.unipi.
it/lanzetta/flowshop/taillard2.txt), and they have been in-
cluded in the current analysis.

Biologically inspired general-purpose optimization algo-
rithms are capable of dealing with large job-size problems
and with the exponential increase in the solution search space
with the number of machines and jobs. Examples of meta-
heuristics include taboo search, simulated annealing, genetic
algorithms (Elbeltagi et al., 2005), and memetic algorithms
(Amaya et al., 2012). Despite their successful performance,
in the extensive reviews by Ruiz and Maroto (2005) and by Ri-
bas et al. (2010), ant colony or pheromone-based systems are
not present. Ant colony systems, a subset class of ant colony
optimization (ACO), use artificial or swarm intelligence by ex-
ploiting the experience of an ant colony as a model of self-
organization in cooperative food retrieval (Wang et al., 2003).

ACO has been selected among metaheuristics because of
its ability to build constructively arbitrary permutations of
job sequences (NPFS schedules) by two inverse mechanisms:
negative and positive pheromone deposition, respectively,
through the local update rule and off-line pheromone update
rule, detailed in the ACO description. Diversification by the lo-
cal update rule pushes toward permutated schedules and is the
core mechanism to generate natively nonpermutation solutions.

Standard ACO by Bonabeau et al. (1999) and disjunctive
graph model inspired by Rossi and Dini (2007) are combined
in this paper. It seems that the only ant colony algorithm ap-
plied to NPFS scheduling is by Sadjadi et al. (2008), which
provides the relative average performance on Taillard’s
benchmarks. Other NPFS benchmarks from Demirkol have
been considered by Ying and Lin (2007) and by the authors
(Rossi & Lanzetta, 2013a, 2013b).

Fig. 1. (Color online) Two flow lines, with and without buffers. Permutation (PFS) and nonpermutation flowshop (NPFS) are compared. In
both cases, jobs see machines (routing) in the same sequence (flowshop). In NPFS, buffers allow changes (permutations) of job sequences
on subsequent machines.

Fig. 2. (Color online) The flow line (clockwise from top left) with m
machines (or stages) M (bright red online only) and different examples of
buffer configurations (dark blue online only) to allow job sequence permuta-
tion between machines.
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Sadjadi et al. (2008) applied the standard ACO specifica-
tions from Bonabeau et al. (1999), except for the diversifica-
tion mechanism. The other main difference is on the selection
of the initial population, which is determined by improving a
permutation solution found by heuristics using local search.

Other approaches to the PFS problem tested on bench-
marks based on ant colony systems by Rajendran and Ziegler
(2004), min–max ant systems by Stuetzle (1998), the state of
the art based on tabu search by Brucker et al. (2003), and ge-
netic algorithms by Färber and Coves Moreno (2006) are also
compared with the proposed ACO.

2. NPFS PROBLEM

The mixed-integer linear programming model for the NPFS
problem is the following:

1. Parameters:

pij ¼ processing time of job i on machine j

BigM ¼ a sufficiently large positive value

2. Decision variables:

Zilj ¼ 1, if job i is assigned to sequence position

l on machine j; 0 otherwise

3. Dependent variables:

Slj ¼ starting time of job in sequence position

l on machine j

where i and i0 are jobs, i, i0 ¼ 1, 2, . . . , n; l and l0 are the
sequence positions, l, l0 ¼ 1, 2, . . . , n; j is the machines,
j¼ 1, 2, . . . , m; and the variables n and m are the num-
ber of jobs and machines, respectively.

4. Objective function:

MinCmax

Subject to the following constraints:

Xn

i¼1
Zilj ¼ 1 l ¼ 1, . . . , n

j ¼ 1, . . . , m (1)

Xn

l¼1
Zilj ¼ 1 i ¼ 1, . . . , n

j ¼ 1, . . . , m (2)

S1j þ
Xn

i¼1
pijZilj � S1(jþ1) j ¼ 1, . . . , m� 1 (3)

Slj þ
Xn

i¼1
pij � Zilj � Sl(jþ1) i ¼ 1, . . . , n� 1

j ¼ 1, . . . , m (4)

BigM(2� Zilj � Zil0(jþ1)) � Slj þ plj þ Sl0(jþ1)

i, l, l0 ¼ 1, . . . , n j ¼ 1, . . . , m� 1 (5)

jki, i ¼ 1, . . . , n, i = i0: S1j , Slj � Zilj � S1j þ pi0jZj0l,

l ¼ 2, . . . , mlj � n� 2 j ¼ 2, . . . , m (6)

Constraint (1) ensures that each job is assigned to exactly
one position of the job sequence on every machine. Constraint
(2) states that each position of the job sequence processes ex-
actly one job on every machine. Constraint (3) denotes the
starting times of the first job on every machine. Constraint
(4) insures that the (l þ 1)th job in the sequence of machine
j does not start on machine j until the lth job in the sequence
of machine j has completed. Constraint (5) insures that the
starting time of job I, which is assigned to position l in the se-
quence on machine j þ 1, is not earlier than its finish on
machine j. Constraint (6) ensures that the buffer size is subject
to:

LEMMA. The flowshop scheduling with n jobs and m ma-
chines is Bi ¼þ/ if and only if the interoperational buffer
size for machine j (2 � j � m) is at least (n – 2). B

The buffer size for machine j¼ 1 and j¼m þ 1 is n (i.e.,
the input and output buffers contain up to n jobs).

Proof: In the worst case, only one blocking with (n – 1) jobs
waiting occurs. Let j (2 � j � m) be the blocked machine. If
the last job on machine ( j – 1) is completed, no blocking
occurs because (n – 1) jobs have been already processed on
machine ( j – 1). Hence (n – 2) jobs wait in the interopera-
tional buffer between machines ( j – 1) and j. B

The optimization problem (1)–(6) can also be represented
by a disjunctive graph (DG; Fig. 3):

DG ¼ (N, A, Ej, W), (7)

where N is the set of operations, plus the dummy start and fin-
ishing operations represented by the symbols 0 and *; A is the
set of conjunctive arcs (directed arrows) between every pair of
operations on a job routing; Ej is the set of disjunctive arcs be-
tween pairs of operations at stage j; and W is the set of weights
(processing times) on nodes.

3. ACO FOR NPFS

The pheromone trail is the basic mechanism of communica-
tion among real ants. It is mimicked by ACO by an iterative
method (in epochs) able of finding the shortest path connect-
ing source 0 (nest) and destination * (food) on a weighted
graph (Fig. 3), which represents the optimization problem.

The ant runs the nest–food path by a probabilistic selection
of nodes according to the following mechanisms: intensifica-
tion to select a node in the vicinity of the current best paths;
and diversification in order to produce promising alternative
paths.

The proposed ACO follows the standard recommendation
for applications to scheduling problems, as opposed to the
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other implementations available in the literature for the flow-
shop problem introduced above.

The proposed digraph approach builds natively nonpermu-
tation sequences by the path generation mechanisms. In this
stochastic process, each artificial ant selects probabilistically
the next node (move selection) according to the amount of
pheromone on the connecting arc (learned desirability).

The path associated with each ant starts from 0, follows
routing arcs, directs disjunctive arcs, and ends in *. By de-
sign, nonpermutation schedules are achieved by directing
arcs differently at each stage. Here, Cmax is evaluated from
W (7). At each epoch, as soon as all the paths of the ants in
the colony are generated, the best ant (lowest Cmax) deposits
on its arcs an amount of pheromone proportional to the path
length ( pheromone updating). A pheromone decay routine is
also performed to prevent stagnation in local optima solutions
(evaporation r ¼ 0.12).

The two inverse mechanisms are achieved by negative and
positive pheromone deposition, respectively, through the lo-
cal update rule and off-line pheromone update rule. Diversi-
fication by the local update rule pushes toward permutated
schedules and is the core mechanism to generate natively
nonpermutation solutions.

This is a constructive way to generate a schedule. A com-
plete solution is generated forward by a partial solution using
the stigmergy of the colony (i.e., the selection of the more
promising disjunctive arcs where a higher amount of phero-
mone is laid). The main goal of the ACO mechanism is to
generate optimal solutions by constructive schedules. The
concept is similar to “divide et impera,” because the stig-
mergy progressively concentrates the search in a low number
of very small promising regions. Differently to local search,
this fact makes the algorithm intrinsically parallel and may
take advantage of modern processors.

3.1. Path generation

By the pheromone mechanism, ants may select arbitrary path,
consequently the resulting scheduling sequences (ant tours)
are different permutations (nonpermutation approach). Ran-
dom initial solutions are generated and iteratively improved
at each epoch by the ant behavior. By this natively construc-

tive approach we are able to assess the net performance of the
algorithm.

An ant a to generate an acyclic conjunctive graph with
weights on the conjunctive arcs (i.e., feasible schedule Sa), vis-
its every operation on the pheromone-learning model DG (7)
one and only one time with a complexity of O(m . n) in order
to transform the digraph in a feasible schedule. Path generation
is a stochastic process where an ant starts from the dummy 0
and selects the next node from the set of allowed operations.
It uses the following transition probability rule as a function
of both the heuristic function of desirability, h (termed visi-
bility function), and the amount of pheromone t on the edge
(Oij, J ), with J [ AL, of the pheromone trail:

z ¼ argminoij[AL t(oi0j, oij)ah(oi0j, oij)b
� �

, if q � q0

J, if q � q0
:

�
(8)

The nonnegative parameters a and b represent the intensity of
respectively, the amount of pheromone, and the visibility in-
cluded in the transition probability function. The nonnegative
parameter q0 is the cutting exploration, a mechanism that re-
stricts the selection of the next operation from the candidate
list AL. If a random number q is higher than the cutting ex-
ploration parameter q0 (0 � q0 � 1), the candidate operation
is selected by examining the probability of all candidate opera-
tions that are as much desirable as higher visibility and phero-
mone amount are; otherwise, the most desirable operation is se-
lected (i.e., the arc with the highest amount of pheromone and
the highest visibility).

The role of cutting exploration is that of explicitly splitting
the search space in order to achieve a compromise between
the probabilistic mechanism adopted for q � q0 or the further
intensification mechanism of exploring near the best path so
far, which corresponds to an exploitation of the knowledge
available about the problem. Cutting exploration by tuning
parameter q0 near 1 allows the activity of the system to con-
centrate on the best solutions (exploitation activity) instead of
letting it explore constantly (exploration activity), achieved
by tuning parameter q0 near 0. In fact, when q0 is close to
0, all the candidate solutions are examined in probability,
whereas when q0 is close to 1, only the local optimal solution
is selected by Equation (8). In this paper, a freezing function is
considered, which is similar to the one proposed by Kumar

Fig. 3. A disjunctive graph (digraph) for flowshop scheduling, with processing times pij at nodes Oij for n jobs on m machines.

A. Rossi and M. Lanzetta352

https://doi.org/10.1017/S0890060413000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000176


et al. (2003). This function progressively freezes the system
by tuning q0 from 0 to 1, in order to favor exploration in
the initial part of the algorithm and then favor exploitation
by means of the following expression:

q0 ¼
ln (epoch)

ln (n epochs)
, (9)

where epoch is the current iteration and n_epochs is the total
number of iterations of the ant colony system.

The heuristic function of desirability h is a very critical
component of ant colony systems. Generally, it is imple-
mented by dispatching rules. A comparison among a number
of dispatching rules to implement the visibility function has
been performed by Blum and Sampels (2004). In this paper,
the earliest starting time rule is used, the best one according to
Blum and Sampels.

3.2. Local update rule

The local update rule is applied to favor the exploration of not
visited nodes by other ants of the colony. This rule imposes to
the ant that has selected a candidate operation J, of laying on
the connecting arc (Oi0j, J ) the following negative amount of
pheromone:

t(Oi0j, J) ¼ (1� r)� t(Oi0j, J)þ r� t0: (10)

The local update rule is a convex combination of parameters
equal to the evaporation coefficient; in this case, the convex
combination has points t(Oij, J ) and t0. The amount of pher-
omone that remains on a selected edge diminishes because it
ranges between the previous value t(Oi0j, J ) and the initial
value t0. As a consequence, the effect of this rule is making
nodes less and less attractive as they are visited by ants, indi-
rectly favoring the exploration of not visited nodes. This is a
basic diversification mechanism because it pushes the next
ants to generate alternative paths.

3.3. Off-line pheromone update rule

This feature arises when a positive amount of pheromone has
to be deposited. The ant that detects the best path at each
epoch is termed best-epoch ant (Sbe). In order to direct the ex-
ploration of the best nest–food path by the entire colony, an
off-line update rule of pheromone is performed. At the end
of each epoch, the best-epoch ant Sbe deposits on all paths
of the acyclic graph generated a further amount of phero-
mone, proportional to the following convex combinations
of points t(Oij, J ) and makespan(Sbe)21. This produces
search intensification by other ants of the colony in the vicin-
ity of the best solution:

t0(Oij, J) ¼ (1� r)� t(Oij, J)þ r

� makespan(Sbe)�1, (Oij, J) [ Sbe

¼ (1� r)� t(Oij, J), otherwise. (11)

As for the local update rule, the amount of pheromone
t0(Oij, J ) that remains on the selected edge ranges between
the previous value, t(Oij, J ), and a value closer to the opti-
mum: makespan(Sbe)21. A routine of pheromone decay on
pheromone trails is performed on other arcs of the digraph,
thus indicating that a path rarely used probably does not
lead to optimal solutions.

3.4. Pseudocode

The Ant Colony System for NPFS has been implemented in
Cþþ according to the following high-level description:

Input: a weighted digraph WDG ¼ (N, A, Ej, WN, WE)
// Initialization
for each disjunctive arc (Oi0j0 ,Oij) of EA deposit a small con-

stant amount of pheromone

WE(Oi0j0 , Oij) ¼ (t0, t0) where t0

¼ n� m�max j¼1,...,m

Xn

i¼1
t(Oij)

� ��1

epoch 1; not_improve 0;
// Main Loop
while (not_improve , stability_condition) do

// Epoch Loop
for each ant a, a ¼ 1 to population_size do

// Path Generation
Sa  Ø;

1. O fOijj i¼ 1, . . . , n, j ¼ 1, . . . , mg;
2. Initialization of candidate nodes: ALw  O;

for each w ¼ 1 to n�m do
3. Initialization of feasible moves (i.e., the disjunctive

arcs connected to operations of ALw);
4. Move selection: select a feasible move (Oi0j, Oij) of

EA where Oi0j is the last operation in the queue of
machine m (Oi0j ¼ dummy 0, if m ¼ 1) by means
of the transition probability rules (8); directing
the related disjunctive arc (Oi0j ¼ dummy 0, if m
¼ 1);

5. Arc removal: remove all the remaining disjunctive
arcs connected to Oi0j (i.e., no other operation can
be immediately subsequent to Oi0j at stage j);

6. Computing length: move t(Oij) [WN from the se-
lected node to the directed one; also, move t(Oij)
on (Oiðj21Þ, Oi) [ A;

7. Path length evaluation: the longest path between
the one connected to the directed arc and the one
connected to the arc of the job routing is placed
as a mark of the scheduled operation;

8. Local updating: apply the local update rule (10) to
the arcs (Oi0j0 , Oij) [ WE;

9. Update allowed list: remove the scheduled opera-
tion from the allowed list, ALw  ALw/fOijg;

end for
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10. Directing the remaining disjunctive arcs (i.e., the
arcs are connected to dummy *).

11. Local search: Apply local search to Sa with neigh-
bor structure from Nowicki and Smutnicki (1996);

12. Best evaluation:
if (makespan(Sa) , makespan(Sbe))

then (makespan(Sbe) makespan(Sa) and Sbe  Sa)
end if

end for
Global updating: Apply the global update rule (11);
Best ant evaluation:

if (makespan(Sbe) , makespan(S*))
then ((makespan(S*) makespan(Sbe); S* Sbe

and epoch 0) and not_improve 0;
else epoch þþ and not_improve þþ;
end if

end while
Output: S*

4. COMPUTATION EXPERIMENTS

Benchmark instances are arrays bn�m. The n�m operations of
each job on all m machines are represented by their process-
ing times ordered by routing. Taillard’s (1993) benchmarks
include 12 sets of 10 instances for job numbers i ¼ 20, 50,
100, 200, 500 and machine numbers j ¼ 5, 10, 20. Each
benchmark instance k includes a nontrivial lower (LBijk)
and upper bound (UBijk). The lower (upper) bound is the
maximum (minimum) known theoretical minimum (maxi-
mum) attainable makespan. The upper bound can be reduced
by new, improved solutions. If it coincides with the lower
bound, the optimum for benchmark bijk has been reached.

Metrics for algorithm performance are the individual rela-
tive distances from the upper bound of benchmark instances

bn�m or the mean relative error (MRE) in each set (i, j):

MREbest
ij ¼

1
10

X10

k¼1

Cbestijk � UBijk

UBijk
(12)

MREavg
ij ¼

1
10

X10

k¼1

Cavgijk
� UBijk

UBijk
(13)

where the best and the average makespan solutions for each
set (i, j) of 10 benchmark instances k ¼ 1, . . . , 10 are
Cbestijk and Cavgijk

, respectively.
The proposed NNP-ACO has been run 10 times with the

(selected) parameters in Table 1 on 3-GHz 32-bit Intel Pen-
tium IV based PCs with 2 GB RAM.

The main ACO parameters described and summarized in
Table 1 have been derived from the job shop application in
Rossi and Dini (2007) and have been explored in preliminary
tests with the values indicated for population_size, a, b, r,
and h.

As for the population size, fewer ants have been used com-
pared to Rajendran and Ziegler (2004; 40 ants) and compared
to Sadjadi et al. (2008; 1000 ants) in order to reduce the pro-
cessing time. Consequently, the evaporation rate has been re-
duced compared to Sadjadi et al. (r¼ 0.9) to reduce the effect
of random search.

The stop criterion from Sadjadi et al. (2008) is a fixed com-
putation time. Instead we use a stability condition, corre-
sponding to 3000 epochs with error reduction of at least
one processing time unit.

4.1. Results

The average performance (MREavg) of the proposed ACO are
compared in Figure 4 within the same class of problems with

Table 1. Preliminarily tested and selected parameters for the proposed NNP-ACO

NNP-ACO

Parameter Tested Selected

population_size 5, 10, 20 5
t0 n × m × max j=1,...,m

∑n
i=1 t(Oij)

[ ]−1
n × m × max j=1,...,m

∑n
i=1 t(Oij)

[ ]−1

a 0.1, 0.2, 0.5, 1, 1.5, 2 2
b (0.1× i), i ¼ 1, . . . , 8 0.3
Stop criterion not_improve , stability_condition not_improve , stability_condition
stability_condition 3000 3000
q0 ln(not improve + 1)

ln(stability condition)
ln(not improve + 1)

ln(stability condition)
r (0.04× i), i ¼ 1, . . . , 9 0.12
Local search Steepest descent (NS) Steepest descent (NS)
h EST, PAST (RD) EST

Note: NNP-ACO, native nonpermutation ant colony optimization; NS, Nowicki and Smutnicki (1996); RD, Rossi
and Dini (2007); EST, earliest starting time (dynamic visibility); PAST, precedence-ordering average starting time
(static visibility).
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Sadjadi et al. (2008), Rajendran and Ziegler (2004), and
Stuetzle (1998), which do not provide results for data sets
of 200 and 500 jobs.

Although results are discrete, a graphical representation
with connecting lines has been preferred to show the separa-
tion among the performance of different algorithms.

The differences of makespan of the proposed algorithms of
the respective authors have been calculated from the upper
bound of the PFS benchmark. Because the detailed values
are not available, the proposed algorithm has been compared
with the (slightly higher) permutation upper bound for perfor-
mance assessment.

A lower value of MREavg means a better performance (lower
makespan) of the proposed algorithm compared to the state of
the art. A negative value represents a new (lower) upper bound.

For comparison within the same class of algorithms
(ACO), MREavg has been conservatively calculated with re-
spect to the original permutation upper bounds from Taillard
(1993), because most available results are for PFS, except
Sadjadi et al. (2008).

The MREavg of the proposed ACO ranges betweenþ0.035
and þ0.159, while Sadjadi et al. (2008) is between –0.075
and þ1.12, Rajendran and Ziegler (2004) is between þ0.72
and þ1.86, and Stuetzle (1998) is between þ0.196 and
þ2.475 (not shown). This also means that the MREavg of
the proposed ACO is upper limited to 16% as opposed to
112% from Sadjadi et al. The algorithms in Rajendran and
Ziegler (2004) and Stuetzle (1998) show the worst perfor-
mance overall. Out of scale MREavg values (available on
the respective articles) have not been represented to achieve
a higher visualization detail on the best results. The nonper-
mutation algorithm from Sadjadi et al. behaves clearly better
than with the permutation (PFS) constraint. The algorithm
from Sadjadi et al. has the best performance with 20 jobs or
with 5 machines (small problems). Although the performance
on large instances (200 and 500 jobs) are not available from

these authors, a degradation of performance with benchmark
size ( job and machine number) is clearly visible on medium
instances. This is enhanced by the steeper trend line for the
better (nonpermutation) algorithm from Sadjadi et al.

The upper bounds for the makespan of all 12 sets of 10
benchmark instances in NPFS configuration from various au-
thors and methods, averaged, are reported in Table 2. The
MREavg found by the state of the art from Brucker et al.
(2003) and Färber and Coves Moreno (2006), based on
tabu search and genetic algorithms, respectively, is compared
with the proposed ACO. The better results (highlighted) have
been obtained for higher machine numbers and job numbers.
Results are not available from Brucker et al. and Färber and
Coves Moreno for the 40 largest instances, where the pro-
posed ACO becomes the best known solution.

Here the nonpermutation upper bounds have been used for
comparison between the proposed NNP-ACO and the state of
the art of metaheuristics in general, using Taillard’s (1993)
benchmarks.

The last four sets of instances are one order of magnitude
more time consuming compared to the other instances (200
compared to 10 min) because of their large size. Other
methods use a stop criterion based on a fixed number of
epochs or computation time. Instead, we use a stability con-
dition (of 3000 epochs with an improvement of at least one
processing time unit), which has been reduced by one order
of magnitude and still results in a processing time one order
of magnitude higher. By the stability condition instead of a
stop criterion, convergence is assured regardless of the epoch
number.

4.2. Discussion

As shown, the proposed algorithm becomes the state of the art
on the benchmarks used, with the ACO approach, particularly
on larger instances.

Fig. 4. (Color online) The performance of ant colony optimization (ACO) systems in nonpermutation and in permutation (PFS) config-
uration on the Taillard’s (1993) benchmarks with respect to permutation upper bounds from Stuetzle (S; 1998), Rajendran and Ziegler
(RZ; 2004), and Sadjadi et al. (SBZ; 2008).
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Possible reasons of the better performance compared to
Sadjadi et al. (2008) as a function of the benchmark size
are inferred:

1. The ACO implementation by Sadjadi et al. (2008) has a
higher colony size and lower epoch number, which do
not allow sufficient differentiation despite their higher
evaporation, particularly on larger instances.

2. Sadjadi et al. (2008) find an initial permutation sched-
ule (pheromone trails) by the Nawaz et al. (1983) heur-
istic. Initial good solutions provide good final solution
for small-sized benchmarks. For larger benchmarks, the
Nawaz et al. heuristic suffers some performance de-
crease. Consequently, the ACO search can be trapped
in local optima.

3. Sadjadi et al. (2008) start from a solution of the permu-
tation problem and find an NPFS solution by a local
search, which causes a further performance decrease.

The proposed ACO has also been compared with permuta-
tion upper bounds from Rajendran and Ziegler (2004) and
still provides better performance, despite the higher problem
complexity of NPFS (n!m compared to n!).

A regression analysis has been carried out to assess the ef-
fect of the machine and job number on the makespan of the
best scheduling found by the proposed ACO. A correlation
has been found between MREavg and machine number at con-
stant job number. This is also qualitatively shown by the pe-
riodic MREavg increase in Figure 4. The same trend also shows
the relative independence of the algorithm performance on
the job number.

A stronger correlation has been found between computa-
tion time and both job number and machine number. The
computation time with the proposed ACO, which has not
been optimized in this work, is one order of magnitude higher
than Sadjadi.

Compared to nonpermutation metaheuristics, new upper
bounds have been proposed on larger instances and there is
still a margin of improvement by parameters optimization.
A summary of benefits and drawbacks of the proposed ap-
proach is available in Table 3.

5. CONCLUSIONS

A mathematical model of the flow line scheduling problem
with buffers has been proposed. The few existing approaches
have been compared using well-known benchmarks charac-
terized by a wide size range, available from Taillard (1993).

The NP-hardness has been tackled by metaheuristics, and
ACO have been selected. The proposed ACO is natively non-
permutation as opposed to other authors who apply a local
search to permutation solutions. Natively means that initial

Table 2. Performance assessment in NPFS configuration

Instances Mean NPFS Upper Boundsa State of the Art Proposed NNP-ACO

Jobs i Machines j Taillard’s Benchmarks MREavg (12) MREavg (12) MREbest (13)

20 5 1217.1 0.000 (B) 0.057 0.023
20 10 1494.0 0.013 (FCM) 0.107 0.079
20 20 2228.8 0.130 (B) 0.096 0.072
50 5 2731.9 0.001 (FCM) 0.048 0.026
50 10 2979.1 0.020 (FCM) 0.136 0.119
50 20 3717.1 0.290 (B) 0.163 0.143

100 5 5237.3 0.020 (B) 0.036 0.021
100 10 5618.6 0.130 (B) 0.107 0.081
100 20 6312.4 — 0.165 0.141
200 10 10663.1 — 0.084 0.064
200 20 11272.8 — 0.160b 0.149b

500 20 26362.8 — 0.120b 0.116b

Note: NPFS, nonpermutation flowshop; MRE, mean relative error; Cbestijk , the best makespan obtained by the proposed ant colony
optimization (ACO) in a single run or otherwise defined by Brucker et al. (B; 2003) and Färber and Coves Moreno (FCM; 2006); NNP,
native nonpermutation.

aFrom http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt
b300 epochs.

Table 3. Summary of benefits and drawbacks of the proposed
approach

Benefits Drawbacks

General purpose optimization
algorithm

Parameters need to be selected (and
optimized) by preliminary tests.

Constructive solutions from random
initialization: net performance
can be assessed

Local optima are found (no global
optima).

Relative invariance of performance
with problem size/complexity

Further research is required to match
the performance of other
metaheuristic approaches.
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ant paths are selected arbitrarily and the pheromone mecha-
nism stimulates differentiation among permutated schedules
(nonpermutation scheduling). The proposed approach shows
the best performance in NPFS configuration, particularly on
larger instances and is very close to the state-of-the-art meta-
heuristics.

Based on computation experiments, it can be concluded
that such a general-purpose optimization tool has high poten-
tial in NPFS and can provide good solutions, regardless of the
problem complexity increase in the examined range.
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