
Math. Struct. in Comp. Science (2018), vol. 28, pp. 1333–1362. c© Cambridge University Press 2018

doi:10.1017/S096012951800021X First published online 27 July 2018

Interactive and automated proofs for graph

transformations

MARTIN STRECKER

Institut de Recherche en Informatique (IRIT), Université de Toulouse, France

Email: martin.strecker@irit.fr

Received 1 April 2012; revised 1 May 2018

This article explores methods to provide computer support for reasoning about graph

transformations. We first define a general framework for representing graphs, graph

morphisms and single graph rewriting steps. This setup allows for interactively reasoning

about graph transformations. In order to achieve a higher degree of automation, we identify

fragments of the graph description language in which we can reduce reasoning about global

graph properties to reasoning about local properties, involving only a bounded number of

nodes, which can be decided by Boolean satisfiability solving or even by deterministic

computation of low complexity.

1. Introduction

1.1. Setting the stage

Graph transformations are an interesting conceptual model for describing structural

modifications in natural sciences (such as chemistry and biology) and in particular in

computer science. Here, they are used for model transformations in the area of model

driven engineering, for representing concurrent systems, and for giving a high-level view

of pointer manipulating programs. Since these application areas are often safety-critical,

being able to reason about graph transformations is of major interest. Computer support

for these reasoning tasks conveys a higher degree of reliability than paper-and-pencil

proofs and becomes indispensable when the models are complex, a great number of

correctness conditions has to be tracked and proofs have to be rechecked frequently

after modifications in the design process. The situation becomes particularly delicate if

transformations involve non-injective graph matchings, which lead to node aliasing that

can entail a combinatorial explosion.

There are essentially two branches of computer supported formal reasoning: model

checking and interactive theorem proving. The vast majority of existing approaches

for verifying graph transformation systems follows the model checking paradigm (see

Section 1.3 for a more detailed discussion). It explores, which configurations are reached

when transformation rules are applied to a given start graph. Typical properties under

investigation are therefore whether particular invariants are maintained during graph

rewriting, or whether certain configurations are reachable. Model checking is attractive

because it offers a high degree of automation and is therefore accessible also to uninitiated

users. However, developers of model checkers have to strike a balance between limiting

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1334

the expressivity of the property language and incurring undecidable or infeasibly complex

proof problems. Furthermore, results obtained by model checking typically only hold for

individual instances and not for entire classes of graphs or transformation systems.

The present article follows the interactive theorem proving approach and proposes, in its

first part, a general framework for describing and reasoning about graph transformations

in a proof assistant based on a higher order logic. The question of interest is not primarily

how a specific instance evolves under graph transformations, but which properties hold if

a transformation is applied to an arbitrary graph, or at least an arbitrary graph satisfying

some given preconditions.

In order to be able to manipulate transformations as first-class objects and to inspect

them syntactically, we impose some restrictions on the language that formalizes applicab-

ility conditions for transformations, and represent this language as an inductive datatype.

Apart from that, we have at our disposal the whole expressiveness of higher order logic for

stating properties of graphs and graph transformations and a panoply of methods (such

as different forms of induction) for proving them. Section 2 is devoted to a description

of this framework. It is versatile, but has the drawback that fully automated sound and

complete verification cannot be expected. It is also extensible: we can easily distinguish

between different kinds of graph matching morphisms (for example, injective ones), and in

Section 3, we show how to add typing information to the untyped development of Section 2.

In the second major part of this article, we explore methods for automating the

reasoning tasks. The principle is to reduce reasoning about a graph with a potentially

unbounded number of nodes (namely the graph a rule is applied to) to reasoning about

a graph with a bounded number of nodes (namely the nodes occurring in the rule itself).

This only succeeds if the impact of a rule on a graph is local, in a sense made precise below.

We concentrate on a particular kind of proof problems, namely reachability problems,

and examine two variants that differ by the applicability conditions of the rules. We first

describe a set of simplification steps that reduce a proof goal to a Boolean satisfiability

problem, for a rather general relational language defined in Section 4.

We then restrict this language still further to conjunctive relational expressions (Sec-

tion 5). In this case, verification of the preservation of reachability in a graph can be

reduced to a simple ‘calculational’ proof requiring the computation of the transitive

closure of a finite, concrete set of edges (those occurring in the applicability condition of

the transformation rule). This reduction, which looks like a meta-result, is entirely carried

out in our framework without appealing to extraneous notions. It is one of the benefits

of treating transformations as first-class objects and of reflecting applicability conditions

of transformations in an inductive datatype.

To summarize, the contribution of this article is a framework for reasoning about graph

transformations in a proof assistant that can be used in two main scenarios:

— when reasoning about the effects a specific graph transformation may have on arbitrary

graphs, thus offering an extension of what can usually be achieved by model checking.

— when reasoning about arbitrary graph transformations and of transforming them in

such a way that their properties become verifiable automatically or even with low

computational complexity.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1335

r1

r2

r3 r1

r2

r3

x yn1

n2

n3 x yn1

n2

n3

Figure 1. Simple rerouting.

1.2. Problem statement

A major subtopic of this article is to which degree reasoning about a graph transformation

can be reduced to reasoning about the shape of the transformation rules. We will illustrate

the problem with three examples.

Example 1.1. The first example presents a situation where such a kind of reasoning

succeeds. In Figure 1, the upper part shows the transformation rule, consisting of a left-

hand side with nodes r1, r2, r3 and an edge (r1, r3) and a right-hand side which is obtained

by deleting edge (r1, r3) and inserting new edges (r1, r2) and (r2, r3).

The dotted arrows map the rule into a target graph in the lower part. The question

is: does this transformation preserve reachability in the graph? More formally, if e is the

edge relation of the target graph and e∗ its reflexive-transitive closure, if (x, y) ∈ e∗ in

the original graph (for arbitrary x, y), is then also (x, y) ∈ e∗ in the transformed graph?

We will show (see Theorem 5.4) that we can reduce the problem to simply looking at the

transformation rule: {(r1, r3)}∗ ⊆ {(r1, r2), (r2, r3)}∗, and thus the property carries over to

any graph where the rule is applied.

Example 1.2. We will now see that, in general, this reasoning is incorrect. The example in

Figure 2 models an information flow through hierarchically nested components, loosely

inspired by an example in Asztalos et al. (2010), Tran and Percebois (2012).

Nodes with bold border are meant to represent ‘composite’ components, the remaining

components are ‘simple,’ and containment is represented by dashed arrows. There is a

data flow relation from simple to composite (esc) and from composite to simple (ecs)

components, and between simple components, which we call e (unmarked edges in the

figure). Here, we ask whether the connectivity is preserved by a transformation which

routes a flow through nested components r2, r3 instead of the containing block r5.

Differently said, is each flow (x, y) ∈ (e ∪ (ecsOesc))
∗ preserved by the transformation,

where O is relation composition? The rule seems to indicate that this is the case.

When embedding the rule (upper part) into a larger graph (lower part; here, the

matching morphism is not shown explicitly), we see that this is not so: data can flow

from n1 to n6 in the original graph, but not in the transformed graph (remember that the

dashed edges are not data flow edges).

Finally, properties of transformations depend crucially on the properties of the morph-

isms mapping rules into graphs.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1336

r1

r2

r5

r3

r4 r1

r2

r5

r3

r4

n1

n2

n5

n3

n4

n6

n1

n2

n5

n3

n4

n6

esc ecs

esc ecs

ecs ecs

Figure 2. Complex rerouting.

r1

r2

r3 r1

r2

r3

n12

n3

n12

n3

Figure 3. Rewriting under a non-injective morphism.

Example 1.3. Consider the transformation in Figure 3, where the apparently redundant

edge between r1 and r3 is deleted. Again, we are interested in preservation of the flow

relation. When reasoning purely on the basis of the left- and right-hand sides of the

rule, it seems that the flow relation is unaltered, because {(r1, r2), (r2, r3), (r1, r3)}∗ =

{(r1, r2), (r2, r3)}∗.
However, a non-injective morphism mapping both node references r1 and r2 to node n12

and r3 to n3 also maps the edge (r1, r3) to the edge (n12, n3), which leads to the deletion of

this edge. Therefore, in the resulting graph, the path between n12 and n3 is not preserved.

The methods developed in this article also allow to take such aliasing problems into

account, but provide special solutions for injective graph morphisms. We will come back

to this situation in Example 5.1.

1.3. Related work

Most of the work on verification of graph transformations has so far concentrated on

model checking, see Asztalos et al. (2010), Baldan et al. (2008), Ghamarian et al. (2012),

Varró (2004) as a non-exhaustive list of representatives of this approach. Often, the

purpose is to model concurrent systems as graph transformations and to investigate

invariants and reachability problems of these systems. There is however a growing interest

in using graph rewriting for model transformations (Arendt et al. 2010) with appropriate

verification methods (Varró and Balogh 2007).

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1337

Model checking approaches are rarely applicable for software verification, unless the

data structures manipulated by a program are entirely generated by the rules from an

initial graph, such as the red–black trees in Baldan et al. (2005), or unless abstraction

functions are provided (Zambon and Rensink 2011).

There is an immense body of work on verification of pointer structures in imperative

programs. Static analyses often use specialized logics for expressing shapes of pointer

structures (Immerman et al. 2004; Yorsh et al. 2007). These logics, as well as frameworks

based on Monadic Second-Order (MSO) logic, often rely essentially on tree structures

with additional pointers, such as the data structure invariants of Møller and Schwartzbach

(2001) or XML processing Hosoya (2011). The global approach developed in this article is

not restricted to particular shapes of a graph, but we only offer full automation for specific

forms of proof obligations. It remains that the relation between algebraic approaches to

graph rewriting (Ehrig et al. 1997) and MSO-definable transductions (Courcelle and

Engelfriet 2011) still has to be explored in detail. MSO for verification of graph properties

is explored by Courcelle and Durand (2010), but does not address graph transformations.

Balbiani et al. (2010) develop a modal logic for reasoning about graph programs composed

of fine-grained operators for manipulating nodes and redirecting edges.

Exploiting a local environment for reasoning about data structures, as advocated in

Section 4 of this article, is adopted in several approaches: McPeak and Necula (2005)

give a decision procedure for a language that is essentially first-order (and in particular

contains no transitive closure), but can deal with relation composition and integrates

support for scalar data types. There is intense activity around Separation Logic (Berdine

et al. 2005; Reynolds 2002) that constructs complex program properties out of properties

of separate memory regions.

Graph rewriting has long been considered in an algebraic tradition as an extension of

term rewriting. The tendency to interpret graph structures logically is rather recent (Orejas

et al. 2010; Rensink 2005). The work of Habel et al. (2006) is continued by Pennemann

(2008a,b) and Habel and Pennemann (2009), who extract verification conditions from

graph transformation programs and feed them into SAT solvers or first-order theorem

provers. Rather similar to ours, the approach differs in two respects: it is entirely automatic

and does not allow for human intervention for proving ‘difficult’ properties; and there is

no tight coupling between the semantics (expressed in categorical terms in the cited work)

and the proof obligation generator, and thus has to rely on a larger trusted code base.

da Costa and Ribeiro (2009, 2012) present a logical model for reasoning about graph

transformations that is similar to ours. This approach has been implemented in Event-B

(Ribeiro et al. 2010) by coding individual rules as Event-B machines and then profiting

from the proof support for this platform to prove the correctness of rules. Further work

is needed to see to which point this coding allows for the kind of meta-reasoning that we

advocate in this article (Sections 4 and 5).

The present article is a synthesis and extension of work previously published in Strecker

(2008, 2011). The formalization has been modularized by the introduction of theory

contexts (‘locales’), which has made it possible to separate structural transformations

from typing issues, and to swap easily between different kinds of graph morphisms. The

results presented in Section 5 are entirely new.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1338

1.4. Notation and presentation

The development described in this article has been carried out in the Isabelle/HOL proof

assistant (Nipkow et al. 2002), which combines a functional programming language with

a higher order logic. The functional fragment is similar to the ML family of program-

ming languages. Any diverging notation and additional concepts will be introduced in

paragraphs marked as ‘aside’ where needed. We have refrained from using, in an essential

manner, specifics of Isabelle that would not be available in similar form in other proof

assistants, such as Coq or PVS.

The text presented below is an extract of the formal Isabelle development with

annotations in LATEX. Propositions marked as lemma or theorem have been proved

in Isabelle, and the formal development is available from the Web page of this article.†

Proofs provided in this article, therefore, try to convey an intuition rather than give a

complete correctness argument.

2. Graphs and graph transformations

This section introduces a minimalist concept of graphs and a notion of path expressions

(Section 2.1) that are syntactic entities representing the applicability conditions of graph

transformations (Section 2.2). These notions are sufficient for the further development.

We will show later how they can be extended to graphs with typed nodes and edges

(Section 3).

2.1. Graphs and graph expressions

Graphs are defined classically, as a structure consisting of a set of objects (the nodes) and

a relation between objects (the edges). For the moment, the type of these objects is left

abstract.

record ′obj graph =

nodes :: ′obj set

edges :: (′obj ∗ ′obj) set

We limit our considerations to graphs that are structurally well-formed in the sense that

the node set is finite and the endpoints of the edges belong to the node set (the Field of a

relation is the union of its domain and its range). The first requirement is a convenience

when reasoning about cardinalities of edge relations; the second requirement is intended

to exclude erratic behaviour of graph transformations (utpd is for ‘untyped,’ in contrast

to the typed extensions introduced in Section 3).

definition struct-wf-gr-utpd :: (′obj , ′a) graph-scheme ⇒ bool where

struct-wf-gr-utpd gr = (finite (nodes gr) ∧ (Field (edges gr)) ⊆ (nodes gr))

Aside on Isabelle (records): Access to a component of a record, for example, nodes, is

written in functional notation. Isabelle uses a concept of extensible records that can be

† http://www.irit.fr/∼Martin.Strecker/Publications/proofs graph transformations.html

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1339

enriched with further components, as will be done with typing information in Section 3.

To profit from this extensibility, we use graph-scheme instead of graph in the type of the

above function; the additional type parameter is introduced for technical reasons (see

Naraschewski and Wenzel 1998) and can be neglected here.

Each graph transformation rule has an applicability condition that describes under

which circumstances the rule can be applied; at the same time, it identifies the nodes

and edges to be transformed. We have chosen to deeply embed these conditions in the

proof assistant, by defining their abstract syntax as a datatype, rather than directly using a

predicate in Isabelle’s logic. This choice is motivated by two reasons: First, the applicability

conditions can refer to an arbitrary number of nodes, but there is no uniform type in

simply typed lambda calculus for an ‘n-ary predicate’ (for variable n), and consequently

neither for graph transformations. Second, we now have the possibility to characterize

fragments of the property language, by means expressible in the proof assistant itself, as

for example in the reductions of Section 5.

We first define inductively a type of node set expressions ′nt nodeset and of path

expressions ′et path . Anticipating the introduction of typed graphs further below, these

inductive types are parameterized by node types ′nt, respectively, edge types ′et. Path

expressions are inspired by the relation algebra of Tarski (1941) (some of them are not

explicitly represented, but can be defined), but go beyond it in that also a transitive

closure operator is present.

The constructors of nodeset with their informal semantics are the following (the formal

semantics will be given below):

— �Univs�, the set of all nodes.

—
n�, the singleton node set with node reference n. We make a distinction between

a node reference in a node set or path expression (a natural number, as motivated

below) and a node (an object of a graph).

— �:: nt�, the set of nodes of node type nt.

The constructors of path are as follows:

— �Idp�, the identity path (identity relation).

— �Univp�, the universal path (universal relation).

—
n , n ′�, the edge between node reference n and n ′.

— �:: et ::�, the set of edges of edge type et.

— �−�p, the complement of path p.

— p �−1�, the converse path (the path p with the edges reversed).

— p�;�p ′, the composition of paths p and p ′.

— p�+�p ′, the alternative (path p or p ′).

— p�ˆ+�, the transitive closure of path p.

On top of these notions, we build path formulas of type (′nt , ′et) path-form with the

constructors:

— (n �∈� s): node reference n is in node set s.

— (n � n ′ �∈� p): there is a path from node reference n to n ′ in path p.

— �¬� pf : negation of path formula.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1340

— pf �∧� pf ′: conjunction of path formulas.

— �∀ � pf : universal quantification over the graph nodes.

In the following, we will use �
n�� as abbreviation for (n �∈�
n�), saying that n is

a node of the graph under consideration (node sets are relativized to graph nodes), and

�
n1 , n2�� as abbreviation for (n1 � n2 �∈�
n1 , n2�), saying that (n1 ,n2) is an edge.

A notation like �{1 , 2 , 3 }� is a shorthand for �
1�� �∧� �
2�� �∧� �
3�� ({1 , 2 , 3 } is

a set of nodes of the graph). Clearly, we can describe the shape of any finite graph by

a conjunction of formulas of the form �
n�� and �
n1 , n2��. We also use connectors

and quantifiers such as �∨� and �∃ �, which are defined in the obvious way from the

constructors of path formulas.

The formal semantics of nodeset and path expressions is presented in Figures 4 and

5, respectively. Using Isabelle’s locale mechanism (see next paragraph), these expressions

are interpreted relative to a fixed graph gr and interpretation functions I-nt for node

types and I-et for edge types. The reader can neglect them until the introduction of typed

graphs in Section 3. Thus, gr, I-nt and I-et are implicit parameters of the interpretation

functions. There is a an explicit parameter I mapping node references (natural numbers)

to nodes of a graph (of type ′obj). With these prerequisite and the informal semantics, the

functions nodeset-interp and path-interp offer few surprises. In Isabelle, the converse of a

relation is written with postfix −1, relation composition as O and (non-reflexive) transitive

closure as postfix +. Node and edge sets are always relativized to the node and edge sets

of graph gr.

Aside on Isabelle (locales): Locales (Ballarin 2004) are Isabelle’s mechanism for struc-

tured theory development. Definitions can be carried out relative to previously fixed

local constants and under local assumptions that axiomatize a theory. Locales can

also be extended with new constants or assumptions, thus giving rise to a locale

hierarchy. Locales can later be instantiated, replacing the local constants by specific

values. Instantiation generates proof obligations which ascertain that the instances satisfy

the locale’s assumptions. Locales can make definitions and theorems very compact, but

they tend to veil implicit parameter dependencies. Thus, the function definitions in

Figures 4–6 have gr, I-nt and I-et as implicit parameters. In this article, we do not display

the locale declarations in Isabelle’s syntax, but only describe them verbally.

The function path-form-interp (in Figure 6) injects path formulas (which can be

understood as meta-level formulas) back into formulas of type bool of Isabelle’ s object

logic and thus provides an interpretation of path formulas. The definition is relatively

standard, except for the treatment of the universal quantifier: In order to avoid the

typical complications involving bound variables, we use a nameless representation of

bound variables with de Bruijn indices (de Bruijn 1972). In the interpretation function

for universal quantification, the currently introduced variable x is assigned to the node

reference 0, and the remaining node references are shifted by one position. For this reason,

node references are natural numbers.

The definition of the interpretation functions is entirely constructive: Because the

interpretation of quantifiers ranges over the node set of a graph (which we have assumed

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1341

fun nodeset-interp :: [nat ⇒ ′obj , ′nt nodeset] ⇒ ′obj set where

nodeset-interp I (�Univs�) = nodes gr

| nodeset-interp I (�n�) = (nodes gr ∩ {I n})
| nodeset-interp I (�:: nt�) = (nodes gr ∩ I-nt nt)

Figure 4. Semantics of node sets.

fun path-interp :: [nat ⇒ ′obj , ′et path] ⇒ (′obj ∗ ′obj) set where

path-interp I (�Idp�) = Id-on (nodes gr)

| path-interp I (�Univp�) = (edges gr)

| path-interp I (�n1 , n2�) = (edges gr ∩ {(I n1 , I n2)})
| path-interp I (�:: et ::�) = (edges gr ∩ I-et et)

| path-interp I (�−� p) = ((nodes gr) × (nodes gr)) − (path-interp I p)

| path-interp I (p�−1�) = (path-interp I p)−1

| path-interp I (p �;� p ′) = (path-interp I p) O (path-interp I p ′)
| path-interp I (p �+� p ′) = (path-interp I p) ∪ (path-interp I p ′)
| path-interp I (p�ˆ+�) = (path-interp I p)ˆ+

Figure 5. Semantics of paths.

to be finite), for any computable function I and any path formula pf we can effectively

determine whether path-form-interp I pf holds for a well-structured graph gr.

Let us give some further encodings: Equality n1 �=� n2 of two nodes n1 and n2 is

defined by (n1 � n2 �∈� �Idp�), and inequality ��=� by its negation. The expression 0 ��=�1
is not a trivially true formula, but states that node references 0 and 1 refer to different

nodes. Even though injectivity of morphisms could thus be coded into applicability

conditions, we prefer to deal with properties of morphisms separately below, in order to

obtain more concise reduction statements (see Section 5).

We now show how to express cardinality constraints in our language. Take the following

path formula that says that node n is connected through a path specified by path expression

p with at least two distinct other nodes:

�∃ � �∃ � 0 ��=�1 �∧� (n+2 � 0 �∈� p) �∧� n+2 ��=�0 �∧� (n+2 � 1 �∈� p) �∧� n+2 ��=�1.

When applying path-form-interp I to this path formula, we obtain the object logic

formula

∃ b. b ∈ nodes gr ∧ (∃ a . a ∈ nodes gr ∧ b �= a ∧,

(I n , a) ∈ path-interp (I ′ a b) p ∧ (I n ∈ nodes gr −→ a �= I n) ∧,

(I n , b) ∈ path-interp (I ′ a b) p ∧ (I n ∈ nodes gr −→ b �= I n)),

where (I ′ a b) is the interpretation that sends node reference 0 to node a and 1 to node

b and otherwise behaves like interpretation I.

The path formula just discussed is in fact an expansion of cardrel-geq n p 2, where

cardrel-geq n p k expresses that node n is related through path p with at least k distinct

nodes. It is defined as follows (assuming that p contains no free node references):

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1342

fun path-form-interp :: [nat ⇒ ′obj , (′nt , ′et) path-form] ⇒ bool where

path-form-interp I (n �∈� s) = (I n ∈ nodeset-interp I s)

| path-form-interp I (n � n ′ �∈� p) = ((I n, I n ′) ∈ path-interp I p)

| path-form-interp I (�¬� pf) = (¬ (path-form-interp I pf))

| path-form-interp I (pf �∧� pf ′) = ((path-form-interp I pf) ∧ (path-form-interp I pf ′))
| path-form-interp I (�∀ � pf) =

(∀ x . x ∈ nodes gr −→ path-form-interp ((I ◦ (λ x . x − 1))(0 :=x)) pf)

Figure 6. Semantics of path formulas.

definition cardrel-geq :: nat ⇒ ′et path ⇒ nat ⇒ (′nt , ′et) path-form where

cardrel-geq n p k =

equantif k (conjs-form [(x ��=� y). x ← [0 ..< k], y ← [0 ..< k], (x < y)] �∧�
conjs-form [((n + k � x �∈� p) �∧� (n + k ��=� x)). x ← [0 ..< k]]).

Here, equantif k generates an existential quantifier prefix of length k, and conjs-form

takes the conjunct of a list of path formulas (the latter constructed with a Haskell-like

list comprehension).

We have presented the full language of paths and path formulas, which is more

expressive than what is needed in the following development and than what can be dealt

with by the automated procedures presented in Sections 4 and 5, even though it is useful

for specifying properties that can be proved interactively.

2.2. Graph transformations

Before introducing the notion of graph transformation, let us first turn to Figure 1 for

an informal discussion. The graph in the upper left part, consisting of node references

r1, r2, r3 and an edge between r1 and r3, is the application condition, which is particularly

simple in this case, but could be any path formula, as seen in the previous section. The

transformation pattern is specified by indicating the set of nodes to be generated and

deleted, and similarly for the edges. In our example, we might choose to keep the node

set the same, delete the edge (r1, r3) and replace it by two new edges (r1, r2) and (r2, r3).

Pictorially, this gives the graph in the upper right part of Figure 1.

More formally, we represent a graph transformation by a record consisting of an

application condition (a path-form), sets of deleted and generated node references and

sets of deleted and generated edge references:

record (′nt , ′et) graphtrans =

— applicability condition

appcond :: (′nt , ′et) path-form

— mapping of nodes

ndel :: nat set — deleted nodes

ngen :: nat set — generated nodes

— mapping of edges

edel :: (nat ∗ nat) set — deleted edges

egen :: (nat ∗ nat) set — generated edges

This is the most elementary notion of graph transformation which only takes into

account structural aspects; typing will be added in Section 3.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1343

Example 2.1. With the abbreviations of page 1339, we can now define the transformation

of Figure 1:

definition rerouting where rerouting =

(| appcond = �{1 , 2 , 3 }� �∧� �
1 , 3�� ,
ndel = {}, ngen = {},
edel = {(1 ,3)}, egen = {(1 ,2), (2 ,3)} |).

We have to impose some well-formedness restrictions on transformations that will allow

us to prove (see Theorem 2.4) that graph transformations preserve the well-formedness of

graphs. In particular, we postulate that the node references of deleted nodes are among

the free variables of the application conditions of the graph transformation, that only a

finite number of nodes is generated, and that these nodes are not among the free variables

of the application conditions. There are similar restrictions for the edges (the Field of a

relation being the union of its domain and range), which are however quite liberal, in view

of the expressiveness of the application condition language. Thus, an edge scheduled for

deletion (edel) is not required to exist in the graph, only its endpoints have to be among

the free variables of the application condition. Altogether, structural well-formedness of

untyped graph transformations is defined by:

definition struct-wf-gt-utpd :: (′nt , ′et , ′a) graphtrans-scheme ⇒ bool where

struct-wf-gt-utpd gt =

((ndel gt) ⊆ (fv-path-form (appcond gt)) ∧
finite (ngen gt) ∧ fv-path-form (appcond gt) ∩ (ngen gt) = {} ∧
(egen gt) ∩ (edel gt) = {} ∧
(Field (edel gt) ⊆ fv-path-form (appcond gt)) ∧
(Field (egen gt) ⊆ (fv-path-form (appcond gt) − (ndel gt)) ∪ (ngen gt))).

Note that we can easily compute the set of free variables of an application condition

(fv-path-form) because path formulas are represented as a data type; similar syntactic

manipulations would not be possible within Isabelle’s object logic.

Referring back to Example 2.1, we obtain the

Result 2.1. ‡ struct-wf-gt-utpd rerouting

Proof. Even though the node and edge set components of a graph transformation could

be stated in abstract terms (i.e., as predicates), they are most likely given by an enumeration

of their elements, as for rerouting. In this case, the proof is purely calculational, obtained

by expanding the definitions and simplifying the resulting terms.

Central to defining the application of a transformation to a graph is the concept of

morphism, which in our case is a map from node references to objects.

type-synonym ′obj graphmorph = (nat ⇒ ′obj option)

‡ We denote properties of examples as ‘result’ and more general properties as ‘lemma’ or ‘theorem’, but there

is no formal difference between them.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1344

We recall that the option type has the two constructors None, which can be conceived

as representing an undefined value, and Some y, representing a defined value y. Maps are

therefore convenient for describing partial functions. Isabelle provides some predefined

functions on maps: dom m is the set of those x for which m x is defined, ran m is the

set of all y with m x = Some y. Restriction m|‘A restricts the domain of m to set A by

sending all elements outside of A to None, and addition (m1 ++ m2) x selects the value

of m2 x if it is defined, and otherwise m1 x.

We can now describe what it means to apply a graph transformation to a graph. We

first assume that we have already identified a graph morphism gm going from the node

references of the applicability condition to the nodes of a graph gr to which we apply the

graph transformation gt. Such a morphism is visualized by the dotted lines in the left part

of Figure 1. The application is defined relationally, by specifying what a correct result

graph gr ′ should look like. Indeed, as it will soon turn out, the definition contains some

non-constructive existential quantifiers (definitions applicable-transfo and apply-transfo-rel

below) and is therefore not executable. Before discussing the full definition, we consider

the special case of a transformation which does not generate new nodes:

definition apply-graphtrans-rel-nogen ::

[(′nt , ′et , ′a) graphtrans-scheme, ′obj graphmorph ,

(′obj , ′b) graph-scheme, (′obj , ′b) graph-scheme] ⇒ bool where

apply-graphtrans-rel-nogen gt gm gr gr ′ =

(let del-nodes = ran (gm |‘ (ndel gt)) in

let nds = ((nodes gr) − del-nodes) in

let del-edges = ((emorph gm) ‘ (edel gt)) in

let gen-edges = ((emorph gm) ‘ (egen gt)) in

(nodes gr ′ = nds) ∧ (edges gr ′ = (restrict-rel (edges gr) nds − del-edges)

∪ gen-edges))

The nodes that are deleted in graph gr ′ are the image of the set ndel gt under morphism

gm, the nodes of the result graph are the nodes of the original graph minus the ones

that are deleted. Similarly for edges: we calculate the deleted and generated edges as the

image of the sets edel gt, respectively, egen gt. Here, f ‘ S is the image of a set S under

a function f, i.e., the set {y . ∃ x ∈ S . f x = y}, and emorph gm lifts the graph morphism

gm from nodes to edges. We restrict the edge relation of the resulting edge set to the set

of result nodes, which amounts to deleting dangling edges.

The full definition for transformations of untyped graphs (apply-graphtrans-rel-utpd in

Figure 7) deals with two additional aspects: First, we want to characterize properties of

morphisms and therefore introduce the parameter morph-prop, a predicate on morphisms.

We can now easily provide locale extensions for arbitrary morphisms (instantiation of

morph-prop with the constantly True function) and injective morphisms (instantiation

with inj-map), where inj-map is defined as inj-map m ≡ inj-on m (dom m), saying that m is

a function that is injective on its domain.

The second extension concerns the generation of new nodes. The situation is comparable

to storage allocation in imperative programs; however, our ‘memory model’ is extremely

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1345

definition graphtrans-gen-nodes ::

[(′nt , ′et , ′a) graphtrans-scheme, (′obj , ′b) graph-scheme, ′obj graphmorph, ′obj set]

⇒ bool where

graphtrans-gen-nodes gt gr gen-gm gen-nodes =

(dom gen-gm = ngen gt ∧ ran gen-gm = gen-nodes ∧ gen-nodes ∩ nodes gr = {})

definition apply-graphtrans-rel-nodes-for-gen ::

[(′nt , ′et , ′a) graphtrans-scheme, ′obj graphmorph,

(′obj , ′b) graph-scheme, (′obj , ′b) graph-scheme, ′obj graphmorph, ′obj set] ⇒ bool

where

apply-graphtrans-rel-nodes-for-gen gt gm gr gr ′ gen-gm gen-nodes =

(graphtrans-gen-nodes gt gr gen-gm gen-nodes ∧
(let del-nodes = ran (gm |‘ (ndel gt)) in

let nds = ((nodes gr) − del-nodes) ∪ gen-nodes in

let del-edges = ((emorph gm) ‘ (edel gt)) in

let gen-edges = ((emorph (gm ++ gen-gm)) ‘ (egen gt)) in

(nodes gr ′ = nds) ∧
(edges gr ′ = (restrict-rel (edges gr) nds − del-edges) ∪ gen-edges)))

definition apply-graphtrans-rel-utpd ::

[(′nt , ′et , ′a) graphtrans-scheme, ′obj graphmorph, ′obj graphmorph ⇒ bool ,

(′obj , ′b) graph-scheme, (′obj , ′b) graph-scheme] ⇒ bool where

apply-graphtrans-rel-utpd gt gm morph-prop gr gr ′ =

(∃ gen-gm gen-nodes.

morph-prop (gm ++ gen-gm) ∧
apply-graphtrans-rel-nodes-for-gen gt gm gr gr ′ gen-gm gen-nodes)

Figure 7. Application of graph transformation.

reduced. The generic object type ′obj only allows to compare two objects for equality.

Unlike in memory models with storage cells arranged in a discrete linear order, we cannot

express that we want to allocate a new node in the ‘next’ free cell. We therefore express that

there are nodes gen-nodes that are not in the current graph and that are the image of ngen

gt under an extension morphism gen-gm of gm (definition graphtrans-gen-nodes). Even

though the existential quantifiers in definition apply-graphtrans-rel-utpd are not directly

executable, there is a constructive implementation based on an object type of discrete

linear orders.

For the rest of this section, we open a locale of graph transformations where we fix

a graph gr, the interpretation functions I-nt and I-et, a graph transformation gt and

a predicate on morphisms, morph-prop. Technically, this is achieved by an extension

of the locale encountered in Section 2.1. To remain generic, we also fix function

apply-graphtrans-rel :: [′obj graphmorph , (′obj , ′a) graph-scheme] ⇒ bool that will later be

instantiated with typed, respectively, untyped transformation functions. It expresses that

the current graph gr is transformed to a successor graph under a graph morphism.

We say that a graph morphism gm is applicable relative to a path formula pf if gm

maps the free variables of pf into the nodes of gr, and the morphism satisfies the path

formula (here, (the ◦ gm) turns the map gm into a function). The transformation gt is

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1346

applicable to graph gr if there exists an applicable morphism, and apply-transfo-rel defines

the relation between gr and a graph gr ′ resulting from transforming gr into gr ′ by the

application of some applicable morphism. Here, SOME x . P x is Hilbert’s choice operator

yielding an x satisfying the predicate P. In this case, it selects an arbitrary morphism gm

among those that satisfy the applicability condition of gt.

definition applicable-gm :: [′obj graphmorph , (′nt , ′et) path-form] ⇒ bool where

applicable-gm gm pf =

((dom gm = fv-path-form pf) ∧ (ran gm ⊆ nodes gr) ∧
morph-prop gm ∧ path-form-interp (the ◦ gm) pf)

definition applicable-transfo :: bool where

applicable-transfo = (∃ gm . applicable-gm gm (appcond gt))

definition apply-transfo-rel :: (′obj , ′a) graph-scheme ⇒ bool where

apply-transfo-rel gr ′ = apply-graphtrans-rel (SOME gm . applicable-gm gm

(appcond gt)) gr ′

We now want to show under which conditions graph transformations preserve structural

well-formedness of graphs (page 1338). Here, we concentrate on untyped transformations

and therefore extend the graph transformation locale in the following way: we assume

struct-wf-gr-utpd gr and struct-wf-gt-utpd gt, and its parameter

apply-graphtrans-rel is instantiated by defining it as an untyped graph transformation:

apply-graphtrans-rel gm gr ′ = apply-graphtrans-rel-utpd gt gm morph-prop gr gr ′

It is now easy to show the following:§

Lemma 2.2. apply-graphtrans-rel gm gr ′ =⇒ finite (nodes gr ′)

For stating the preservation of the second subcondition of structural well-formedness,

we need the following separation property of a morphism m by a set S, saying (in its

contrapositive form) that x ∈ S and y /∈ S cannot have the same image under m:

definition morph-sep where morph-sep m S = (∀ x y . x ∈ S −→ m x = m y−→ y ∈ S)

This predicate embodies a weak form of injectivity of morphisms. Indeed, inj-map m

is equivalent to ∀ S ⊆ dom m . morph-sep m S. In a locale of injective morphisms, we

therefore directly inherit this property. It may otherwise require a non-trivial proof.

The following lemma is instrumental for proving Theorem 2.4. Please remember that

we are in a global context in which both gr and gt are assumed to be well-formed

(struct-wf-gr, respectively, struct-wf-gt-utpd).

Lemma 2.3.

graphtrans-gen-nodes gt gr gen-gm gen-nodes ∧
applicable-gm gm (appcond gt) ∧ morph-sep gm (ndel gt)

=⇒ Field (emorph (gm ++ gen-gm) ‘ egen gt) ⊆ nodes gr − ran (gm |‘ ndel gt) ∪
gen-nodes

§ For technical reasons, there are two implication symbols in Isabelle, =⇒ and −→. The difference is not

significant for this article.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1347

Proof. The lemma amounts to showing that nodes belonging to new edges (the image

of egen gt) are among the old nodes of the graph or the newly generated nodes, but

not among the nodes to be deleted. Take n and d to be node references occurring in

the application condition of gt, with n /∈ ndel gt and d ∈ ndel gt. Thus, according to

struct-wf-gt-utpd, node reference n could belong to a new edge, as specified in egen gt.

However, if the graph morphism maps n and d to the same node, this node gm n = gm

d will be deleted in the target graph, leading to a dangling edge after transformation. To

avoid such a situation, we impose the condition morph-sep gm (ndel gt) that prevents n

and d to be mapped to the same node in the target graph.

We can now show preservation of well-formedness: If applying an applicable graph

morphism gm produces a graph gr ′, then this graph is well-formed.

Theorem 2.4.

applicable-gm gm (appcond gt) ∧ morph-sep gm (ndel gt) ∧ apply-graphtrans-rel gm

gr ′ =⇒ struct-wf-gr-utpd gr ′

Proof. The definition of struct-wf-gr-utpd (page 1338) requires two properties to be

shown. The first one follows from Lemma 2.2. By noting that Field (R ∪ S) = Field R

∪ Field S and Field (restrict-rel R A) ⊆ A, the second one easily reduces to the property

shown by Lemma 2.3.

3. Typed transformations

Our framework is extensible, allowing for more complex notions of graphs. In this section,

we show how to integrate typing information. In a similar fashion, one could add node

or edge attributes.

There are several ways of defining type information. One of them consists in assigning

a unique type to each node and to each edge. We have opted for the inverse. For this, we

extend the notion of graph with two more attributes, namely nodetp that expresses which

nodes belong to a given node type ′nt, and edgetp that expresses which edges belong to a

given edge type ′et.

record (′obj , ′nt , ′et) typed-graph = ′obj graph +

nodetp :: ′nt ⇒ ′obj set

edgetp :: ′et ⇒ (′obj ∗ ′obj) set

Consequently, each node can have several types (and similarly for edges), which is

useful for modeling the type system of object oriented languages. A minimalist notion of

well-formedness of typed graphs extends well-formedness of untyped graphs (page 1338)

by requiring the typed nodes to be nodes of the underlying graph, and similarly for edges.

Refinements of this typing discipline may be imposed for particular domain-specific or

modeling languages such as UML or Ecore/EMF.

definition struct-wf-gr-tpd :: (′obj , ′nt , ′et , ′a) typed-graph-scheme ⇒ bool

where struct-wf-gr-tpd gr =

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1348

(struct-wf-gr-utpd gr ∧
(∀ nt . (nodetp gr nt) ⊆ (nodes gr)) ∧ (∀ et . (edgetp gr et) ⊆
(edges gr)))

Different more evolved notions of subtyping (strict subtyping or with multiple inherit-

ance) can be coded in the language of node sets and path formulas of Section 2.1, where

‘A is a subtype of B’ is coded by a path formula whose expansion is ∀x.x ∈ A −→ x ∈ B.

This gives a great deal of freedom, but the concept of type soundness of transformations

is not native, and enforcing it gives rise to a proof obligation and is not verifiable by type

checking as in classical programming languages.

In a similar spirit, typed graph transformations are an extension of untyped graph

transformations, allowing to specify the node typing of generated nodes and typing of

deleted, respectively, generated edges:

record (′nt , ′et) typed-graphtrans = (′nt , ′et) graphtrans +

— typing of generated nodes

ngentp :: ′nt ⇒ nat set

— mapping of edges

edeltp :: ′et ⇒ (nat ∗ nat) set

egentp :: ′et ⇒ (nat ∗ nat) set

In view of Theorem 3.1 to be proved below, we again impose restrictions on the

well-formedness of the graph transformation, extending the definition of the untyped

case:

definition

struct-wf-gt-tpd :: (′nt , ′et , ′a) typed-graphtrans-scheme ⇒ bool where

struct-wf-gt-tpd gt = (struct-wf-gt-utpd gt ∧ (∀ et . egentp gt et ⊆ egen

gt))

The definition of application of typed graph transformation is similar in spirit to the

definitions in the untyped case in Figure 7: we can modularly define the effect of a graph

transformation on node and edge types. We skip the details of the definition.

We now have the necessary ingredients to define a new locale that instantiates the

locale of graph transformations of page 1345, where node type interpretation I-nt is

instantiated to (nodetp gr), edge type interpretation I-et to (edgetp gr) and application of

graph transformations apply-graphtrans-rel is the typed variant sketched above.

Under this interpretation, a graph morphism has to satisfy a given type constraint to be

applicable. For example, the application condition �
1 , 2�� �∧� �
1 , 2� :: r� expresses

that there is an edge between node references 1 and 2 of type r (where r is of an

appropriately defined edge type).

In this locale, we can prove an analogous result of preservation of well-formedness

during graph transformations. It is a ‘type soundness’ result which is not very strong in

our case, due to the weak notion of well-typing:

Theorem 3.1.

applicable-gm gm (appcond gt) ∧ morph-sep gm (ndel gt) ∧ apply-graphtrans-rel gm

gr ′ =⇒ struct-wf-gr-tpd gr ′

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1349

The reader should not be misled by the fact that the preconditions appear to be identical

to those of Theorem 2.4: this is not so, the locale context is different.

4. Local reasoning

This section investigates methods to make reasoning about graph transformations more

automatic. In particular, we will see under which conditions and how we can reduce

reasoning about an abstract graph (with an unknown number of nodes) to reasoning

about a portion with a bounded number of nodes. These nodes are typically the free

variables of the transformation’s application condition, or, more precisely, the image of

these variables under a graph morphism.

In this article, we concentrate on the preservation of certain properties during graph

transformations, of the form r ⊆ s or, more interestingly, r+ ⊆ s+ or r∗ ⊆ s∗. The

latter two can be used to model reachability problems. Typical application scenarios are

problems of connectivity in a communication network after a failure of a communication

link, or memory leakage in pointer-manipulating programs due to the loss of pointers

to a heap area. In this case, r is the edge relation before and s the edge relation after

the transformation. Inversely, one can also model separability, for example, to show

the absence of an undesired information flow or the absence of aliasing during pointer

manipulation. In this case, s is the edge relation before and r the edge relation after the

transformation. In both cases, the procedure is similar and consists in applying the graph

decompositions of Section 4.1, and then simplifying the exterior and interior according

to the rules presented in Section 4.2. The inductive reasoning inherent to transitivity is

‘compiled’ into the reduction technique, the remaining proof obligation can therefore be

handled by Boolean satisfiability solving, even without computing any fixpoints.

Unfortunately, in the general case, even then the complexity remains very high.

Arbitrary (non-injective) morphisms may identify any number of node references of the

applicability condition and thus invalidate properties that hold for injective morphisms

(see Example 1.3). For n node references in the applicability condition, we thus have to

examine up to 2n equivalence classes. In Section 5, we present reduction theorems that can

avoid the combinatorial explosion in some situations, by converting a proof problem into

a calculational problem, namely checking whether the transitive closures of one concrete

graph is contained in that of another graph, which is of complexity O(n3).

4.1. Graph decompositions

Our method consists in splitting a graph into an interior of a node set A, and an exterior

of A (the rest of the graph). This node set is typically the image of the free variables of

the applicability condition of a given graph transformation. This notion is extended to

edge relations r as follows: the edge belongs to the interior if both of its endpoints are in

A, and otherwise to the exterior.

definition interior-rel A r = r ∩ (A × A)

definition exterior-rel A r = r − (A × A)

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1350

a1 a2

e

r

s s

Figure 8. Interior (dark shade) and exterior (light shade) of a relation.

An example is depicted in Figure 8, where edge r belongs to the interior of A = {a1, a2}
and the edges labeled s to the exterior.

Simple set-theoretic reasoning allows to prove the following lemmas:

Lemma 4.1. interior-rel A r ∪ exterior-rel A r = r

Lemma 4.2.

A ⊆ A ′ =⇒ r ⊆ r ′ =⇒ interior-rel A r ⊆ interior-rel A ′ r ′

A ′ ⊆ A =⇒ r ⊆ r ′ =⇒ exterior-rel A r ⊆ exterior-rel A ′ r ′

Note the anti-monotonicity in the first argument of exterior-rel.

Lemma 4.3. ((interior-rel A r)∗ ∪ (exterior-rel A r)∗)∗ = r∗

A similar lemma holds for ‘reflexive’ instead of ‘reflexive-transitive’ closure. For the

proof of Lemma 4.3, use Lemma 4.1 and the property (I ∗ ∪ E ∗)∗ = (I ∪ E)∗ of

reflexive-transitive closures.

The following two lemmas are at the heart of the decomposition method we propose.

When applied from right to left, they split up a goal into an exterior and an interior that

can then be further simplified with the mechanisms described in Section 4.2.

Lemma 4.4.

(exterior-rel A r ⊆ exterior-rel A s ∧ interior-rel A r ⊆ interior-rel A s) =

(r ⊆ s)

Proof. Expanding r ⊆ s with Lemma 4.1 and then using monotonicity (Lemma 4.2).

Lemma 4.5.

(exterior-rel A r)∗ ⊆ (exterior-rel A s)∗ ∧ (interior-rel A r)∗ ⊆
(interior-rel A s)∗ =⇒ r∗ ⊆ s∗

Proof. Expanding with Lemma 4.3 and then using monotonicity of reflexive-transitive

closure.

A similar lemma holds for transitive closure.

We see that splitting up a simple inclusion r ⊆ s (by applying Lemma 4.4 from right

to left) is an equality transformation, but this is not the case for splitting up r∗ ⊆ s∗.

The converse of Lemma 4.5 is not true in general, and indeed, the situation in Figure 8

provides a counterexample: we have interior-rel A r = {(a1, a2)} and interior-rel A s =

{} and thus not (interior-rel A r)∗ ⊆ (interior-rel A s)∗, even though r∗ ⊆ s∗. Applying

Lemma 4.4 also in the case r∗ ⊆ s∗ is not useful, because we then cannot further simplify

the resulting terms of the form interior-rel A r∗ in the style of Section 4.2.

However, in certain cases, the converse of Lemma 4.5 holds:

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1351

r1 r2

r3 r4

r1 r2

r3 r4

1

2 1 1

2

2

Figure 9. Rewriting rule with disjunctive condition.

definition disj-condition where disj-condition =

(| appcond = �{1 , 2 , 3 , 4}� �∧�
(��1 , 2�� �∧� ��2 , 4�� �∧� �¬� ��1 , 3��)
�∨� (��1 , 3�� �∧� ��3 , 4�� �∧� �¬� ��1 , 2��),

ndel = {}, ngen = {},
edel = {}, egen = {(1 ,4)} |)

Figure 10. Definition of transformation with disjunctive condition.

Lemma 4.6.

Field s ⊆ A ∧ r∗ ⊆ s∗ =⇒ (interior-rel A r)∗ ⊆ (interior-rel A s)∗,

Field r ⊆ A ∧ r∗ ⊆ s∗ =⇒ (exterior-rel A r)∗ ⊆ (exterior-rel A s)∗.

Proof. Note that Field s ⊆ A =⇒ interior-rel A s = s and interior-rel A r ⊆ r, and use

transitivity of ⊆. Similarly, the second property follows from Field r ⊆ A =⇒ exterior-rel

A r = �.

The decomposition suggested by Lemma 4.5 is therefore sound and also complete for

a class of graphs where the region A has been chosen large enough to comprise the fields

of the relations r and s. In practice, we will choose A to be the largest set of nodes whose

existence is ascertained in the actual proof goal.

Example 4.1. Consider the transformation visualized in Figure 9, which has a disjunctive

applicability condition. The figure has to be interpreted as follows: arcs with the same

number have to be present (uninterrupted black) or must not be present (dashed red) at

the same time. Thus, there must be edges (r1, r2) and (r2, r4) and not (r1, r3), or (r1, r3)

and (r3, r4) and not (r1, r2). In either case, we add the edge (r1, r4). The existing edges are

maintained, but that would be difficult to visualize. The textual definition in Figure 10 is

more precise.

To see how proofs are carried out in our framework, let us show that this rule does not

create any new paths, i.e., that the reflexive-transitive closure of the edge relation of the

modified graph is contained in the closure of the original graph’s edge relation. We state

the proof goal:

applicable-transfo ∧ apply-transfo-rel gr ′ =⇒ (edges gr ′)∗ ⊆ (edges gr)∗,

in a locale that is an extension of the graph transformation locale of Section 2.2 and where

the constant gt has been instantiated to the graph transformation under investigation, in

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1352

this case disj-condition. Note that the locale also fixes an arbitrary graph gr, and both

applicable-transfo and apply-transfo-rel implicitly refer to gr and gt. We could further

instantiate the morphism property, e.g., to injective morphisms, but we have not done

so, therefore, morph-prop remains uninterpreted. After expansion of definitions and some

tidying of the proof state, we get the goal:

[[n1 ∈ nodes gr; n2 ∈ nodes gr; n3 ∈ nodes gr; n4 ∈ nodes gr;

morph-prop [4 �→ n4 , 3 �→ n3 , 2 �→ n2 , 1 �→ n1];

(n1 , n2) ∈ edges gr ∧ (n2 , n4) ∈ edges gr ∧ (n1 , n3) /∈ edges gr ∨
(n1 , n3) ∈ edges gr ∧ (n3 , n4) ∈ edges gr ∧ (n1 , n2) /∈ edges gr;

nodes gr ′ = nodes gr; edges gr ′ = {(n1 , n4)} ∪ edges gr]]

=⇒ ({(n1 , n4)} ∪ edges gr)∗ ⊆ (edges gr)∗.

The preconditions of the goal are contained in [[...]], the conclusion behind =⇒.

Application of Lemma 4.5 gives two subgoals, the first of which has the same premisses

as above and the conclusion:

(exterior-rel {n1 , n2 , n3 , n4 } ({(n1 , n4)} ∪ edges gr))∗

⊆ (exterior-rel {n1 , n2 , n3 , n4 } (edges gr))∗,

and similar for interior-rel. The rest of the proof can now proceed along the lines

described in the following.

4.2. Reductions to Boolean satisfiability problems

The decompositions of Section 4.1 leave behind goals which are of the form exterior-rel

A r ⊆ exterior-rel A s and interior-rel A r ⊆ interior-rel A s or variants with (reflexive)

transitive closures. As seen in Example 1.2, we cannot deal with arbitrary relational

expressions. In particular, relation composition O poses a problem, because (x, y) ∈
(rOs) means ∃z.(x, z) ∈ r ∧ (z, y) ∈ s and composition thus implicitly involves existential

quantification over a node that may lie outside the region under the consideration. We

therefore, limit ourselves to relational expressions r built up inductively according to the

following grammar:

r ::= rb
| {}
| insert (n1, n2) r

| r ∪ r

| r ∩ r

| r − r

Here, n1, n2 are variables representing node names, and rb are basic, non-interpreted

relations. In the case of untyped graphs, there is only one such relation, the edges relation.

In the case of typed graphs, there are as many basic relations as there are edge types.

We use FV (r) for the set of free variables occurring in r. Please note that these are

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1353

expressions of our proof assistant’s object logic that are not immediately related to the

path expressions and path formulas of Section 2.1.

4.2.1. Simplification of exterior-rel In the following, we show how we can decide inclu-

sions exterior-rel A r ⊆ exterior-rel A s, by proving them or generating a counter-model.

The simplification mentioned below consists in applying exhaustively the rewrite rules

summarized in the following lemma.

Lemma 4.7.

exterior-rel A {} = {},
exterior-rel A (insert (x , y) r) = ({(x , y)} − (A × A)) ∪ exterior-rel A r,

exterior-rel A (r ∩ s) = (exterior-rel A r) ∩ (exterior-rel A s),

exterior-rel A (r ∪ s) = (exterior-rel A r) ∪ (exterior-rel A s),

exterior-rel A (r − s) = (exterior-rel A r) − (exterior-rel A s).

We further apply simple set-theoretic simplifications, in particular simplifications of

{(x , y)} − (A × A) to {} if x , y ∈ A, and subsequent elimination of the empty set. Note

that A is a concrete enumeration of elements and always permits such a simplification if

A has been appropriately chosen with FV (r) ⊆ A.

If the original goal was of the form exterior-rel A r ⊆ exterior-rel A s, after this

simplification, we are left with a goal R ⊆ S where R and S are combinations of the

operators ∪,∩,− applied to basic expressions of the form exterior-rel A rb. This goal

can be abstracted to a validity problem of classical two-valued Boolean algebra. For

example, (exterior-rel A rb) ∪ (exterior-rel A sb) ⊆ (exterior-rel A rb) − (exterior-rel A sb)

is abstracted to r ∨ s −→ r ∧ ¬ s. Such a Boolean formula is either valid (in this case, we

can obtain a set-theoretic proof of the set inclusion problem) or admits a counter-model.

In this case, we interpret exterior-rel A rb by a fixed singleton set (say {(x , y)} for x

�= y and x , y /∈ A) if the corresponding propositional variables is interpreted as true,

and otherwise by the empty set. This is then a counter-model for the inclusion R ⊆ S.

In our example, the Boolean counter-model r=false, s=true would give the set-theoretic

counter-example {} ∪ (exterior-rel A {(x , y)}) ⊆ {} − (exterior-rel A {(x , y)}).
A goal of the form (exterior-rel A r)+ ⊆ (exterior-rel A s)+ is simplified to a goal of the

form R+ ⊆ S +, with R, S as in the above paragraph. We first try to solve the goal R ⊆ S.

If this goal is provable, then so is the original goal, by monotonicity of transitive closure.

If it is not provable, the counter-model constructed according to the above procedure is

also a counter-model of R+ ⊆ S +, because a singleton relation is the same as its transitive

closure.

Goals of the form (exterior-rel A r)∗ ⊆ (exterior-rel A s)∗ are similarly reduced to goals

of the form R∗ ⊆ S ∗. We note that we can rewrite R∗ = Id ∪ R+, where Id is the identity

relation. Simple set-theoretic manipulations then further reduce Id ∪ R+ ⊆ Id ∪ S + to

two subgoals R+ ⊆ Id and R+ ⊆ S +. The second one is dealt with as above, whereas R+

⊆ Id holds whenever R is equivalent to the empty set, and otherwise can be refuted by a

singleton counter-model as above.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1354

Even though the reduction to Boolean validity makes the problem co-NP hard, this

is not a limiting factor in practice, because the number of relation symbols is typically

small.

4.2.2. Simplification of interior-rel In the following, we show how we can decide inclu-

sions interior-rel A r ⊆ interior-rel A s or variants with (reflexive) transitive closure. We

have a similar set of rewrite rules as in Section 4.2.1, only the case for insert is different:

Lemma 4.8.

interior-rel A {} = {},
interior-rel A (insert (x , y) r) = ({(x , y)} ∩ (A × A))∪ (interior-rel A r),

interior-rel A (r ∩ s) = (interior-rel A r) ∩ (interior-rel A s),

interior-rel A (r ∪ s) = (interior-rel A r) ∪ (interior-rel A s),

interior-rel A (r − s) = (interior-rel A r) − (interior-rel A s).

For A with FV (r) ⊆ A, ({(x , y)} ∩ (A × A)) reduces to {(x , y)} if x ∈ A and y ∈ A,

and to the empty set otherwise.

After exhaustive application of these rewrite rules, we are left with a goal of the form

R ⊆ S or R+ ⊆ S + or R∗ ⊆ S ∗, where R and S are combinations of operators ∪,∩,−
applied to basic expressions which have the form interior-rel A rb or {(x , y)}, with x ,y ∈ A.

Please note that the set {I . ∃ r . I = interior-rel A r} is just Pow (A × A), the powerset

of A × A, where A is a finite enumeration of elements. In principle, our method amounts

to trying out whether one of the 2(|A|2) possible combinations of I b ∈ Pow (A × A), for the

basic relations rb, might provide a solution of the problem R ⊆ S. We do not in fact use

this naive method, as explained in the following, and thus can perform some intermediate

simplifications, but the complexity remains exponential.

We first define the following auxiliary functions:

definition interior-rel-elem-r a B r = r ∩ ({a} × B)

definition interior-rel-elem-l b A r = r ∩ (A × {b})

They can be completely eliminated by recursing over the sets B resp. A:

Lemma 4.9.

interior-rel-elem-r a {} r = {}

interior-rel-elem-r a (insert b B) r =

((if (a , b) ∈ r then {(a , b)} else {}) ∪ interior-rel-elem-r a B r)

interior-rel-elem-l b {} r = {}

interior-rel-elem-l b (insert a A) r =

((if (a , b) ∈ r then {(a , b)} else {}) ∪ interior-rel-elem-l b A r)

This way, we can also eliminate interior-rel, by using the following simplifications:

Lemma 4.10.

interior-rel {} r = {}

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1355

interior-rel (insert a A) r =

(interior-rel A r)∪(interior-rel-elem-r a (insert a A) r)∪(interior-rel-elem-l a

(insert a A) r)

After exhaustive simplification, one has to perform up to 2(|A|2) splits for the cases (a ,

b) ∈ r, to obtain pure set containment problems, i.e., combinations of operators ∪,∩,−
and (reflexive) transitive closure, applied to expressions of the form {(x , y)}.

5. Calculational proofs

We now come back to one of the initial questions of our investigation: is it possible

to reason about a graph transformation just by looking at the shape of a graph

transformation rule (i.e., its left- and right-hand side), without considering mappings into

target graphs via morphisms? As explained at the beginning of Section 4, the question is

also intimately related to the complexity of reasoning, because having to consider multiple

matchings of the rule pattern into the target graphs can induce a combinatorial explosion.

As illustrated by Example 1.3, reasoning only about the shape of the rules can be

fallacious for non-injective morphisms.

Example 5.1. We now reconsider this example. The transformation is formally defined in

Figure 11. The methods described in Section 4.2 at least permit to identify the problem,

even if they do not allow to complete the proof. After case splitting, the prover gets stuck

on the following subgoal, which corresponds to the configuration depicted in Figure 3:

[[n1 ∈ nodes gr; n3 ∈ nodes gr; morph-prop [3 �→ n3 , 2 �→ n1 , 1 �→ n1];

nodes gr ′ = nodes gr; edges gr ′ = edges gr − {(n1 , n3)};
(n1 , n3) ∈ edges gr; n1 �= n3 ; (n1 , n1) ∈ edges gr; (n3 , n1) ∈ edges gr;

(n3 , n3) ∈ edges gr; n2 = n1]]

=⇒ {(n1 , n3), (n1 , n1), (n3 , n1), (n3 , n3)}+
⊆ Id ∪ {(n1 , n1), (n3 , n1), (n3 , n3)}+.

Because (n1 , n3) is not contained in Id ∪ {(n1 , n1), (n3 , n1), (n3 , n3)}+, this goal is

unsolvable.

We can nevertheless make some progress on this question. The main idea of the

following argument is that reflexive-transitive closure remains stable under a context, the

C in the following lemma:

Lemma 5.1. A ′ ⊆ A ∪ C ∧ B ∪ C ⊆ B ′ ∧ A∗ ⊆ B∗ =⇒ A ′∗ ⊆ B ′∗

Proof. From A ′ ⊆ A ∪ C, one can infer A ′∗ ⊆ (A ∪ C)∗ by monotonicity of reflexive-

transitive closure. One similarly obtains (B ∪ C)∗ ⊆ B ′∗ from B ∪ C ⊆ B ′. From A∗ ⊆
B∗, one obtains A∗ ∪ C ∗ ⊆ B∗ ∪ C ∗ and thus also (A∗ ∪ C ∗)∗ ⊆ (B∗ ∪ C ∗)∗ (using

transitivity of reflexive-transitive closure). We further simplify (A∗ ∪ C ∗)∗ to (A ∪ C)∗

(and similarly for (B∗ ∪ C ∗)∗), which gives us the desired conclusion by transitivity.

Roughly speaking, the sets A and B are the images of the left- and right-side of the rule

under the graph morphism, whereas C is the rest of the graph. We will apply the lemma

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1356

definition delete-edge where

delete-edge =

(| appcond = �{1 , 2 , 3}� �∧� ��1 , 2�� �∧� ��1 , 3�� �∧� ��2 , 3��,
ndel = {}, ngen = {},
edel = {(1 ,3)}, egen = {} |)

Figure 11. Deletion of an edge.

in the inverse direction, reducing a goal of the form A ′∗ ⊆ B ′∗ to A∗ ⊆ B∗. The following

lemma shows that this reduction is complete, provided the context C can become empty:

Lemma 5.2. (A∗ ⊆ B∗) = (∀C A ′ B ′. A ′ ⊆ A ∪ C −→ B ∪ C ⊆ B ′ −→ A ′∗ ⊆ B ′∗)

We will now instantiate these lemmas for the case of graph transformations. Let us first

state some auxiliary lemmas needed in the proofs of the theorems below.

Lemma 5.3. A∗ ⊆ B∗ =⇒ ((emorph gm) ‘ A)∗ ⊆ ((emorph gm) ‘ B)∗

Proof. By induction on reflexive-transitive closure.

The theorems proved below differ as to whether we are dealing with injective or non-

injective morphisms. Theorem 5.4 is embedded in a locale that assumes that gr is a

well-formed graph and gt a well-formed graph transformation. No assumption is made

about properties of the graph morphism. However, a precondition of the theorem is that

the transformation does not modify the node set, i.e., the sets of nodes to be deleted and

generated are empty. This might appear to be a decisive restriction, but this is not so: Let

us only remark here (also see Section 6) that any graph transformation can be represented

as a sequence of two kinds of transformations, the first of which modifies only the edge

set and the second of which only the node set (and is consequently without effect on the

edge relation).

Theorem 5.4. (assuming gr is a well-formed graph and gt a well-formed graph transform-

ation)

ndel gt ={} ∧ ngen gt ={} ∧ applicable-transfo ∧ apply-transfo-rel gr ′ ∧
(edel gt)∗ ⊆ (egen gt)∗

=⇒ (edges gr)∗ ⊆ (edges gr ′)∗.

Proof. After expansion of the definitions of applicable-transfo and apply-transfo-rel, one

sees that edges gr ′ = edges gr − emorph gm ‘ edel gt ∪ emorph gm ‘ egen gt. Let us apply

Lemma 5.1 backwards, with A=emorph gm ‘ (edel gt) and B=emorph gm ‘ (egen gt)

and C = (edges gr) − (emorph gm ‘ (edel gt)). Since we have (edel gt)∗ ⊆ (egen gt)∗, the

precondition (emorph gm ‘ edel gt)∗ ⊆ (emorph gm ‘ egen gt)∗ is an instance of Lemma 5.3,

the remaining set inclusions are easy to show.

Clearly, this theorem is not applicable to Example 1.3, but the correctness of the

transformation of Example 1.1 can now be proved.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1357

Result 5.5. (for an arbitrary graph gr, where graph transformation gt is rerouting of

Example 1.1)

applicable-transfo ∧ (apply-transfo-rel gr ′) =⇒ (edges gr)∗ ⊆ (edges gr ′)∗.

Proof. We apply Theorem 5.4. Apart from the trivial preconditions, we have to show

{(1 , 3)}∗ ⊆ {(1 , 2), (2 , 3)}∗, which is a simple calculational proof that simulates the

behaviour of a corresponding functional program. Note that we directly deal with the

node references occurring in the transformation rule and not with nodes after mapping

these references into a graph.

This result is independent of a particular morphism (and not only valid for an injective

morphism as in Figure 1).

In order to deal with situations like Example 1.3, we now develop a reduction that

is more expressive, but has more restrictive preconditions. The following Theorem 5.7 is

valid for injective morphisms, and intended to be used with a class of graph rewriting rules

whose applicability conditions are a conjunction of positive and negative edge relations.

We are thus dealing with a classical form of graph rewriting with graph patterns and

negative application conditions, as for example in Ehrig et al. (1997). More complex

Boolean applicability conditions, in particular disjunction, are not in the scope of this

reduction. Technically speaking, the reduction remains applicable even in this case, but

one loses completeness.

The function edge-set-path-form gathers the edges of a graph that is described by such

a restricted form of path formula:

fun edge-set-path :: ′et path ⇒ (nat ∗ nat) set where

edge-set-path (
n1 , n2�) = {(n1 , n2)}
| edge-set-path - = {}

fun edge-set-path-form :: (′nt , ′et) path-form ⇒ (nat ∗ nat) set where

edge-set-path-form (n � n ′ �∈� p) = {(n , n ′)} ∩ (edge-set-path p)

| edge-set-path-form (pf �∧� pf ′) = (edge-set-path-form pf ∪ edge-set-path-form

pf ′) | edge-set-path-form

- = {}

We have the following relation between edge-set-path-form and path interpretations:

Lemma 5.6.

path-form-interp (the ◦ gm) pf −→ emorph gm ‘ edge-set-path-form pf⊆ edges gr

Proof. By induction over pf.

The following theorem is embedded in a locale that assumes that graph morphisms are

injective.

Theorem 5.7. (assuming gr is a well-formed graph, gt a well-formed graph transformation,

graph morphisms are injective)

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1358

ndel gt ={} ∧ ngen gt ={} ∧ applicable-transfo ∧ (apply-transfo-rel gr ′) ∧
(edge-set-path-form (appcond gt) ∪ (edel gt))∗ ⊆

((edge-set-path-form (appcond gt) − edel gt) ∪ (egen gt))∗

=⇒ (edges gr)∗ ⊆ (edges gr ′)∗.

Proof. Let us note first of all that function image distributes in general over set union

(thus f ‘ (A ∪ B) = f ‘ A ∪ f ‘ B), but over set difference (thus f ‘ (A − B) = f ‘ A − f ‘

B) only if f is injective over a common superset of A and B.

To prove the theorem, we again expand the definitions of the applicability conditions

and then apply Lemma 5.1 backwards, with A=emorph gm ‘ (edge-set-path-form (appcond

gt) ∪ edel gt) and B=emorph gm ‘ (edge-set-path-form (appcond gt) − edel gt ∪ egen gt)

and C=(edges gr) − (emorph gm ‘ (edel gt)). We now have to satisfy instances of the

three pre-conditions of Lemma 5.1.

The first is (emorph gm ‘ (edge-set-path-form (appcond gt) ∪ edel gt))∗ ⊆ (emorph gm

‘ (edge-set-path-form (appcond gt) − edel gt ∪ egen gt))∗, which can be solved with

Lemma 5.3.

The second one is edges gr ⊆ emorph gm ‘ (edge-set-path-form (appcond gt) ∪ edel gt)

∪ (edges gr − emorph gm ‘ edel gt), a trivial inclusion.

The third precondition is emorph gm ‘ (edge-set-path-form (appcond gt) − edel gt ∪
egen gt) ∪ (edges gr − emorph gm ‘ edel gt) ⊆ edges gr − emorph gm ‘ edel gt∪

emorph gm ‘ egen gt. With injectivity of gm and thus of emorph gm, we may distribute

the function image emorph gm over union and set difference. Since appcond gt is satisfied

for the morphism gm, we obtain that emorph gm ‘ edge-set-path-form (appcond gt) ⊆ edges

gr with Lemma 5.6 and thus are left again with a simple set-theoretic inclusion.

The reader may wonder why the negative application conditions can be neglected

in function edge-set-path-form and, consequently, in the theorem, but indeed, the non-

existence of an edge does not have an impact on the preservation of paths in a graph.

Result 5.8. We take up Example 1.3. In a locale of injective graph morphisms, for graph

transformation delete-edge, we now show

applicable-transfo ∧ (apply-transfo-rel gr ′) =⇒ (edges gr)∗ ⊆ (edges gr ′)∗

Application of Theorem 5.7 gives the subgoal ({(1 , 2), (1 , 3), (2 , 3)} ∪ {(1 , 3)})∗ ⊆
(({(1 , 2), (1 , 3), (2 , 3)} − {(1 , 3)}) ∪ {})∗, which is again easily provable by calculation.

6. Conclusions

This article has investigated a formalization of graph transformations in a proof as-

sistant, with the purpose of being able to prove properties of specific transforma-

tions interactively, but also to derive meta-results involving entire classes of graph

transformations, as in Sections 4 and 5, which paves the way for a higher degree of

automation.

Several extensions have to be envisaged. The first concerns a combination of individual

graph transformation steps to graph transformation programs, with the aim of reasoning

about them with a weakest-precondition style like about traditional imperative programs,

thus integrating more recent developments, such as Poskitt and Plump (2012), into our

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1359

previous work (Strecker 2008). In this context, it might also be interesting to revisit

some results that have so far been stated in an algebraic setting, such as confluence of

transformations, and to re-interpret them in a logical context, which might allow to take

more expressive applicability conditions into account. Inversely, it might be interesting

to split up a complex transformation into a semantically equivalent sequence of more

elementary steps (such as an edge- and node-manipulating part, as advocated for the

theorems of Section 5).

A further question concerns the complexity of graph transformations. The discussion

at the end of Section 4 seems to indicate that reasoning about transformations with

non-injective morphisms is exponentially more complex than dealing with injective

morphisms. However, in special cases, as Theorem 5.4, there is no penalty for non-injective

morphisms.

Finally, we would like to generalize the results of Section 5. An essential ingredient

of the proofs of Theorems 5.4 and 5.7 is the monotonicity of transitive closure that

allows an embedding of the image of a morphism in a larger context to be pre-

served. We will attempt to generalize this result to (a combination of) other monotone

operators.

This research has been funded by the Climt project (ANR-11-BS02-016). The work

was completed while the author was at Southern University of Science and Technology,

Shenzhen, China.

References

Arendt, T., Biermann, E., Jurack, S., Krause, C. and Taentzer, G. (2010). Henshin: Advanced

concepts and tools for in-place EMF model transformations. In: Proceedings of MoDELS’10,

Lecture Notes in Computer Science, vol. 6394, Springer. URL http://www.mathematik.

uni-marburg.de/∼swt/Publikationen Taentzer/Papiere06-09/ABJKT10.pdf.

Asztalos, M., Lengyel, L. and Levendovszky, T. (2010). Towards automated, formal verification

of model transformations. In: International Conference on Software Testing, Verification, and

Validation 15–24.

Balbiani, P., Echahed, R. and Herzig, A. (2010). A dynamic logic for termgraph rewriting. In: Ehrig,

H., Rensink, A., Rozenberg, G. and Schürr, A. (eds.) Graph Transformations, Lecture Notes in

Computer Science, vol. 6372, Springer, Berlin/Heidelberg, 59–74. ISBN 978-3-642-15927-5. URL

http://dx.doi.org/10.1007/978-3-642-15928-2 5.

Baldan, P., Corradini, A., Esparza, J., Heindel, T., König, B. and Kozioura, V. (2005). Verifying red-

black trees. In: Proceedings of COncurrent Systems with dynaMIC Allocated Heaps, COSMICAH

’05. Proceedings available as report RR-05-04 (Queen Mary, University of London).

Baldan, P., Corradini, A. and König, B. (2008). A framework for the verification of infinite-

state graph transformation systems. Information and Computation 206, 869–907. URL http://

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.155.4078&rep=rep1&type=pdf.

Ballarin, C. (2004). Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo,

M. and Damiani, F. (eds.) Types for Proofs and Programs, Lecture Notes in Computer

Science, vol. 3085, Springer, Berlin/Heidelberg, 34–50. ISBN 978-3-540-22164-7. URL

http://www21.in.tum.de/∼ballarin/publications/types2003.pdf.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1360

Berdine, J., Calcagno, C. and O’Hearn, P. (2004). A decidable fragment of separation

logic. In: Lodaya, K. and Mahajan, M. (eds.) FSTTCS 2004: Foundations of

Software Technology and Theoretical Computer Science, Lecture Notes in Computer

Science, vol. 3328, Springer, Berlin/Heidelberg, 110–117. ISBN 978-3-540-24058-7. URL

http://dx.doi.org/10.1007/978-3-540-30538-5 9.

Courcelle, B. and Irène Durand, A. (May 2010) Verifying monadic second order graph properties

with tree automata. In: Rhodes, C. (ed.) Proceedings of the 3rd European Lisp Symposium, Lisboa,

France, 7–21. URL http://hal.archives-ouvertes.fr/hal-00522586. 15 pages.

Courcelle, B. and Engelfriet, J. (2011). Graph Structure and Monadic Second-

Order Logic, A Language Theoretic Approach, Cambridge University Press. URL

http://www.labri.fr/perso/courcell/Book/TheBook.pdf.

da Costa, S.A. and Ribeiro, L. (2009). Formal verification of graph grammars using mathematical

induction. Electronic Notes in Theoretical Computer Science 240 (0), 43–60. ISSN 1571-0661. URL

http://www.sciencedirect.com/science/article/pii/S1571066109001662. Proceedings of

the Eleventh Brazilian Symposium on Formal Methods (SBMF 2008).

da Costa, S. and Ribeiro, L. (2012). Verification of graph grammars using a

logical approach. Science of Computer Programming 77 (4) 480–504. ISSN 0167-6423.

URL http://www.sciencedirect.com/science/article/pii/S016764231000033X. Brazilian

Symposium on Formal Methods (SBMF 2008).

de Bruijn, N.G. (1972). Lambda calculus notation with nameless dummies, a tool for automatic

formula manipulation. Indagationes Mathematicae 34, 381–392.

Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A. and Corradini, A. (1997).

Algebraic approaches to graph transformation – Part II: Single pushout approach and comparison

with double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars, World

Scientific, 247–312. ISBN 9810228848.

Ghamarian, A., de Mol, M., Rensink, A., Zambon, E. and Zimakova, M. (2012). Modelling and

analysis using GROOVE. International Journal on Software Tools for Technology Transfer 14,

15–40. ISSN 1433-2779. URL http://dx.doi.org/10.1007/s10009-011-0186-x.

Habel, A. and Pennemann, K.-H. (2009). Correctness of high-level transformation systems relative to

nested conditions. Mathematical Structures in Computer Science 19 (02) 245–296. URL http://

formale-sprachen.informatik.uni-oldenburg.de/∼skript/fs-pub/mscs-HP09.pdf.
Habel, A., Pennemann, K.-H. and Rensink, A. (2006). Weakest preconditions for high-level programs.

In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L. and Rozenberg, G. (eds.), Graph

Transformations (ICGT), Natal, Brazil, Lecture Notes in Computer Science, vol. 4178, Springer

Verlag, Berlin, 445–560. ISBN 3-540-38870-2.

Hosoya, H. (2011). XML Processing – The Tree-Automata Approach, Cambridge University Press.

Immerman, N., Rabinovich, A., Reps, T., Sagiv, M. and Yorsh, G. (2004). The boundary

between decidability and undecidability for transitive-closure logics. In: Marcinkowski,

J. and Tarlecki, A. (eds.) Computer Science Logic, Lecture Notes in Computer

Science, vol. 3210, Springer, Berlin/Heidelberg, 160–174. ISBN 978-3-540-23024-3. URL

http://www.cs.umass.edu/∼immerman/pub/cslPaper.pdf.
McPeak, S. and Necula, G. (2005). Data structure specifications via local equality axioms.

In: Etessami, K. and Rajamani, S. (eds.) Computer Aided Verification, Lecture Notes in

Computer Science, vol. 3576, Springer, Berlin/Heidelberg, 476–490. ISBN 978-3-540-27231-1.

URL http://www.cs.berkeley.edu/∼necula/Papers/verifier-cav05.pdf.
Møller, A. and Schwartzbach, M.I. (2001). The pointer assertion logic engine. In: Proceedings of the

PLDI 221–231.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

Interactive and automated proofs for graph transformations 1361

Naraschewski, W. and Wenzel, M. (1998). Object-oriented verification based on record subtyping

in higher-order logic. In: Grundy, J. and Newey, M. (eds.) Theorem Proving in Higher Order

Logics, Lecture Notes in Computer Science, vol. 1479, Springer, Berlin/Heidelberg, 349–366.

ISBN 978-3-540-64987-8. URL http://dx.doi.org/10.1007/BFb0055146.

Nipkow, T., Paulson, L. and Wenzel, M. (2002). Isabelle/HOL. A Proof Assistant for Higher-

Order Logic, Lecture Notes in Computer Science, vol. 2283, Springer, Berlin/Heidelberg. URL

http://isabelle.in.tum.de.

Orejas, F., Ehrig, H. and Prange, U. (2010). Reasoning with graph constraints.

Formal Aspects of Computing 22 385–422. ISSN 0934-5043. URL http://dx.doi.org/

10.1007/s00165-009-0116-9.

Pennemann, K.-H. (2008a). An algorithm for approximating the satisfiability problem of high-

level conditions. In: Proceedings of the Graph Transformation for Verification and Concurrency

(GT-VC’07), Electronic Notes in Theoretical Computer Science, vol. 213, Elsevier, 75–94. URL

http://formale-sprachen.informatik.uni-oldenburg.de/∼skript/fs-pub/seeksat.pdf.
Pennemann, K.-H. (2008b). Resolution-like theorem proving for high-level conditions. In: Ehrig, H.,

Heckel, R., Rozenberg, G. and Taentzer, G. (eds.) Graph Transformations, Lecture Notes in Com-

puter Science, vol. 5214, Springer, Berlin/Heidelberg, 289–304. ISBN 978-3-540-87404-1. URL

http://formale-sprachen.informatik.uni-oldenburg.de/∼skript/fs-pub/procon.pdf.
Poskitt, C.M. and Plump, D. (2012). Hoare-style verification of graph programs.

Fundamenta Informaticae, 118(1-2):135–175, 2012. URL http://www.cs.york.ac.uk/

plasma/publications/pdf/PoskittPlump.FundInf.12.pdf.

Rensink, A. (2005). The joys of graph transformation. Nieuwsbrief van de Nederlandse Vereniging

voor Theoretische Informatica 9. URL http://eprints.eemcs.utwente.nl/1443/.

Reynolds, J.C. (2002). Separation logic: A logic for shared mutable data structures. In: 17th IEEE

Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,

Proceedings. URL https://doi.org/10.1109/LICS.2002.1029817.

Ribeiro, L., Dotti, F.L., da Costa, S.A. and Dillenburg, F.C. (2010). Towards theorem proving graph

grammars using Event-B. ECEASST, 30, 2010. In: Proceedings of International Colloquium on

Graph and Model Transformation (GraMoT).

Strecker, M. (2008). Modeling and verifying graph transformations in proof assistants. In:

Mackie, I. and Plump, D. (eds.) International Workshop on Computing with Terms and Graphs

(TERMGRAPH), Electronic Notes in Theoretical Computer Science, vol. 203, Elsevier Science,

135–148. URL http://www.irit.fr/∼Martin.Strecker/Publications/termgraph07.html.
Strecker, M. (2011). Locality in reasoning about graph transformations. In: Varró,

D. Varró, D. and Schürr, A. (eds.) Pre-Proceedings conf. AGTIVE, Budapest. URL

http://www.irit.fr/∼Martin.Strecker/Publications/agtive11.html.
Tarski, A. (1941). On the calculus of relations. The Journal of Symbolic Logic 6 (3), 73–89. ISSN

00224812. URL http://www.jstor.org/stable/2268577.

Tran, H.N. and Percebois, C. (2012). Towards a rule-level verification framework for property-

preserving graph transformations. In: Proceeding of the IEEE ICST Workshop on Verification

and Validation of Model Transformations.

Varró, D. and Balogh, A. (2007). The model transformation language of the VIATRA2 framework.

Science of Computer Programming 68 (3) 214–234. ISSN 0167-6423. URL http://www.

sciencedirect.com/science/article/B6V17-4P47GBW-1/2/3ccc0f0270a5cc6a792aa3320cc

65689. Special Issue on Model Transformation.

Varró, D. (May 2004). Automated formal verification of visual modeling languages by model

checking. Journal of Software and Systems Modeling 3 (2) 85–113.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

M. Strecker 1362

Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A. and Bouajjani, A. (2007). A logic of reachable

patterns in linked data-structures. Journal of Logic and Algebraic Programming 73 (1-2) 111–142.

URL http://dx.doi.org/10.1016/j.jlap.2006.12.001.

Zambon, E. and Rensink, A. (2011). Using graph transformations and graph abstractions for

software verification. Electronic Communications of the EASST, 38. ISSN 1863-2122. URL

http://journal.ub.tu-berlin.de/eceasst/article/view/560.

https://doi.org/10.1017/S096012951800021X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800021X

