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We present an extensive numerical comparison of a family of balance models
appropriate to the semi-geostrophic limit of the rotating shallow water equations,
and derived by variational asymptotics in Oliver (J. Fluid Mech., vol. 551, 2006,
pp. 197–234) for small Rossby numbers Ro. This family of generalized large-scale
semi-geostrophic (GLSG) models contains the L1-model introduced by Salmon
(J. Fluid Mech., vol. 132, 1983, pp. 431–444) as a special case. We use these
models to produce balanced initial states for the full shallow water equations. We
then numerically investigate how well these models capture the dynamics of an
initially balanced shallow water flow. It is shown that, whereas the L1-member of the
GLSG family is able to reproduce the balanced dynamics of the full shallow water
equations on time scales of O(1/Ro) very well, all other members develop significant
unphysical high wavenumber contributions in the ageostrophic vorticity which spoil
the dynamics.

Key words: rotating flows, shallow water flows, variational methods

1. Introduction
Atmospheric and oceanic large-scale flows are characterized by an approximate

balance between Coriolis forces, buoyancy and pressure gradients. This balance
causes large-scale features such as the high and low pressure fields which we
experience as weather to vary only slowly, and also implies that faster processes such
as inertia–gravity waves and acoustic waves are generally less important energetically.

Characterizing balance has been a longstanding problem in geophysical fluid
dynamics. Four fundamental approaches are available. First, balance relations may
be regarded as phase-space constraints in an asymptotic expansion of the equations
of motion, in a distinguished limit of scaling parameters such as Rossby, Burger
and Froude number. Second, similarly, asymptotic expansions may be performed on
the underlying Hamilton principle. Third, optimal balance strategies may be used to
exploit the adiabatic invariance of the slow or balanced manifold under deformation
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georg.gottwald@sydney.edu.au, oliver@member.ams.org
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(Viúdez & Dritschel 2004). Fourth, time filters may provide simple heuristics to
distinguish balanced from imbalanced motion.

While balance models are clearly not sufficient as a dynamical core for contemporary
weather or climate forecasting, there is continuing necessity to characterize, diagnose
and enforce balance in the context of such modelling. Respecting balance has long
been recognized to be integral to the quality of weather forecasts. The first numerical
weather forecast (albeit performed with pen and paper) by Richardson (1922) failed
exactly because the initial fields used to seed the forecast were imbalanced, containing
an excessive amount of small-scale high-frequency components, thereby spoiling
the subsequent forecast (see the wonderful historical account in Lynch (2006)). In
modern weather forecasting, the initial state is estimated by correcting the output
from the forecast model, which may contain model error as well as instabilities,
using information from noisy observations in a procedure called data assimilation.
This procedure, however, typically does not respect balance, with the consequence
that it may produce highly imbalanced initial states (Bloom et al. 1996; Mitchell,
Houtekamer & Pellerin 2002; Ourmiéres et al. 2006; Kepert 2009; Greybush et al.
2011; Gottwald 2014).

Within the vast literature on asymptotic derivations of balance models, there are two
main distinguished limits when the Rossby number, the ratio of typical advective time
scales to the time scale of rotation, is small: (i) the quasi-geostrophic limit which
assumes that the Burger number (see § 2) remains of order one while variations in
layer thickness are small and (ii) the semi-geostrophic limit which assumes that the
Burger number remains small (comparable to the Rossby number) while variations in
layer thickness may be of order one. Quasi-geostrophy will not be considered further
in this paper. The classic semi-geostrophic equations are based on the geostrophic
momentum approximation (Eliassen 1948) and were rewritten by Hoskins and solved
via an ingenious change of coordinates (Hoskins 1975; Cullen & Purser 1984). They
continue to attract interest due to their connection to optimal transport theory and the
resulting possibility to make mathematical sense of generalized frontal-type solutions
(Benamou & Brenier 1998; Cullen 2008). The geostrophic momentum approximation
and Hoskins’ transformation inspired Salmon (1983, 1985) to make corresponding
approximations directly to Hamilton’s principle so as to preserve geometrical structure
and automatically preserve conservation laws.

In this paper, we perform a detailed numerical study of a particular family of
asymptotic balance models, based on the generalized large-scale semi-geostrophic
(GLSG) equations. These equations describe the motion of a rotating fluid in the
limit of small Rossby and small Froude number, and here for simplicity we consider
a single-layer shallow water flow only. The GLSG equations go back to an idea
proposed by Salmon (1983, 1985). He suggested imposing a phase-space constraint
directly in Hamilton’s principle, that is, in the variational derivation of the model
equations. Oliver (2006) generalized this idea and derived a one-parameter family
of balance models, the GLSG family, that includes the two models considered by
Salmon as special cases. Each member of this family is characterized by a different
choice of coordinates, and a transformation from these new coordinates into physical
coordinates is given. For exactly one of these models, namely Salmon’s L1-model, this
transformation is so close to the identity that physical coordinates can be identified
with model coordinates without changing the asymptotic order of the model, as is
implicitly done in Salmon’s work.

The GLSG equations can be formulated in terms of potential vorticity advection
and inversion, and can be shown to possess global smooth solutions (Çalık, Oliver &
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Variational balance models for the rotating shallow water equations 691

Vasylkevych 2013). Moreover, this family of models is distinct from other existing
models in the semi-geostrophic limit such as those derived in Allen & Holm (1996),
McIntyre & Roulstone (2002) and the so-called δ–γ balance model hierarchy of
Mohebalhojeh & Dritschel (2001). The mathematical setting for this last group of
models is less well investigated and we shall not consider them further in this paper.

Gottwald & Oliver (2014) proved, in a structurally analogous finite-dimensional
context, that all models within the GLSG family provide the same asymptotic order of
accuracy. In the infinite-dimensional fluid dynamical model context, a corresponding
proof remains elusive. Moreover, it is already evident from an informal inspection
of the resulting balance relations that the regularity provided by such relations for
the constraint variables (or balanced variables) differs across the family of models.
In fact, in one of the cases considered by Salmon (the L1-model which emerges as
the case λ= 1/2 in the notation introduced below), the balance relation is an elliptic
equation; in the other case (corresponding to λ = −1/2), the balance relation loses
ellipticity and the resulting model is ill posed as an initial value problem. Moreover,
Oliver (2006) showed that the balance relation in a third special case (corresponding
to λ= 0) yields a velocity field that is more regular by at least two derivatives than
any other member of the family. It has thus been an obvious question whether this
apparent gain of regularity might be advantageous.

The main contribution of this paper is a careful comparative numerical evaluation
of the GLSG family of balance models. Our main metric is a comparison of the
balance model dynamics to a consistently initialized simulation of the full shallow
water equations over a moderate interval of time chosen such that the Eulerian
fields experience an order-one relative change. We examine in particular the scaling
behaviour of the balance model error as the Rossby number goes to zero. Our
numerical and mathematical analyses underscore the importance in understanding
and in ensuring the mathematical regularity of the balance relation underpinning any
balance model. Crucially, our results show that it is the regularity of the ageostrophic
components of the flow that has the greatest impact on how well the balance model
is able to capture the dynamics of the full shallow water model. This singles out
the L1-model within the GLSG family of balance models as the only model with
sufficient regularity on the ageostrophic vorticity to be viable in practice.

The paper is organized as follows. Section 2 presents the shallow water equations
and their semi-geostrophic scaling. Section 3 briefly reviews the variational asymptotics
by Oliver (2006) and re-expresses the GSLG balance relation in terms of ageostrophic
variables. Section 4 describes the set-up of our numerical experiments, including the
details of the initialization procedure producing balanced initial conditions for the
rotating shallow water equations. Section 5 present our results, showing that there
exists a distinguished balance model, namely Salmon’s L1-model, which produces
reliably balanced states which remain near balance over times on which Eulerian
fields evolve significantly. We conclude with a discussion and outlook in § 6.

2. The shallow water equations and the semi-geostrophic limit
The simplest model of rapidly rotating fluid flow in which the idea of variational

balance models can be tested is the rotating shallow water model. This describes the
motion of a shallow layer of fluid of mean height H, held down by gravity g and
rotating uniformly at the rate f /2. The equations of motion (in the rotating frame of
reference) consist of the momentum equation and the continuity equation, for the fluid
velocity u= (u, v) and the height field h (here, for convenience, scaled on H):

∂tu+ u · ∇u+ f u⊥ + c2
∇h= 0, (2.1a)
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∂th+∇ · (hu)= 0, (2.1b)

where u⊥ = (v, −u) and c2
= gH is the squared short-scale gravity wave speed. For

simplicity, we consider flow in the doubly periodic domain Ω = [0, 2π]2.
Notably, the above equations imply material conservation of potential vorticity

q=
f +∇⊥ · u

h
, (2.2)

where ∇⊥ ≡ (−∂y, ∂x), that is

∂tq+ u · ∇q= 0. (2.3)

This is not an additional equation but a consequence of combining (2.1a) and (2.1b).
Alternatively, conservation of potential vorticity can be derived as a Noetherian
conservation law from the particle relabelling symmetry (Salmon 1998).

Under appropriate rescaling, the shallow water equations are characterized by
several dimensionless parameters. Taking L, H and U to be characteristic horizontal
length, height and velocity scales, respectively, two parameters naturally emerge. The
first is the Rossby number

Ro=
U
fL
, (2.4)

which measures the ratio of the relative vorticity ζ =∇⊥ · u of the fluid flow to the
planetary vorticity (or Coriolis frequency) f . In the analysis below, we assume Ro� 1.
The second parameter is the Froude number

Fr=
U
c
, (2.5)

which measures the flow speed relative to the characteristic gravity wave speed c =√
gH. This too is considered small. However, the ratio of these small parameters

determines the flow regime observed. This is traditionally characterized by the Burger
number

Bu=
Ro2

Fr2
=

L2
D

L2
, (2.6)

where LD= c/f , known as the Rossby radius of deformation, signifies the length scale
above which rotational effects dominate over buoyancy effects.

Here we consider semi-geostrophic scaling, for which Bu = Ro, in contrast to the
more extensively studied quasi-geostrophic scaling, for which Bu = O(1) and height
perturbations are of O(Ro) to maintain geostrophic balance at leading order. Notably,
in semi-geostrophic scaling, (rescaled) height variations may be O(1).

The non-dimensional equations are found by scaling x and y by L, u by U, h by a
mean height H and t by L/U. Defining ε≡Ro� 1 as our small parameter and setting
Bu= ε, the equations become

ε(∂tu+ u · ∇u)+ u⊥ +∇h= 0, (2.7a)
∂th+∇ · (hu)= 0. (2.7b)

The non-dimensional potential vorticity is

q=
1+ ε∇⊥ · u

h
. (2.8)

In the derivation of the GLSG balance models below, we will use the above
non-dimensional form of the equations. Note, due to the rescaling adopted, the mean
height h̄≡ 1.
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Variational balance models for the rotating shallow water equations 693

3. A family of balance models

In this section, we give a brief review of the family of first-order GLSG models
which were derived in Oliver (2006). These models are asymptotic models for small
Rossby number under semi-geostrophic scaling. Rather than performing asymptotics
directly on the equations of motion (2.7), Oliver (2006) followed the strategy of
Salmon (1983, 1998) and performed the asymptotics within the variational principle,
thereby guaranteeing the conservation of the geometric Hamiltonian structure of the
original shallow water equations.

3.1. A variational principle for shallow water
It is well known that the shallow water equations arise as the Euler–Lagrange
equations from a variational principle; see, for example, Salmon (1983, 1998). In our
opinion, it is most clearly presented using the following notation. We consistently
write x to denote an Eulerian position and a to denote a Lagrangian label of a fluid
parcel. The flow map η maps labels to Eulerian positions such that the parcel initially
at location a is at location x= η(a, t) at time t. We write u= u(x, t) to denote the
(Eulerian) velocity of the fluid at location x and time t. It equals the (Lagrangian)
velocity of the parcel passing through x at time t, so that ∂tη(a, t) = u(η(a, t), t),
which we shall abbreviate

η̇= u ◦ η, (3.1)

the symbol ‘◦’ denoting composition of maps with respect to the spatial variables.
Liouville’s theorem states that the continuity equation (2.7b) is equivalent to

h ◦ η=
hin

det∇η
, (3.2)

where hin
= hin(a) is the initial height field. To simplify the derivation of the equations

of motion, we suppose for a moment that hin
= 1. This can be done without loss of

generality because the equations of motion do not depend on the choice of the initial
height field. With this convention, the layer depth is the Jacobian of the transformation
from Eulerian to Lagrangian coordinates.

We can now introduce the Lagrangian

L =
∫ [(

R+
1
2
εu
)
◦ η · η̇−

1
2

h ◦ η

]
da

=

∫
h
[

R · u+
1
2
ε|u|2 −

1
2

h
]

dx, (3.3)

where R denotes the vector potential corresponding to the Coriolis parameter, such
that ∇⊥ ·R= f ≡ 1. It is not hard to show that the shallow water equations (2.7) arise
as the stationary points of the action

S=
∫ t2

t1

L[u, h] dt, (3.4)

with respect to variations of the flow map η. Since h and u are linked to η by relations
(3.1) and (3.2) above, variations in η induce variations in h and u of a specific form.
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This is most easily expressed by noting that a variation of the flow map δη can be
thought of as induced by an Eulerian vector field w=w(x) via

δη=w ◦ η, (3.5)

a direct analogue to relation (3.1). Just the same, there holds a Liouville theorem with
respect to a parametrization of the variation, which implies the ‘continuity equation’

δh+∇ · (wh)= 0. (3.6)

Finally, cross-differentiation of (3.1) and (3.5) yields the so-called Lin constraint
(Bretherton 1970):

δu= ẇ+∇w u−∇u w. (3.7)

The remainder of the derivation proceeds by direct computation and shall be omitted.
We remark, however, that the argument requires that the Coriolis parameter f can
be written as the curl of a vector potential. On the plane, this is easy to achieve.
However, on the torus, f has a vector potential if and only if it has zero mean, thereby
excluding the case of a constant Coriolis parameter considered here. However, a
careful inspection of the problem shows that if we proceed as if the vector potential
R existed, we would obtain equations of motion which are Hamiltonian in the
expected sense, but strictly speaking do not arise as the Euler–Lagrange equations
of a variational principle. A detailed discussion of this issue is given in Oliver &
Vasylkevych (2011). We shall henceforth ignore this subtlety as it is not pertinent to
the main point of this paper.

3.2. Variational asymptotics
The key idea introduced in Oliver (2006) is to introduce a new coordinate system
which is related to the original coordinate system by an O(ε) perturbation of the
identity in such a way that the first-order transformed Lagrangian becomes degenerate.
As a result, truncation of the Lagrangian to first order leads to Euler–Lagrange
equations which live on a reduced phase space.

To systematically develop this idea, it is convenient to view the transformation
itself as a flow parametrized by ε. Concretely, we shall endow quantities in the
original (physical) coordinate system with a subscript ε, while quantities without
subscript shall be viewed as posed in a new, slightly distorted coordinate system.
(This choice makes the transformation from new to old coordinates explicit, while the
transformation from old to new coordinates is implicit.) We view the transformation
as being generated by a vector field vε via

η′ε = vε ◦ ηε, (3.8)

where the prime denotes a derivative with respect to ε and η0 ≡ η. Once more, we
have a continuity equation which now reads

h′ε +∇ · (vεhε)= 0, (3.9)

and an analogue of the Lin constraint (3.7),

u′ε = v̇ε +∇vεuε −∇uεvε. (3.10)
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Variational balance models for the rotating shallow water equations 695

In the following, we shall denote the formal Taylor coefficients of uε with respect to
an expansion in ε by u, u′, etc. with analogous notation for all other quantities.

In summary, altogether we are considering a three parameter family of flow
maps, the parameters being physical time t, asymptotic parameter ε and an implicit
parameter in the definition of the variational derivative. Structurally, these parameters
play entirely symmetric roles; the difference lies in their physical interpretation. Each
parameter-derivative of the flow map has an associated Eulerian vector field: uε for
the time derivative, vε for the ε-derivative and wε for the variational derivative. We
can interpret vε as the velocity of deformation of the coordinate system in ‘artificial
time’ ε, and wε as the Eulerian version of the virtual displacement in classical
mechanics (e.g. Goldstein 1980). The definition of hε as the inverse Jacobian of the
map ηε implies a continuity equation in each of these parameters, stated in (2.7b),
(3.9) and (3.6), respectively. Mixed derivatives satisfy generalized Lin constraints such
as (3.7) and (3.10).

We now proceed to expand the Lagrangian (3.3) in powers of ε:

Lε =
∫ [

R ◦ η · η̇−
1
2

h ◦ η

]
da+ ε

∫ [
v⊥ · u+

1
2
|u|2 +

1
2

h∇ · v
]
◦ η da+O(ε2).

(3.11)
Details of this calculation can be found in appendix B of Oliver (2006). The
transformation vector field v at O(ε) may be chosen arbitrarily. Clearly, any choice
of the form

v = 1
2 u⊥ +F(h) (3.12)

renders the first-order Lagrangian L1 affine (i.e. it is linear in the velocity and thus
degenerate). The dimensionally consistent choice

v = 1
2 u⊥ + λ∇h (3.13)

leads to a particular one-parameter family of balance models – when the system is in
geostrophic balance, the second term is a scalar multiple of the first. In this setting,
the choice λ= 1/2 emerges as a special case: at leading order, both terms cancel so
that, formally, v =O(ε).

Inserting the choice (3.13) back into (3.11) and dropping terms of order O(ε2), we
obtain

Lbal =

∫ [
R+ ε

(
λ+

1
2

)
∇
⊥h
]
◦ η · η̇ da−

∫
h
[

1
2

h+ ελ|∇h|2
]

dx, (3.14)

where, for convenience, we have written the part which is linear in u as an integral
over labels and the part which only depends on h as an integral over Eulerian
positions.

For the convenience of the reader, the explicit variational calculus of Lbal is
presented in appendix A. The stationary points of the action necessitate the
Euler–Lagrange equation

[1− ε(λ+ 1
2)(h1+ 2∇h · ∇)]u=∇⊥[h− ελ(2h1h+ |∇h|2)], (3.15)

where 1 denotes Laplace’s operator. For a given non-negative height field h, this
equation is a non-constant coefficient elliptic equation for u when λ > −1/2. This
constitutes the family of balance relations, parametrized by the free parameter λ.
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696 D. G. Dritschel, G. A. Gottwald and M. Oliver

The system of equations for the balance model can be closed via the continuity
equation

∂th+∇ · (hu)= 0. (3.16)

By construction, the balance model has a conserved energy,

Hbal =
1
2

∫
h2 dx+ ελ

∫
h|∇h|2 dx, (3.17)

and a materially conserved potential vorticity

q=
1+ ε(λ+ 1

2)1h
h

. (3.18)

Thus, we can choose either (3.16) or the potential vorticity conservation law

∂tq+ u · ∇q= 0 (3.19)

to evolve the balance relation (3.15) in time. This equivalence can be checked by
brute-force computation, or by noting that potential vorticity advection is the natural
conservation law associated with the particle relabeling symmetry in the variational
derivation of the balanced models (Oliver 2006). If we opt for q as the fundamental
prognostic variable, the height field h can be recovered by inversion of (3.18) via

(q− ε(λ+ 1
2)1)h= 1, (3.20)

after which u is computed from h via (3.15). Thus, (3.19), (3.20) and (3.15) form a
closed system for the balanced dynamics. This formulation is used numerically and
also underlies the proof of global well-posedness (Çalık et al. 2013) and of global
existence of weak solutions (Çalık & Oliver 2013) for the family of balance models.

Note that, to leading order, the motion induced by a velocity field computed from
(3.15) is geostrophic with an O(1) velocity. Thus, fluid parcels travel a unit distance
over times of O(1). The rate of change of the Eulerian fields, on the other hand, is
determined by the magnitude of the ageostrophic velocity which is O(ε), independent
of λ. (An explicit formal calculation can be found in appendix B.) Thus, to test the
prognostic skill of the balance model, we need to simulate on time scales of order
O(ε−1).

3.3. Balance relation in δ–γ variables
For the understanding of the behaviour of the balance relation for different values of
the free parameter λ, it is crucial to look at the effect of the balance relation on the
ageostrophic velocity in balance model coordinates,

uag
= u−∇⊥h. (3.21)

We choose to re-express the ageostrophic motion in terms of the balance model
divergence δ =∇ · u and ageostrophic vorticity γ =∇⊥ · uag

=∇
⊥
· u−1h. Strictly

speaking, the ageostrophic vorticity is better described as the acceleration divergence
since, for the full shallow water equations, γ = ∇ · (∂tu + u · ∇u) via the shallow
water momentum equation and this characterization remains appropriate in spherical
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Variational balance models for the rotating shallow water equations 697

geometry (Smith & Dritschel 2006). Nevertheless, in the following we shall refer to
γ as the ageostrophic vorticity.

We now rewrite the balance relation in terms of δ and γ by taking the divergence
and curl of (3.15), obtaining

[1− ε(λ+ 1
2)(h1+ 2∇h · ∇)]δ = ε(λ+ 1

2)(∇h ·1u+ 2∇∇h : ∇u) (3.22a)

and

[1− ε(λ+ 1
2)(h1+ 2∇h · ∇)]γ = ε(λ+ 1

2)(∇
⊥h ·1u+ 2∇∇⊥h : ∇u)

+ ε( 1
2 − λ)h1

2h+ ε(1− 4λ)∇h · ∇1h− 2ελ((1h)2 + |∇∇h|2), (3.22b)

where A : B denotes the matrix inner product A : B =
∑

i,j aijbij. To eliminate all
references to u on the right-hand sides, we decompose u into its rotational and
divergent components by writing

u=∇⊥ψ +∇φ (3.23)

so that
ψ =1−1γ + h and φ =1−1δ. (3.24a,b)

Then
∇
⊥h ·1u=∇h ·1∇h+∇h · ∇γ +∇⊥h · ∇δ (3.25)

and
∇∇

⊥h : ∇u= |∇∇h|2 +∇∇h : ∇∇1−1γ +∇∇⊥h : ∇∇1−1δ, (3.26)

with similar relations for the terms on the right-hand side of (3.22a). Inserting these
expressions back into (3.22) and rearranging terms, we obtain

(1− ε(λ+ 1
2)h1)δ = ε(λ+

1
2)∇h · ∇⊥1h

+ ε(λ+ 1
2)(∇h · ∇⊥γ + 2∇∇h : ∇∇⊥1−1γ + 3∇h · ∇δ + 2∇∇h : ∇∇1−1δ)

(3.27a)

and

(1− ε(λ+ 1
2)h1)γ =−2ε det Hess h

+ ε( 1
2 + λ)(3∇h · ∇γ + 2∇∇h : ∇∇1−1γ +∇⊥h · ∇δ + 2∇∇⊥h : ∇∇1−1δ)

+ ε( 1
2 − λ)(h1

2h+ 3∇h · ∇1h+ 2(1h)2). (3.27b)

The operator on the left-hand sides is elliptic for λ>−1/2. The terms in each of the
second lines are linear in δ or γ , hence are formally of O(ε2). Thus, at least when
λ= 1/2, the dominant contribution comes from the first term on each right-hand side.

However, when λ 6= 1/2, the right-hand side of balance relation (3.27b) features
additional terms involving third- and fourth-order derivatives of h, alongside second-
order derivatives. Thus, the regularity of the ageostrophic vorticity is severely reduced
unless λ= 1/2. Our numerical results show that this loss of regularity, which affects
the balance relation for γ only, has significant detrimental effects on the prognostic
skill of the balance model, as discussed in detail in §§ 5.4–5.5 below.

Our numerical results further show that the dominant right-hand term in the balance
relation for δ (3.27a), namely ∇h · ∇⊥1h shown as the blue curve in the bottom
row of figure 10, appears more regular than the corresponding term in the balance
relation for γ (3.27b), namely ∇h · ∇1h shown as the magenta curve on the top row
of figure 10. The cause of the apparent cancellations in the former term is currently
not understood.
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3.4. Transformation to shallow water coordinates
Since the balance model dynamics, for each of the models introduced above, is posed
in a coordinate frame different from the physical frame of the full shallow water
dynamics, we need to apply a coordinate transformation for consistent initialization
and diagnostics. The transformation between the two is explicit going from model
coordinates to physical coordinates. Its inverse is defined implicitly and will generally
involve an infinite series in ε. Therefore, except for the case of the L1 model, it is
not possible to write out the balance model in physical coordinates.

For consistent initialization and diagnostics of our numerical tests, we need to write
out the change of coordinates explicitly. As we are only carrying terms to O(ε), we
have

hε = h+ εh′ and uε = u+ εu′, (3.28a,b)

with

h′ =−∇ · (vh), (3.29a)
u′ = v̇ +∇v u−∇u v, (3.29b)

where
v = 1

2 u⊥ + λ∇h, (3.30)

and where u and h satisfy the balance relation (3.15). We then compute the shallow
water potential vorticity, divergence, and ageostrophic vorticity via

qε = (1+∇⊥ · uε)/hε, δε =∇ · uε, and γε =∇
⊥
· uε −1hε. (3.31a−c)

When presenting our results, we will use the suggestive notation T[q], T[δ] and T[γ ]
for the fields obtained via transformation from the balance model quantities, with the
understanding that this notation does not imply any strict functional dependence – all
of these transformed quantities are functionally dependent only on the balance model
potential vorticity q.

The transformation from physical coordinates to balance model coordinates
cannot be written down explicitly. However, it is possible to numerically invert
the transformation for moderate values of the characteristic parameters using an
iterative scheme sketched in appendix C.

We finally remark that the transformation involves taking time derivatives of u
and h. Formally, these terms are O(ε) as verified in appendix B. Moreover, when
λ = 1/2, then v itself is O(ε) and the transformation remains O(ε2) – and thus
coincides with the identity up to the formal order of validity of the balance model.
Practically, this means that the transformation can be omitted when λ= 1/2, i.e. the
fields of the balanced equations and of the full shallow water equations can be directly
compared without affecting the formal order of accuracy. We have numerically verified
that the effect of the transformation is indeed negligible for this particular case; our
detailed results, however, are computed with the transformation applied for all values
of λ.

We stress that the GLSG balance models consist of both the prognostic equation
(3.15) with associated potential vorticity inversion (3.19) and (3.20), and the
near-identity transformation relating the balance model solution to the corresponding
quantities in a physical coordinate frame. When transformed back to physical
coordinates, all the models considered here have the same O(ε) order of accuracy
at least formally, the only difference being that the transformation is necessary
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to maintain order when λ 6= 1/2. In finite dimensions, this statement is rigorous
(Gottwald & Oliver 2014). In the present setting, loss of accuracy can only be due
to analytical issues in infinite dimensions, not due to an inconsistent handling of
terms in the formal expansion. We note, in particular, that the transformed balance
model potential vorticity given by (3.31) coincides with the shallow water potential
vorticity (2.8) up to terms of O(ε2) for all values of λ. Similarly, the balanced model
Hamiltonian, transformed back to physical coordinates, coincides with the shallow
water Hamiltonian up to terms of O(ε2) for all values of λ.

4. Experimental set-up
4.1. Benchmarking scheme

We now describe the details of our benchmarking procedure to determine how well
the different GLSG balance models are able to describe nearly balanced shallow water
dynamics. For a fixed value of the parameter λ, we go through the following steps.

Step 1: At time t= 0, specify the initial balance model height field hin.
Step 2: On the balance model side, compute the initial balance model potential

vorticity qin using (3.18).
Step 3: Compute the initial shallow water qin

ε = T[qin
], δin

ε = T[δin
] and γ in

ε = T[γ in
]

via the equations detailed in § 3.4.
Step 4: Evolve the balance model potential vorticity q to some final state q(x, t) at

time t using (3.19). The balance model height field h and velocity field u are
kinematically slaved to q via (3.20) and (3.15), respectively, and computed
as part of the forward evolution.

Step 5: Evolve the shallow water fields qε, δε, and γε to the same final time t= 1/ε.
Step 6: Transform the balance model state, at any chosen time, to shallow water

coordinates as detailed in § 3.4; compare qε with T[q], δε with T[δ] and γε
with T[γ ].

It is also possible to initialize on the shallow water side, i.e. given only the initial
distribution of shallow water potential vorticity qin

ε , see appendix C. This is more
demanding computationally, but does not affect any of our conclusions. Such an
initialization may be useful for quantifying the amount of imbalance (or departure
from balance) occurring over the course of a shallow water simulation. This however
is not the aim of the present study; instead we seek to determine how well balance
models can predict a shallow water flow evolution.

4.2. The shallow water equations in q–δ–γ coordinates
The shallow water model requires additional care since in this case there are three
prognostic variables, not one as in the balance model. In the shallow water model
we employ potential vorticity qε, divergence δε and ageostrophic vorticity γε rather
than more traditional choices like hε, uε and vε, or like hε, ζε and δε. Previous work
has shown that qε, δε and γε offer significant advantages over traditional variable
choices (Mohebalhojeh & Dritschel 2001, 2004). In particular, they offer significantly
greater accuracy in the representation of both the balanced and imbalanced parts of
the flow. Moreover, qε, δε and γε lead to linear elliptic problems to determine hε and
uε, advantageous for both numerical robustness and efficiency.

Ignoring hyperviscosity, the prognostic equations for δε and γε (in dimensional
terms) are

∂tδε = γε + 2J(uε, vε)−∇ · (uεδε), (4.1a)
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∂tγε =−f 2δε + c21∇ · (uεhε)− f∇ · (uεζε), (4.1b)

where J(a, b)= ∂xa∂yb− ∂ya∂xb, and ζε = hεqε − f is the relative vorticity.
The fields δε, γε and qε determine the velocity field uε only up to a spatially

independent mean flow ūε(t). In general, this flow is non-zero, although typically of
very small amplitude (we have checked that in the numerical simulations presented
below the mean flow has an amplitude of approximately 10−4

|uε|max). It is taken
into account not only for completeness but to ensure an accurate assessment of the
differences between the shallow water and the transformed balance flow solutions. To
write out the evolution equation for ūε(t), we take the average of (2.1a):

∂tūε =−( f + ζε)u⊥ε =−hεqεu⊥ε . (4.2)

These additional two ordinary differential equations complete the set of prognostic
equations of the q–δ–γ formulation of the shallow water equations. The initial mean
flow is determined as the spatial average of the initial velocity field which is available
via the transformation from balance model coordinates.

From δε, γε and qε, the fields hε, ûε and the mean-free component of uε are
recovered by linear inversion. First, the definition γε = f ζε − c21hε, the definition of
ζε, and the normalization of the mean height h̄ε ≡ 1 (see § 2) lead to

c21ĥε − fqεĥε =−γε − f 2
+ fqε, (4.3)

a linear elliptic equation for ĥε, the mean-free component of hε. Then, once hε= ĥε+1
is determined, ûε is simply found using the Helmholtz decomposition ûε = ∇⊥ψε +
∇φε. This results in the Poisson equations 1ψε = ζε and 1φε = δε, both of which are
directly solved in spectral space. The velocity ûε is then found by differentiation of
ψε and φε and uε = ûε + ūε.

4.3. Implementation
The numerical models developed for the shallow water and balance equations,
including all initialization and diagnostic procedures, make use of the standard
pseudo-spectral method in doubly periodic geometry. In this method, nonlinear
products are carried out in physical space (on a regular grid), while all linear
operations such as differentiation and inversion are carried out in spectral space. Fast
Fourier transforms are used to go from one representation to the other.

To minimize aliasing errors, prior to carrying out nonlinear products, fields are
spectrally truncated using a circular filter of radius (wavenumber magnitude) k= ng/3
where ng is the grid resolution in both x and y (here the domain is square with side
length 2π without loss of generality). Note, the maximum wavenumber is kmax= ng/2.
We use ng = 256 throughout but have verified that ng = 512 does not change the
results significantly in a sample of cases. While proper de-aliasing would remove
more modes, the circular filter adopted better preserves isotropy and has been found
to be sufficient to avoid noticeable aliasing errors.

The flow evolution models employ a standard fourth-order Runge–Kutta time
stepping method, with an adaptive time step. The time step 1t is required to be
simultaneously smaller than 1tgw, 1tcfl and 1tζ ; here 1tgw = 1x/c is the gravity
wave resolving time step, while 1tcfl = 0.71x/|u|max is the Courant–Friedrichs–Lewy
(CFL) time step (with CFL parameter 0.7) and 1tζ =π/(10|ζ |max), where ζ =∇⊥ · u
is the relative vorticity. In practice, 1tgw is always the smallest, so the time step is
fixed.
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The flow evolution models also employ weak hyperviscosity, of the form νhyp1
3a,

for all evolved fields a. Spectrally, this corresponds to subtracting r(k/kmax)
6ak

from the right-hand side of the evolution equation for the Fourier coefficients ak
of each field a. In the numerical implementation, this term is incorporated in the
time stepping method exactly through an integrating factor. The damping rate r on
the highest wavenumber is chosen as r = 10ε2f , after careful experimentation. In
practice, over the moderate integration times carried out, the effect of hyperviscosity
is negligible.

To numerically determine the height field ĥε, we employ the elliptic diagnostic
equation (4.3) after splitting the potential vorticity into a mean part q̄ε and an anomaly
q̂ε = qε − q̄ε, and gathering all of the constant coefficient terms on the left-hand side.
In spectral space, this leads to a simple inversion for the depth anomaly. However,
iteration is required since hε appears on the right-hand side multiplied by the potential
vorticity anomaly. Nevertheless, the iteration procedure converges rapidly in practice.
Note, we ensure that the average anomaly is zero so that mass is exactly conserved.

Simulations are performed for a range of different λ with a particular focus on the
cases λ= 0, 1/2, 1 and for a wide range of Burger numbers (here equivalent Rossby
numbers) with ε = 2−m/2 and m = 2, . . . , 10. Comparisons between the balance and
full shallow water results are made at times t for εt= 0.1, 0.2, . . . , 1. Differences are
always evaluated on the shallow water side by transforming the balance model fields
using the transformation detailed in § 3.4. They are diagnosed in the domain-averaged
L2-norm

‖θ‖ =

(
1

VolΩ

∫
Ω

|θ |2 dx
)1/2

. (4.4)

In particular, for each of the fields a= q, δ, and γ , we monitor the root mean square
(r.m.s.) difference

Ea = ‖aε − T[a]‖. (4.5)

4.4. Initialization
We define the characteristic horizontal length scale L by the inverse of the dominant
wavenumber k0, which we set to k0= 6. This implies a Rossby radius of deformation
of LD=

√
ε/k0. (Note, while a factor of 2π might seem appropriate, LD itself is better

thought of as the inverse deformation wavenumber.) The Coriolis parameter is set to
f = 4π/ε, which then defines the gravity wave speed c= fLD.

The initial height hin on the GLSG balance model side is generated as a random
realization with a prescribed power spectrum Sh ∼ k3/(k2

+ ak2
0)

n, taking n = 37/44
and a= (2n− 3)/3 to guarantee a maximum of the spectrum at k= k0.

In figure 1, we show the difference between the corresponding initial potential
vorticity field qin and the transformed potential vorticity fields qin

ε , for λ = 0, 1/2, 1
and an intermediate value of ε. Note that this difference is not measuring the quality
of the initialization or the amount of imbalance, as qin and qin

ε live in different spaces.
The figure just serves to illustrate that for λ 6= 1/2, the transformation produces
significantly different fields.

For λ = 0 and 1, and for ε = 2−5, the differences between the untransformed
GLSG fields qin and the corresponding rotating shallow water equation fields qin

ε are
approximately 0.06 %, whereas the case λ = 1/2 produces differences which are 40
times less. This is expected as for λ = 1/2, by construction, the difference between
T[qin
] and qin is O(ε2).

We remark that for λ = 0 and 1 the differences between transformed and
untransformed initial height fields are about 0.3 %, i.e. almost one order of magnitude
larger than the differences in the potential vorticity fields.
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–10–4

0

10–4
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FIGURE 1. (Colour online) The difference qin
ε − qin, where qin

ε = T[qin
], for several values

of λ with fixed ε = 2−5. Note that the colour scale is logarithmic for values above 10−4

and linear for values between 0 and 10−4.

5. Results
5.1. Flow evolution

Figure 2 demonstrates how the shallow water flow fields, initialized by the balancing
procedure described in § 3.4, evolve on a time scale of O(1/ε). Shown are the
potential vorticity anomaly qε − 1, divergence δε and ageostrophic vorticity γε at the
initial time t= 0, an intermediate time t= 0.5/ε and the final time t= 1/ε, for Rossby
number ε= 2−5. Whereas the potential vorticity appears broadly similar at these two
times, the divergence and ageostrophic vorticity exhibit major changes. Only a small
part of these changes is due to imbalanced motions, as seen below.

We now establish that the Eulerian evolutionary time scale is, as theorized in
appendix B, of O(1/ε), independent of λ. We do so by monitoring the change of the
Eulerian potential vorticity up to time t = ε−1. The result is shown in figure 3. In
particular, the final time difference ‖q( ·, ε−1)− q( ·, 0)‖ is approximately independent
of the Rossby number ε, and approximately independent of λ. This justifies evolving
the dynamics to time t = ε−1 to assess the order of accuracy to which the GLSG
balance models are able to approximate nearly balanced shallow water flows. The
results of this analysis are presented below in § 5.3.

5.2. Comparison between the shallow water and GLSG dynamics
Before investigating the scaling behaviour of the error (4.5) with ε, we examine
the actual difference fields between the shallow water fields qε, δε, and γε, and the
corresponding transformed balance fields T[q], T[δ] and T[γ ] for λ = 0, 1/2 and 1.
Note, by construction, these difference fields are identically zero at t = 0. From the
earliest times, we see a clear distinction between the cases λ= 1/2 and λ 6= 1/2 – see
figures 4 and 5 for t = 0.1/ε and t = 1/ε, respectively. The differences in potential
vorticity are 60 times smaller for λ = 1/2 than for λ = 0 or 1. The differences in
divergence are 15 times smaller for λ= 1/2 than for λ= 0 or 1. Both fields, however,
show similar structures. The most remarkable differences between the cases λ= 1/2
and λ 6= 1/2 are seen in the ageostrophic vorticity. Here the differences are 8 times
larger for λ= 0 and 250 times larger for λ= 1 when compared to λ= 1/2. Moreover,
whereas the structure of the difference field resembles the actual ageostrophic vorticity
field in the case λ= 1/2 (cf. figure 2), the streak-like concentration of γ in the cases
λ = 0 and λ = 1 appears to be unphysical. When λ = 1/2, we see ageostrophic
wave-train-like structures not only in the potential vorticity difference field, but
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FIGURE 2. (Colour online) Shallow water fields of potential vorticity anomaly qε − 1
(a–c), divergence δε (d–f ) and ageostrophic vorticity γε (g–i), for ε = 2−5 and initialized
with λ= 1/2: initial time t= 0 (a,d,g), intermediate time t= 0.5/ε (b,e,h) and final time
t= 1/ε (c,f,i).

also in the divergence and ageostrophic vorticity. These structures tend to be most
prominent in regions of significant potential vorticity anomalies.

5.3. Asymptotic scaling with Rossby number
We next consider how the errors, as measured by the r.m.s. differences Eγ , Eδ and Eq,
defined in (4.5), scale with Rossby number ε for various choices of λ. These results
are presented in figure 6, at early time t = 0.1/ε on the left and at the final time
t= 1/ε on the right. First of all, the error grows in time, as expected, but preserves
its Rossby number scaling. Both γ and δ exhibit an O(ε2) scaling overall; the
departures at small ε are largely numerical artefacts (damping), as has been verified
in double-resolution simulations. Most significantly, the errors in potential vorticity
(see figure 6e,f ) exhibit a shallower scaling, and one which clearly distinguishes
λ = 1/2 from λ 6= 1/2. Not only are the errors for λ 6= 1/2 significantly larger than
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FIGURE 3. (Colour online) Amount of flow evolution between t = 0 and t = ε−1 as
measured by the quantity ‖q( ·, t)− q( ·, 0)‖, as a function of Rossby number ε, for λ= 0,
1/2 and 1, as indicated.

for λ= 1/2, their scaling with ε is also significantly shallower. This is attributed to
the poor representation of the ageostrophic dynamics for λ 6= 1/2, already seen in
figures 4 and 5.

5.4. Dependence on λ
The strikingly different behaviour for different values of λ is seen more explicitly
in figure 7, now showing the dependence of the r.m.s. differences on λ for a fixed
Rossby number ε = 2−3. Dashed lines show early time results, while the solid lines
show the final time. There is a dip in all three error measures at λ=1/2, but it is most
pronounced for Eγ (blue curves). Interestingly, a second weaker dip occurs at λ= 0,
though not for Eq. When λ= 0 the regularity of the velocity field is expected to be
greater than that of the height field, since the high derivative terms on the right-hand
side of (3.15) are absent. This evidently results in much smaller errors, principally in
Eγ , compared to nearby surrounding values of λ, but not as small as the errors found
for λ= 1/2. As λ decreases further, the errors grow steeply and diverge as λ→−1/2,
where the balance model becomes mathematically ill posed.

In summary, λ= 1/2 has much weaker errors in all three measures than any other λ,
even values close to λ= 1/2. The exception is Eδ, which appears to be less sensitive
to λ. This is consistent with the mathematical analysis in § 3.3, specifically (3.27a),
where no significant gain in regularity is seen for λ= 1/2 (or for λ= 0). Nonetheless,
even for δ, the choice λ= 1/2 leads to nearly the smallest errors. Most importantly,
errors in potential vorticity q exhibit a single, pronounced minimum at the value λ=
1/2. This implies that the balance model for λ = 1/2, i.e. the L1-model, offers the
most accurate prediction of nearly balanced shallow water flow.

5.5. Power spectra and regularity
In figure 8 we show power spectra for potential vorticity, divergence and ageostrophic
vorticity, both on the GLSG balance model side and on the shallow water side.
Whereas the spectra of potential vorticity and of divergence each exhibit closely
similar forms for the different values of λ and model dynamics, the ageostrophic
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FIGURE 4. (Colour online) Early time differences (εt = 0.1) between the shallow water
fields qε, δε and γε, and the corresponding transformed balance model fields for ε = 2−5

and for three different values of λ. The correction factors qcorr and δcorr are chosen so
that the differences in q, δ and γ have exactly the same range of values for the late time
(εt= 1) frames in the most accurate case λ= 1/2.

vorticity spectra exhibit large differences from the earliest times. The ageostrophic
vorticity spectra for λ = 0 and λ = 1 rapidly develop strong high wavenumber
contributions which dominate the spectra. This erroneous behaviour corresponds to
the intense frontal structures seen in the difference fields in figures 4 and 5. By
contrast, the ageostrophic vorticity spectrum for λ = 1/2 exhibits a closely similar,
decaying form on both the GLSG and shallow water sides at all times.

It is also noteworthy that, only for λ= 1/2, the spectrum for T[q] is steeper than
that of the corresponding qε. This is to be expected for a reliable balance model, as
it allows for higher wavenumber contributions of inertia–gravity waves in the shallow
water equations expressing the departure from balance.

We now look at the terms affecting the regularity of the solutions to the GLSG
balance relation in more detail. To help interpret the results properly, we note that
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FIGURE 5. (Colour online) Late time relative differences (at εt = 1) of the difference
between shallow water fields and corresponding transformed balance model fields. All
other parameters and normalizing values are the same as in figure 4. Note that the colour
scales are the same as for the corresponding rows in figure 4 so that the growth in colour
saturation gives an impression of the growth in the error as time progresses.

when the Fourier coefficients ak of a two-dimensional field a decay like |k|−p
≡ k−p,

then the power spectrum decays like k1−2p.
Figure 9 shows the power spectra of q, h and u. The power spectrum of h decays

robustly like k−6 independent of λ, corresponding to hk ∼ k−7/2. The regularity of
u is best when λ = 0. However, since for λ = 0 the balance relation (3.15) implies
that u is one derivative smoother than h, we would expect a decaying velocity power
spectrum proportional to k−8. The observed reduced spectral decay is presumably due
to nonlinear effects. The lack of regularity for λ 6= 1/2 noted above predominantly
affects the ageostrophic part of the flow, whereas q, h and u are dominated by the
geostrophic part of the flow which masks the deterioration of the smaller ageostrophic
part.

Diagnosing the balance relation in ageostrophic variables, however, offers an
explanation for the observed deterioration when λ 6= 1/2. This is done in figure 10,
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FIGURE 6. (Colour online) The r.m.s. differences Eγ (a,b), Eδ (c,d) and Eq (e,f ) as a
function of Rossby number ε, for various values of λ as indicated, with the early time
results (t= 0.1/ε) shown in (a,c,e), and the late time results (t= 1/ε) shown in (b,d,f ).

which displays the final time power density spectra for each of the terms on the
right-hand side of the γ -equation (3.27b) and of the δ-equation (3.27a). The term
with the highest number of derivatives on the right-hand side of the equation for
γ , namely (1/2 − λ)h12h, gives rise to a spectrum increasing as k2 for both λ = 0
and λ= 1. As a result, even though the elliptic operator on the left-hand side gains
some regularity, the spectrum of γ shows no decrease when λ= 0, and only a slight
decrease when λ = 1. This saturation at high wavenumbers is unphysical. When
λ= 1/2, the dominant term on the right-hand side of (3.27b) has a power spectrum
decaying like k−2 and the elliptic inversion gains the expected two derivatives, so that
the power spectrum of γ decays like k−6.

The equation for δ, (3.27a), does not have any λ-dependent irregular terms on its
right-hand side and is therefore much less sensitive to λ. However, it is clearly evident
that when λ 6= 1/2, the poor spectral decay of γ contaminates some of the normally
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FIGURE 7. (Colour online) The r.m.s. differences Eγ (blue), Eδ (green) and Eq (red) as a
function of λ, for fixed Rossby number ε = 2−3, at t = 0.1/ε (dashed lines) and t = 1/ε
(solid lines).

subdominant terms on the right-hand side to reduce the spectral decay of δ. This is
particularly evident when λ= 0.

For λ = 1/2 in particular, the right-hand side of (3.27b) is dominated by two
derivatives on h. Since hk ∼ k−7/2 as observed in figure 9, then the right-hand
side of (3.27b) should exhibit a Fourier decay like k−3/2, resulting in γk ∼ |k|−7/2.
The corresponding dominant term on the right-hand side of (3.27a) for δ, namely
∇h · ∇⊥1h, contains three derivatives on h, and thus is expected to have a flat
power spectrum. Yet, the observed power spectrum for this term decays like k−1,
corresponding to a k−1 decay of its Fourier coefficients, and therefore δk ∼ k−3 after
inversion of the elliptic operator. Its spectrum is steeper than the spectrum of the
term ∇h · ∇1h on the right-hand side of (3.27b), which suggests that there is some
cancellation within the nonlinear contributions that is not currently understood.

We finally remark that the absolute slopes seen in figures 9 and 10 do not represent
a late-time steady state characterized by sharp potential vorticity gradients. At this
stage of the evolution, they are still in the process of steepening. The relative slopes,
however, are robust.

6. Discussion and outlook
We have examined a family of variational balance models relevant to the small

Rossby number, semi-geostrophic regime of the rotating shallow water equations.
This family, originally derived by Oliver (2006), is spanned by a parameter λ and
includes the L1-model introduced by Salmon (1983) as a special case (λ = 1/2). To
test the quality of these models, we have compared them against initially balanced
shallow water numerical simulations for a wide range of Rossby numbers ε. This
has revealed that the L1-model, obtained for the specific parameter value λ = 1/2,
strongly outperforms all other members of the family. That is, the L1-model gives
the closest comparison with the full shallow water dynamics over an O(ε−1) time
scale. Given that all models are formally of the same asymptotic order, and that
the case λ = 0 seems preferable from the regularity theory point of view, this
result was initially unexpected. However, we have been able to explain the superior
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FIGURE 8. (Colour online) Power density spectra for ageostrophic vorticity (a–c),
divergence (d–f ) and potential vorticity (g–i), at times t= 0 (a,d,g), t= 0.1/ε (b,e,h) and
t = 1/ε (c,f,i). Here ε = 2−3, and three different values of λ are compared (see legend).
Dashed lines are used for the shallow water fields γε, δε and qε, while solid lines are
used for the corresponding transformed balance fields T[γ ], T[δ] and T[q].

performance of the L1-model by rewriting the balance model in terms of ageostrophic
quantities, where the ageostrophic vorticity is most regular when λ = 1/2. Our
numerical diagnostics confirm that this interpretation is consistent with the actual
model behaviour. In particular, the ageostrophic vorticity for λ = 1/2 exhibits a
steeply decaying spectrum, in close agreement with the full shallow water dynamics.
On the other hand, the ageostrophic vorticity for λ 6= 1/2 exhibits a flat or rising
spectrum. This unphysical feature spoils the comparison with the full shallow water
dynamics. This finding underscores the critical importance of understanding, and
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FIGURE 9. (Colour online) Power density spectra for the balance model q, h and u for
ε= 2−3, and for different values of λ at time εt= 1.
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FIGURE 10. (Colour online) Power density spectra for each of the terms on the right-hand
side of the γ -equation (3.27b), upper panel, and of the δ-equation (3.27a), lower panel,
corresponding to the case shown in figure 9.
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ensuring, the mathematical regularity of any balance model. We further remark that
the observed superior performance of the L1 model is consistent with the study of
Allen, Holm & Newberger (2002) who find that the stratified version of the L1 model
and its next-order correction outperform a selection of other balance models in a
simple direct numerical comparison.

Over longer time scales, randomly initialized shallow water flows generically exhibit
a direct enstrophy (potential vorticity variance) cascade to small scales, leading to
sharp fronts and fine-scale filamentary debris, particularly in potential vorticity. As
a result, predictability is first lost at small scales then progressively at larger scales
due to nonlinear scale interactions. This makes any direct comparison with a balance
model difficult, though it may still be meaningful to compare statistical properties.
The methods used in the present paper were designed to address how different
balance models compare to the full shallow water model before any significant
small-scale structure develops. i.e. while the flow is still predictable at all scales
considered. Different methods, better suited to preserving conservation laws (to the
extent possible), would be needed to study both the balanced and shallow water
dynamics at longer times, e.g. as in Mohebalhojeh & Dritschel (2001).

There are several new ideas to pursue emerging from the work presented here.
We have focused above on a particular form of the initial conditions. It would be
interesting to see how the balanced GLSG models perform in flows starting from a
few, well-separated vortical structures, and where the largest velocity gradients are
concentrated in thin jets of width comparable to the Rossby radius of deformation LD.
Notably, the balance relation (3.15) exhibits consistent scaling in this scenario. The
concentration of fluid flow in jets of width LD implies u∼ fLD ∼

√
ε and ∇ ∼ 1/

√
ε.

Since u≈∇⊥h we have h∼ ε. Assuming that the jets are characterized (in the worst
case) by jumps in potential vorticity, which have at worst a spectral scaling qk ∼ k−1,
we have uk ∼ k−2 and hk ∼ k−3. The balance relation (3.15) is invariant under this
scaling.

In future work, we plan to compare the GLSG balance models studied here with
other models used in the literature. In particular, it will be instructive to see how the
geometric GLSG equations compare with more traditional balance models obtained
by performing the asymptotics directly to the equations of motion. Examples include
the δ–γ hierarchy of balance models introduced by Mohebalhojeh & Dritschel (2001)
and the semi-geostrophic equations which are presumed valid specifically in the frontal
regime (Cullen 2008).

Of particular interest is the behaviour of the L1-model, and possibly other models
from the GLSG family, in spherical geometry. At the formal level, the variational
derivation of the models should translate naturally to spherical geometry. However,
it is less clear whether the resulting balance models remain mathematically well
posed and can be simulated in a robust way as the Coriolis parameter degenerates
at the equator. Previous work by Oliver & Vasylkevych (2013) suggests that robust
solvability at mid-latitudes may only be possible if the transformation vector field v
is non-trivial at leading order, i.e. if one moves away from Salmon’s L1 model. This
work would need to be revisited in the light of rewriting the balance relation in terms
of ageostrophic quantities. An independent issue is the study of degeneracy near the
equator. We plan to address these questions in future work.

Although we have not considered the problem of quantifying the amount of
imbalance (or gravity wave activity) associated with the initialization procedure in
this work, our framework permits us to do so. By employing the dynamic global
iteration rebalancing procedure, described in appendix C, we can compute at each time
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step the difference between the time-evolved shallow water fields and their rebalanced
forms. If the balance model used to rebalance the fields is accurate, the difference
would be dominated by gravity waves, at least for small Rossby numbers. This could
be tested by looking at the frequency spectra of those rebalanced differences. This is
planned for future work.
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Appendix A. Derivation of the balance model Euler–Lagrange equation
Let us now compute the variation of each of the four terms appearing in Lbal in

(3.14). First, up to perfect time derivatives which are null Lagrangians as they do not
contribute to the variation of the action integral,

δ

∫
R ◦ η · η̇ da =

∫
[∇R ◦ ηδη · η̇+R ◦ η · δη̇] da

=

∫
[∇RT

◦ ηη̇ · δη−∇R ◦ ηη̇ · δη] da=−
∫

hw · u⊥ dx. (A 1)

The last identity holds as ∇⊥ ·R= 1, which implies that ∇R−∇RT
= J, the standard

symplectic matrix.
Second,

δ

∫
∇
⊥h ◦ η · η̇ da=

∫
[∇
⊥δh ◦ η · η̇+∇∇⊥h ◦ ηδη · η̇+∇⊥h ◦ η · δη̇] da

=

∫
[∇
⊥δh ◦ η · η̇+∇⊥∇h ◦ ηη̇ · δη−∇⊥ḣ ◦ η · δη−∇∇⊥h ◦ ηη̇ · δη] da

=

∫
h[−∇⊥∇ · (hw) · u+∇⊥∇hu ·w+∇⊥∇ · (hu) ·w−∇∇⊥hu ·w] dx

=

∫
h[−∇∇⊥ · (hu) ·w+∇⊥∇hu ·w+∇⊥∇ · (hu) ·w−∇∇⊥hu ·w] dx

=

∫
h[h1u⊥ + 2∇h · ∇u⊥] ·w dx, (A 2)

again up to perfect time derivatives, which we have subtracted in the second equality
(equivalent to integration by parts with respect to time under the action integral). In
the third equality, we have changed to Eulerian variables and have made use of the
momentum and continuity equations. The fourth equality results from an integration
by parts, and the last equality is straightforward vector algebra.
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Third,

1
2
δ

∫
h2 dx=

∫
hδh dx=−

∫
h∇ · (hw) dx=

∫
hw · ∇h dx. (A 3)

Fourth,

δ

∫
h|∇h|2 dx =

∫
[δh|∇h|2 + 2h∇h · ∇δh] dx

= −

∫
[∇ · (hw)|∇h|2 + 2h∇h · ∇∇ · (hw)] dx

=

∫
hw · [∇|∇h|2 − 2∇∇ · (h∇h)] dx

= −

∫
hw · ∇[2h1h+ |∇h|2] dx. (A 4)

Plugging the results from (A 1) to (A 4) back into the variation of the action associated
with (3.14), we find that stationary points of this action imply the Euler–Lagrange
equation (3.15).

Appendix B. Time scale of the Eulerian dynamics

To leading order, the motion induced by a velocity field computed from (3.15) is
geostrophic with an O(1) velocity. Thus, fluid parcels travel a unit distance over times
of O(1). The question is: on what time scale do Eulerian quantities change? To answer
this, we conduct a kinematic analysis, in which we assume that u is constrained by
the balance relation (3.15), and then estimate the magnitude of ∂th and ∂thε.

First, we rearrange the balance relation (3.15) so that

u⊥ +∇h= ε
[(
λ+ 1

2

)
(h1u⊥ + 2∇h · ∇u⊥)+ λ∇(2h1h+ |∇h|2)

]
. (B 1)

Re-insertion of leading-order geostrophic balance into (B 1) gives u= ∇⊥h− εw⊥ +
O(ε2) with

w=
(
λ− 1

2

)
h1∇h−∇h · ∇∇h+ 2λ∇h1h. (B 2)

Inserting u=∇⊥h− εw⊥ +O(ε2) into the transformation (3.13), we obtain

v =
(
λ− 1

2

)
∇h+ 1

2εw+O(ε2). (B 3)

Similarly, inserting (B 2) into the continuity equation (3.16) gives

ḣ = −∇ · (hu)= ε∇ · (hw⊥)+O(ε2)

= ε[h∇⊥h · ∇1h+∇⊥h · ∇∇h∇h] +O(ε2). (B 4)

This shows that the time scale of Eulerian evolution in balance model coordinates is
O(1/ε) and is, in particular, independent of λ at this order. Moreover, we see that the
time derivative of the transformation vector field vanishes to O(ε):

v̇ = (λ− 1
2)∇ḣ+O(ε)=O(ε). (B 5)
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A similar computation can be performed after transforming to the shallow water
side. Using the diagnostic expressions for h′ and u′, equations (3.9) and (3.10),
respectively, we compute

∂thε = −∇ · (hεuε)=−∇ · (hu)− ε∇ · (h′u+ hu′)+O(ε2)

= −∇ · (h∇⊥h− εhw⊥)
+ ε(λ− 1

2)∇ · (∇ · (h∇h)∇⊥h+ h(∇⊥∇⊥h−∇∇h)∇⊥h)+O(ε2)

=
1
4ε(∇

⊥h · ∇1h2
−∇

⊥1h · ∇h2)+O(ε2). (B 6)

Thus, we obtain the same conclusion in shallow water coordinates as expected by
consistency of the asymptotic derivation. In particular, the leading O(ε)-term is
independent of λ.

Appendix C. The inverse transformation
In our setting, the transformation from balance model coordinates to physical

coordinates is explicit and has been detailed in § 3.4. However, it is also possible
to invert the transformation in the following sense: given a shallow water potential
vorticity qε in physical coordinates, we seek a corresponding height field hε and
velocity field uε, also in physical coordinates (or, equivalently, the divergence δε,
ageostrophic vorticity γε and velocity mean ūε) which, on the one hand, are consistent
with the definition of the shallow water potential vorticity,

qε =
1+ ε∇⊥ · uε

hε
, (C 1)

and, on the other hand, are consistent with the balance relation (3.15) in transformed
variables under the transformation (3.28). This can be achieved as follows.

We start by decomposing qε = q̄ε + q̂ε, where q̄ε denotes the mean value of qε and
q̂ε denotes the deviation from the mean, with corresponding notation for the other field
variables. The expression for potential vorticity (C 1) can then be written in the form

(q̄ε − ε1)ĥε = 1− q̄ε − q̂εhε + εγε, (C 2)

where we have used the definition of ageostrophic vorticity γε = ∇
⊥
· uε − 1hε, as

well as the fact that the mean height h̄ε= 1. Equation (C 2) can be solved by iteration
provided q̂ε is sufficiently small. Next, to determine consistent balanced GLSG fields,
we interpret the transformation of potential vorticity in the Lagrangian variables as

qε ◦ ηε = q, (C 3)

which leads to an advection equation with ε playing the role of time, namely

q′ε + vε · ∇qε = 0, (C 4)

where the prime denotes differentiation with respect to ε and we integrate backwards
from the given value of ε to ε= 0. Of course, we cannot have knowledge of the full
transformation vector field vε as that would be akin to having an all-order balance
model. For a first-order model, it is consistent to approximate vε by v as given by
(3.13). Thus, numerically, we are solving

q′ε + v · ∇qε = 0 (C 5)
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as a backward advection equation with ε as the artificial time variable.
The global iteration loop is then as follows. Given an initial potential vorticity field

qε on the shallow water side, initialize the iteration with uag
ε = 0 (implying γε = 0 and

δε = 0). On the balance model side, initialize q= qε and find initial h, u, and v as in
Steps 3–5 below.

Step 1: Compute the corresponding height field hε using (C 2).
Step 2: Compute the potential vorticity q on the balanced GLSG side by backwards

advection in ε to ε= 0 using (C 5).
Step 3: Compute the balanced GLSG height field h via potential vorticity inversion

(3.20).
Step 4: Compute the corresponding GSLG velocity field u using the balance relation

(3.15).
Step 5: Compute v via (3.13).
Step 6: Transform back to the shallow water side using (3.28) to compute hε and

uε.
Step 7: Update the ageostrophic velocity uag

ε , and go to Step 1.

Repeat until a fixed point is reached. Empirically, the procedure converges for small
to moderate values for ε, but may fail to converge when ε≈ 1.

The procedure outlined above allows one to ‘rebalance’ a given state of the shallow
water evolution using any of the GLSG balance models. Given only the potential
vorticity, all other fields can be reconstructed consistent with the balance relation, and
the residual can be taken as a measure of imbalance.
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