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Abstract

We establish the general form of a geometric comparison principle for n-fold convolutions
of certain singular measures in R

d which holds for arbitrary n and d. This translates into a
pointwise inequality between the convolutions of projection measure on the paraboloid and
a perturbation thereof, and we use it to establish a new sharp Fourier extension inequality on
a general convex perturbation of a parabola. Further applications of the comparison principle
to sharp Fourier restriction theory are discussed in the companion paper [3].

2010 Mathematics Subject Classification: 42A85, 42B10, 26B10

1. Introduction

Let � be a smooth compact hypersurface of Rd+1, endowed with a surface-carried mea-
sure dμ=ψ dσ . Here σ denotes the surface measure of �, and the function ψ is smooth
and non-negative. In general, curvature of � causes the Fourier transform of μ to decay,
which in turn translates into a certain degree of regularity for the convolution powers μ∗(n).
To some extent, such considerations apply to the case of non-compact hypersurfaces as well.

In general, the analysis of convolution measures is a hard task. In the compact setting,
the computation reduces to a Fourier inversion, but in practice this is often non-trivial. If
the manifold in question has a large group of symmetries, then computations may become
feasible. For instance, see [5, 6, 8, 9, 12] for the case of surface measure on spheres and, in
the non-compact setting, see [4, 11, 14] for projection measure on paraboloids, and [7, 11,
16, 17] for the Lorentz invariant measure on cones and hyperboloids.

Understanding convolution measures on perturbations of these highly symmetric
manifolds is of theoretical interest, and naturally arises in applications. In [15], the authors
established a comparison principle for 2-fold convolutions of certain singular measures.
The purpose of this note is to extend this principle to n-fold convolutions, and to present a
sample application in the context of sharp Fourier restriction theory.
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To state our main result, we introduce some notation. Given a sufficiently nice function
φ :Rd →R, consider the hypersurface in R

d+1

�φ = {(y, |y|2 + φ(y)) : y ∈R
d}, (1·1)

equipped with projection measure

dν(y, s)= δ
(
s − |y|2 − φ(y)

)
dy ds.

Throughout the paper, projection measure will be consistently denoted by ν. We recursively
define its n-fold convolution via ν∗(2) = ν ∗ ν and ν∗(n) = ν ∗ ν∗(n−1).

The following geometric comparison principle is our main result. It holds in all dimen-
sions d � 1, and generalises [15, theorem 1·3] to n-fold convolutions, for any n � 2.

THEOREM 1·1. For d � 1, let φ :Rd →R be a nonnegative, continuously differentiable,
strictly convex function. Let ϕ = | · |2 and ψ = | · |2 + φ. Let ν0, ν denote the projection
measures on the hypersurfaces �0, �φ , respectively. Then, for any integer n � 2,

ν∗(n)(ξ , τ )� ν∗(n)
0 (ξ , τ − nφ(ξ/n)), (1·2)

for every ξ ∈R
d and τ > nψ(ξ/n). Moreover, this inequality is strict at every point in the

interior of the support of the measure ν∗(n).

Under the assumptions of the theorem, the support of the convolution measure ν∗(n) is con-
tained in that of ν∗(n)

0 . Moreover, both measures define continuous functions inside their
supports and, as τ → nψ(ξ/n)+, the left- and right-hand sides of (1·2) approach the bound-
ary values of ν∗(n) and ν∗(n)

0 , respectively. These assertions follow from Proposition 2·1
below. We emphasize that, at least when (d, n) �= (1, 2), inequality (1·2) is stronger than
the mere claim

ν∗(n)(ξ , τ )� ν∗(n)
0 (ξ , τ ), for every ξ ∈R

d and τ > nψ(ξ/n).

Indeed, the function τ �→ ν
∗(n)
0 (ξ , τ ) is non-decreasing, as observed in Remark 2·2 below.

Connections with Fourier restriction theory [19, 21] and Strichartz estimates for partial
differential equations [20] are to be expected. The early proof of the Fourier restriction
conjecture in the plane due to Fefferman [10] relied on a careful analysis of the convolution
measure f σ ∗ f σ , where f is a function defined on the circle. In a different direction, the
seminal work of Tomas [22] used the T T ∗ method to reduce matters to the study of the
operator f �→ f ∗ σ̂ . More recently, a related but distinct comparison principle was used
in [18] as an effective tool to understand the effects of global smoothing, to derive new
estimates for dispersive equations from known ones, and to compare estimates for different
equations.

Sharp Fourier restriction theory has received a lot of attention lately; see the recent sur-
vey [13] and the references therein. In [15], we used the comparison principle for 2-fold
convolutions as the main tool to study a number of questions arising from sharp Fourier
restriction theory. In particular, we computed the optimal constant for the adjoint restriction
(or extension) L2 − L4 inequality on the surface {(y, |y|2 + φ(y)) : y ∈R

2}, and proved that
extremizers do not exist. Our second result is the one-dimensional L2 − L6 analogue of [15,
theorem 1·2].
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THEOREM 1·2. Let φ :R→R be a nonnegative, twice continuously differentiable,
strictly convex function, whose second derivative φ′′ satisfies one of the following conditions:

(i) φ′′(y0)= 0, for some y0 ∈R, or
(ii) there exists a sequence yn ⊂R with |yn| → ∞, as n → ∞, such that φ′′(yn)→ 0, as

n → ∞.

Let ν denote the projection measure on the curve �φ . Then the inequality

‖ f ν ∗ f ν ∗ f ν‖2
L2(R2) �

π√
3
‖ f ‖6

L2(R) (1·3)

holds for every f ∈ L2(R), and is sharp. The sequence { fn‖ fn‖−1
L2 } defined via

fn(y) :=
{

exp(−n(ψ(y)−ψ(y0)−ψ ′(y0)(y − y0))), in case (i),
exp(−an(ψ(y)−ψ(yn)−ψ ′(yn)(y − yn))), in case (ii),

(1·4)

where ψ := | · |2 + φ and {an} is an appropriately chosen sequence, is extremising for (1·3).
Moreover, extremisers for (1·3) do not exist.

The choice of the sequence {an} will be clarified in the course of the proof of Theorem 1·2,
which in turn relies on Theorem 1·1.

Our methods are further able to resolve a dichotomy from the recent literature concerning
the existence of extremizers for certain Strichartz inequalities for higher order Schrödinger
equations in one spatial dimension. This question and related ones are explored in the
companion paper [3].

Overview. The paper is organised as follows. In Section 2·1 we establish some useful
facts about convolutions of singular measures. These are used in Section 2·2 to prove
Theorem 1·1. We then prove Theorem 1·2 in Section 3.

Notation. The usual inner product between vectors x, y ∈R
d will be denoted by 〈x, y〉.

This distinguishes it from the d × d matrix obtained as the matrix product between x and
the transpose of y, denoted x · yT . The usual matrix product between a d × d matrix A and
a vector x ∈R

d will likewise be indicated by A · x.

2. A geometric comparison principle

This section is devoted to the proof of Theorem 1·1. In our analysis, we will make use of
the so-called delta-calculus to perform integration on manifolds, see [13, appendix A] for a
concise treatment.

2·1. Convolutions of singular measures

The following result is an extension of [15, proposition 2·1] to the case of n-fold convo-
lution measures. The proof relies on the Implicit Function Theorem. Other approaches are
presumably available; see [1] for a particular instance of the case n = 2 which instead relies
on the co-area formula.
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PROPOSITION 2·1. Let d � 1 and n � 2 be integers. Let ψ :Rd →R be a strictly con-
vex, nonnegative function of class C2(Rd). Let ν denote projection measure dν(y, s)=
δ (s −ψ(y)) dy ds. Then the following holds for the n-fold convolution measure ν∗(n):

(a) it is absolutely continuous with respect to Lebesgue measure on R
d+1;

(b) its support is given by

supp(ν∗(n))= {(ξ , τ ) ∈R
d+1 : τ � nψ(ξ/n)}; (2·1)

(c) its Radon–Nikodym derivative, also denoted by ν∗(n), is given by the formula

ν∗(n)(ξ , τ )

=
�
Sd(n−1)−1

αd(n−1)−2

(n−1∑
i=1

〈
ωi ,

∇ψ(ξ/n+α∑n−1
j=1 ω j )− ∇ψ(ξ/n−αωi)

α

〉)−1

dμω,

(2·2)

provided τ > nψ(ξ/n). Here, μω denotes surface measure on the unit sphere
S

d(n−1)−1 ⊂R
d(n−1), ω = (ω1, . . . ,ωn−1) ∈ S

d(n−1)−1, ωi ∈R
d , and the function α is

given by

α(ξ , τ,ω)= √
τ − nψ(ξ/n)λ(

√
τ − nψ(ξ/n)ω), (2·3)

where the function λ is implicitly defined via identity (2·8) below;
(d) it defines a continuous function of the variables ξ , τ in the interior of its support.

If (d, n) �= (1, 2) and the Hessian matrix of the function ψ satisfies H(ψ)(ξ/n) �= 0
at some point ξ ∈R

d , then the convolution extends continuously to the boundary
point (ξ , nψ(ξ/n)), with values given by

(ν ∗ ν ∗ ν)(ξ, 3ψ(ξ/3))= 2π√
3ψ ′′(ξ/3)

, if ξ ∈R, (2·4)

(ν ∗ ν)(ξ , 2ψ(ξ/2))= π√
det(H(ψ))(ξ/2)

, if ξ ∈R
2,

ν∗(n)(ξ , nψ(ξ/n))= 0, if ξ ∈R
d and (d, n) /∈ {(1, 2), (1, 3), (2, 2)}.

If (d, n)= (1, 2), then the following asymptotic formula holds:

(ν ∗ ν)(ξ, τ )� 1

ψ ′′(ξ/2)
√
τ − 2ψ(ξ/2)λ(

√
τ − 2ψ(ξ/2))

, as τ ↓ 2ψ(ξ/2),

(2·5)
in the sense that the ratio of the right- and left-hand sides tends to 1, as τ ↓ 2ψ(ξ/2).

Proof. To establish parts (a) and (b), it suffices to consider the case n = 2, as the general case
will then follow by induction. This in turn was proved in [15, proposition 2·1] for d = 2, but
as pointed out there the argument extends to general dimensions.
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We provide the details for parts (c) and (d). Let (ξ , τ ) ∈R
d+1 be such that τ > nψ(ξ/n).

Changing variables yi � ξ/n − yi , 1� i < n, we have

ν∗(n)(ξ , τ ) =
�
(Rd )n

δ
(
τ −

n∑
i=1

ψ(yi)
)
δ
(
ξ −

n∑
j=1

y j

)
dy1 . . . dyn (2·6)

=
�
(Rd )n−1

δ
(
τ −

n−1∑
i=1

ψ(yi)−ψ(ξ −
n−1∑
j=1

y j )
)

dy1 . . . dyn−1

=
�
(Rd )n−1

δ (τ − nψ(ξ/n)− gn(1, y)) dy1 . . . dyn−1, (2·7)

where the function gn is defined on pairs (t, y)= (t, (y1, . . . , yn−1)) ∈R× (Rd)n−1 via

gn(t, y) :=
n−1∑
i=1

ψ(ξ/n − tyi)+ψ
(
ξ/n + t

n−1∑
j=1

y j

)
− nψ(ξ/n).

We perform another change of variables y = T(w)= λw, where λ= λ(w) is an implicit real-
valued function of w = (w1, . . . ,wn−1) ∈ (Rd)n−1 which takes only strictly positive values
if w �= 0, and is defined via the identity

gn(1, λw)= gn(λ,w)= |w|2. (2·8)

For fixed ξ , the Intermediate Value Theorem and strict convexity imply that a unique positive
solution λ= λ(w) exists if w �= 0, since gn(0,w)= 0 and gn(λ,w)→ ∞, as λ→ ∞. By the
Implicit Function Theorem, equation (2·8) defines λ as a C1 function of w, provided that the
derivative of the map

λ �−→
n−1∑
i=1

ψ(ξ/n − λwi )+ψ
(
ξ/n + λ

n−1∑
j=1

w j

)
− nψ(ξ/n)

is nonzero. In view of the strict convexity of the function ψ , this is indeed the case if
λ> 0. See Lemma 2·5 below for further details in a slightly more general context. Since
the function λ is C1 and T(w)= λ(w)w, we have that

T′(w)= λI + w · (∇λ)T , (2·9)

where I stands for the identity matrix in R
d(n−1), the gradient is taken with respect to w, and

the term w · (∇λ)T denotes the d(n − 1)× d(n − 1) matrix obtained as the product of the
vector w and the gradient ∇λ. Implicit differentiation of (2·8) with respect to w yields

(T′)T (w) · u = 2w, (2·10)

where u = (u1, . . . , un−1) is a vector-valued function of (w, ξ), given for 1� i < n by

ui = ∇ψ
(
ξ/n + λ

n−1∑
j=1

w j

)
− ∇ψ(ξ/n − λwi). (2·11)

From (2·9) and (2·10) it follows that

∇λ= 2w − λu
〈w, u〉 . (2·12)
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Using the Matrix Determinant Lemma,

det T′(w)= det(λI + ∇λ · wT )= (1 + λ−1〈w,∇λ〉) det(λI).

Identity (2·12) then implies

det T′(w)= 2|w|2
〈w, u(w, ξ)〉λ(w)

d(n−1)−1. (2·13)

Note that this is a nonnegative quantity because of the strict convexity of ψ . Going back to
the integral expression (2·7), changing variables as announced, and switching to spherical
coordinates, yields

ν∗(n)(ξ , τ ) =
�
(Rd )n−1

δ
(
τ − nψ(ξ/n)− |w|2) det T′(w) dw

=
� ∞

0
δ
(
τ − nψ(ξ/n)− r 2

) ( �
Sd(n−1)−1

det T′(rω) dμω

)
rd(n−1)−1 dr,

where μω denotes surface measure on the unit sphere S
d(n−1)−1. Invoking (2·13), changing

variables r 2� s, and evaluating the inner integral,

ν∗(n)(ξ , τ ) =
�
Sd(n−1)−1

( � ∞
0
δ (τ − nψ(ξ/n)− s)

√
sλ(

√
sω)d(n−1)−1

〈ω, u(
√

sω, ξ)〉
√

s
d(n−1)−2

ds
)

dμω

=
�
Sd(n−1)−1

(√
τ − nψ(ξ/n)λ(

√
τ − nψ(ξ/n)ω)

)d(n−1)−1

〈ω, u(
√
τ − nψ(ξ/n)ω, ξ)〉 dμω.

Formula (2·2) now follows from the definition (2·3) of the function α = α(ξ , τ,ω), and the
expression (2·11) for the vector u. This concludes the verification of part (c).

As for part (d), the continuity of ν∗(n) in the interior of its support follows from an inspec-
tion of formula (2·2), since the function λ is continuous. As for boundary values, let us
consider the case (d, n) �= (1, 2) first. Consider a boundary point (ξ 0, nψ(ξ 0/n)) ∈R

d+1,
and suppose that the Hessian matrix H(ψ)(ξ 0/n) is nonzero. We claim that, for fixed
ω ∈ S

d(n−1)−1,

lim
(ξ ,τ )→(ξ 0,nψ(ξ 0/n))

α(ξ , τ,ω)= 0, (2·14)

where the limit is taken over points (ξ , τ ) belonging to the interior of the support of ν∗(n).
The function λ= λ(w) satisfies identity (2·8), which can be rewritten as

gn(λ,w)= gn(α,ω)= τ − nψ(ξ/n),

where ω ∈ S
d(n−1)−1, w = √

τ − nψ(ξ/n)ω, and α = α(ξ , τ,ω) is defined as in (2·3). As
(ξ , τ )→ (ξ 0, nψ(ξ 0/n)) from the interior of the support of ν∗(n), the quantity τ − nψ(ξ/n)
tends to 0. The function gn(·,ω) attains its unique global minimum at α = 0, where it equals
zero. It follows that claim (2·14) holds and, as (ξ , τ )→ (ξ 0, nψ(ξ 0/n)), we have

n−1∑
i=1

〈
ωi ,

∇ψ(ξ/n + α
∑n−1

j=1 ω j )− ∇ψ(ξ/n − αωi )

α

〉
−→

〈 n−1∑
i=1

ωi ,H(ψ)(ξ 0/n) ·
n−1∑
i=1

ωi

〉
+

n−1∑
i=1

〈ωi ,H(ψ)(ξ 0/n) · ωi 〉. (2·15)
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This is a strictly positive quantity since ψ is strictly convex and H(ψ)(ξ 0/n) �= 0, and
from formula (2·2) we see that ν∗(n)(ξ , nψ(ξ/n)) vanishes identically, except possi-
bly when d(n − 1)= 2, i.e. (d, n) ∈ {(2, 2), (1, 3)}. The former case was treated in [15,
proposition 2·1], so we focus on the latter. For every ξ ∈R, we have

(ν ∗ ν ∗ ν)(ξ, 3ψ(ξ/3)) =
�
S1

1

ψ ′′(ξ/3)(ω1 +ω2)2 +ψ ′′(ξ/3)(ω2
1 +ω2

2)
dμ(ω1,ω2)

= 1

ψ ′′(ξ/3)

� 2π

0

1

2 + 2 sin θ cos θ
dθ = 2π√

3ψ ′′(ξ/3)
,

as claimed. Finally, if (d, n)= (1, 2), then expression (2·15) equals 2ψ ′′(ξ0/2). Noting that
the function λ is even if n = 2, we obtain (2·5). The proof is now complete.

Remark 2·2. Let us specialise to the case of the unperturbed paraboloid ψ = | · |2. It was
observed in [15, remark 2·2] that formula (2·2) for d = n = 2 recovers the result from
[11, lemma 3·2] for the 2-fold convolution of projection measure on the two-dimensional
paraboloid. In a similar way, if (d, n)= (1, 3), then the expression for the 3-fold convolution
of projection measure ν0 on the parabola {τ = ξ 2} ⊂R

2 given by formula (2·2) reduces to

(ν0 ∗ ν0 ∗ ν0)(ξ, τ )= 1

2

�
S1

1

ω1(2ω1 +ω2)+ω2(ω1 + 2ω2)
dμ(ω1,ω2) =

π√
3
,

provided τ > ξ 2/3. This recovers the value obtained in [11, lemma 4·1]. For general (d, n),
one can check that, in the caseψ = | · |2, the function λ= λ(w) implicitly defined by identity
(2·8) is given by

λ(w)= |w|(∣∣∣∑n−1
i=1 wi

∣∣∣2 + ∑n−1
j=1 |w j |2

) 1
2

.

This is a homogeneous function of degree zero, and so the function α = α(ξ , τ,ω) defined
in (2·3) is given by α(ξ , τ,ω)= (τ − |ξ |2/n)

1
2 λ(ω). Consequently, if τ > |ξ |2/n, then

ν
∗(n)
0 (ξ , τ ) = 1

2

�
Sd(n−1)−1

αd(n−1)−2
(n−1∑

i=1

〈
ωi ,

n−1∑
j=1

ω j + ωi

〉)−1
dμω

= 1

2
(τ − |ξ |2/n)

d(n−1)
2 −1

�
Sd(n−1)−1

λ(ω)d(n−1)−2
( n−1∑

i=1

〈
ωi ,

n−1∑
j=1

ω j + ωi

〉)−1
dμω

= 1

2
(τ − |ξ |2/n)

d(n−1)
2 −1

�
Sd(n−1)−1

(∣∣∣n−1∑
i=1

ωi

∣∣∣2 +
n−1∑
j=1

|ω j |2
)− d(n−1)

2
dμω.

The latter integral can be computed in polar coordinates, see [2, 4]. Alternatively, the value
of the constant cd,n in the expression

ν
∗(n)
0 (ξ , τ )= cd,n

(
τ − |ξ |2

n

) d(n−1)
2 −1

+
(2·16)
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can be determined by simply multiplying both sides of (2·16) by the factor exp(−τ) and
integrating in ξ , τ . Indeed, recall (2·6) and observe that�

Rd+1
e−τ ν∗(n)

0 (ξ , τ ) dξ dτ

=
�
Rd+1

�
(Rd )n

e−τ δ
(
τ −

n∑
i=1

|yi |2
)
δ
(
ξ −

n∑
j=1

y j

)
dy1 . . . dyn dξ dτ

=
�
(Rd )n

e− ∑n
i=1 |yi |2 dy1 . . . dyn = π

dn
2 .

On the other hand, a simple change of variables yields
�
Rd+1

e−τ (τ − |ξ |2/n)
d(n−1)

2 −1
+ dξ dτ = (nπ)

d
2�

(d(n − 1)

2

)
,

and therefore

cd,n = π
d(n−1)

2

n
d
2�

(
d(n−1)

2

) .
In particular, Proposition 2·1 generalises the formula obtained in [2, lemma 2·4]. Moreover,
we see from (2·16) that ν∗(n)

0 (ξ , ·) defines a non-decreasing function of τ on the region
{τ > |ξ |2/n}, for every fixed ξ ∈R

d and (d, n) �= (1, 2).

Remark 2·3. From the proof of Proposition 2·1, it is clear that a similar statement holds
in the weighted setting. Let w :Rd →R be a continuous function. Parts (a)–(d) in the state-
ment of Proposition 2·1 hold for the convolution measure (wν)∗(n), with minor modifications
which we now indicate. Firstly, in general only inclusion ⊆ holds in (2·1) instead of equality;
there is equality if w> 0. Secondly, defining

W (ξ ; y1, . . . , yn−1) :=w(ξ/n + y1 + · · · + yn−1)

n−1∏
i=1

w(ξ/n − yi ),

we have the substitute formula for (2·2),

(wν)∗(n)(ξ , τ ) =
�
Sd(n−1)−1

αd(n−1)−2W (ξ ; αω1, . . . , αωn−1)

×
(n−1∑

i=1

〈
ωi ,

∇ψ(ξ/n + α
∑n−1

j=1 ω j )− ∇ψ(ξ/n − αωi )

α

〉)−1

dμω,

where α is defined in (2·3) and is independent of the weight w. Lastly, the convolution
(wν)∗(n) defines a continuous function of ξ , τ in the interior of its support. If (d, n) �= (1, 2)
and the matrix H(ψ)(ξ/n) is nonzero, then the convolution extends continuously to the
boundary point (ξ , nψ(ξ/n)), with values given by

(wν ∗wν ∗wν)(ξ, 3ψ(ξ/3))= 2πw(ξ/3)3√
3ψ ′′(ξ/3)

, if ξ ∈R,

(wν ∗wν)(ξ , 2ψ(ξ/2))= πw(ξ/n)2√
det(H(ψ)(ξ/2))

, if ξ ∈R
2,

(wν)∗(n)(ξ , nψ(ξ/n))= 0, if ξ ∈R
d and (d, n) /∈ {(1, 2), (1, 3), (2, 2)}.
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If (d, n)= (1, 2), then the following asymptotic formula holds:

(wν ∗wν)(ξ, τ )� w(ξ/2)2

ψ ′′(ξ/2)
√
τ − 2ψ(ξ/2) λ(

√
τ − 2ψ(ξ/2))

, as τ ↓ 2ψ(ξ/2),

again in the sense that the ratio of the right- and left-hand sides tends to 1, as τ ↓ 2ψ(ξ/2).

2·2. A pointwise inequality for convolution measures

It was remarked in [15, section 3] that n-linear versions of [15, lemmata 3·2 and 3·3]
seemed more intricate if n � 3. Here we overcome this difficulty by constructing appropriate
inverses to the maps λ and T considered in the previous subsection. This leads to a proof of
Theorem 1·1.

Let d � 1 and n � 2. Consider two convex functions ψ, ϕ :Rd →R. Given ξ ∈R
d and

y = (y1, . . . , yn−1) with yi ∈R
d , 1� i < n, define the following auxiliary functions acting

on pairs (t, y) ∈R×R
d(n−1):

gn(t, y) :=
n−1∑
i=1

ψ(ξ/n − tyi)+ψ
(
ξ/n + t

n−1∑
j=1

y j

)
− nψ(ξ/n), (2·17)

hn(t, y) :=
n−1∑
i=1

ϕ(ξ/n − tyi)+ ϕ
(
ξ/n + t

n−1∑
j=1

y j

)
− nϕ(ξ/n). (2·18)

We are omitting the dependence on ξ , which we assume to be fixed. By another slight abuse
of notation, we will sometimes drop the dependence on y and simply write gn(t)= gn(t, y),
and similarly for hn . Note that gn = hn ≡ 0 if y = 0. The following generalisation of [15,
lemma 3·1] holds.

LEMMA 2·4. Let d � 1 and n � 2. Let ψ, ϕ :Rd →R be differentiable, convex func-
tions, such that their difference ψ − ϕ is also convex. Given ξ , y1, . . . , yn−1 ∈R

d , define
the functions gn, hn as above. Write y = (y1, . . . , yn−1). Then:

(a) gn(t)� hn(t)� 0, for every t ∈R;
(b) the functions gn and hn are convex;
(c) g′

n(0)= h′
n(0)= 0;

(d) if ψ is strictly convex and y �= 0, then gn attains its unique global minimum at t = 0;
(e) if ψ is strictly convex and y �= 0, then there exists a unique nonnegative λ= λ(y, ξ)

such that

hn(1, y)= gn(λ, y), (2·19)

and moreover 0� λ� 1;
(f) if ϕ is strictly convex and y �= 0, then there exists a unique nonnegative ρ = ρ(y, ξ)

such that

hn(ρ, y)= gn(1, y), (2·20)

and moreover ρ � 1;
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(g) if hn(1, y) > 0, then λ(y, ξ) > 0. If hn(1, y) < gn(1, y), then λ(y, ξ) < 1 and
ρ(y, ξ) > 1;

(h) assume that ψ, ϕ are strictly convex functions, and let y �= 0. Letting u = λ(y, ξ)y
and v = ρ(y, ξ)y, we have

ρ(u, ξ)λ(y, ξ)= 1 = ρ(y, ξ)λ(v, ξ).

Proof. We focus on part (h) as the other assertions follow easily from an adaptation of
the proof of [15, lemma 3·1]. Since y = (y1, . . . , yn−1) �= (0, . . . , 0), the strict convexity
of ϕ implies hn(1, y) > 0, and so from part (g) it follows that λ(y, ξ) > 0. In particular,
the vector u = (u1, . . . , un−1)= λ(y1, . . . , yn−1, ξ)(y1, . . . , yn−1) ∈ (Rd)n−1 is nonzero. By
definition, the function ρ(u, ξ) is the unique solution of the equation hn(ρ, u)= gn(1, u).
Note that gn(1, u)= gn(1, λy)= gn(λ, y). By definition of λ(y, ξ) in part (e), we have
gn(λ, y)= hn(1, y), and one easily checks that hn(1, y)= hn(1/λ, λy)= hn(1/λ, u). Thus

hn(1/λ, u)= gn(1, u).

By definition of ρ(u, ξ) and the uniqueness statement in part (f), we necessarily have
ρ(u, ξ)= 1/λ(y, ξ). The second part follows in a similar way, noting that

hn(1, v)= hn(1, ρy)= hn(ρ, y)= gn(1, y)= gn(1/ρ, ρy)= gn(1/ρ, v),

so that λ(v, ξ)= 1/ρ(y, ξ).

Henceforth we restrict attention to strictly convex, C1 functions ψ, ϕ :Rd →R, and intro-
duce two sets which play a role in the proof of Theorem 1·1. Given ξ ∈R

d and c ∈R, define
the ellipsoids

Eψ(ξ , c) := {y ∈R
d(n−1) : gn(1, y)= c},

Eϕ(ξ , c) := {y ∈R
d(n−1) : hn(1, y)= c}.

The sets Eψ(ξ , c) and Eϕ(ξ , c) are non-empty provided c� 0, and codimension 1 hypersur-
faces if c> 0. Moreover, for each fixed ξ ∈R

d , the disjoint union of the ellipsoids Eψ(ξ , c) as
the parameter c� 0 ranges over the nonnegative real numbers equals the whole of (Rd)n−1,
and similarly for ϕ. Now, for each ξ ∈R

d , define the map

T : Rd(n−1) \ {0} →R
d(n−1) \ {0}, T(y) := λ(y, ξ)y, (2·21)

where λ is the unique positive solution of (2·19). We also define the map

S : Rd(n−1) \ {0} →R
d(n−1) \ {0}, S(y) := ρ(y, ξ)y, (2·22)

where ρ is the unique positive solution of (2·20). That T, S are well-defined follows from
the strict convexity of ψ, ϕ, together with Lemma 2·4. Further properties of the maps T, S
are contained in the following lemma.

LEMMA 2·5. Let ψ, ϕ :Rd →R be strictly convex, C1 functions with a convex difference
ψ − ϕ. Let ξ ∈R

d be given, and consider the transformations T and S given by (2·21) and
(2·22), respectively. Then:

(a) T and S are inverse maps;
(b) T and S are continuously differentiable;
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(c) if T′(y) and S′(y) respectively denote the Jacobian matrices of T and S at a point
y �= 0, then

det T′(y) = λ(y)d(n−1)−1

∑n−1
i=1

〈∇ϕ(ξ/n + ∑n−1
j=1 y j )− ∇ϕ(ξ/n − yi ), yi

〉
∑n−1

i=1

〈∇ψ(ξ/n + λ
∑n−1

j=1 y j )− ∇ψ(ξ/n − λyi), yi

〉 ,
det S′(y) = ρ(y)d(n−1)−1

∑n−1
i=1

〈∇ψ(ξ/n + ∑n−1
j=1 y j )− ∇ψ(ξ/n − yi ), yi

〉
∑n−1

i=1

〈∇ϕ(ξ/n + ρ
∑n−1

j=1 y j )− ∇ϕ(ξ/n − ρyi ), yi

〉 ;
(d) if c> 0, then T defines a bijection from Eϕ(ξ , c) onto Eψ(ξ , c), and S defines a

bijection from Eψ(ξ , c) onto Eϕ(ξ , c).

Proof. Part (a) is a restatement of part (h) in Lemma 2·4. Indeed, if y �= 0, then
ρ(λ(y)y)λ(y)= 1, and this implies

S(T(y))= ρ(T(y))T(y)= ρ(λ(y)y)λ(y)y = y.

A similar argument shows that T(S(y))= y, for every nonzero vector y ∈R
d(n−1).

Part (b) follows from the Implicit Function Theorem, after verifying that the derivative of
the map t �→ gn(t, y) is nonzero for each y ∈R

d(n−1) \ {0}, provided t > 0. This derivative
equals

g′
n(t, y)=

n−1∑
i=1

〈
∇ψ

(
ξ/n + t

n−1∑
j=1

y j

)
− ∇ψ(ξ/n − tyi), yi

〉
,

which is nonzero if y �= 0 because of the strict convexity of ψ .
To verify (c), we compute the Jacobian matrix of the map T analogously to what was done

in the proof of Proposition 2·1. Implicit differentiation of identity (2·19) with respect to y
yields

(λI + ∇λ · yT ) · u = v,

where the components of the vectors u = (u1, . . . , un−1), v = (v1, . . . , vn−1) equal

ui = ∇ψ
(
ξ/n+λ

n−1∑
j=1

y j

)
−∇ψ(ξ/n − λyi ), and vi = ∇ϕ

(
ξ/n +

n−1∑
j=1

y j

)
−∇ϕ(ξ/n − yi ),

for 1� i < n. It follows that ∇λ= (v − λu)/〈u, y〉,with strictly positive denominator 〈u, y〉
if y �= 0. In a similar way, we find ∇ρ = (b − ρa)/〈a, y〉, where the components of the
vectors a = (a1, . . . , an−1), b = (b1, . . . , bn−1) equal

ai = ∇ϕ
(
ξ/n+ρ

n−1∑
j=1

y j

)
−∇ϕ(ξ/n − ρyi), and bi = ∇ψ

(
ξ/n +

n−1∑
j=1

y j

)
−∇ψ(ξ/n − yi ).

Using the above expressions for ∇λ and ∇ρ together with the Matrix Determinant Lemma,

det T′(y) = det(λI + ∇λ · yT )= det(λI)(1 + λ−1〈y,∇λ〉)
= λd(n−1)(1 + λ−1〈∇λ, y〉)= λd(n−1)−1 〈v, y〉

〈u, y〉
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and similarly

det S′(y)= ρd(n−1)(1 + ρ−1〈∇ρ, y〉)= ρd(n−1)−1 〈b, y〉
〈a, y〉 .

We finally turn to part (d). That the maps T and S have the desired mapping properties fol-
lows from the defining identities (2·19) and (2·20), respectively. In view of (a), the restriction
of T (resp. S) to the set Eϕ (resp. Eψ ) is a bijective map.

We can rewrite the Jacobian determinants of T and S as

det T′(y)= λ(y)d(n−1)−1 h′
n(1)

g′
n(λ(y))

, det S′(y)= ρ(y)d(n−1)−1 g′
n(1)

h′
n(ρ(y))

. (2·23)

Here we are using the facts that h′
n(1)= 〈v, y〉, g′

n(λ)= 〈u, y〉, h′
n(ρ)= 〈a, y〉 and g′

n(1)=
〈b, y〉, where u, v, a, b are the vectors introduced in the course of the proof of Lemma 2·5.
Specializing to the case ϕ = | · |2, the expression defining hn simplifies to

hn(t)= t2

(∣∣∣n−1∑
j=1

y j

∣∣∣2 +
n−1∑
j=1

|y j |2
)

and so hn(t)= t2hn(1) and h′
n(t)= 2thn(1). In particular, λh′

n(1)= h′
n(λ), and (2·23)

becomes

det T′(y)= λ(y)d(n−1)−2 h′
n(λ(y))

g′
n(λ(y))

, det S′(y)= ρ(y)d(n−1)−2 g′
n(1)

h′
n(1)

. (2·24)

Note also that ρ(y), which solves hn(ρ)= gn(1), is given by

ρ(y)=
(

gn(1)

hn(1)

) 1
2

. (2·25)

We are now ready for our next lemma.

LEMMA 2·6. Let d � 1 and n � 2. Let ϕ = | · |2 and ψ = | · |2 + φ, where φ � 0 is a
strictly convex C1(Rd) function. Let ξ ∈R

d be given, and consider the map T given by
(2·21). Then

| det T′(y)|< 1, for every y �= 0. (2·26)

Proof. Fix y �= 0. For the particular choices of ψ, ϕ as in the statement of the lemma, define
functions gn and hn via (2·17) and (2·18), respectively. Recall the first identity in (2·24):

det T′(y)= λ(y)d(n−1)−2 h′
n(λ(y))

g′
n(λ(y))

. (2·27)

We have already argued that gn − hn is a nonnegative, differentiable, strictly convex func-
tion satisfying (gn − hn)(0)= 0 and (gn − hn)

′(0)= 0. It follows that (gn − hn)
′(t) > 0 for

every t > 0, and therefore the fraction on the right-hand side of (2·27) is strictly less than
1 provided that λ(y) > 0. That this is indeed the case follows from part (g) of Lemma 2·4,
since hn(1) > 0. Thus | det T′(y)|<λ(y)d(n−1)−2. The exponent d(n − 1)− 2 is nonnegative
as long as d � 2 and n � 2, or d = 1 and n � 3. For such pairs (d, n), the proof is finished
by noting that λ(y)� 1.

https://doi.org/10.1017/S0305004119000197 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000197


A comparison principle for convolution measures 319

To handle the remaining case (d, n)= (1, 2), start by noting that

det S′(T(y)) det T′(y)= det T′(S(y)) det S′(y)= 1, for every y ∈R \ {0},

since T and S are inverse maps. Therefore, it suffices to show that det S′(y) > 1, for every
y �= 0. From (2·24) and (2·25), we obtain

det S′(y)=
(

gn(1)

hn(1)

)− 1
2 g′

n(1)

h′
n(1)

,

so we are left with checking that

gn(1)

hn(1)
<

(
g′

n(1)

h′
n(1)

)2

.

In the present case, h′
n(1)= 2hn(1), and so this can be rewritten as

4hn(1)gn(1) < (g
′
n(1))

2.

Since φ is strictly convex, we can write gn(t)= hn(t)+ Hn(t), where Hn is strictly convex
and Hn(0)= 0. Thus it suffices to check that

4hn(1)(hn(1)+ Hn(1)) < (2hn(1)+ H ′
n(1))

2,

or equivalently

4hn(1)Hn(1) < 4hn(1)H
′
n(1)+ (H ′

n(1))
2.

This last inequality holds if Hn(1)� H ′
n(1). But this is immediate since Hn(0)= 0 and Hn

is convex. In particular, H ′
n(1)� H ′

n(t), for every t ∈ [0, 1], and so

Hn(1)= Hn(0)+
� 1

0
H ′

n(t) dt � H ′
n(1).

This completes the proof.

With the right tools at our disposal, the proof of Theorem 1·1 now follows similar lines to
that of [15, theorem 1·3]. We provide the details for the convenience of the reader.

Proof of Theorem 1·1. As in the proof of Proposition 2·1, we may write

ν∗(n)(ξ , τ ) =
�
Rd(n−1)

δ (τ − nψ(ξ/n)− gn(1, y)) dy, (2·28)

ν
∗(n)
0 (ξ , τ ) =

�
Rd(n−1)

δ (τ − nϕ(ξ/n)− hn(1, y)) dy.

By (2·1), the support of ν∗(n) is contained in the support of ν∗(n)
0 . For each ξ ∈R

d , consider
the map T given by (2·21), which by Lemma 2·5 maps each ellipsoid Eϕ(ξ , c) bijectively
onto Eψ(ξ , c), for every c> 0. Changing variables y�T(y) in (2·28), and appealing to the
defining identity (2·19),
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ν∗(n)(ξ , τ ) =
�
Rd(n−1)

δ (τ − nψ(ξ/n)− gn(1,T(y))) | det T′(y)| dy

=
�
Rd(n−1)

δ (τ − nψ(ξ/n)− gn(λ(y), y)) | det T′(y)| dy

=
�
Rd(n−1)

δ (τ − nψ(ξ/n)− hn(1, y)) | det T′(y)| dy

=
�
Rd(n−1)

δ ((τ − nφ(ξ/n))− nϕ(ξ/n)− hn(1, y)) | det T′(y)| dy. (2·29)

From Lemma 2·6, we know that | det T′|� 1, and so Hölder’s inequality implies

ν∗(n)(ξ , τ )� ν∗(n)
0 (ξ , τ − nφ(ξ/n)),

for every ξ ∈R
d and τ > nψ(ξ/n). Thus inequality (1·2) holds. We now appeal to (2·26) to

argue that this inequality must be strict at every point in the interior of the support of ν∗(n).
Let (ξ , τ ) be one such point, for which c := τ − nψ(ξ/n) > 0. The singular measure that is
being integrated in (2·29) is supported on the ellipsoid Eϕ(ξ , c). Since c> 0, this ellipsoid
does not contain the origin, and by Lemma 2·6 the strict inequality | det T′(y)|< 1 holds at
every point y ∈ Eϕ(ξ , c). This can be strengthened to | det T′(y)|� c0 for some fixed c0 < 1
(which depends on φ, ξ , τ but not on y), since the set Eϕ(ξ , c) is compact and the function
y �→ det T′(y) is continuous. The result now follows from replacing the δ-function appearing
in the integral (2·29) by an appropriate ε-neighborhood of the ellipsoid Eϕ(ξ , c), and then
analysing the cases of equality in Hölder’s inequality. To conclude the proof of the theorem,
let ε→ 0+.

3. Convex perturbations of parabolas

In this section, we deduce Theorem 1·2 from Theorem 1·1. Let φ :R→R satisfy the
conditions of Theorem 1·2, let ν denote projection measure on the curve �φ ⊂R

2 defined in
(1·1), and set ψ := | · |2 + φ. The following result is a direct analogue of [15, lemmata 4·1
and 4·2], and can be proved in the same way.

LEMMA 3·1. Given y0 ∈R, let { fn} ⊂ L2(R) be a sequence concentrating at y0. Then

lim sup
n→∞

‖ fnν ∗ fnν ∗ fnν‖2
L2(R2)

‖ fn‖6
L2(R)

� (ν ∗ ν ∗ ν)(3y0, 3ψ(y0)). (3·1)

If we set fn(y)= exp(−n(ψ(y)−ψ(y0)−ψ ′(y0)(y − y0))), then the sequence
{ fn‖ fn‖−1

L2 } ⊂ L2(R) concentrates at y0, and equality holds in (3·1).

Proof of Theorem 1·2. Denote the optimal constant in inequality (1·3) by

Pφ := sup
0�= f ∈L2

‖ f ν ∗ f ν ∗ f ν‖1/3
L2(R2)

‖ f ‖L2(R)

.

We first show that P6
φ = π/

√
3. The Cauchy–Schwarz inequality implies

‖ f ν ∗ f ν ∗ f ν‖2
L2(R2) � ‖ν ∗ ν ∗ ν‖L∞(R2)‖ f ‖6

L2(R). (3·2)

On the other hand, the convolution ν ∗ ν ∗ ν defines a bounded function on R
2, as can be

seen from identity (2·2): one just applies the integral version of the Mean Value Theorem,
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after noting that ψ ′′ = 2 + φ′′ and φ′′ � 0. As a consequence, P6
φ � ‖ν ∗ ν ∗ ν‖L∞ . Now, let

ν0 denote the projection measure on the parabola �0. From Theorem 1·1 and Remark 2·2,
we know that

‖ν ∗ ν ∗ ν‖L∞(R2) � ‖ν0 ∗ ν0 ∗ ν0‖L∞(R2) = π√
3
.

Therefore P6
φ � π/

√
3. In order to show that P6

φ � π/
√

3, we use the sequence given by
(1·4). In case (i), since φ′′(y0)= 0, it follows from (2·4) that

(ν ∗ ν ∗ ν)(3y0, 3ψ(y0))= π√
3
.

Thus the sequence { fn‖ fn‖−1
L2 }, where

fn(y)= exp(−n(ψ(y)−ψ(y0)−ψ ′(y0)(y − y0))),

is extremising for (1·3) in light of Lemma 3·1. In case (ii), we have

(ν ∗ ν ∗ ν)(3yn, 3ψ(yn))−→ π√
3
, as n −→ ∞.

Choose a sequence {an} ⊂N in such a way that the function

fn(y)= exp(−an(ψ(y)−ψ(yn)−ψ ′(yn)(y − yn)))

satisfies ∣∣∣∣∣‖ fnν ∗ fnν ∗ fnν‖2
L2(R2)

‖ fn‖6
L2(R)

− (ν ∗ ν ∗ ν)(3yn, 3ψ(yn))

∣∣∣∣∣� 1

n
,

�
|y−yn |� 1

n

| fn(y)|2 dy � 1

n
‖ fn‖2

L2(R), (3·3)

for every n ∈N. That this is possible follows again from Lemma 3·1. Since

‖ fnν ∗ fnν ∗ fnν‖2
L2(R2)

‖ fn‖6
L2(R)

−→ π√
3
, as n −→ ∞,

the sequence { fn‖ fn‖−1
L2 } is again extremising for (1·3). It follows that P6

φ = π/
√

3.
We finish by showing that extremisers for (1·3) do not exist. Aiming at a contradic-

tion, let f � 0 be an extremizer. By an application of Cauchy–Schwarz and Hölder’s
inequalities,

P6
φ‖ f ‖6

L2(R) = ‖ f ν ∗ f ν ∗ f ν‖2
L2(R2)

�
�
R2

|( f 2ν ∗ f 2ν ∗ f 2ν)(ξ, τ )|(ν ∗ ν ∗ ν)(ξ, τ ) dξ dτ

� ‖ν ∗ ν ∗ ν‖L∞(R2)

�
R2

|( f 2ν ∗ f 2ν ∗ f 2ν)(ξ, τ )| dξ dτ

= ‖ν ∗ ν ∗ ν‖L∞(R2)‖ f ‖6
L2(R).

Since P6
φ = ‖ν ∗ ν ∗ ν‖L∞ = π/

√
3 and f �= 0, all inequalities in this chain of inequalities

must be equalities. In particular, the convolution ν ∗ ν ∗ ν must be constant equal to ‖ν ∗ ν ∗
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ν‖L∞ almost everywhere inside the support of f 2ν ∗ f 2ν ∗ f 2ν, which is a set of positive
Lebesgue measure since f �= 0. This contradicts the strict inequality

(ν ∗ ν ∗ ν)(ξ, τ ) < ‖ν ∗ ν ∗ ν‖L∞(R2), for almost every (ξ, τ ) ∈ supp(ν ∗ ν ∗ ν),
which in turn follows from the second part of Theorem 1·1. This contradiction shows that
extremisers do not exist. The proof of the theorem is now complete.
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