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This paper focuses on depth trajectory tracking control for a Remotely Operated Vehicle
(ROV) with dead-zone nonlinearity and saturation nonlinearity of thruster; an adaptive
sliding mode control method based on neural network is proposed. Through the analysis of
dead-zone nonlinearity and saturation nonlinearity of thruster, the depth trajectory tracking
control system model of a ROV which uses thruster control signals as system input has been
established. According to the principle of sliding mode control, an adaptive sliding mode
depth trajectory tracking controller is built by using three-layer feed-forward neural
network for online identification of unknown items. The selection method and update laws
of the control parameters are also given. The uniform ultimate boundedness of trajectory
tracking error is analysed by Lyapunov theorem. Finally, the effectiveness of the proposed
method is illustrated by simulations.
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1. INTRODUCTION. A Remotely Operated Vehicle (ROV) is an important tool
for marine resource exploitation and marine scientific research with the advantages of
good economy, high flexibility and strong adaptability to the environment, among
others (Chu et al., 2016a; Avila et al., 2013). The ROV control of horizontal position,
orientation and depth is realised by operators relying on the real-time images trans-
mitted by camera when an ROV works underwater (Wang et al., 2006). The precise
synchronisation operation for various degrees of freedom is difficult to achieve, so
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the ROV controller is essentially an open-loop control system. The operations of ROV
are complex and difficult (Gao et al., 2015c), but if automatic depth control can be
achieved during the operation, then manual operation is only for the motion in the
horizontal plane and underwater operations will become relatively easy (Bessa et al.,
2008; Gao et al., 2015a). Therefore the study of depth tracking control for ROV has
a certain practical significance.
In the study of underwater vehicle location tracking control, many methods have

been proposed (Pan and Xin, 2012; Feng and Allen, 2004; Sun et al., 2014; Gao et al.,
2015b). Due to the complex uncertainties of underwater vehicle systems such as dy-
namics modelling error and external disturbances (Avila et al., 2012), the conven-
tional controllers such as a Proportional-Integral-Derivative (PID) controller are
unable to cope with these uncertainties and will cause poor performance. Hence
the adaptive control methods have been researched extensively, such as adaptive
sliding mode control (Zhang and Chu, 2012; Zhang et al., 2015), adaptive neural
network control (Zhu et al., 2014), adaptive Proportional and Derivative (PD)
control (Hoang and Kreuzer, 2007), etc. In most of these methods, the output of
the controller is usually the force or moment acting on each degree of freedom.
Since the actual thrust is unmeasurable, the desired thrust of each thruster needs
to be determined by thruster distribution matrix first, and then the control signals
which should be loaded on the thrusters can be calculated by the desired thrust
according to the thrust model (Gan et al., 2004). But a complex mapping relationship
between the thrust and the control signal is required in this method (Kim and Chung,
2006). It is difficult to obtain accurate control signals according to desired thrust,
which may affect the quality of the tracking control system. Moreover, most of
these control methods did not take the dead-zone nonlinearity and saturation non-
linearity of the thruster into consideration in the design process. For most thrusters,
these two problems are encountered. The stability analysis of the control system
shows that the stability of the closed-loop system may not be guaranteed by adaptive
learning law when the thruster output is in a saturation zone or dead-zone (Chu et al.,
2016b; Wu et al., 2012; Liu and Zhou, 2010; Tong et al., 2013). At present, the solu-
tions to dead-zone nonlinearity of ROVs’ tracking control are still rare. For the
problem of saturation nonlinearity, the method based on the adjustment of
command input signal is usually used (Gan et al., 2004). However, this method
relies on an accurate thrust model and it is also very complex. Therefore, for the non-
linear problems of thrusters, this research focuses on how to design an adaptive con-
troller to obtain thruster control signals directly and ensure the stability of the closed-
loop control system.
Motivated by the aforementioned observations, an adaptive sliding mode control

method based on three-layer feed-forward neural network is proposed for ROV
depth trajectory tracking control. The Lyapunov stability theory is used for stability
analysis to prove that the proposed controller can guarantee trajectory tracking
error is uniformly ultimately bounded. The main contributions of this paper can be
summarised as three points. First, the problem of dead-zone nonlinearity and satur-
ation nonlinearity of thruster is considered in controller design. Second, the control
signal loaded on the thruster can be obtained directly by the designed controller
without a thrust model. The third contribution is that a three-layer feed-forward
neural network is introduced for online learning for the unknown motion model of
an ROV depth tracking system.
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The paper is organised as follows. In Section 2, the dead-zone nonlinearity and sat-
uration nonlinearity of thruster is analysed, and a depth trajectory tracking system
model which uses thruster control signals as system input is established. In Section
3, an adaptive sliding mode controller for depth trajectory tracking based on neural
network is given. In Section 4, Lyapunov stability theory is used to analyse the stability
of the closed-loop system. Then in Section 5, the effectiveness of the proposed ap-
proach is verified by simulation experiments. Finally, a brief conclusion is included
in Section 6 of this paper.

2. PROBLEMFORMULATION. In underwater environments, an ROV is affected
by hydrodynamic forces, cable drag forces and other factors, and its motion has strong
nonlinearity and cross-coupling (Cao and Zhu, 2015). However, the distances between
the centres of buoyancy and the centres of gravity of most ROVs are relatively far,
which make the change of pitch and roll small, so that the influence of other
degrees of freedom for vertical motion can be ignored (Bessa et al., 2010). Thus, the
ROV vertical motion model can be described as:

M€zþD _zð Þ _zþ g zð Þ þ τd ¼ τ uð Þ ð1Þ
where, z, _z, €z denote vertical depth, vertical velocity and vertical acceleration, respect-
ively, M contains ROV mass and added mass, D( _z) is hydrodynamic drag, g(z) is the
difference between the gravity and buoyancy of the ROV, τd is external disturbance
force, such as cable drag and current interference force, etc., τ(u) is the force acting
on the vertical degree of freedom, u is control signal loaded on the thruster and it is
usually expressed as a voltage value.
Remark 1: The assumption is that only one thruster is arranged in the vertical degree

of freedom, and τ(u) is the thrust. But in the case that multiple identical thrusters are
arranged uniformly in the vertical degree of freedom, the control signal of each thrust-
er can be made the same and then τ(u) = nτi(ui). Where n is the number of thrusters,
τi(ui) is the thrust of each thruster. Therefore, nτi(ui) can be used instead of τ(u) in
Equation (1) in the controller design.
The desired trajectory of ROV depth motion is set as ½zd ; _zd �T. Then the trajectory

tracking error vector ξ= [ξ1, ξ2]
T can be defined as:

ξ1 ¼ z� zd
ξ2 ¼ _z� _zd

ð2Þ

where zd, _zd are the desired vertical depth and the desired vertical velocity, respectively.
Remark 2: In order to realise the desired vertical depth trajectory, the desired vertical

velocity _zd should be in the range of ( _zmin, _zmax), where _zmin, _zmax are the maximum
diving velocity and the maximum rising velocity of the ROV, respectively.
Substituting Equation (1) into Equation (2), leads to:

_ξ1 ¼ ξ2

_ξ2 ¼ f z; _zð Þ þM�1τ uð Þ
ð3Þ

where f z; _zð Þ ¼ �M�1 D _zð Þ _zþ g zð Þ þ τd½ � � €zd are the un-modelled dynamics.
For most thrusters, the thrust model can be described approximately as τ(u) = a1

u|u|− a2 |u|va, where a1, a2 are unknown positive parameters and va is the advance
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speed of the propeller (Alessandri et al., 1999). However, the actual tested thrust curve
of a Model 520 thruster is shown in Figure 1(a), which shows that the dead-zone non-
linearity problem exists. According to the test results, the theoretical thrust curve of the
thruster can be inferred as shown in Figure 1(b). In Figure 1(b), when the thruster
control signal is within the range of [ul, ur], there is no thrust output. The function
shown in Equation (4) can be used to describe the theoretical thrust curve of thruster
in Figure 1(b).

τ uð Þ ¼
τþ uð Þ u� urð Þ u ⩾ ur

0 ul < u< ur
τ� uð Þ u� ulð Þ u ⩽ ul

8<
: ð4Þ

From Figure 1(b) and Equation (4), the dead-zone of the thruster has the following
characteristics:

Characteristic 1: τ(u) is unmeasurable.

Characteristic 2: The dead-zone parameters both ur and ul are unknown bounded
constants.

Characteristic 3: τ+(u) and τ−(u) are smooth, and there exist positive constants kr, kl,
_kr and _kl, which make:

0< kr ⩽ τþ uð Þ; 0< kl ⩽ τ� uð Þ; _kr ⩾ _τþ uð Þ> 0; _kl ⩽ _τ� uð Þ< 0 ð5Þ

Characteristic 4: There is known positive constant β, so that β⩽min(kr, kl).

Characteristic 5: When u< ur, then τ+(u) = τ+(ur) and when u> ul, τ−(u) = τ−(ul).
There exists an unknown positive constant ρ which makes |d(t)|⩽ ρ.

According to the above characteristics, τ(u) can be re-expressed as:

τ uð Þ ¼ T tð Þφ tð Þuþ d tð Þ ð6Þ
where T(t) = [τ+(u), τ−(u)], φ(t) = [φr, φl]

T, and:

φr ¼
1; u> ul
0; u ⩽ ul

�
; φl ¼

1; u< ur
0; u ⩾ ur

�
;

d tð Þ ¼
�τþ uð Þur u ⩾ ur

� τþ uð Þ þ τ� uð Þ½ �u ul < u< ur
�τ� uð Þul u ⩽ ul

8<
:

ð7Þ

Substituting Equation (6) into Equation (3), the depth trajectory tracking control
system equation of the ROV can be expressed as:

_ξ1 ¼ ξ2

_ξ2 ¼ f z; _zð Þ þM�1T tð Þφ tð ÞuþM�1d tð Þ
ð8Þ

As can be seen from Equation (8), the control system is described in the form of
affine nonlinear system which uses thruster control signal u as system input. This ben-
efits the subsequent controller design to obtain thruster control signal u directly
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without a thrust model, which is quite different from most existing ROV control
methods.
Because of the finite thrust and the large ROV inertia in a practical thruster, the sat-

uration nonlinearity of the thruster easily appears when the trajectory tracking error is
large. So it must be considered during the process of controller design. When the
output signal of the controller is in the saturation area, the control law as shown in
Equation (9) is usually adopted (Chen et al., 2011).

u ¼
vmax v> vmax

v vmin ⩽ v ⩽ vmax

vmin v< vmin

8<
: ð9Þ

where v is the output of control law, vmax and vmin are the upper limit and lower limit of
thruster control signal, respectively.
Remark 3: For an actual ROV system, the following must be satisfied: (1) if u= vmax,

then €z > 0, and _zwill increase until _z¼ _zmax; (2) if u= vmin, then €z < 0, and _zwill decrease
until _z¼ _zmin.
In summary, the main objective of this paper is to design the depth trajectory track-

ing control law v with thruster nonlinearity and un-modelled dynamics, which will
finally make the depth trajectory tracking error uniformly ultimately bounded.

3. CONTROLLER DESIGN. Since there are un-modelled dynamics, an adaptive
sliding mode controller based on neural network will be given for ROV depth trajec-
tory tracking in this Section. Without considering the thruster nonlinearity, many
adaptive sliding mode control methods have been proposed (Zhang and Chu, 2012;
Zhu et al., 2014; Hoang and Kreuzer, 2007). However, thruster nonlinearity is inevit-
able in an actual ROV system. That is, in these methods, when the control law reaches
the saturated zone, the adaptive parameters are still adjusted although the actual
control law does not change. If the control law stays in the saturated zone for a long
time and then returns to a feasible region, control system instability might occur
due to the adjusted parameters. In this paper, the proposed adaptive sliding mode con-
troller will only adjust the adaptive parameters when the control law is in the feasible
region, and the Lyapunov stability theory is used to prove that the depth trajectory
tracking error is uniformly ultimately bounded. In this section, the sliding mode

Figure 1. The thrust curve of thruster. (a) The actual thrust curve of Model 520 thruster. (b) The
theoretical thrust curve of thruster.
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dynamics will be analysed first. Then, the three-layer feed-forward neural network will
be given and the estimation error of the neural network will be analysed. Finally, the
theorem will be given.
According to the principle of sliding mode control, a sliding surface s is defined

firstly as (Hussain and Po, 2004):

s ¼ ξ2 þ lξ1 ð10Þ
where l is a positive constant.
Differentiating s and introducing Equation (8), we obtain:

_s ¼ f z; _zð Þ þM�1T tð Þφ tð ÞuþM�1d tð Þ þ l _ξ1

¼ M�1T tð Þφ tð Þ F tð Þ þ uþ d tð Þ
T tð Þφ tð Þ

� � ð11Þ

where FðtÞ ¼ M T tð Þφ tð Þð Þ�1 f z; _zð Þ þ l _ξ1
� �

.
Considering the saturation nonlinearity of the thruster, the control signal is loaded

on the thruster according to Equation (9). When the control law output v is beyond the
range of [vmin, vmax], v is different from thruster control signal u. Therefore, the variable
δ shown in Equation (12) is defined to indicate the difference between v and u.

δ ¼ v� u ð12Þ
From Equation (9), when vmin ⩽ v ⩽ vmax, then δ = 0. When v> vmax, then δ > 0.

When v< vmin, then δ< 0.
Substituting Equation (12) into Equation (11) leads to:

_s ¼ M�1T tð Þφ tð Þ F tð Þ þ v� δ þ d tð Þ
T tð Þφ tð Þ

� �
ð13Þ

In Equation (13), F(t) contains information such as hydrodynamic force, external
disturbance force and dead-zone nonlinearity, and it is usually difficult to obtain accur-
ately by dynamic modelling. Therefore, the methodwhich uses neural network to learn
the unknown items in the model online is widely adopted, such as radial basis function
neural network (Gao et al., 2014) and fuzzy neural network (Zhang et al., 2009), etc. A
radial basis function neural network has the advantage of fast learning speed, but on
the other hand it usually needs to select the radial basis function centre and the band-
width offline according to the experimental data. Fuzzy neural network has good non-
linear identification ability, but the fuzzy field division depends on the designer’s
experience and the network structure is relatively complex. Based on the above consid-
eration, three-layer feed-forward neural network is used for online identification in this
paper. The weights from hidden layer to output layer and the weights from input layer
to hidden layer in the network are obtained through online learning. The structure of
the three-layer feed-forward neural network is shown in Figure 2.
According to the nonlinear mapping ability of the neural network, there are the

optimal network weights W and V (Peng and Duba, 2012), which make:

F tð Þ ¼ Wσ Vxð Þ þ ε ð14Þ
whereW is the weight vector from hidden layer to output layer, V is the weight matrix
from input layer to hidden layer, x = [u, z, _z]T is the input vector of neural network, ε is
the approximation error of neural network, σ(.) is a sigmoid function.
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According to Equation (14), the estimated output of the neural network can be
expressed as:

F̂ tð Þ ¼ Ŵσ V̂x
� � ð15Þ

where Ŵ and V̂ are the estimates of W and V, respectively.
The estimation error of neural network identification should be analysed first.

From Equations (14) and (15), the estimation error of neural network can be obtained
as:

~F tð Þ ¼ F tð Þ � F̂ tð Þ ¼ ~Wσ V̂x
� �þWσ Vxð Þ �Wσ V̂x

� �þ ε ð16Þ

where ~W ¼ W � Ŵ and ~V ¼ V � V̂ are the estimation errors of network weights.
For the adaptive law design of weights, we need to obtain the explicit expressions of

~W and ~V . Therefore, the Taylor expansion of σ(Vx) about V̂x gives:

σ Vxð Þ ¼ σ V̂x
� �þ σ 0 V̂x

� �
~Vxþ o V̂x

� �2 ð17Þ

where oðV̂xÞ2 is the higher order item of Taylor expansion.
Introducing Equation (17) into Equation (16), the estimation error of the neural

network can be rewritten as:

~F tð Þ ¼ ~Wσ V̂x
� �þ Ŵσ 0 V̂x

� �
~Vxþ ω ð18Þ

where ω ¼ ~Wσ 0ðV̂xÞ ~VxþWoðV̂xÞ2 þ ε.
It is assumed that the approximation error of the neural network is unknown and

bounded, and the upper bound is known (Gao et al., 2015c; Yang and Wang, 2007),
thus the stability of the closed-loop system can be ensured by using the sliding mode
strategy to compensate. Although this hypothesis is tenable, the suitable upper
bound value is difficult to select. A larger upper bound estimation can easily cause
system chattering. To relax the qualifications, only ~F tð Þ is to be assumed bounded
and its upper bound is obtained by adaptive learning of an estimation item in this
paper. Through introducing an adaptive estimation item into control law, the system
chattering caused by the sliding mode strategy item can be avoided.

Figure 2. The structure of the three-layer feed-forward neural network.
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Assumption 1 (Zhang et al., 2009):

~F tð Þ		 		 ⩽ Cψ xð Þ ð19Þ
where C is an unknown positive constant, ψ(x) is a known function about x.
After the analysis of the sliding mode dynamics and estimation error of the neural

network, the main conclusion of this paper will be given as follows:
Theorem 1: Consider the vertical dynamics of an ROV expressed as Equation (1)

with thruster nonlinearity and un-modelled dynamics. If the control law in Equation
(20) is introducedwith the thruster control signal in Equation (9), and the control para-
meters in Equation (25), and the parameters’ adaptive laws in Equations (21)–(24), the
depth trajectory tracking error ξ1 will be uniformly ultimately bounded.

v ¼ �F̂ tð Þ � K1þK3ð Þs� Ĉψ xð Þ � ρ̂

β
sgn sð Þ � K2sgn sð Þ ð20Þ

_̂W ¼
ΓW sσT V̂x

� �� λW Ŵ �Wo
� �
 � δ ¼ 0 or ðδ ⩾ 0 and s ⩾ 0Þ or

ðδ ⩽ 0 and s ⩽ 0Þ
0

ðδ < 0 and s> 0Þ or
ðδ > 0 and s< 0Þ

8>><
>>: ð21Þ

_̂V ¼
ΓV s Ŵσ 0 V̂x

� �� �T
xT � λV V � Voð Þ

h i δ ¼ 0; ðδ ⩾ 0 and s ⩾ 0Þ or
ðδ ⩽ 0 and s ⩽ 0Þ

0
ðδ < 0 and s> 0Þ or
ðδ > 0 and s< 0Þ

8>><
>>: ð22Þ

_̂ρ ¼ Γρ sj j=β� λρ ρ̂� ρo
� �
 �

δ ¼ 0 or ðδ ⩾ 0 and s ⩾ 0Þ or ðδ ⩽ 0 and s ⩽ 0Þ
0 ðδ < 0 and s> 0Þ or ðδ > 0 and s< 0Þ

�
ð23Þ

_̂C ¼ ΓC sj jψ xð Þ � λC Ĉ � Co

� �h i
δ ¼ 0 or ðδ ⩾ 0 and s ⩾ 0Þ or ðδ ⩽ 0 and s ⩽ 0Þ

0 ðδ < 0 and s> 0Þ or ðδ > 0 and s< 0Þ

(

ð24Þ

K1 ¼
σ V̂x
� ��� ��2
λW

þ Ŵ
�� ��2 σ 0 V̂x

� ��� ��2 xk k2
λV

þ γ
δ ¼ 0 or ðδ ⩾ 0 and s ⩾ 0Þ or

ðδ ⩽ 0 and s ⩽ 0Þ
0

ðδ > 0 and s< 0Þ or
ðδ < 0 and s> 0Þ

8>>><
>>>:

K2 ¼ Ĉψ xð Þ δ ¼ 0 or ðδ ⩾ 0 and s ⩾ 0Þ or ðδ ⩽ 0 and s ⩽ 0Þ
0 ðδ > 0 and s< 0Þ or ðδ < 0 and s> 0Þ

(

K3 ¼ �M _kl= 2β2
� �

δ ¼ 0 or ðδ ⩾ 0 and s ⩾ 0Þ or ðδ ⩽ 0 and s ⩽ 0Þ
0 ðδ > 0 and s< 0Þ or ðδ < 0 and s> 0Þ

(

ð25Þ
where Ĉ is the estimated value of C, ρ̂ is the estimated value of ρ. ΓW, ΓV, ΓC, Γρ, λW, λV,
λC, λρ are known positive constants, Wo, Vo, Co, ρo are offline estimates of W, V, C, ρ,
respectively.
Remark 4: For the control law Equation (20), there are several parameters which

should be adjusted in the process of control, so a large amount of calculation will
be needed. But this is not a problem for the control system of an ROV, because the
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control cycle is usually set as 0·1 s to 1 s (Ma and Zeng, 2015) which makes enough
time to calculate these parameters.

4. STABILITYANALYSIS. In the stability analysis of most sliding mode control-
lers, the Lyapunov function usually contains s2, and s_s< 0 will be acquired ultimately
to prove that the control system is stable. However, since the saturation nonlinearity is
considered, δmay take different values as different controller output signal v. When δs
⩾ 0, –δs can be ignored by the stability theory. When δs < 0, its impact on the stability
of the system must be analysed. Therefore, the situation aiming at different δ and swill
be discussed separately.
Situation 1: δ = 0 or (δ⩾ 0 and s⩾ 0) or (δ⩽ 0 and s⩽ 0)
Consider the Lyapunov function:

V1 ¼ 1
2
M T tð Þφ tð Þð Þ�1s2 þ 1

2
Γ�1
W

~W ~W
T þ 1

2
tr ~VΓ�1

V
~V
T

h i
þ 1
2
Γ�1
C

~C2 þ 1
2
Γ�1
ρ ~ρ2 ð26Þ

where ~C ¼ C � Ĉ, ~ρ ¼ ρ� ρ̂.
Differentiating V1 and substituting Equation (13) into it, we have:

_V1 ¼ 1
2
M

d T tð Þφ tð Þð Þ�1

dt
s2 þ s F tð Þ þ v� δ þ d tð Þ

T tð Þφ tð Þ
� �

þ Γ�1
W

~W _~WT þ tr ~VΓ�1
V

_~V
T

� �
þ Γ�1

C
~C _~C þ Γ�1

ρ ~ρ _~ρ

ð27Þ

According to the definition and characteristics Equations (4)∼ (7), we can obtain:

d T tð Þφ tð Þð Þ�1

dt
¼

� _τþ uð Þ
T tð Þφ tð Þð Þ2 u ⩾ ur

� _τþ uð Þ þ _τ� uð Þ
T tð Þφ tð Þð Þ2 ul < u< ur

� _τ� uð Þ
T tð Þφ tð Þð Þ2 u ⩽ ul

8>>>>>>>><
>>>>>>>>:

⩽ � _kl=β
2 ð28Þ

According to Equation (28) and substituting control law Equations (20) and (26)
into Equation (27), we obtain:

_V1 ⩽ s F tð Þ � F̂ tð Þ � K1s� Ĉψ xð Þ � ρ̂

β
sgn sð Þ � K2sgn sð Þ � δ þ d tð Þ

T tð Þφ tð Þ
� �

þ Γ�1
W

~W _~W
T
þ tr ~VΓ�1

V
_~V
T

� �
þ Γ�1

C
~C _~C þ Γ�1

ρ ~ρ _~ρ

¼ s
�
~Wσ V̂x

� �þ Ŵσ 0 V̂x
� �

~Vxþ ω� K1s� Ĉψ xð Þ

� ρ̂

β
sgn sð Þ � K2sgn sð Þ � δ þ d tð Þ

T tð Þφ tð Þ
�

þ Γ�1
W

~W _~W
T
þ tr ~VΓ�1

V
_~V
T

� �
þ Γ�1

C
~C _~C þ Γ�1

ρ ~ρ _~ρ

ð29Þ
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Since δs⩾ 0, Equation (29) can be expressed as:

_V1 ⩽ s ~Wσ V̂x
� �þŴσ 0 V̂x

� �
~Vxþ ω�K1s�Ĉψ xð Þ� ρ̂

β
sgn sð Þ� K2sgn sð Þþ d tð Þ

T tð Þφ tð Þ
� �

þ Γ�1
W

~W _~W
T
þ tr ~VΓ�1

V
_~V
T

� �
þ Γ�1

C
~C _~C þ Γ�1

ρ ~ρ _~ρ

ð30Þ

Introducing adaptive law Equations (21) and (22) into Equation (30), we obtain:

_V1 ⩽� K1s2 þ s ω� Ĉψ xð Þ
h i

� K2 sj j þ ~ρ

β
sj j

þ λW ~W Ŵ �Wo
� �Tþtr λV ~V V̂ � Vo

� �Th i
þ Γ�1

C
~C _~C þ Γ�1

ρ ~ρ _~ρ

ð31Þ

Introducing adaptive law Equations (23) into (31), and K2 = 0, we obtain:

_V1 ⩽ �K1s2 þ s ~F tð Þ � Ĉψ xð Þ
h i

þ s � ~Wσ V̂x
� �� Ŵσ 0 V̂x

� �
~Vx


 �þ λW ~W Ŵ �Wo
� �T

þ tr λV ~V V̂ � Vo
� �Th i

þ λρ~ρ ρ̂� ρo
� �þ Γ�1

C
~C _~C

⩽ �K1s2 þ sj j ~Cψ xð Þ þ sj j ~W
�� �� σ V̂x

� ��� ��þ sj j Ŵ
�� �� σ 0 V̂x

� ��� �� ~V
�� �� xk k

þ λW ~W Ŵ �Wo
� �Tþtr λV ~V V̂ � Vo

� �Th i
þ λρ~ρ ρ̂� ρo

� �þ Γ�1
C

~C _~C

ð32Þ

Introducing adaptive law Equations (24) into (32), we obtain:

_V1 ⩽� K1s2 þ sj j ~W
�� �� σ V̂x

� ��� ��þ sj j Ŵ
�� �� σ 0 V̂x

� ��� �� ~V
�� �� xk k þ λW ~W Ŵ �Wo

� �T
þ tr λV ~V V̂ � Vo

� �Th i
þ λρ~ρ ρ̂� ρo

� �þ λC ~C Ĉ � Co

� �
ð33Þ

Since:

λW ~W Ŵ �Wo
� �T¼ λW ~W W � ~W �Wo

� �T⩽ � λW
2

~W
�� ��2þ λW

2
W �Wok k2 ð34Þ

tr λV ~V V̂ � Vo
� �Th i

¼ tr λV ~V V � ~V � Vo
� �Th i

⩽ � λV
2

~V
�� ��2þ λV

2
V � Vok k2 ð35Þ

λρ~ρ ρ̂� ρo
� � ¼ λρ~ρ ρ� ~ρ� ρo

� �
⩽ � λρ

2
~ρ2 þ λρ

2
ρ� ρo
� �2 ð36Þ

λC ~C Ĉ � Co

� �
¼ λC ~C C � ~C � Co

� �
⩽ � λC

2
~C2 þ λC

2
C � Coð Þ2 ð37Þ
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Then:

_V1 ⩽� K1s2 þ sj j ~W
�� �� σ V̂x

� ��� ��þ sj j Ŵ
�� �� σ 0 V̂x

� ��� �� ~V
�� �� xk k

� λW
2

~W
�� ��2þ λW

2
W �Wok k2� λV

2
~V

�� ��2
þ λV

2
V � Vok k2� λρ

2
~ρ2 þ λρ

2
ρ� ρo
� �2� λC

2
~C2 þ λC

2
C � Coð Þ2

ð38Þ

Because of:

sj j ~W
�� �� σ V̂x

� ��� ��� λW
4

~W
�� ��2⩽ s2 σ V̂x

� ��� ��2
λW

ð39Þ

sj j Ŵ
�� �� σ 0 V̂x

� ��� �� ~V
�� �� xk k � λV

4
~V

�� ��2⩽ s2 Ŵ
�� ��2 σ 0 V̂x

� ��� ��2 xk k2
λV

ð40Þ

Introducing Equations (39) and (40) and K1 into Equation (32), we obtain:

_V1 ⩽ �K1s2 � λρ
2
~ρ2 � λC

2
~C2 � λW

4
~W

�� ��2� λV
4

~V
�� ��2

þ s2 σ V̂x
� ��� ��2
λW

þ s2 Ŵ
�� ��2 σ 0 V̂x

� ��� ��2 xk k2
λV

þ λW
2

W �Wok k2þ λV
2

V � Vok k2þ λρ
2

ρ� ρo
� �2þ λC

2
C � Coð Þ2

⩽ �χ1V þ λ1

ð41Þ

where χ1 =min{2γkrM
−1, 2γklM

−1, Γρλρ, ΓCλC, ΓWλW/2, ΓVλV/2} which is a positive
constant, λ1 is shown in Equation (42).

λ1 ¼ λW
2

W �Wok k2þ λV
2

V � Vok k2þ λρ
2

ρ� ρo
� �2þ λC

2
C � Coð Þ2 ð42Þ

From Equation (41), we can obtain:

0 ⩽ V1 ⩽
λ1
χ1

þ V1 0ð Þ � λ1
χ1

� �
exp �χ1t

� � ð43Þ

where V1(0) is the initial value of V1 at t= 0.
From Equation (43), when t→∞, V1→ λ1/χ1, namely that s, ~V , ~C, ~ρ are uniformly

ultimately bounded, which means that trajectory tracking error ξ1 is uniformly ulti-
mately bounded.
Situation 2: δ < 0 and s> 0
When δ< 0, then v< vmin and u= vmin. For this situation, the adaptive laws

Equations (21)-(24) are set as zero, so only the convergence of trajectory tracking
error ξ1 will be analysed.
According to the definition of s, when s> 0, then ξ1 > 0 and ξ2 < 0, or ξ1 < 0 and ξ2 >

0, or ξ1 > 0 and ξ2 > 0. Obviously, ξ1 will converge to zero for the previous two cases, so
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that the control system is stable. Therefore, only the situations of ξ1 > 0 and ξ2 > 0 need
to be considered.
When u = vmin, €z will be less than zero and _zwill decrease until _z¼ _zmin, which makes

ξ2 = _zmin � _zd < 0. Therefore, ξ2 > 0 is just for a short time and its value will be less than
zero eventually, so that ξ1 will also converge to zero.
If u = vmin continues being used, both ξ1 and ξ2 will be less than zero, that is s< 0.

That satisfies Situation 1.
Situation 3: δ > 0 and s< 0
When δ > 0, then v> vmax and u= vmax. For this situation, the adaptive laws

Equation (21)-(24) are also set as zero, so only the convergence of trajectory tracking
error ξ1 like Situation 2 is to be analysed.
When s< 0, then ξ1 > 0 and ξ2 < 0, or ξ1 < 0 and ξ2 > 0, or ξ1 < 0 and ξ2 < 0.

Obviously, ξ1 will converge to zero in the previous two cases, so that the control
system is stable. Therefore, only the situations of ξ1 < 0 and ξ2 < 0 need to be
considered.
When u = vmax, €z will be larger than zero and then _z will increase until _zmax. That

makes ξ2 = _zmax � _zd > 0. Therefore, ξ2 < 0 is just for a short time and its value will
be larger than zero eventually, so that ξ1 will also converge to zero.
If u= vmax continues being used, both ξ1 and ξ2 will be larger than zero, that is s> 0.

That satisfies Situation 1.
Based on the above analysis, it can be concluded that the designed control law

Equation (20) can ensure the stability of ROV depth trajectory tracking control and
that the depth trajectory tracking error is uniformly ultimately bounded.

5. SIMULATION RESULTS. To verify the effectiveness of the proposed adaptive
sliding mode controller in this paper, the ODIN vertical motion model is used for simu-
lation experiment. The ODIN vertical motion model is shown in Equation (44)
(Podder and Sarkar, 2001).

187�4€zþ 148 _zj j _zþ100 _z� 2�7þ 10 sin 0�2πtð Þ þ randð�10; 10Þ ¼ τ uð Þ ð44Þ
where rand(−10,10) is the random number within [−10,10]. It is assumed that only one
thruster works in the ODIN vertical direction. Thrust τ(u) is calculated by:

τ uð Þ ¼
�1�27u3 þ 10�35u2 � 8�40uþ 1�77 0�5 ⩽ u ⩽ 5�0

0 �0�5< u< 0�5
�1�27u3 � 10�35u2 � 8�40u� 1�77 �5�0 ⩽ u ⩽ �0�5

8<
: ð45Þ

According to the thrust model Equation (45), it can be seen that ul =−0·5 V, ur = 0·5
V, vmin =−5 V, vmax = 5 V. The maximum forward and reverse thrust are both 60N.
According to the given motion model Equation (44) and thrust model Equation

(45), the relevant parameters in adaptive sliding mode controller Equation (20) are
selected as: β= 1, l= 5, γ= 3, ψ(x) = 1, m0 = 188, ΓW= ΓV= ΓC = Γρ= 1, λW= λV=
λC= λρ= 0·5. The initial values of Ŵ, V̂ , Ĉ and ρ̂ are randomly selected within the
range [−0·1,0·1], Wo ¼ Ŵ , Vo ¼ V̂ , Co ¼ Ĉ, ρo ¼ ρ̂. The number of hidden layer
units of three-layer feed-forward neural network is 10. The initial depth of the ROV
is 1·0 m and the control cycle is 0·1 s. Two simulations of sine trajectory tracking
control and depth setting tracking control are performed, respectively. In them, the
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desired depth of the ROV is zd= 2(1− cos(0·05πt)) in the simulation of sine trajectory
tracking control, and the desired depth of ROV in the simulation of depth setting
tracking control is shown in Equation (46). Two simulation curves are shown in
Figures 3 and 4, respectively.

zd ¼
0�5 t ⩽ 20s
2�0 20s< t ⩽ 50s
1�0 50s< t ⩽ 80s

8<
: ð46Þ

As can be observed from Figures 3 and 4, the depth output follows the desired tra-
jectory well and the depth tracking error ξ1 and the sliding mode s are close to zero. In
Figure 3(b), the depth tracking error converges to zero at 9·6 s. From 9·7 s to 80 s, the
average value of depth tracking error is 0·001 m. In Figure 4(b), the depth tracking
error converges to zero at 4·7 s. From 4·8 s to 20 s, the average value of depth tracking
error is −0·016 m. This indicates that the trajectory tracking error is uniformly ulti-
mately bounded. From Figure 3(d) and Figure 4(d), it can be observed that the thruster
works in the dead zone and saturation zone for a certain time, and the closed-loop
system is stable in this period. Simulation results show that the proposed controller
is well capable of the depth trajectory tracking and the proposed method is effective
for the dead-zone nonlinearity and saturation nonlinearity of the thruster.

Figure 3. Simulation curve of sine depth trajectory tracking control. (a) Depth z. (b) Depth
tracking error ξ1 = z-zd. (c) Sliding mode s. (d) Thruster control signal u.
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6. CONCLUSION. The ROV adaptive sliding mode depth trajectory tracking
control method is researched, and the problem of dead-zone nonlinearity and satur-
ation nonlinearity of thruster is considered during the process of controller design.
For an unknown thrust model, the proposed controller is able to obtain the control
signal directly. Under the condition of un-modelled dynamics, three-layer feed-
forward neural network is used for online adaptive identification. The proposed con-
troller can ensure that the depth trajectory tracking error is uniformly ultimately
bounded. Simulation results indicate that the proposed method is effective for ROV
depth trajectory tracking control with the dead-zone nonlinearity and saturation non-
linearity of thruster. However, we need to realise that only depth tracking has been con-
sidered in this paper. In future work, the problem of trajectory tracking control of
multiple degrees of ROV with dead-zone nonlinearity and saturation nonlinearity
should be researched, so that automatic control of an ROV can be achieved. This
will be more challenging because the transformation matrix which expresses the trans-
formation from the body-fixed frame to earth-fixed frame will be introduced and the
transformation matrix is very difficult to be processed in controller design based on the
proposed method.
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