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Abstract

Automatic techniques for program verification usually suffer the well-known state explosion

problem. Most of the classical approaches are based on browsing the structure of some form

of model (which represents the behavior of the program) to check if a given specification

is valid. This implies that a part of the model has to be built, and sometimes the needed

fragment is quite huge.

In this work, we provide an alternative automatic decision method to check whether a

given property, specified in a linear temporal logic, is valid w.r.t. a tccp program. Our proposal

(based on abstract interpretation techniques) does not require to build any model at all. Our

results guarantee correctness but, as usual when using an abstract semantics, completeness is

lost.

KEYWORDS: concurrent constraint paradigm, linear temporal logic, abstract diagnosis,

decision procedures, program verification

1 Introduction

The Concurrent Constraint Paradigm (ccp, (Saraswat 1989)) is a simple, logic model

which is different from other (concurrent) programming paradigms mainly due to

the notion of store-as-constraint that replaces the classical store-as-valuation model.

Within this family, (de Boer et al. 2000) introduced the Timed Concurrent Constraint

Language (tccp in short) by adding to the original ccp model the notion of time

and the ability to capture the absence of information. With these features, one

can specify behaviors typical of reactive systems such as timeouts or preemption

actions. It is well-known that verifying concurrent systems by hand can be an

extremely hard task. Thus, the development of automatic formal methods is essential.

� This work has been partially supported by the eu (feder) and the Spanish mec/micinn, ref. tin

2010-21062-c02-0, and by Generalitat Valenciana, ref. prometeo2011/052.
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One of the most known automatic techniques for formal verification is model

checking (Clarke and Emerson 1982; Queille and Sifakis 1982). It consists in an

exhaustive analysis of a finite-state system to check the satisfaction of a given

property; thus the state-explosion problem is its main drawback and, for this reason,

many proposals in the literature try to mitigate it.

All the proposals of model checking have in common that a part of the model

of the (target) program has to be built, and sometimes the needed fragment is

quite huge. In this work, we propose a completely different approach to the formal

verification of temporal (LTL) properties of concurrent (reactive) systems specified

in tccp. We formalize a method to validate a specification of the expected behavior

of a tccp program P , expressed by a linear temporal formula φ, which does not

require to build any model at all.

The linear temporal logic we use to express specifications, csLTL, is an adaptation

of the propositional LTL logic to the concurrent constraint framework. This logic is

also used as the basis of the abstract domain for a new (abstract) semantics for the

language.

In brief, our method is an extension of abstract diagnosis for tccp (Comini et al.

2011) where the abstract domain � is formed by csLTL formulas. We cannot use

the original abstract diagnosis framework of (Comini et al. 2011) since � is not a

complete lattice.

The contributions of this work are the following:

● A new abstract semantics for tccp programs based on csLTL formulas;

● A novel and effective method to validate csLTL properties based on the

ideas of abstract diagnosis. This proposal intuitively consists in viewing P

as a formula transformer by means of an (abstract) immediate consequence

operator D̂�P � which works on csLTL formulas. Then, to decide the validity

of φ, we just have to check if D̂�P �φ (i.e., the P -transformation of φ) implies

φ;

● An automatic decision procedure for csLTL properties that makes our method

effective.

With our technique we can check, for instance, that, at a railway crossing system,

each time a train is approaching, the gate is down, or that whenever a train has

crossed, the gate is up. When a property is non valid, the method identifies the

buggy process declaration. Technical results of Sections 3 and 4 can be found in

(Comini et al. 2014).

2 The small-step operational behavior of the tccp language

The tccp language (de Boer et al. 2000) is particularly suitable to specify reactive

and time critical systems. As the other languages of the ccp paradigm (Saraswat

1993), it is parametric w.r.t. a cylindric constraint system which handles the data

information of the program in terms of constraints. The computation progresses

as the concurrent and asynchronous activity of several agents that can accumulate

information in a store, or query information from it. Briefly, a cylindric constraint
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Fig. 1. The transition system for tccp.2

system1 is an algebraic structure C = ⟨C,⪯,⊗, false, true,Var ,∃⟩ composed of a set

of constraints C such that (C, ⪯) is a complete algebraic lattice where ⊗ is the lub

operator and false and true are respectively the greatest and the least element of C;
Var is a denumerable set of variables and ∃ existentially quantifies variables over

constraints. The entailment ⊢ is the inverse of ⪯.
Given a cylindric constraint system C and a set of process symbols Π, the syntax

of agents is given by the grammar:

A ∶∶= skip ∣ tell(c) ∣ A ∥ A ∣ ∃xA ∣ ∑n
i=1 ask(ci) → A ∣ now c then A else A ∣ p(x⃗)

where c, c1, . . . , cn are finite constraints in C; p/m ∈ Π and x⃗ denotes a generic tuple

of m variables. A tccp program is an object of the form D . A, where A is an agent,

called initial agent, and D is a set of process declarations of the form p(x⃗) ∶− A (for

some agent A). The notion of time is introduced by defining a discrete and global

clock.

The operational semantics of tccp, defined in (de Boer et al. 2000), is formally

described by a transition system T = (Conf ,→). Configurations in Conf are pairs

⟨A, c⟩ representing the agent A to be executed in the current global store c. The

transition relation → ⊆ Conf × Conf is the least relation satisfying the rules of

Figure 1. Each transition step takes exactly one time-unit.

Example 2.1 (Guiding example)
Through the paper, we use as guiding example a part of the full specification of
a railway crossing system introduced in (Alpuente et al. 2006). Let us call Dm the
following tccp declaration:

master(C ,G) ∶− ∃C′, G′ ( now (C = [near ∣ ]) then

tell(C = [near ∣ C′]) ∥ tell(G = [down ∣ G′]) ∥ master(C ′,G ′)
else now (C = [out ∣ ]) then

tell(C = [out ∣ C′]) ∥ tell(G = [up ∣ G′]) ∥ master(C ′,G ′)

else master(C ,G))

1 See (de Boer et al. 2000; Saraswat 1993) for more details on cylindric constraint systems.
2 The auxiliary agent ∃lxA makes explicit the local store l of A. This auxiliary agent is linked to the

principal hiding construct by setting the initial local store to true, thus ∃xA ∶= ∃truexA.
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Due to the monotonicity of the store, streams (written in a list-fashion way) are

used to model imperative-style variables (de Boer et al. 2000). The master process

uses an input channel C (implemented as a stream) through which it receives signals

from the environment (trains), and an output channel G through which it sends

orders to a gate process. It checks the input channel for a near signal (the guard

in the first now agent), in which case it sends (tells) the order down through G,

links the future values (C′) of the stream C and restarts the check at the following

time instant (recursive call master(C ′,G ′)). If the near signal is not detected, then,

the else branch looks for the out signal and (if present) behaves dually to the first

branch. Finally, if no signal is detected at the current time instant (last else branch),

then the process keeps checking from the following time instant. �

In this work, we prove the correctness of our technique w.r.t. the denotational

concrete semantics of (Comini et al. 2013a), which is fully-abstract (correct and

complete) w.r.t. the small-step operational behavior of tccp. Also csLTL is interpreted

over this denotational model. We thus introduce the most relevant aspects of such

semantics.

The denotational semantics of a tccp program consists of a set of conditional

(timed) traces that represent, in a compact way, all the possible behaviors that the

program can manifest when fed with an input (initial store). Conditional traces can

be seen as hypothetical computations in which, for each time instant, we have a

condition representing the information that the global store has to satisfy in order

to proceed to the next time instant. Briefly, a conditional trace is a (possibly infinite)

sequence t1⋯tn⋯ of conditional states, which can be of three forms:

conditional store: a pair η ↣ c, where η is a condition and c ∈ C a store;

stuttering: the construct stutt(C), with C ⊆ C ∖ {true};
end of a process: the construct ⊠.

Intuitively, the conditional store η ↣ c means that, provided condition η is satisfied

by the current store, the computation proceeds so that in the following time instant,

the store is c. A condition η is a pair η = (η+, η−) where η+ ∈ C and η− ∈ ℘(C) are

called positive and negative condition, respectively. The positive/negative condition

represents information that a given store must/must not entail, thus they have to

be consistent in the sense that ∀c− ∈ η− η+ ⊬ c−. The stuttering construct models

the suspension of the computation when none of the guards in a non-deterministic

agent is satisfied. C is the set of guards in the non-deterministic agent. Conditional

traces are monotone (i.e., for each ti = ηi ↣ ci and tj = ηj ↣ cj such that j ≥ i, cj ⊢ ci)
and consistent (i.e., each store in a trace does not entail the negative conditions of

the following conditional state).

We denote the domain of conditional trace sets as �. (�, ⊑, ⊔, ⊓, M, {ε}) is a

complete lattice, where M1 ⊑M2 ⇔∀r1 ∈M1 ∃r2 ∈M2. r1 is a prefix of r2. We define

as ∃̄x r the sequence resulting by removing from r ∈ M all the information about the

variable x. We distinguish two special classes of conditional traces. r ∈ M is said

to be self-sufficient if the first condition is (true,∅) and, for each ti = (η+i , η−i ) ↣ ci
and ti+1 = (η+i+1, η−i+1) ↣ ci+1, ci ⊢ η+i+1 (each store satisfies the successive condition).

Moreover, r is x-self-sufficient if ∃̄Var∖{x} r is self-sufficient. Thus, this definition
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Fig. 2. Tree representation of D�{Dm}�I(master(C ,G)) of Example 2.2.

demands that for self-sufficient conditional traces, no additional information (from

other agents) is needed in order to complete the computation.3

The semantics definition is based on a semantics evaluation function A�A�I
(Comini et al. 2013a) which, given an agent A and an interpretation I, builds

the conditional traces associated to A. The interpretation I is a function which

associates to each process symbol a set of conditional traces “modulo variance”.

The semantics for a set of process declarations D is the fixpoint F�D� ∶= lfp(D�D�) of

the continuous immediate consequences operator D�D�I(p(x⃗)) ∶= ⊔p(x⃗)∶−A∈DA�A�I .

Proof of full abstraction w.r.t. the operational behavior of tccp is given in (Comini

et al. 2013a).

Example 2.2

Consider the process declaration Dm of 2.1. Given an interpretation I, the semantics

of master(C ,G) is graphically represented in Figure 2, where we have used some

shortcuts for characteristic constraints. Namely, cnear ∶= (C = [near ∣ ]), c′near ∶=
∃C′(C = [near ∣ C′]), cdown ∶= ∃G′(G = [down ∣ G′]), cout ∶= (C = [out ∣ ]), c′out ∶=
∃C′(C = [out ∣ C′]), cup ∶= ∃G′(G = [up ∣ G′]).

The branch on the left represents the computation when a near signal arrives. The

first conditional state requires that cnear holds, thus the constraints c′near and cdown

are concurrently added to the store during that computational step. A recursive call

is also concurrently invoked. Process calls do not modify the store when invoked, but

they affect the store from the following time instant, which is graphically represented

by the triangle labeled with the interpretation of the process. The branch in the

middle is taken only if cout is entailed and cnear is not entailed by the initial store

(it occurs in the negative condition of the first conditional state in that branch).

Finally, the branch on the right represents the case when both cnear and cout are not

entailed by the initial store. �

3 Abstract semantics for tccp over csLTL formulas

In this section, we present a novel abstract semantics over formulas that approximates

the small-step semantics described in 2 and, therefore, the small-step operational

behavior of a tccp program. To this end, we first define an abstract domain of logic

formulas which is a variation of the classical Linear Temporal Logic (Manna and

Pnueli 1992). Following (Palamidessi and Valencia 2001; de Boer et al. 2001; de Boer

et al. 2002; Valencia 2005), the idea is to replace atomic propositions by constraints

of the underlying constraint system.

3 The set of all self-sufficient conditional traces can be considered as a generalization (using conditional
states in place of stores) of the traditional strongest postcondition for semantics.
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Definition 3.1 (csLTL formulas)

Given a cylindric constraint system C, c ∈ C and x ∈ Var , formulas of the Constraint

System Linear Temporal Logic over C are:

φ ∶∶= ˙true ∣ ˙false ∣ c ∣ ¬̇φ ∣ φ ∧̇ φ ∣ ∃̇x φ ∣ ◯φ ∣ φ U φ.

csLTLC is the set of all temporal formulas over C (we omit C if clear from the

context).

˙true, ˙false, ¬̇, ∧̇ , ◯φ, φ1 U φ2 have the classical logical meaning. The atomic formula

c ∈ C states that c has to be entailed by the current store. ∃̇x φ is the existential

quantification over the set of variables Var . As usual, we use φ1 ∨̇ φ2 as a shorthand

for ¬̇φ1 ∧̇ ¬̇φ2; φ1 →̇ φ2 for ¬̇φ1 ∨̇ φ2; φ1 ↔̇ φ2 for φ1 →̇ φ2 ∧̇ φ2 →̇ φ1; ◇φ for
˙true U φ and ◻φ for ¬̇◇ ¬̇φ. A constraint formula is an atomic formula c or its

negation ¬̇ c. Formulas ◯φ and ¬̇◯φ are called next formulas. Constraint and next

formulas are said to be elementary formulas. Finally, formulas of the form φ1 U φ2,

◇φ or ¬̇(◻φ) are called eventualities.

We define the abstract domain � ∶= csLTL/↔̇ (i.e., the domain formed by

csLTL formulas modulo logical equivalence) ordered by →̇. The algebraic lattice

(�, →̇, ⋁̇, ⋀̇, ˙true, ˙false) is not complete, since both ⋀̇ and ⋁̇ always exist just for

finite sets of formulas.

The semantics of a temporal formula is typically defined in terms of an infinite

sequence of states which validates it. Here we use conditional traces instead. As

usually done in the context of temporal logics, we define the satisfaction relation ⊧
only for infinite conditional traces. We implicitly transform finite traces (which end

in ⊠) by replicating the last store infinite times.

Definition 3.2
The semantics of φ ∈ � is given by function γ�∶� → � defined as γ�(φ) ∶=
⊔{r ∈ M ∣ r ⊧ φ}, where, for each φ,φ1, φ2 ∈ csLTL, c ∈ C and r ∈ M, satisfaction
relation ⊧ is defined as:

r ⊧ ˙true and r /⊧ ˙false (3.1a)

(η+, η−) ↣ d ⋅ r′ ⊧ c iff η
+ ⊢ c (3.1b)

stutt(η−) ⋅ r′ ⊧ c iff ∀d− ∈ η−. c ⊬ d− and r
′ ⊧ c (3.1c)

r ⊧ ¬̇φ iff r ⊭ φ (3.1d)

r ⊧ φ1 ∧̇ φ2 iff r ⊧ φ1 and r ⊧ φ2 (3.1e)

r ⊧ ◯φ iff r
1 ⊧ φ 4 (3.1f)

r ⊧ φ1 U φ2 iff ∃i ≥ 1.∀j < i. ri ⊧ φ2 and r
j ⊧ φ1 (3.1g)

r ⊧ ∃̇x φ iff exists r′ s.t. ∃̄x r′ = ∃̄x r, r′ x-self-sufficient and r′ ⊧ φ (3.1h)

We say that φ ∈ � is a sound approximation of R ∈ � if R ⊑ γ�(φ). φ is said to be

satisfiable if there exists r ∈ M such that r ⊧ φ, while it is valid if, for all r ∈ M, r ⊧ φ.

All the cases are fairly standard except (3.1b) and (3.1c). The conditional trace

r = (η+, η−) ↣ d ⋅ r′ prescribes that η+ is entailed by the current store, thus r

4 rk denotes the sub-sequence of r starting from state k.
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models all the constraint formulas c such that η+ ⊢ c. We have to note that,

by the monotonicity of the store of tccp computations, the positive conditions in

conditional traces contains all the information previously added in the constraint

store. Furthermore, by the definition of condition, since η+ cannot be in contradiction

with η−, it holds that neither c is in contradiction with η−. Thus, the conditional

trace stutt(η−) ⋅ r′ models all the constraint formulas c that are not in contradiction

with the set η− and such that c holds in the continuation r′ by monotonicity.

Lemma 3.3

The function γ� is monotonic, injective and ⊓-distributive.

3.1 csLTL Abstract Semantics

The technical core of our semantics definition is the csLTL agent semantics

evaluation function Â�A� which, given an agent A and an interpretation Î (for

the process symbols of A), builds a csLTL formula which is a sound approximation

of the (concrete) behavior of A. In the sequel, we denote by �Π
C the set of agents

and �Π
C the set of sets of process declarations built on signature Π and constraint

system C.

Definition 3.4

Let �� ∶= {p(x⃗) ∣ p ∈ Π, x⃗ are distinct variables}. An �-interpretation is a function

�� → � modulo variance5. Two functions I, J ∶�� → � are variants if for each

π ∈ �� there exists a renaming ρ such that (Iπ)ρ = J(πρ). The semantic domain ��

is the set of all �-interpretations ordered by the point-wise extension of →̇.

Definition 3.5 (csLTL Semantics)

Given A ∈ �Π
C and Î ∈ ��, we define the csLTL semantics evaluation Â�A�Î by

structural induction as follows.

Â�skip�Î ∶= true Â�A1 ∥ A2�Î ∶= Â�A1�Î ∧̇ Â�A2�Î

Â�tell(c)�Î ∶= ◯ c Â�∃xA�Î ∶= ∃̇x Â�A�Î Â�p(x⃗)�Î ∶= ◯ Î(p(x⃗))

Â�∑n
i=1 ask(ci) → Ai�Î ∶= ◻(⋀̇

n

i=1 ¬̇ ci) ∨̇ ((⋀̇
n

i=1 ¬̇ ci) U ⋁̇
n

i=1 (ci ∧̇ ◯ Â�Ai�Î))

Â�now c then A1 else A2�Î ∶= (c ∧̇ Â�A1�Î) ∨̇ (¬̇ c ∧̇ Â�A2�Î)

Given D ∈ �Π
C we define the immediate consequence operator D̂�D�∶ �� → �� as

D̂�D�Î(p(x⃗)) ∶= ⋁̇ {Â�A�Î ∣p(x⃗) ∶− A ∈ D}

We have that Â is a sound approximation of A and D̂ is a sound approximation

of D.

Theorem 3.6 (Correctness of Â and D̂)

Let A ∈ �Π
C , D ∈ �Π

C and Î ∈ ��. Then, A�A�γ�(Î) ⊑ γ�(Â�A�Î) and D�D�γ�(Î) ⊑
γ�(D̂�D�Î).

5 i.e., a family of elements of �, indexed by ��, modulo variance.
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Example 3.7

Consider the process declaration Dm of Example 2.1 and let us use ◯n to abbreviate

the repetition of ◯ n-times. Given Î ∈ ��, with Definition 3.5 we compute

φM (Î) ∶= D̂�{Dm}�Î(master(C ,G))) = φnear(Î) ∨̇ φout(Î) ∨̇ φcwait(Î)
where

φnear(Î) = ∃̇C′ ,G′ (C = [near ∣ ] ∧̇ ◯C = [near ∣ C′] ∧̇

◯G = [down ∣ G′] ∧̇ ◯ Î(master(C ′,G ′)))

φout(Î) = ∃̇C′ ,G′ (¬̇(C = [near ∣ ]) ∧̇ ◯C = [out ∣ C′] ∧̇

C = [out ∣ ] ∧̇ ◯G = [up ∣ G′] ∧̇ ◯ Î(master(C ′,G ′)))

φcwait(Î) = ¬̇(C = [near ∣ ]) ∧̇ ¬̇(C = [out ∣ ]) ∧̇ ◯ Î(master(C ,G))

The three disjuncts of φM (Î) match the three possible behaviors of master(C ,G):
when signal near is emitted by the train, when out is emitted, and when no signal

arrives. �

4 Abstract diagnosis of tccp with csLTL formulas

Since � is not a complete lattice, it is impossible to find for the function γ� an

adjoint function α which forms a Galois Connection ⟨α, γ⟩, and therefore we cannot

use the abstract diagnosis framework for tccp defined in (Comini et al. 2011). Thus,

we propose in this section a new weaker version of abstract diagnosis that works

on � 6.

Given a set of declarations D and Ŝ ∈ ��, which is the specification of the abstract

intended behavior of D over �, we say that

1. D is (abstractly) partially correct w.r.t. Ŝ if F�D� ⊑ γ�(Ŝ).
2. D is (abstractly) complete w.r.t. Ŝ if γ�(Ŝ) ⊑ F�D�.

The differences between F�D� and γ�(Ŝ) are usually called symptoms. Many of

the symptoms are just a consequence of some “originating” ones, those which

are the direct consequence of errors. The abstract diagnosis determines exactly

the “originating” symptoms and, in the case of incorrectness, the faulty process

declarations in D . This is captured by the definitions of abstractly incorrect process

declaration and abstract uncovered element:7

Definition 4.1

Let D ∈ �Π
C , R a process declaration for process p, φt ∈ � and Ŝ ∈ ��.

● R is abstractly incorrect w.r.t. Ŝ (on testimony φt) if φt →̇ D̂�{R}�Ŝ(p(x⃗)) and

φt ∧̇ Ŝ(p(x⃗)) = ˙false.

6 Actually, the proposal is defined using just γ� only for the sake of simplicity. It could easily be defined
parametrically w.r.t. a suitable family of concretization functions.

7 It is worth noticing that although the notions defined in this section are similar to those defined for
the standard approach, the formal definitions and proofs are different due to the weaker framework.
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● φt is an uncovered element for p(x⃗) w.r.t. Ŝ if φt →̇ Ŝ(p(x⃗)) and

φt ∧̇ D̂�D�Ŝ(p(x⃗)) = ˙false.

Informally, R is abstractly incorrect if it derives a wrong abstract element φt from

the intended semantics. Dually, φt is uncovered if the declarations cannot derive it

from the intended semantics.

Theorem 4.2

Let D ∈ �Π
C and Ŝ ∈ ��. (1) If there are no abstractly incorrect process declarations

in D (i.e., D̂�D�Ŝ →̇ Ŝ), then D is partially correct w.r.t. Ŝ. (2) If D is partially correct

w.r.t. Ŝ and D has abstract uncovered elements then D is not complete.

Absence of abstractly incorrect declarations is a sufficient condition for partial

correctness, but it is not necessary. Because of the approximation, it can happen that

a (concretely) correct declaration is abstractly incorrect. Hence, abstract incorrect

declarations are in general just a warning about a possible source of errors. However,

an abstract correct declaration cannot contain an error; thus, no (manual) inspection

is needed for declarations which are not abstractly incorrect. Moreover, as shown by

the following theorem, all concrete errors—that are “visible”—are indeed detected,

as they lead to an abstract incorrectness or abstract uncovered. Intuitively, a concrete

error is visible if we can express a formula φ whose concretization reveals the error

(i.e., if the logic is expressive enough).

Theorem 4.3

Let R be a process declaration for p(x⃗), S a concrete specification and Ŝ a sound

approximation for S (i.e., S ⊑ γ�(Ŝ)). (1) If D�{R}�S ⋢ γ�(Ŝ) and it exists φt such

that γ�(φt) ⊑ D�{R}�S(p(x⃗)) and φt ∧̇ Ŝ(p(x⃗)) = ˙false, then R is abstractly incorrect

w.r.t. Ŝ (on testimony φt). (2) If there exists an abstract uncovered element φ w.r.t.

Ŝ, then there exists r ∈ γ�(φ) such that r ∉ D�{R}�S(p(x⃗)).

Point 2 says that the concrete error has an abstract symptom which is not hidden by

the approximation on Ŝ and, moreover, there exists a formula φt which can express

it.

In the following examples, we borrow from (Alpuente et al. 2006) the notation for

last entailed value of a stream: X=̇c holds if the last instantiated value in the stream

X is c.

Example 4.4

We verify (for Example 2.1) that each time a near signal arrives from a train,

the order down is sent to a gate process.8 To model this property, we define the

specification (of the property) Ŝdown as

φordersent ∶= Ŝdown(master(C ,G)) ∶= ◻(C=̇near →̇ ◇(G=̇down))
To check whether the program implies the specification (D̂�{Dm}�Ŝdown

→̇ Ŝdown ) we

have to check if φM (Ŝdown) →̇ φordersent (where φM (⋅) is defined in Example 3.7).

8 A more interesting property, namely that, in addition, the gate is eventually down, is verified in (Comini
et al. 2014). Here we have simplified the property due to space limitations.
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Each of the three disjuncts of φM (Ŝdown) implies φordersent . Thus, by Theorem 4.2,

Dm is partially correct w.r.t. Ŝdown . �

When the check of a process declaration R against a specification S fails, our

method reports that R is not partially correct w.r.t. S . If this occurs, the formula

testimony for the possible incorrectness gives useful information to fix the process

declaration or check whether it corresponds to a false positive.

Example 4.5

Now we show how our technique detects an error in a buggy set of declarations. We

remove instruction tell(G = [up ∣ G′]) in the process declaration Dm (of Example 2.1).

To avoid misunderstandings, we call the modified process master′ and let R be the

new process declaration.

We aim to verify that the order up is sent whenever the signal out is received:

φ ∶= Ŝup(master ′(C ,G)) ∶= ◻((C=̇out) →̇ ◇(G=̇up))

We need to compute the (one step) semantics for the (buggy version of the) process:

φ′ ∶= D̂�{R}�Ŝup
(master ′(C ,G)) = φ′near ∨̇ φ′out ∨̇ φ′cwait

where

φ′near ∶= ∃̇C′ ,G′ (C = [near ∣ ] ∧̇ ◯C = [near ∣ C′] ∧̇◯G = [down ∣ G′] ∧̇ ◯ Ŝup(master ′(C ′,G ′)))

φ′out ∶= ∃̇C′ ,G′ (¬̇(C = [near ∣ ]) ∧̇ C = [out ∣ ]∧̇◯(C = [out ∣ C′] ∧̇ ◯ Ŝup(master ′(C ′,G ′))))

φ′cwait ∶= ¬̇(C = [near ∣ ]) ∧̇ ¬̇(C = [out ∣ ]) ∧̇ ◯ Ŝup(master ′(C ,G))

We detect an incorrectness of R (in master′ process) w.r.t. Ŝup on testimony φ′out
since φ′out →̇ φ′ and φ′out ∧̇ φ = ˙false. The testimony suggests that on channel C we

have out signal but we do not see the corresponding up signal on channel G. �

Our technique behaves negatively for sets of declarations D where D̂�D� has more

than one fixpoint. This happens with programs with loops that do not produce

contributes at all (which are in some sense non meaningful programs). In such

situations, we can have that the actual behavior does not model a specification Ŝ
which is a non-least fixpoint of D̂�D�, but, since Ŝ is a fixpoint, we do not detect

the abstractly incorrect declaration, as shown by the following example.

Example 4.6 (Pathological cases)

Let Dp ∶= {q(y) ∶− now y = 1 then q(y) else q(y)} and Ŝp(q(y)) ∶= ◇(y = 1) be the

specification. Then, we compute D̂�Dp�Ŝp(q(y)) = (y = 1 ∧̇ ◇ y = 1) ∨̇ (¬̇ y = 1 ∧̇ ◇ y = 1).

We can see that D̂�Dp�Ŝp →̇ ◇(y = 1), thus Dp is partially correct w.r.t. Ŝp. However,

y = 1 is not explicitly added by the process. �

Note that, if Ŝ(p(x⃗)) is assumed to hold for each process p(x⃗) defined in D and

D̂�D�Ŝ →̇ Ŝ, then F�D� satisfies Ŝ.

4.1 An automatic decision procedure for csLTL

In order to make our abstract diagnosis approach effective, we have defined an

automatic decision procedure to check the validity of the formulas involved in
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Table 1. α- and β-formulas rules.

α A(α)

R1 ¬̇ ¬̇φ {φ}

R2φ1 ∧̇ φ2 {φ1, φ2}

R3 ¬̇◯φ {◯¬̇φ}

β B1 (β) B2 (β)

R4 ¬̇(φ1 ∧̇ φ2) {¬̇φ1} {¬̇φ2}

R5 ¬̇(φ1 U φ2) {¬̇φ1, ¬̇φ2} {φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)}

R6 φ1 U φ2 {φ2} {φ1, ¬̇φ2,◯((Γ∗ ∧̇ φ1) U φ2)}

Definition 4.1 (of the form ψ →̇ φ with φ = Ŝ(p(x⃗)) and ψ = D̂�D�Ŝ(p(x⃗))). We

adapt to csLTL the tableau construction for Propositional LTL of (Gaintzarain et al.

2008; Gaintzarain et al. 2009). (Comini et al. 2013b) contains a preliminary version

of the method.

Intuitively, a tableau consists of a tree whose nodes are labeled with sets of

formulas. The root is labeled with the set of formulas which has to be checked for

satisfiability. Branches are built according to rules defined on the syntax of formulas

(see Table 1 defining α and β formulas). The basic idea is that a formula from a

node is selected and, depending on its form, a rule of Table 1 is applied. β formulas

generate a bifurcation on the tree and there are specific rules for next and existential

quantification formulas.

If all branches of the tree are closed (Definition 4.8), then the formula has no

models. Otherwise, we can obtain a model from the open branches.

Definition 4.7 (csLTL tableau)

A csLTL tableau for a finite set of formulas Φ is a tuple TΦ = (Nodes , nΦ,L,B ,R)
such that:

1. Nodes is a finite non-empty set of nodes;

2. nΦ ∈ Nodes is the initial node;

3. L ∶ Nodes → ℘(csLTL) is the labeling function that associates to each node the

formulas which are true in that node; the initial node is labeled with Φ;

4. B is the set of branches such that exactly one of the following points holds for
every branch b = n0, . . . , ni, ni+1, . . . , nl ∈ B and every 0 ≤ i < l:

(a) for an α-formula α ∈ L(ni), L(ni+1) = {A(α)} ∪L(ni) ∖ {α};
(b) for a β-formula β ∈ L(ni), L(ni+1) = {B1 (β)}∪L(ni)∖{β} and there exists another branch

in B of the form b′ = n0, . . . , ni, n
′

i+1, . . . , n
′

k such that L(n′i+1) = {B2 (β)} ∪L(ni) ∖ {β} ;

(c) for an existential quantified formula ∃̇x φ′ ∈ L(ni), L(ni+1) = {φ′′}∪L(ni)∖{∃̇x φ′} where

φ′′ ∶= φ′[y/x] with y fresh variable;

(d) in case L(ni) is a set formed only by elementary formulas, L(ni+1) = next(L(ni)), where

next(Φ) ∶= {φ ∣ ◯φ ∈ Φ} ∪ {¬̇φ ∣ ¬̇◯φ ∈ Φ} ∪ (Φ ∩C).

Rules 4a and 4b are standard, replacing α and β-formulas with one or two formulas

according to the matching pattern of rules in Table 1, except for Rule R6 that uses

the so-called context Γ∗, which is defined in the following. The next operator used

in Rule 4d is different from the corresponding one of PLTL since it also preserves

the constraint formulas. This is needed for guaranteeing correctness in the particular
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setting of tccp where the store is monotonic. Finally, Rule 4c is specific for the ∃̇
case: ∃̇x is removed after renaming x with a fresh variable9.

Definition 4.8

A node in the tableau is inconsistent if it contains a couple of formulas φ, ¬̇φ, or the

formula ˙false, or a constraint formula ¬̇ c′ such that the merge c of all the (positive)

constraint formulas c1, . . . , cn in the node (i.e., c ∶= c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn) is such that c ⊢ c′. A

branch is closed if it contains an inconsistent node.

The last condition for inconsistence of a node is particular to the ccp context.

We now describe the algorithm that automatically builds the csLTL tableau for

a given set of formulas Φ (see (Comini et al. 2014) for the pseudocode). The

construction consists in selecting at each step a branch that can be extended by

using α or β rules or ∃̇ elimination. When none of these can be applied, the next

operator is used to pass to the next stage. When dealing with eventualities, to

determine the context Γ∗ in Rule R6, it is necessary to distinguish the eventuality

that is being unfolded in the path. Given a node n and φ ∈ L(n), Γ ∶= L(n) ∖ {φ}.
Then, when Rule R6 is applied to a distinguished eventuality, we set Γ∗ ∶= ⋁̇γ∈Γ ¬̇ γ;
otherwise Γ∗ ∶= true. The use of contexts is the mechanism to detect the loops that

allows one to mark branches containing eventuality formulas as open or to generate

inconsistent nodes and mark branches as closed. A node is marked as closed when it

is inconsistent while is marked as open when (1) it is the last node of the branch and

contains just constraint formulas or (2) the branch is cyclic and all the eventualities

in the cycle have been already distinguished.

In order to ensure termination of the algorithm, it is necessary to use a fair

strategy to distinguish eventualities, in the sense that every eventuality in an open

branch must be distinguished at some point. This assumption and the fact that,

given a finite set of initial formulas, there exists only a finite set of possible labels

in a systematic tableau, imply termination of the tableau construction. Moreover,

the constructed tableau is sound and complete. Therefore, to check the validity of a

formula of the form ψ →̇ φ, with φ = Ŝ(p(x⃗)) and ψ = D̂�D�Ŝ(p(x⃗)), we just have

to build the tableau for its negation T¬̇(ψ→̇φ) and check if it is closed or not. If it

is, we have that D is abstractly correct. Otherwise, we can extract from T¬̇(ψ→̇φ) an

explicit testimony ϕ of the abstract incorrectness of D .

The construction of ψ = D̂�D�Ŝ(p(x⃗)) is linear in the size of D . The systematic

tableau construction of ¬̇(ψ →̇ φ) (from what said in (Gaintzarain et al. 2009))

has worst case O(2O(2∣ ¬̇(ψ→̇φ)∣)). However, we believe that such bound for the worst-

case asymptotic behavior is quite meaningless in this context, since it is not very

realistic to think that the formulas of the specification should grow much (big

formulas are difficult to comprehend and in real situations people would hardly

try even to imagine them). Moreover, note that tableau explosion is due to nesting

of eventualities and in practice really few eventualities are used in specifications.

9 The csLTL existential quantification does not correspond to the one of FO logic. It serves to model
local variables, and ∃̇x φ can be seen just as φ where the information about x is local.
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Therefore, in real situations, we do not expect that (extremely) big tableaux will be

built.

5 Related Work

A Constraint Linear Temporal Logic is defined in (Valencia 2005) for the verification

of a different timed concurrent language, called ntcc, which shares with tccp

the concurrent constraint nature and the non-monotonic behavior. The restricted

negation fragment of this logic, where negation is only allowed for state formulas,

is shown to be decidable. However, no efficient decision procedure is given (apart

from the proof itself). Moreover, the verification results are given for the locally-

independent fragment of ntcc, which avoids the non-monotonicity of the original

language. In contrast, in this work, we address the problem of checking temporal

properties for the full tccp language.

Some model-checking techniques have been defined for tccp in the past (Falaschi

and Villanueva 2006; Alpuente et al. 2005a; Alpuente et al. 2005b; Falaschi et al.

2001). It is worth noting that the notions of correctness and completeness in

these works are defined in terms of F�D�, i.e., in terms of the concrete semantics,

and therefore their check requires a (potentially infinite) fixpoint computation. In

contrast, the notions of abstractly incorrect declarations and abstract uncovered

elements are defined in terms of just one application of D̂�D� to Ŝ. Moreover,

since D̂�D� is defined compositionally, all the checks are defined on each process

declaration in isolation. Hence, our proposal can be used with partial sets of

declarations. When a property is falsified, model checking provides a counterexample

in terms of an erroneous execution trace, leaving to the user the problem of locating

the source of the bug. On the contrary, we identify the faulty process declaration.

In (Falaschi et al. 2007), a first approach to the declarative debugging of a ccp

language is presented. However, it does not cover the particular extra difficulty of the

non-monotonicity behavior, common to all timed concurrent constraint languages.

This makes our approach significantly different. Moreover, although they propose the

use of LTL for the specification of properties, their formulation, based on the depth-k

concretization function, complicates the task of having an efficient implementation.

Finally, this proposal clearly relates to the abstract diagnosis framework for tccp

defined for Galois Insertions (Comini et al. 2011). That work can compete with the

precision of model checking, but its main drawback is the fact that the abstract

domain did not allow to specify temporal properties in a compact way. In fact,

specifications consisted of sets of abstract conditional traces. Thus, specifications

were big and unnatural to be written. The use of temporal logic in this proposal

certainly overcomes this problem.

6 Conclusion and Future Work

We have defined an abstract semantics for tccp based on the domain of a linear

temporal logic with constraints. The semantics is correct w.r.t. the behavior of the

language.
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By using this abstract semantics, we have defined a method to validate csLTL

formulas for tccp sets of declarations. Since the abstract semantics cannot be defined

by means of a Galois Connection, we cannot use the abstract diagnosis framework

for tccp defined in (Comini et al. 2011), thus we devised (from scratch) a weak

version of the abstract diagnosis framework based only on a concretization function

γ. It works by applying D̂�D� to the abstract specification and then by checking the

validity of the resulting implications (whether that computation implies the abstract

specification). The computational cost depends essentially on the cost of that check

of the implication.

We have also presented an automatic decision procedure for the csLTL logic,

thus we can effectively check the validity of that implication. We are currently

finishing to implement a proof of concept tool, which is available online at URL

http://safe-tools.dsic.upv.es/tadi/, that realizes the proposed instance. Then

we would be able to compare with other tools and assess the “real life” goodness of

our proposal.

In the future, we also plan to explore other instances of the method based on

logics for which decision procedures or (semi)automatic tools exists. This proposal

can also be immediately adapted to other concurrent (non-monotonic) languages

(like tcc and ntcc) once a suitable fully abstract semantics has been developed.
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http://riunet.upv.es/handle/10251/8351.

de Boer, F. S., Gabbrielli, M., and Meo, M. C. 2000. A Timed Concurrent Constraint

Language. Information and Computation 161, 1, 45–83.

https://doi.org/10.1017/S1471068414000349 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000349


Abstract Diagnosis for tccp using a Linear Temporal Logic 801

de Boer, F. S., Gabbrielli, M., and Meo, M. C. 2001. A Temporal Logic for Reasoning

about Timed Concurrent Constraint Programs. In TIME ’01: Proceedings of the Eighth

International Symposium on Temporal Representation and Reasoning (TIME’01). IEEE

Computer Society, Washington, DC, USA, 227.

de Boer, F. S., Gabbrielli, M., and Meo, M. C. 2002. Proving correctness of Timed

Concurrent Constraint Programs. CoRR cs.LO/0208042.

Falaschi, M., Olarte, C., Palamidessi, C., and Valencia, F. D. 2007. Declarative Diagnosis

of Temporal Concurrent Constraint Programs. In Logic Programming, 23rd International

Conference, ICLP 2007, Proceedings, V. Dahl and I. Niemelä, Eds. Lecture Notes in
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