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Gas flow in a permeable medium

By L. M. DE SOCIO AND L. MARINO
Department of Mechanics and Aeronautics, University of Rome ‘La Sapienza’,

Via Eudossiana 18, I-00184 Roma, Italy

(Received 2 May 2005 and in revised form 15 November 2005)

The dynamics of gases in permeable media is approached both experimentally and
by numerical simulations. The experiments were performed in matrices made of
packed beds of spheres in rarefied conditions and a model for the direct simulation
of the molecular kinetics is proposed. Comparisons between experimental data
and numerical results show the influence of the main parameters of the gas–solid
interaction and the range of validity of the model. Moreover it is shown that there
is a flow condition for the minimum permeability of the medium to the gas flow.
Such a minimum depends upon the Knudsen number, and can be explained by the
molecular dynamics as in the well-known Knudsen’s experiment on capillaries.

1. Introduction
Recent developments in a number of technological areas require that permeable

media, namely porous media, matrices, metallic foams and beds of granular materials,
be reconsidered from the point of view of the physics of fluids. This is, for instance, the
case of microtechnology devices, boundary-layer control by wall suction, transpiration
cooling, controlled combustion, and so on, where the gas flowing through the solid
medium is very often in more or less rarefied conditions if one considers the free
molecular path of the fluid and the mean diameter of the microchannels through
which the gas flows. In this framework, our paper reports the results of a series of
experiments on the gas flow through a permeable medium made of a bed of spheres,
as this particular geometrical configuration was believed to be the most suitable way
to characterize the statistical behaviour of both the gas and the solid phase and was
proposed in the past as a reliable model of a porous medium.

The experimental work and a related proposed model for the direct simulation of the
flow were aimed at showing and discussing how a physically realistic representation
of the gasdynamics in permeable media must rely on the molecular kinetics of fluids,
in so overcoming the continuum models which were derived from the Darcy equation
for liquids. In particular, the numerical simulations were carried out to explain and
substantiate theoretically the experimental data, in regimes from the free molecular
flow to the compressible continuum.

As an introduction to the work we briefly recall that M. Knudsen, in a celebrated
paper (Knudsen 1909), reported on some experiments concerning the gas flow in
capillary tubes, and showed that the flow rate through the capillaries, normalized
with respect to the value in the free molecular regime (Karniadakis & Beskok 2001),
first decreases, reaches a minimum and thereafter increases with the pressure drop
between the two ends of the tube. At that time, the effects of capillarity on liquid
flows were already known, but very little was known about gas flows in capillaries.
What was more important than the experimental data was the explanation Knudsen
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120 L. M. de Socio and L. Marino

gave of the phenomenon he had observed. Based on the kinetic theory, the minimum
normalized flow rate at increasing pressure drops could be argued as the situation,
occurring at relatively low pressure, where the gas flow through the tube ceases to
be a stream of free molecules which only hit against the wall, and undergoes the
increasing effects of the collisions between the molecules. Later Adzumi (1937a, b)
predicted a linear influence of the gas rarefaction on the normalized flow rate in
an almost continuum regime and this phenomenon was subsequently named the
Klinkenberg effect.

It took about fifty years, after Knudsen’s observations, before attention was paid
to the possibility that similar phenomena might be present in flows through porous
media where the mean free path of the streaming molecules is comparable with the
mean diameter of the pores (Wicke & Vollmer 1952). Up to that time, the fluid flow
through a porous matrix had been described by the Darcy law for liquids or by the
modifications and extensions of such a law to gases via a generally phenomenological
approach.

We recall here that a widely accepted definition of the medium permeability to
gases, which will be used in this paper, can be extended and expressed in the form

Kd = up/(|∇p|) (m2 s−1), (1.1)

where u and p are the local values of the percolating velocity and of the pressure,
respectively, and |∇p| is the pressure gradient. Equation (1.1) expresses the isothermal
mass flow rate per unit pressure gradient and can be interpreted more as the
conductance of the medium rather then its permeability. Actually, the medium
permeability to incompressible isothermal fluids, as defined by Darcy, is

k = −u/(|∇p|/µ) (m2), (1.2)

where µ is the viscosity, and its meaning can be recovered easily from (1.1) if we
follow, for instance, the demonstration by Wu, Pruess & Persoff (1998).

Let the Darcy law (1.2) be associated to the continuity equation for a compressible,
isothermal gas through the pores, with a local average velocity Ū = u/ϕ, where ϕ is
the porosity. Then

∂(ρu)/∂x = −ϕ∂ρ/∂t, (1.3)

where ρ is the mass density, t is the time and introducing (1.2) into (1.3) we have

∂p2

∂t
= Kd∂

2(p2)/∂x2, (1.4)

which shows the physical meaning of Kd = kp/ϕµ as representative of the gas
diffusivity through the medium.

A few years after the Wicke & Vollmer work, a first study (Derjagin & Bakanov
1957) of gas flows through porous matrices was based on the Boltzmann equation to
predict the existence of a minimum of the permeability Kd versus the mean pressure in
the medium. Derjagin & Bakanov, in particular, considered the medium as a mixture of
gas and solid particles, according to a procedure of the ‘dusty gas’ type (Muskat 1937).

Pollard & Present (1948) gave a sound theoretical basis to Knudsen’s arguments
about the flow in capillaries, and Scott & Dullien (1962) predicted a partial extension
of those results to the porous solids. However, the first experiments concerning the
latter particular point, as reported in Grove & Ford (1958), were not conclusive and
left many uncertainties owing to the difficulty of characterizing the tested material,
namely porous ceramics and graphites.
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Gas flow in a permeable medium 121

At present, a large number of results concerning the gas flows through porous media
deal with the prediction of a Klinkenberg effect (Klinkenberg 1941) in these materials.
These results are related to the molecular kinetics (see for example Wu et al. 1998;
Skjetne & Auriault 1999; Chastanet, Royer & Auriault 2004) in the sense that the
Navier–Stokes equations for a compressible continuum fluid are solved after assuming
the presence of a velocity slip at the interface between gas and porous medium. The
slip coefficient appears in the boundary conditions and its value is simply taken from
the results of the kinetic theory of gases. Then a linear Klinkenberg law is expressed
in the form

k = k0(1 + b/p), (1.5)

where b is a gas-dependent constant, and k0 is the permeability of the porous sample
to liquids.

Finally, Gorelik et al. (1993) reconsidered the ‘dusty gas’ model to simulate and
solve by a Monte Carlo method the problem of mass transfer through a porous layer
in the presence of intense evaporation (condensation). However, in that work, the
spheres of the bed are simulated as the immovable particles of a gas mixture, and
unrealistic data were assumed for the porosity. This assumption could be justified
since the scope of that paper was to present a model for the kinetics of an intense
evaporative mass transfer in the layer. Stefanov et al. (1999) presented further results
about the more complex situation of a mixture of an evaporating component in a
porous layer in the presence of a non-condensable gas. In Stefanov et al., the bed of
spheres is simply a reference medium for the condensation/evaporation model testing,
but no attention is paid to a realistic representation of the medium.

Two main models of a porous medium were followed, in most cases, in order
to explain the experimental data from a theoretical point of view. One of them
assumes that the medium can be represented as a bundle of capillary tubes (Erofeev,
Freedlender & Kogan 1998a, b) and it follow that the ‘Knudsen effect’ for its
permeability should be recovered. However, no experimental evidence of the validity
of this point of the theory was made available, and the deterministic form assumed for
the structure of the solid makes the model of little use in providing more information
on the gasdynamics of a porous system. In this framework, Marschall & Milos (1998)
studied the permeability of some rigid fibrous media in the continuum and slip flow
regimes. They showed the analogy between flows in capillary tubes and through
permeable materials and gave experimental results concerning the Klinkenberg law
for fibrous media in an almost continuum regime.

The second model, which is much more frequently cited (e.g. Bear 1988), deals with
a permeable medium as made of a more or less geometrically ordered bed of spheres.
In this case, it is less immediate to predict the existence of a Knudsen effect while –
to the best of our knowledge – no experimental evidence has been yet presented in
the literature.

In the following sections, experimental results on the characteristics of a flow in a
permeable medium, made of a compact bed of spheres, will be shown together with
the results of the numerical simulations which are first validated by, and then extend,
the experiments. An advantage of choosing a bed of spheres as a reference situation
is that the main geometrical parameters of this configuration are sufficiently known.
Among the results it will be shown that the Knudsen effect is present and that a
minimum exists for the medium permeability in (1.1) with the pressure gradient.

A final note concerns the way the experimental data were obtained. In the past, all
the results were given in terms of the relation between the flow rate (either through
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capillaries or through porous media) and the total pressure drop between the inlet
and the outlet of the probe. However, when dealing with gases, the downstream
pressure was kept as low as possible, so that, at the exit, choked flow conditions were
usually present. It follows that in most cases, the real pressure drop was not correctly
evaluated by taking the pressure of the discharge ambient instead of the pressure at
the exit section in choked conditions. As a consequence, the considered pressure drops
were higher than the actual ones. This fact had further relevant consequences when
the mean value of the characteristics of the state of the gas was calculated, e.g. the
mean Knudsen number. We overcame these difficulties by taking the measurements
along the probe.

2. Experimental rig and results
The experiments were carried out in the Aerodynamics Laboratory of the

Department of Mechanics and Aeronautics of the University of Rome ‘La Sapienza’.
The test section was a stainless steel cylinder, L = 170 ± 0.1 mm long and of internal
diameter Dw = 27 ± 0.1 mm, filled with compacted glass spheres, the diameter Ds

of which could be 0.5, 1, 2 (± 0.01) mm. The porosity of an indefinite bed of spheres
falls in a range between the limits 0.4764, for spheres ordered according to a cubic
packing, and 0.2595, for rhombohedral packing (see for example Bear 1988; Dullien
1991). Accurate measurements gave a mean value of the porosity of our probes
ϕ = 0.33 for all three diameters.

The mean diameter of the pores dp depends upon the structure of a porous medium.
The simplest approximation is the use of the ‘hydraulic’ diameter of an equivalent
circular tube (Dullien 1991) and the ratio dp/Ds takes the value 1/3 in the case of
spheres of equal diameter. Therefore the ratio between dp and L is negligible in our
case and we can assume that the end effects on the flow are limited to the very short
regions close to the inlet and to the outlet of the test probe. In those regions, the value
of the porosity presents abrupt changes which are difficult to evaluate. On the other
hand, an entrance boundary layer develops at the cylindrical wall, which might play
a more and more important role as the gas rarefaction increases. Very close to the
wall, the porosity increases owing to the discrepancy between the radii of curvature of
the wall and the particles, and the influence of the ratio Ds/Dw is felt for three or
four particle diameters into the packing (Dullien 1991). These assumptions will be
verified by means of the numerical simulations.

Along the wall of the probe, seven static pressure and two thermocouple holes were
opened. The test section was installed in a flow rig, driven by a downstream vacuum
pump system, while an upstream nitrogen bottle fed the working fluid to the probe
through a flowmeter and controller. At the ends of the test section, two stagnation
chambers were located and a valve manifold was installed in front of the pumps. A
sketch of the test rig is shown in figure 1.

Two Brooks flowmeters and controllers were adopted for measures in the range
0.1–200 sccm (with an accuracy of 2.4 % of minimum reading.). We recall that 1
sccm (standard cubic centimetre per minute) corresponds to 1.92 × 10−8 Kg s−1 for
nitrogen. The pressure was measured by MKS-672 absolute manometers (with range
10−4 – 103 mbar and an accuracy of 0.12 % of minimum reading) and by a MKS-223
Baratron differential pressure gauge with range 10−3 – 10 mbar and an accuracy of
0.3 % of minimum reading). An assigned flow rate Q could be established through
the test section, by operating on the flowmeter and controller, while the pressure in
the downstream stagnation chamber was controlled by the valve manifold.
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Figure 1. Sketch of the experimental set-up.

The J-type thermocouples measured the temperature inside the bed of spheres.
In all the experiments, the temperature T measurements showed that the flow was
practically isothermal, with temperature variations of less than one K with respect to
the external temperature.

Two typical sets of data are reported in figure 2 and show the measured wall
pressure distribution in the axial direction x, made dimensionless with respect to L.
Experiments carried out in the past measured the drop in gas pressure between
the inlet and the outlet of a test section, and led to the evaluation of an average
permeability over the total length L of the probe K̄d = upav/(|�p/L|), where pav =
(pin + pout )/2 and �p = (pin − pout ). Therefore the influence of the end effects on the
results was not taken into account and, moreover, the extent of possible comparisons
with mathematical models was limited. In our case, the local value of the permeability
could be calculated – with good accuracy – from the distribution of the local pressure
values. In addition, operating at a constant flow rate in isothermal conditions provided
a means for a relatively immediate evaluation of the velocity distribution along the
test section.

As an anticipation to the presentation of the numerical simulations, the wall
pressure and the pressure at the centreline are also shown in figure 2, as calculated by
a code based on a direct simulation Monte Carlo method (DSMC) to be discussed
later. The graphs refer to two cases corresponding to two parameters, namely Kni

and Rei . Here, Kni = λi/dp and Rei = ρiuidp/µ are the Knudsen number and the
Reynolds number, respectively, and the index i stands for inlet conditions. Moreover,
λ is the gas mean free path and then assuming isothermal conditions for the flow,
leads to a constant value of the Reynolds number, along the probe. In both cases,
the Mach number Ma = u/c, where c is the speed of sound, was very small.

We note that the pressure distribution vs. x is not linear at the higher Kni , while,
at the lower Kni , i.e. in a more although not yet continuous situation, the p vs. x.

relation becomes almost linear. Furthermore, we already observe at this point that
the mathematical model provides a good representation of the experiments in both
cases and that the small difference between the values calculated at the wall and
those along the centreline increases with Kni . Testing the simulation results against
the experimental data helps validate the model and allows us to make an estimate of
the pressure values along the axis from those along the external wall.
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Figure 2. Experimental and simulated pressure distributions p along the longitudinal axis x
at different Knudsen numbers at the inlet and flow rates. (a) Kni = 1.05, Rei = 1.4 × 10−2.
(b) Kni = 0.2, Rei = 5.78 × 10−2.

After running a set of experiments in a range of Kni and Rei , data such as
those in figure 3 were obtained. In particular, the figure shows the local Kn−1

vs. x distribution. The data are relative to three different values of Ds/Dw(1.85 ×
10−2, 3.7 × 10−2, 7.4 × 10−2) and three values of Rei and the influence of the ratio
Ds/Dw on the results increases with the rarefaction, but is negligible in percentage.

The local permeability Kd = up/(|∇p|) was calculated from the experimental data
by interpolating the pressure values along x, and was made dimensionless with respect
to the reference Kr =

√
RT Ds , where R is the gas constant. Figure 4 shows Kd/Kr as

a function of Kn−1 and Kn, with figure 4(a) reporting the experimental data in the
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Figure 3. 1/Kn distributions along the longitudinal axis x at different diameters of the spheres
Ds and flow rates Q. Experimental data. (a) Q = 0.25 sccm (Rei = 1.4 × 10−2); (b) Q =
0.5sccm (Rei = 2.8 × 10−2); (c) Q = 1 sccm (Rei = 5.78 × 10−2). —, Ds = 0.5 mm; × , 1.0 mm;
∗, 2.0 mm.

entire range of Kn values, for Rei = 1.4 × 10−2–5.78, together with a best fit curve
(dashed line). As a first preliminary result of this work the enlarged representation
in figure 4(b) shows the clear presence of a minimum at Kn about 6. This result
provides an answer to the controversial results in the literature and shows that such
a minimum exists at least in beds of equal diameter spheres.

A second result concerns the Klinkenberg effect and figure 5 shows the experimental
data obtained in the almost continous range for Kni = 7.6 × 10−3 – 3.4 × 10−2, and
Rei = 5.78 – 0.578 and a best fit dashed line is also given. When reference is made to
the Darcy equation for a continuum flow in the form of (1.2), and to the Klinkenberg
law (1.5), our experiments show that the permeability can be given the expression
k = 3.87 × 10−10(1 + 184/pav), (SI units), which extend the results of the models for
the continuum regime (Wu et al. 1998; Chastanet et al. 2004). Moreover, Marschall &
Milos (1998) presented experimental results for flows through rigid fibrous matrices
in a range of Kn between 0.1 and 1. In their case, values of b about 703 – 877 Pa
were obtained whose order of magnitude approximately compares with that of our
experiments with a bed of spheres in spite of the relevant differences of materials and
flow regimes.

3. Physical model and numerical computations
The model proposed in this paper assumes that the particles crossing the medium

proceed while either colliding or not colliding against the spheres. A fraction β of the
total number of molecules in each volume element strikes the spheres and a fraction
(1 − β) does not. In the second case, they possibly collide with other particles. In
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Figure 4. Dimensionless permeability Kd/Kr vs. Kn−1, Rei = 1.4 × 10−2 – 5.78.

both cases, they can hit the external wall if the proper conditions are verified. The
two types of collision depend upon the geometry of the matrix (porosity, tortuosity
of the flow path) and on the characteristics of the interaction between gas and solid.

Our approach somehow recalls that proposed by Erofeev et al. (1995) and
Plotnikov & Rebrov (2003) who evaluated the hypersonic flow against an infinitely
thin permeable membrane by a DSMC procedure. In their work, the gas molecules
striking the permeable surface are either rejected or pass through according to an
assumed probability.

The numerical simulations and the computations were carried out according to the
DSMC method which is a well-established numerical approach for the analysis of
gas dynamics phenomena at a molecular level (Bird 1994; Alexander & Garcia 1997).
The microscopic state of the system is defined by the position x(x, y, z) and velocity
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Figure 5. Experimental Klinkenberg’s law, dimensional units.
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Figure 6. Geometry of the problem.

u′(u′, v′, w′) of a set of representative particles which move in the physical domain.
All the flows are computed as unsteady while the physical time is the parameter of
the simulation.

One of the most important aspects of the DSMC is to uncouple the molecular
motion from the intermolecular collisions. In particular, the physical domain is
discretized in cells, and during each time step the particles move in each cell and
through its borders under the proper boundary conditions and collide following
a stochastic process where momentum and energy are invariants. At the end of
each step, a new macroscopic state of the system (T , p, ρ, u) is evaluated from the
microscopic state of each cell according to the laws of the classical kinetic theory
(Bird 1994). A few physical definitions and data are given in the Appendix.

The DSMC code simulates the two-dimensional flow in a cylindrical region where
a system of coordinates (0xy) represents the axial (x) and radial (y) directions,
respectively, and the origin 0 is on the wall. Figure 6 reports a sketch of the geometry.
The distance y from the wall is made dimensionless with respect to the probe radius
Dw/2 while the reference length along x is L and the two-dimensional domain is
discretized in Nx × Ny cells.
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Figure 7. Rate of convergence of (a) the macroscopic velocity and (b) number density vs.
the number of steps. (i) ——, Ntot = 1500, nm = 106; (ii) - - - - , Ntot = 1500, nm = 105; (iii) · · ·,
Ntot = 6000, nm = 106.

The numerical program was then run after assuming that the nitrogen molecules
enter the tube at the pressure p and temperature T which correspond to the
experimental data at the inlet, while the pressure at the outlet is also assigned
from the experiments. The procedure adopted to assign these boundary conditions
follows the analysis presented by Wu et al. (2001). In particular, an iterative algorithm
is followed to calculate the streamwise component of the velocity which satisfies the
conservation of the particle fluxes both at the inlet and at the outlet boundary surfaces.
As an alternative it is possible to specify the mass flow rate and the exit pressure.
The two different choices are equivalent as they give the same flow properties all
over the domain and the details of the iterative procedure are given in Wu et al.
(2001).

We recall that the main numerical parameters involved in each DSMC run are
the number Ntot = Nx × Ny of cells adopted, the number of representative molecules
nm used in the simulation, and the number of steps ns which are necessary to reach
the numerical convergence. Each representative molecule corresponds to a random
sample, drawn from the actual velocity distribution, of the usually very large number
of real molecules (Alexander & Garcia 1997; Bird 1998). The optimum choice of the
parameters above is not immediate but depends upon the particular problem which
is investigated. Some suggestions can be inferred from the behaviour of the norm
of a significant macroscopic quantity (e.g. the number density n, the mean velocity
u or the temperature T ) in a particular cell or in a group of cells. More details
can be found in de Socio & Marino (2000) where this criterion was introduced. In
the present calculations we assumed as references quantities εu = |ui − ui−1|/|ui | and
εn = |ni − ni−1|/ni , evaluated in the cell at x = 0.5, y = 1. The subscript i represents
the current step.

Figure 7 shows εu and εn as functions of three parameters Ntot , ns and nm, and we
note that the rates of convergence of εu and εn vs. ns increase more rapidly with nm

than with Ntot .
By following this procedure, very good accuracy and convergence were obtained by

means of Ntot = 50 × 30 computational cells and nm = 106 representative molecules.
Moreover 10 000 steps were sufficient to achieve numerical convergence, with εn and
εu both less than 10−4. The curves also confirm that the error in a Monte Carlo
simulation is proportional to 1/

√
nm (Hadjiconstantinou et al. 2003).
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Figure 8. Sketch of the physical model for the gas flow through a bed of spheres.

To explain the assumptions better, figure 8 shows a sketch of the model. Figure 8(a)
shows, at time t , a discrete volume element �Ω of the material close to an element
of the external wall ∂Ω and a few representative gas particles nm are shown as stars.
The problem of the collisions between gas particles and spheres is then split in two
parts. The surfaces of the spheres are considered in figure 8(b) as homogeneously
distributed in the domain �Ω where a fraction β of the nm representative particles is
trapped. Whatever the kinetic state of these particles may be, they lose their energy
against the distributed wall and gain a new kinetic state according to a Maxwellian
distribution function at the temperature of the wall in �Ω . The remaining (1 − β)nm

representative molecules move freely in the space �Ω (figure 8c) and may collide
according to the usual rules which take into account their relative speed, the collision
cross-section and so on. Possible collisions against the wall ∂Ω are treated following
the usual rules and the impinging molecules are diffusely re-emitted. Figure 8(d) refers
to the updated microscopic state at t + �t .

For a compact bed of spheres, the geometric properties are well known and
we also observed, during our work, that small variations of these characteristics
do not particularly affect the final results. Moreover, we assume that the probe is
isothermal and that the colliding molecules are re-emitted according to a Maxwellian
distribution function at the constant temperature of the spheres. We assume that
the local flow through the pores occurs as through a long microtube at the same
Kn value. Analogously to the Pollard & Present (1948) and Scott & Dullien (1962)
approach to the flow through capillaries, the fraction of molecules β which arrive,
on average, from the wall of spheres directly onto a sphere without encounters with
other molecules is

β = exp[−sinh−1(Kn−1)]. (3.1)

In the case of a permeable medium, Kn is evaluated as a function of the location
in each run.

At each calculation step, the representative molecules in an elemental cell are sorted
from the total number according to the local β value of (3.1) and then this β fraction
is assigned a velocity value from a random Maxwellian distribution at the constant
temperature T . Proper care is paid to the fact that the molecules impinging on the
external wall are re-emitted in a solid angle 2π while those colliding with the spheres
are re-emitted in all directions. Moreover the sorted fraction 1 − β of the total number
of molecules in each cell is dealt with according to the collision laws for hard spheres
in an empty space following a standard Monte Carlo procedure. The microscopic
state at t + �t in �Ω comes out from the microscopic state of all particles which are
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Figure 9. Two-dimensional Mach number distributions. y = dimensionless distance from the
wall. (a) Kni = 1.05, Rei = 1.4 × 10−2. (b) Kni = 0.2, Rei = 5.78 × 10−2.
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Figure 10. Two-dimensional Knudsen number distributions. y = dimensionless distance
from the wall. (a) Kni = 1.05, Rei = 1.4 × 10−2. (b) Kni = 0.2, Rei = 5.78 × 10−2.

in the volume element at t + �t . Details on this particular point follow the lines in
Bird (1994).

The computations were carried out for Rei ranging between 1.4 × 10−2 and 5.78
and for Kni between 7.6 × 10−3 and 1.05. In this range of Kni , the local values of
Kn could be as high as 10. We have already shown, in the preceding section, the
excellent agreement between simulated and experimental data at relatively high Kni .
Now turning back to figure 2, we note that the difference between calculated values
and experimental data increases with x through the local value of Kn(x).

As we have already said, a boundary layer is present along the cylindrical wall and
the results of the simulations for the two cases in figure 2 are reported in figures 9 and
10. There the distributions of the local Ma and Kn values close to the cylindrical wall
are reported after calculating the local values of β from (3.1). The boundary-layer
thickness is a negligible fraction of the probe radius Dw/2. Correspondingly, the
changes of porosity at the wall and at the ends of the tube are negligible.
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Figure 11. Two-dimensional (a) β and (b) s distributions. y = dimensionless distance from
the wall. Kni = 1.05, Rei = 1.4 × 10−2.
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Figure 12. Permeability k distribution vs. the local Kn.

We finally calculated some cases for values of β constant in each run and equal
to the value which in each situation corresponds to the value of Kn in the centreline
at the exit. The errors between calculated and experimental data were, in both cases,
less than a few per cent and showed that the sensitivity of the thermo-fluid-dynamical
state to β

s = dβ/dKn = exp[−sinh−1(Kn−1)]/(Kn2
√

1 + 1/Kn2), (3.2)

is negligible, at least in a range of flow regimes from the free molecular up to the
transitional flows. The β distribution near the wall in a significant case is shown in
figure 11(a) while the corresponding sensitivity is given in figure 11(b).

From all the simulations, the permeability k(Kn) was obtained in a range of
Knudsen number and is reported in figure 12. A best fitting (dashed line) of the
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numerical data for Kn between 0.01 and 8.0 gives k [m2] = 4.25 × 10−9(Kn2). For Kn

between 0.2 and 2.0, the experimental data from figure 5 fall on this curve.

4. Conclusions
After presenting the results of our experiments and numerical simulations we

conclude with a few observations. The number of works which concern the flow
of fluids through porous media is extremely great. This is due, on one hand, to the
large number of applications and, on the other hand, to the intrinsic interest of their
physics and mathematical models. However, very few papers approach the flows
through permeable media with reference the molecular gasdynamics. This happened,
for instance, only recently in evaluating the velocity slip between gas and solid, or in
justifying the presence of nonlinear terms in extended forms of the Darcy equation.
In any case, the privileged point of view of all investigations remained that of
continuum fluid mechanics, although interest in gas flow through the microchannels
of a permeable medium is increasing. It seemed then worth making a first contribution
to the study of the problem by some experimental technique and classical procedure
of molecular kinetics. We proposed a simple mathematical model for a bed of
spheres which is one of the most representative examples of permeable medium
and the one that is most suitable for a statistical representation of its geometric
characteristics.

In particular, we dealt with a problem where the Knudsen number, evaluated on a
microscopic basis, is such that the flow regimes fall between the free molecular flow and
the transition regime, whereas the macroscopic Knudsen-number value corresponds
to a continuum fluid. The model and its Monte Carlo simulations were validated
against the experimental data and proved the viability of the kinetic approach and
the efficiency of the numerical method. Among the results are an extension of the
existing theories of the medium permeability to gas flows, the proof that an effect
analogous to the Knudsen effect in tubes exists also in a bed of spheres, and a general
expression for the Klinkenberg law for a permeable medium.

This work was partially supported by the Italian Minister of Education University
and Research.

Appendix. Physical definitions and data
A few definitions and figures are recalled which were adopted in the experimental

data reduction and in the numerical simulations.
The microscopic state of the nitrogen gas is described by a hard sphere model for

its molecules of mass m = 46.5 × 10−27 kg, mean collision diameter d̄ = 4.17 × 10−10 m
and velocity u′(u′, v′, w′).

The mean thermal speed is given by c′2 = (u′2 + v′2 + w′2) and the mean free path
λ = c′/ν̄ where ν̄ is the mean collision frequency.

In a equilibrium hard sphere gas λ = 1/
√

2πd̄2n where n is the number density.

Since c′2 = 3kT /m, where the Boltzmann constant k = 1.38 × 10−23 JK−1, defines
the temperature T , the equation of state gives the pressure p = nkT . Furthermore,
the viscosity µ was calculated by means of µ = (5/16)

√
RT/πm/d̄2 where the gas

constant was taken as R = 196.77 JK−1 Kg−1.
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